固体材料XRD全图拟合相定量分析 ppt课件
合集下载
固体材料XRD全图拟合相定量分析PPT课件
•1
目前多相材料X射线衍射相定量分 析中存在的问题
▪内标法或K值法为主要相定量分析手段
在多相混合的固体材料中,组成相元素组成的不同, 致使其X射线吸收系数存在差异,每个相的衍射强度与其 丰度不是简单的线性关系。内标法与K值法都是为了解决 多相体系中收基体效应对强度的影响。二种方法事先都需 要选择标准样和掺杂用的内标化合物如刚玉粉等,制定标 准曲线或测定K值。实际测量时往样品中添加内标物,均 匀混样后,测定指定(内标物和待测物相)hkl衍射线积 分强度。
•15
天然膨润土定量分析图
•16
▪ 天然高岭土和凹凸棒矿物的相定量
这两种矿物与膨润土中蒙脱石不同,它们属多型矿 物,即有多种晶型结构存在,每种晶型结构本身堆叠位 错率高。在分析中,我们通常不是只选一个结构模型, 而是根据实际衍射图,选二个晶型结构模型,并在拟合 修正时让晶胞中每个原子位置参与修正,取得了非常好 的结果。但这里有一点要指出,如高岭土,修正结果往 往可以得到丰度不同的单斜和三斜两种结构的结果,因 为这二种结构的衍射图十分接近,总量结果我认为是对 的,单斜或三斜分量结果的准确型只能供参考。修正过 程相互侵占是不可避免的。结构修正中的含意是二种结 构标度因子间出现相关。
•14
应用实例
▪ 天然膨润土矿定量分析
天然膨润土是由层状结构的蒙脱石,α-石英、长石等矿物 组成的,其中蒙脱石层堆叠中充满旋转位错和堆叠位错,迄 今连它们的晶系都是所谓膺晶系,如膺六方等。但它的单个 层片中原子的排列是清楚的。我们选用四个二八面体层堆叠 的结构作为等效单晶胞,并用三斜晶系,赋予每个原子在散 射体中有充分移动的自由度。结果如图二所示,两者吻合相 当好。
•22
谢谢
•23
固体材料的相定性分析和相定量是多晶衍射分 析中常用的二大主要任务。上世纪九十年代计 算机搜配(profile-based search/match)方法问 世以来,以往那种费神、繁琐的三强线,八强 线线搜配相鉴定被高效率的计算机全谱搜配所 取代,检索的准确性和速度大幅提高,至少在 主要物相的鉴定分析上 ,多相固体材料的物相 鉴定在各实验室已变得相对容易。
目前多相材料X射线衍射相定量分 析中存在的问题
▪内标法或K值法为主要相定量分析手段
在多相混合的固体材料中,组成相元素组成的不同, 致使其X射线吸收系数存在差异,每个相的衍射强度与其 丰度不是简单的线性关系。内标法与K值法都是为了解决 多相体系中收基体效应对强度的影响。二种方法事先都需 要选择标准样和掺杂用的内标化合物如刚玉粉等,制定标 准曲线或测定K值。实际测量时往样品中添加内标物,均 匀混样后,测定指定(内标物和待测物相)hkl衍射线积 分强度。
•15
天然膨润土定量分析图
•16
▪ 天然高岭土和凹凸棒矿物的相定量
这两种矿物与膨润土中蒙脱石不同,它们属多型矿 物,即有多种晶型结构存在,每种晶型结构本身堆叠位 错率高。在分析中,我们通常不是只选一个结构模型, 而是根据实际衍射图,选二个晶型结构模型,并在拟合 修正时让晶胞中每个原子位置参与修正,取得了非常好 的结果。但这里有一点要指出,如高岭土,修正结果往 往可以得到丰度不同的单斜和三斜两种结构的结果,因 为这二种结构的衍射图十分接近,总量结果我认为是对 的,单斜或三斜分量结果的准确型只能供参考。修正过 程相互侵占是不可避免的。结构修正中的含意是二种结 构标度因子间出现相关。
•14
应用实例
▪ 天然膨润土矿定量分析
天然膨润土是由层状结构的蒙脱石,α-石英、长石等矿物 组成的,其中蒙脱石层堆叠中充满旋转位错和堆叠位错,迄 今连它们的晶系都是所谓膺晶系,如膺六方等。但它的单个 层片中原子的排列是清楚的。我们选用四个二八面体层堆叠 的结构作为等效单晶胞,并用三斜晶系,赋予每个原子在散 射体中有充分移动的自由度。结果如图二所示,两者吻合相 当好。
•22
谢谢
•23
固体材料的相定性分析和相定量是多晶衍射分 析中常用的二大主要任务。上世纪九十年代计 算机搜配(profile-based search/match)方法问 世以来,以往那种费神、繁琐的三强线,八强 线线搜配相鉴定被高效率的计算机全谱搜配所 取代,检索的准确性和速度大幅提高,至少在 主要物相的鉴定分析上 ,多相固体材料的物相 鉴定在各实验室已变得相对容易。
