胰岛素及其分泌
胰岛素的生物合成和分泌机制
胰岛素的生物合成和分泌机制胰岛素是人体内一种非常重要的荷尔蒙,它主要的作用是调节血糖的水平。
当人吃东西之后,胰岛素会被胰腺分泌出来,然后进入到血液循环中,最终让身体内的细胞能够将血液中的葡萄糖转化成能量。
胰岛素的生物合成和分泌机制是一个非常复杂的过程,本文将从分子水平、细胞水平及器官水平三个角度来分析这个过程。
1. 分子水平人体内的胰岛素是一种由两条多肽链组成的蛋白质,分别是A 链和B链。
这两条链中都含有一个含有硫酸基的氨基酸残基,它们会相互连接构成非常稳定的二硫键。
这就是胰岛素分子的第一个特点:非常稳定。
胰岛素的基因结构大约包含有三万个碱基对,其中包含有一些特定的序列,这些序列能够被肝脏和胰腺中的一些酶所识别。
这些酶能够将基因组中的某些片段剪切下来,并将其拼接到一起形成一个成熟的胰岛素基因。
然后,这个成熟的基因会被转录成一条核糖核酸(RNA),并被带入到胰腺的内质网。
在内质网中,一些糖基化酶和剪切酶会作用于这条RNA,使其和几个特定的蛋白质相互结合,形成胰岛素前体。
这个前体由含有A链的蛋白质和含有B链的蛋白质反复结合而成。
2. 细胞水平胰岛素前体被转运到了胰岛素颗粒体中,它们处于一个非常纷乱的环境中,因为还有许多其他的蛋白质和小分子在这里。
但是,颗粒体内有一些酶,它们能够将胰岛素前体剪切成含有A链的蛋白质和含有B链的蛋白质。
这两个蛋白质被合并在一起,形成了成熟的胰岛素分子。
随后,这些胰岛素分子会向细胞膜移动。
在细胞膜上有一些可以结合胰岛素的受体,它们会捕获、结合和摄取这些胰岛素分子。
这些受体被称为胰岛素受体。
它们主要存在于肝脏、肌肉和脂肪细胞等组织中。
胰岛素分子与胰岛素受体的结合,使得细胞内的一些信号通路开始被激活。
这将导致一系列生化反应的发生,最终将血液中的葡萄糖转化成细胞所需的能量和合成脂肪和蛋白质所需的物质。
3. 器官水平胰岛素的主要生产部位是胰腺内的一种细胞——胰岛素β细胞。
这些细胞位于胰腺中的一些小囊泡里,也被称为胰岛素颗粒。
第十一章内分泌系统 目的要求 1、掌握胰岛素的生理作用及其分泌调节
目的要求
1、掌握胰岛素的生理作用及其分泌调节。
2、掌握甲状腺激素及甲状旁腺与甲状旁腺激素、甲状腺滤泡旁细胞
、降钙素、维生素D3的生理作用及其分泌调节。
3、了解内分泌系统的调节主要生理过程中的作用与作用机制。掌握下丘脑及垂体激素的生理作用及其分泌调节。
授课内容(重点、难点)
教学重点
1、胰岛素和胰高血糖素的生物学作用及分泌的调节
2促进细胞的增殖与分化,影响细胞的衰老,确保各组织、各器官的正常生长、发育,以及细胞的更新与衰老。例如生长激素、甲状腺激素、性激素等都是促进生长发育的激素。
3促进生殖器官的发育成熟、生殖功能,以及性激素的分泌和调节,包括生卵、排卵、生精、受精、着床、妊娠及泌乳等一系列生殖过程。
4影响中枢神经系统和植物性神经系统的发育及其活动,与学习、记忆及行为活动有关。
5在调节某一生理功能时,它们之间的相互作用既有相互协同的,也有相互拮抗的,如胰高血糖素、生长素和糖皮质激素在升高血糖方面,它们之间是协同的,而胰岛素则降低血糖,与上述三个激素在调节血糖方面是拮抗的。还有些激素不能对某些细胞起调节作用,但当其存在时,可使另一激素作用加强,称这一现象为允许作用(permissive action)。此外,激素与神经系统密切配合对生命过程进行调节,既保持内环境相对稳定,又能使机体对环境做出适应性反应。
激素的分类
按化学结构,激素可分为三大类:
第一类是含氮类激素,又可分为肽、胺、蛋白质类激素,如下丘脑分泌的调节肽、甲状腺素、胰岛素等;
第二类是类固醇激素,如肾上腺皮质激素和性腺激素;
第三类是固醇类激素,如胆钙化醇(维生素D3)。
二、激素的作用
激素的生理作用非常复杂,但可以将其归纳为五个方面:
第五节 胰岛素的分泌
第五节胰岛内分泌胰岛(pancreatic islet)为胰腺的内分泌部,是呈小岛状散在分布于外分泌腺泡之间的内分泌细胞团。
细胞之间有丰富的毛细血管分布,有利于胰岛细胞分泌的激素进入循环血液。
成年人胰腺内的胰岛有(1-2)×106个,约占胰腺总体积的1%。
胰岛内分泌细胞按形态学特征及分泌的激素分类至少有五种细胞:分泌胰高血糖素(glucagon)的α(A)细胞,约占胰岛细胞总数的25%;分泌胰岛素(insulin)的β(B)细胞,占60%-70%;分泌生长抑素(somatostatin, SS)的δ(D)细胞,约占10%;分泌血管活性肠肽(vasoactive intestinal peptide, VIP)的D1(H)细胞和分泌胰多肽(pancreatic polypeptide, PP)的F(PP)细胞数则很少。
一、胰岛素(一)胰岛素及其受体1.胰岛素人胰岛素是含51个氨基酸残基的小分子蛋白质,分子量为5.8kD,由21肽的A链和30肽的B链组成。
A、B两链之间借助于两个二硫键相连,A链内还有一个二硫键,如果二硫键断开,胰岛素便失去活性。
在β细胞内,前胰岛素原(preproinsulin)在粗面内质网中被水解成胰岛