《XRD物相定量分析》课件
实验样品的制备
样品的选取:选择具有代表性的样品 样品的预处理:清洗、干燥、研磨等 样品的装样:将样品装入样品盒中 样品的测试:使用XRD仪器进行测试
XRD实验参数的选择和设置
实验参数:包括X射线源、样品、探测器 等
探测器:选择合适的探测器,如CCD、 IP等
X射线源:选择合适的X射线源,如 CuKα、MoKα等
建议:加强XRD技术的研发和应用推广,提高其在科学研究和工业生产中的应用价值
THANKS
汇报人:PPT
02 X R D 物 相 定 量 分 析 概 述 04 X R D 物 相 定 量 分 析 的 数 学 模
型
06 X R D 物 相 定 量 分 析 的 未 来 发展与展望
Part One
单击添加章节标题
Part Two
XRD物相定量分析 概述
XRD物相定量分析的定义和意义
XRD物相定量分析: 通过X射线衍射技 术对样品中的物相 进行定量分析的方 法
数据处理结果:物相组成、晶粒尺寸、晶格常数等 数据处理注意事项:避免数据丢失、保证数据准确性、注
意数据保密性
Part Four
XRD物相定量分析 的数学模型
衍射强度的计算公式
布拉格公
式
:
nλ=2dsi
nθ
衍射强度 公式: I=|f(θ)|^ 2
结构因子: f(θ)=Σh( hkl)e^(2πi(hkl)s inθ)
实验条件:选择合适的实验条件,如温 度、压力、湿度等
样品:选择合适的样品,如粉末、薄膜 等
数据处理:选择合适的数据处理方法, 如峰形拟合、峰面积计算等
XRD实验数据的收集和处理
实验设备:X射线衍射仪 实验步骤:样品制备、数据采集、数据处理
1 XRD物相定量分析-10-17-66页PPT资料
电子衍射物相定性分析技术及应用 TEM中的衍射衬度理论(艾延龄) 晶界、相界分析方法及工程应用(艾延龄) 材料疲劳与断裂研究分析及及工程应用 近代物理研究方法在腐蚀方面的应用
X射线衍射物相定量分析技术及其工程应用
1、研究目的 2、定量相分析基本原理 3、定量相分析方法
3.1 K值法分析方法及其应用实例 3.2 绝热法分析方法及其应用实例 3.3 直接对比法及其应用实例
引言
材料:金属材料、无机非金属 近代物理分析方法: OM、 XRD、 SEM、TEM、AEM、力学物理性能检测 用近代物理分析手段来研究材料组织、 结构、性能及其关系
硕士学位课程·现代物理检测技术
1
Gleeble-1500热模拟系统
硕士学位课程·现代物理检测技术
2
MTS 疲劳试验机
硕士学位课程·现代物理检测技术
★ 测量混合样品的衍射谱,测量M和标准物质刚玉的最强 峰强度分别为2210和895,两数相除得M相的K值为2.47
★ 按上面的方法依次测量Q和C相的K值分别为8.08和9.16
★ 测量图谱并计算强度
取待测样品1g,加入3.22g刚玉粉,制成混合样 (Ws=0.69), 测得混合样品中4个相的强度分别为:
3
MET金相显微镜(图象分析系统)
硕士学位课程·现代物理检测技术
4
D-MAX 2500 X-射线衍射仪
硕士学位课程·现代物理检测技术
5
Tecnai G2 20 S-TWIN分析电镜
硕士学位课程·现代物理检测技术
6
Sirion 200型冷场发射扫描电镜
2nm, 10-5 Pa
硕士学位课程·现代物理检测技术
1、研究目的
在定性物相分析的基础上测定多相 物质中各相的含量
XRD定量分析精品PPT课件
获得面间距
XRD图:第一步完成
二、用Search-Match 找出主要物相
❖ 1、数据的输入
数据的输入
获得曲线
Sear O4 )2 ( O H )2 ( H2 O )8和Li Al Si4 O10
三、用Diamond绘制晶体结构
材料测试方法作业
一、orgin绘图工具将图绘出,并正确标出面网间距值(精确到 小数点后四位
拖过去
中间有些是软件的步骤省 略了,点next即可将数据
输入
数据输入
获得曲线
Pick peaks
Pick peaks
格式-绘图
格式-绘图
获得面间距
获得面间距
获得面间距
获得面间距
获得面间距
读取第一相cif文件
第二相晶体结构图
Maud精修
❖ 找到Li Al Si4 O10的cif文件
找到Fe Al2 ( P O4 )2 ( O H )2 ( H2 O )8的CIF
TXT数据的输入
Cif文件的输入
精修第一个参数
第一个参数精修结果R=20.86
精修第二个参数
第二个参数精修结果Rw=16.10
精修第三个参数
精修结果Rw=15.23
结果
❖ 第一相Li Al Si4 O10占49.80%,晶体结构及 空间群
第二相Fe Al2(PO4)2(OH)2(H2O)8占 50.20%,晶体结构及空间群
写在最后
经常不断地学习,你就什么都知道。你知道得越多,你就越有力量 Study Constantly, And You Will Know Everything. The More
You Know, The More Powerful You Will Be
XRD数据分析 全面详细(精品课件)
《材料现代测试技术》作业-XRD分析 非H、O 成分: Na Zr Si Sr S
精品 PPT 模板
作业步骤
1)用orgin绘图工具将图绘出,并正确标出面网间距值(精确到小 数点后四位);
2)基于粉末晶体X射线衍射数据库PDF2,利用Search Match等检 索工具正确分析数据中所含的两种主要物相,给出物相定性分析 结果;
•
16、业余生活要有意义,不要越轨。2020年10月16日星期 五3时3分46秒15:03:4616 October 2020
•
17、一个人即使已登上顶峰,也仍要 自强不 息。下 午3时3分46秒 下午3时 3分15:03:4620.10.16
谢谢大家
结果:
4.2修晶胞参数
精品 PPT 模板
结果:
4.3修微结构
精品 PPT 模板
4.4修原子位子
精品 PPT 模板
两种物相每个原子都要改
4.5修择优取向
精品 PPT 模板
• Sr(SO4) , weight %: 60.28361 +- 0.43405727
精品 PPT 模板
点击Search Match 进行分析
进行峰对比:
进行第二种物相分析
同样进行峰对比
初步确定物相为: Sr(SO4)ICSD Number: 028055 Na2Zr(Si3O9)(H2O)2 ICSD Number: 040874
精品 PPT 模板
三、从findit软件中找到相应的cif 文件
精品 PPT 模板
输入第一种物相的含有的元素Sr、S、O
Sr(SO4)的球棒模型为:
同样Na2Zr(Si3O9)(H2O)2 的球棒模型为:
精品 PPT 模板
作业步骤
1)用orgin绘图工具将图绘出,并正确标出面网间距值(精确到小 数点后四位);
2)基于粉末晶体X射线衍射数据库PDF2,利用Search Match等检 索工具正确分析数据中所含的两种主要物相,给出物相定性分析 结果;
•
16、业余生活要有意义,不要越轨。2020年10月16日星期 五3时3分46秒15:03:4616 October 2020
•
17、一个人即使已登上顶峰,也仍要 自强不 息。下 午3时3分46秒 下午3时 3分15:03:4620.10.16
谢谢大家
结果:
4.2修晶胞参数
精品 PPT 模板
结果:
4.3修微结构
精品 PPT 模板
4.4修原子位子
精品 PPT 模板
两种物相每个原子都要改
4.5修择优取向
精品 PPT 模板
• Sr(SO4) , weight %: 60.28361 +- 0.43405727
精品 PPT 模板
点击Search Match 进行分析
进行峰对比:
进行第二种物相分析
同样进行峰对比
初步确定物相为: Sr(SO4)ICSD Number: 028055 Na2Zr(Si3O9)(H2O)2 ICSD Number: 040874
精品 PPT 模板
三、从findit软件中找到相应的cif 文件
精品 PPT 模板
输入第一种物相的含有的元素Sr、S、O
Sr(SO4)的球棒模型为:
同样Na2Zr(Si3O9)(H2O)2 的球棒模型为:
xrd定量分析ppt
• 计算结果如下:
XRD应用实例2(k值法)
Thank you!
用K值法进行定量相分析时 第一步是求出K值 第二步是求出混合试样中i相含量 Wi 第三步是从 Wi值算出原待测样中i相重量百分数 Wi 。
Wi Wi 1 - WS
XRD应用实例1(k值法)
• 根据k值法法可以得到某物相的含量: Ii MS 1 Xi K IS MZ
• MS---刚玉的质量 • MZ--- 原物总质量
外标法
• 外标法是用对比试样中待测的第j相的某条衍射线 和纯j相(外标物质)的同一条衍射线的强度来获 得第j相含量的方法。
• 标准物质不加到待测试样中,且通常以某纯待测 物相为标样,制成一系列外标试样,测绘出工作 曲线,进行定量相分析的方法叫外标法。
• 外标法优点是待测样中不混入标准物质。 缺点是强度不同时测量,会影响测量准确度。
K值法
• K值法也是内标法的一种,只是对内标法做 了修改,使常数C与标准物质的掺入量无关, 并称之为基体冲洗法,也就是k值法。 • k值法的优点: • 1.K值与内标物质加入量的多少无关; • 2.不用绘制定标曲线,分析手续简化。
• 研究方法》第一次汇报
第八组 研究方法:XRD
XRD定量分析
XRD定量相分析
• X射线物相定量分析是根据混合相试样中各 相物质的衍射的强度来确定各相物质的相 对含量。
• 从衍射线的强度理论可知,多相混合物中 某一相的衍射强度,随该相的相对含量的 增加而增加。因而,可通过衍射强度的大 小求出混合物中某相参与衍射的体积分数 或重量分数。
衍射仪法的衍射强度:
I0 表示入射线强度,各参数都是单相物质的衍射参量。 对多相混合物,μl应为混合物的吸收系数μm 其余均与含量无关(记为K,未知常数)。则:
XRD技术介绍PPT课件
一束X射线通过物质时,它的能量可分为三部分: 一部分被吸收;一部分透过物质继续沿原来的方向 传播;还有一部分被散射。
X射线的产生及与物质的相互作用
X射线的散射
• X射线被物质散射时,产生两种现象: • 相干散射; • 非相干散射。
相干散射
• 物质中的电子在X射线电场的作用下, 产生强迫振动。这样每个电子在各方 向产生与入射X射线同频率的电磁波。 新的散射波之间发生的干涉现象称为 相干散射。
在劳厄等发现X衍射不久,W.L.布拉格(Bragg )父子对劳厄花 样进行了深入的研究,提出花样中的各个斑点可认为是由晶体中 原子较密集的一些晶面反射而得出的,并导出了著名的布拉格定 律。
1913年英国布拉格父子(W.H .bragg .WL Bragg)建立了一个公 式--布喇格公式。不但能解释劳厄斑点,而且能用于对晶体结构的 研究。
X射线的吸收
物质对X射线的吸收指的是X射线能量在 通过物质时转变为其它形式的能量,X射 线发生了能量损耗。物质对X射线的吸收 主要是由原子内部的电子跃迁而引起的。 这个过程中发生X射线的光电效应和俄歇 效应。
光电效应
• 以X光子激发原子所发生的激发和辐射过程。 被击出的电子称为光电子,辐射出的次级 标识X射线称为荧光X射线。
短波限
• 连续X射线谱在短波方向有一个波长极限,称为短 波限λ0,它是由光子一次碰撞就耗尽能量所产生的 X射线。它只与Байду номын сангаас电压有关,不受其它因素的影响。
• 相互关系为:
• 式中:ee为V电子h电ma荷x ,he=0c1.662 18920×110V.-2149C;(nm)
•
V为电子通过两极时的电压降V。
• X射线管的效率:
XRD分析方法课堂PPT
• 数字检索(Hanawalt检索)
– 无法得知试样中物相的信息 – Hanawalt组合
• 将最强线的面间距d1处于某一范围,如:0.269- 0.265nm
• 将面间距从999.99-0.00共分为40组
41
数字检索(Hanawalt检索)
• 根据XRD图谱和布拉格方程算出八强线对应晶面的 面间距d
– 出现空位或离子替代等情况
– 衍射峰数目不吻合
• 是否有衍射峰消失,原因?
• 是否有新的衍射峰出现(一般衍射峰的强度较低),可 能出现新的物相。
– 衍射峰强度不吻合
• 晶面的优先生长等
40
检索
• 字母检索
– 估计试样中可能的数种物相 – 通过其英文名称将有关卡片找出 – 与待定衍射花样对比,可确定物相
复习题
• 复习晶体结构的有关知识(固体物理,第一章)。 • 预习X射线衍射(XRD)的原理。 • 结合本专业查阅文献体会如何根据理论设计、制
备新材料。
1
物质的结构分析
• 进行物质结构分析方法主要有3大类
– 各种衍射技术
• 直接和精确测定分子和晶体结构的方法
– 各种光谱技术
• 红外光谱、激光拉曼光谱、紫外光 • 在各种状态测定结构,如液体
脱氧核糖核酸DNA测定
1964 化学
Dorothy Crowfoot Hodgkin
青霉素、B12生物晶体测定
1985 化学
霍普特曼Herbert Hauptman 卡尔Jerome Karle
直接法解析结构
鲁斯卡E.Ruska
电子显微镜
1986 物理
宾尼希G.Binnig
扫描隧道显微镜
罗雷尔H.Rohrer
– 无法得知试样中物相的信息 – Hanawalt组合
• 将最强线的面间距d1处于某一范围,如:0.269- 0.265nm
• 将面间距从999.99-0.00共分为40组
41
数字检索(Hanawalt检索)
• 根据XRD图谱和布拉格方程算出八强线对应晶面的 面间距d
– 出现空位或离子替代等情况
– 衍射峰数目不吻合
• 是否有衍射峰消失,原因?
• 是否有新的衍射峰出现(一般衍射峰的强度较低),可 能出现新的物相。
– 衍射峰强度不吻合
• 晶面的优先生长等
40
检索
• 字母检索
– 估计试样中可能的数种物相 – 通过其英文名称将有关卡片找出 – 与待定衍射花样对比,可确定物相
复习题
• 复习晶体结构的有关知识(固体物理,第一章)。 • 预习X射线衍射(XRD)的原理。 • 结合本专业查阅文献体会如何根据理论设计、制
备新材料。
1
物质的结构分析
• 进行物质结构分析方法主要有3大类
– 各种衍射技术
• 直接和精确测定分子和晶体结构的方法
– 各种光谱技术
• 红外光谱、激光拉曼光谱、紫外光 • 在各种状态测定结构,如液体
脱氧核糖核酸DNA测定
1964 化学
Dorothy Crowfoot Hodgkin
青霉素、B12生物晶体测定
1985 化学
霍普特曼Herbert Hauptman 卡尔Jerome Karle
直接法解析结构
鲁斯卡E.Ruska
电子显微镜
1986 物理
宾尼希G.Binnig
扫描隧道显微镜
罗雷尔H.Rohrer
XRD衍射分析技术ppt课件
厄瓦尔德图解:衍射矢量方程与倒易点阵结合,表示 衍射条件与衍射方向
反射球(衍射球,厄 瓦尔德球):在入射 线方向上任取一点C为 球心,以入射线波长 的倒数为半径的球。
产生衍射的条件:若以入 射线与反射球的交点为原 点,形成倒易点阵,只要 倒易点落在反射球面上, 对应的点阵面都能满足布 拉格条件,衍射线方向为 反射球心射向球面上其倒 易结点的方向。
衍射强度可用绝对值或相对值表示,通常没有必要使用绝对强度值. 相对强度是指同一衍射图中各衍射线强度的比值 测定强度的方法有目测法, 测微光度计以及峰值强度法等. 积分强度法是表示衍射强度的精确方法,它表示衍射峰下的累积强度(积分面 积)
多晶体衍射环上单位弧长上的累积强度I为:
当实验条件一定时,同一衍射花样中的各条衍射线中, e, m, c I0, V, R,υ,λ均 为常数, 因此, 衍射线的相对强度表达式为:
其倒数的互质整数比 1· 1·1 h′· k′· l′ = h :k :l
可写为(h k l)-------晶面指标 晶面指标反应了晶面在空间中的指向
M3
c l′c
ab
O
M2
h′a
k′b
M1
晶面指标为(632)
当泛指某一晶面指数时,一般用(hkl)作代表, 如果晶面与坐标轴的负方向相交,则在相应的指数上加一负号来表示; 当晶面与某坐标轴平行时,则认为晶面与该轴的截距为∞(无穷大),其倒数为0,即相应 的指数为零 注意:{hkl}表示等效点阵面,其特征是它们的面间距和晶面上的点阵点分布完全 相同.
一方面是用已知波长的X射线去照射晶体,通过衍射角的测量求得晶体中各晶面的 面间距d,这就是结构分析------ X射线衍射学;
另一方面是用一种已知面间距的晶体来反射从试样发射出来的X射线,通过衍射角 的测量求得X射线的波长,这就是X射线光谱学。该法除可进行光谱结构的研究外, 从X射线的波长还可确定试样的组成元素。电子探针就是按这原理设计的。
XRD的原理、方法及应用 ppt课件
样品中晶体学取向与样品外坐 标系的位向关系。一般用劳厄 法单晶定向,其根据是底片上 劳埃斑点转换的极射赤面投影 与样品外坐标轴的极射赤面投 影之间的位置关系。(透射/ 背射)
X射线单晶衍射仪
XRD的应用
• 多晶材料中晶粒取向沿一定方位偏聚的现象称为织 构,常见的织构有丝织构和板织构两种类型。
• 为反映织构的概貌和确定织构指数,有三种方法描 述织构:极图、反极图和三维取向函数。
便携式XRD应力测试仪
XRD的应用
• 4、晶粒尺寸和点阵畸变的测定 • 在晶粒尺寸和点阵畸变测定过程中,需要做的工作
有两个:⑴ 从实验线形中得出纯衍射线形,最普 遍的方法是傅里叶变换法和重复连续卷积法。⑵ 从衍射花样适当的谱线中得出晶粒尺寸和缺陷的信 息。
XRD的应用
• 5、单晶取向和多晶织构测定 • 单晶取向的测定就是找出晶体
• 2. 1912年,德国,劳厄,第一张X射线衍射花样, 晶体结构,电磁波,原子间距,劳厄方程;
• 1913-1914年,英国,布拉格父子,布拉格方程( 2dsinθ=nλ),晶体结构分析;
• 3. 1916年,德拜、谢乐,粉末法,多晶体结构分析 ;
• 4. 1928年,盖格,弥勒,计数管,X射线衍射线强 度,衍射仪。
材料表征概述
• 以纳米粉体材料为例,常用的表征手法如下图所示 :
材料表征概述
• XRD即X-Ray Diffraction(X射线衍射)的缩写。通 过对材料进行X射线衍射,分析其衍射图谱,获得 材料的成分、材料内部原子或分子的结构或形态等 信息的研究手段。
X射线衍射仪
材料表征概述
• 1. 1895年,德国,伦琴,发现,医疗,第一个诺贝 尔物理奖;
• 然而,如果为了研究样品的某一特征衍射,择优取 向却是十分有用的,此时,制样将力求使晶粒高度 取向,以得到某一晶面的最大强度。
X射线单晶衍射仪
XRD的应用
• 多晶材料中晶粒取向沿一定方位偏聚的现象称为织 构,常见的织构有丝织构和板织构两种类型。
• 为反映织构的概貌和确定织构指数,有三种方法描 述织构:极图、反极图和三维取向函数。
便携式XRD应力测试仪
XRD的应用
• 4、晶粒尺寸和点阵畸变的测定 • 在晶粒尺寸和点阵畸变测定过程中,需要做的工作
有两个:⑴ 从实验线形中得出纯衍射线形,最普 遍的方法是傅里叶变换法和重复连续卷积法。⑵ 从衍射花样适当的谱线中得出晶粒尺寸和缺陷的信 息。
XRD的应用
• 5、单晶取向和多晶织构测定 • 单晶取向的测定就是找出晶体
• 2. 1912年,德国,劳厄,第一张X射线衍射花样, 晶体结构,电磁波,原子间距,劳厄方程;
• 1913-1914年,英国,布拉格父子,布拉格方程( 2dsinθ=nλ),晶体结构分析;
• 3. 1916年,德拜、谢乐,粉末法,多晶体结构分析 ;
• 4. 1928年,盖格,弥勒,计数管,X射线衍射线强 度,衍射仪。
材料表征概述
• 以纳米粉体材料为例,常用的表征手法如下图所示 :
材料表征概述
• XRD即X-Ray Diffraction(X射线衍射)的缩写。通 过对材料进行X射线衍射,分析其衍射图谱,获得 材料的成分、材料内部原子或分子的结构或形态等 信息的研究手段。
X射线衍射仪
材料表征概述
• 1. 1895年,德国,伦琴,发现,医疗,第一个诺贝 尔物理奖;
• 然而,如果为了研究样品的某一特征衍射,择优取 向却是十分有用的,此时,制样将力求使晶粒高度 取向,以得到某一晶面的最大强度。
XRD定量分析PPT课件
• 不足: (1) K值法可以只测量一个目的相,也可以测量全部目 的相,而绝热法则必须同时测出所有相。 (2) K值法可以测定含有未知相的多相混合物试样(未 知相不是目的相),绝热法却不能。 (3) K值法能判断是否存在非结晶物质(如果左<右即表 示存在非结晶物质),绝热法则不能。
定量分析的难点
测定强度与理论强度不一致。 1. 择优取向 – 多个线对测量 2. 其它相的干扰 – 避免重叠 3. 局部吸收 – 充分粉碎 4. 消光效应 – 选择反射本领较低的衍射线
Iα= K1 xα/ρα[xα(μα/ρα- μβ/ρβ) + μβ/ ρβ] 对纯α 相
(Iα)0 = K1/ μα 二者相除可消掉K1,得 Iα/ (Iα)0 = xα(μα/ρα) /[xα(μα/ρα- μβ/ρβ) + μβ/ ρβ] 测出Iα和 (Iα)0 ,已知各相的质量吸收系数,即可求得xα。 也可以确定若干个xα,在相同条件下测出同一根衍射线条的 强度Iα ,作出定标曲线,根据定标曲线中Iα/ (Iα)0 的值,可以 很容易确认α相 的含量
如左=右,则样品中所有物相均为结晶相,强度数据可靠; 如左<右,则表明有非晶物质存在; 如左>右,表明强度数据或K值有误。
K值法不需作复杂的标准曲线,无繁杂计算,从而节省了分析时 间,应用较广。但与内标法一样,必须提供纯样品物质,受到一 定限制。
4、直接比较法(绝热法)
• 定量相分析时不与系统以外发生关系。用试样中的 某一个相作标准物质直接进行比较。
外标法的特点
• 不必在试样中加入无关的相,可以定量计 算混合物中单相的含量。
• 需要配制不同α含量的样品做定标曲线,过 程较为复杂。
2、内标法
• 在被测粉末样品中加入一种恒定的标准物质制成复合试样。 通过测复合试样中待测相的某一衍射线强度与内标物质某一 衍射线强度之比,测定待测相含量。
定量分析的难点
测定强度与理论强度不一致。 1. 择优取向 – 多个线对测量 2. 其它相的干扰 – 避免重叠 3. 局部吸收 – 充分粉碎 4. 消光效应 – 选择反射本领较低的衍射线
Iα= K1 xα/ρα[xα(μα/ρα- μβ/ρβ) + μβ/ ρβ] 对纯α 相
(Iα)0 = K1/ μα 二者相除可消掉K1,得 Iα/ (Iα)0 = xα(μα/ρα) /[xα(μα/ρα- μβ/ρβ) + μβ/ ρβ] 测出Iα和 (Iα)0 ,已知各相的质量吸收系数,即可求得xα。 也可以确定若干个xα,在相同条件下测出同一根衍射线条的 强度Iα ,作出定标曲线,根据定标曲线中Iα/ (Iα)0 的值,可以 很容易确认α相 的含量
如左=右,则样品中所有物相均为结晶相,强度数据可靠; 如左<右,则表明有非晶物质存在; 如左>右,表明强度数据或K值有误。
K值法不需作复杂的标准曲线,无繁杂计算,从而节省了分析时 间,应用较广。但与内标法一样,必须提供纯样品物质,受到一 定限制。
4、直接比较法(绝热法)
• 定量相分析时不与系统以外发生关系。用试样中的 某一个相作标准物质直接进行比较。
外标法的特点
• 不必在试样中加入无关的相,可以定量计 算混合物中单相的含量。
• 需要配制不同α含量的样品做定标曲线,过 程较为复杂。
2、内标法
• 在被测粉末样品中加入一种恒定的标准物质制成复合试样。 通过测复合试样中待测相的某一衍射线强度与内标物质某一 衍射线强度之比,测定待测相含量。
XRD培训ppt
连续X射线
具有连续波长的X射线,构成连续X射线谱, 它和可见光相似,亦称多色X射线。
Intensity
50 kV
2
40 kV
1
30 kV
20 kV
0 0.0 0.2 0.4 0.6 0.8 1.0
wavelength
产生机理 短波限 X射线的强度
短波限
连续X射线谱在短波方向有一个波长极限,称为短波 限λ0。它是由电子一次碰撞就耗尽能量所产生的X射 线。它只与管电压有关,不受其它因素的影响。
积上发射出X射线。
D8 advance衍射仪中:
线焦斑面积:0.4*12mm
X射线谱
X射线谱指的是X射线的强度随波长变化的关系曲线。X 射线强度大小由单位面积上的光量子数决定。
由X射线管发射出来的X射线可以 分为两种类型:
(1)连续(白色)X射线 (2)特征(标识)X射线 连续辐射,特征辐射
发散狭缝
索拉狭缝 防散射狭缝
发散狭缝 防散射狭缝
D8 可以轻松的实现聚焦光和平行光的转换
实际测试过程参数的设置
1. 狭缝越大,强度越大,但是分辨率越低。
2.
1.2S dewell time 0.1S dewell tim
实际的测试过程中要注意的问题
(1). 过小的样品对于衍射测试的影响: 实际测试样品尺寸随着角度的变化曲线:
X射线衍射技术的主要应用领域
1,晶体结构分析:人类研究物质微观 结构的第一种方法。 2,物相定性分析 3,物相定量分析 4,晶粒大小分析 5, 非晶态结构分析,结晶度分析 6,宏观应力与微观应力分析 7,择优取向分析
伦 琴
产生原理
高速运动的电子与物体碰撞时,发生能量转换,电子 的运动受阻失去动能,其中一小部分(1%左右)能 量转变为X射线,而绝大部分(99%左右)能量转变 成热能使物体温度升高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多相全谱拟合相定量分析法
▪ 散射体模型问题
从上面的分析讨论可知,全谱拟合多相定量分析法,关 键是要有每个组成相的散射体模型,根据我多年研究,全谱 拟合相定量分析,多数物相的结构模型可以在无机晶体数据 库(ICSD)中查到,某些所谓找不到模型的物相或者是已知 某种结构的类质同系物,适当变形也可以获得,特别是天然 矿物,除粘土矿外,找不到结构模型的几乎很少碰到。困难 的样品,是无序度高的粘土矿物或层状结构的人工合成化合 物。此类化合物结构堆叠中的生长位错、堆叠位错和形变位 错致使此类化合物某些衍射峰宽化、不对称,某些hkl衍射峰 位移,甚至强度变化,相变。但此类化合物基本层结构都是 十分稳定的,找不到拟合模型或已有的模型无法实行满意的 拟合。对此类化合物,我提出用“等效散射体”作为拟合模 型参与相拟合分析。
用全谱拟合进行多相丰度分析与一般Rietveld分析相比 除需所有组成相的晶体结构模型外,其它的峰型模型,背 底模型等都是共同的,算法也是一样的。
水泥定量分析图
从分析结果可以看出,某些相的丰度只有1% 左右。再看理论计算谱线与实验谱线间的吻合 得相当好,表明各组成相的晶体结构及所用的 峰型模型等与实验样品间差别相当接近。图所 示结果中各样品线吸收系数对结果的影响已做 了校正。
目前多相材料X射线衍射相定量分 析中存在的问题
▪ 内标法与K值法局限性
1. 定量分析所选定的hkl或hkl衍射族不是一个不变量, 标准样与待测样中相应物相晶胞内原子位置和微 结构是不可能完全相同。作为一个物相,在晶胞 内容相同条件下,整个衍射空间散射总量是一不 变量。但每个hkl衍射线的强度随晶胞中元素位置 的变化而变化,这种变化与结构形成时条件有关。 在多晶材料中,这种现象是很普遍的。许多新合 成的化合物,往往不可能是单一物相,要找所谓 标准样更是困难。
▪内标法或K值法为主要相定量分析手段
在多相混合的固体材料中,组成相元素组成的不同, 致使其X射线吸收系数存在差异,每个相的衍射强度与其 丰度不是简单的线性关系。内标法与K值法都是为了解决 多相体系中收基体效应对强度的影响。二种方法事先都需 要选择标准样和掺杂用的内标化合物如刚玉粉等,制定标 准曲线或测定K值。实际测量时往样品中添加内标物,均 匀混样后,测定指定(内标物和待测物相)hkl衍射线积 分强度。
目前多相材料X射线衍射相定量分 析中存在的问题
▪ 内标法与K值法局限性
2. 织构和重叠峰的分离,对单个hkl衍射峰而言,不 确定范围比模型全谱拟合更大。现在有利用晶体 模型计算的RIR值(参比强度)进行分峰多相全定 量。往往因分峰、织构使强度失真,及RIR值与实 际样品本身的RIR值相差太大,致使定量结果与实 际值差异甚大。内标法与K值法所依据的单一hkl 衍射线或hkl衍射族是随晶体中原子精细结构和粉 末样堆叠微结构不同有变化,不是一个不变量, 再加上织构分峰等因素,不可能实行准确的多相 定▪ 拟合所用的表达式:
最小平方拟合残差最小量表达式:
Sy-残差 Yi-数字化实验衍射图中第i个实验点的实 验值 Yci是对应的模型计算值
多相全谱拟合相定量分析法
所有拟合用的模型都包含在下述表达式中:
多相共存样品,上式变为:
据Sj是脉与冲每数相与丰模度型相计关算的电标子度衍因射子强,度物间理换含算义因是子实。验数
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
目前多相材料X射线衍射相定量分 析中存在的问题
该表达式从另一个侧面表明,参加衍射样品在衍射空间散射总量 与单位散射体晶胞中内容相关,是一不变量。再与某一hkl衍射 峰IK的表达式比较:
与坐I标K有位关置的有值关,,除它与不组是成一元个素不f变j有量关。外,还与每个原子在晶胞中
晶胞内容确定后,在整个衍射空间散射总量是与晶胞
内容有关的不变量。总散射量在衍射空间的分布方式,也 就是每个hkl衍射强度除与晶胞中内容有关外,极大地决定 于各原子在晶胞中位置。全谱拟合结构分析,也称Rietveld 分析自上世纪六十年代问世以来,在模型的建立,计算方 法上做了大量研究,现在可以讲该分析方法已相当完整。 许多程序,特别是近年推出的程序与早期的相比,智能化 程度大有提高,使用十分方便,特别是模型数据的输入也 已经变得十分简单,因此用全谱拟合分析进行多相丰度分 析在当今计算机十分普及条件下已变得相当便捷。
固体材料XRD全图拟合相定量 分析
吕光烈 浙江大学分析测试中心
固体材料的相定性分析和相定量是多晶衍射分
析中常用的二大主要任务。上世纪九十年代计 算机搜配(pro search/match)方法问世以来, 以往那种费神、繁琐的三强线,八强线线搜配
相鉴定被高效率的计算机全谱搜配所取代,检
索的准确性和速度大幅提高,至少在主要物相 的鉴定分析上 ,多相固体材料的物相鉴定在各 实验室已变得相对容易。
多相全谱拟合相定量分析法
1.原理
2. 在单色X射线照射下,多相体系中各相在衍射空间的衍 射花样相互叠加构成一维衍射图,各相散射量是与单位散射 体内容(晶胞中原子)及丰度相关的不变量。但是每个相的 hkl衍射的散射量随单位散射体内原子或分子团精细结构和微 结构变化而变化,并不是一个不变量。全谱拟合相定量分析 是用散射总量替代单个hkl散射量,用数学模型对实验数据进 行拟合,分离各相散射量,实现定量相分析。拟合过程是不 断调节模型中参数值,最终使实验数据与模型计算值间达到 最佳吻合。全谱拟合分析中,对研究材料有用的模型参数是 晶体结构参数和微结构参数,在多相情况还有各组成相的丰 度值。
多相全谱拟合相定量分析法
拟合分析获得的各相Sj值与其丰度值间存在以下关系式:
质量百分比:
式中S是标度因子(scale factor),Z是晶胞内化学式数, M是化学式分子量,V是晶胞体积。可以看出S,V比例于参 加衍射的单胞数目N,Z和M比例于衍射样品质量。此二者相 乘即是参加衍射样品质量。
多相全谱拟合相定量分析法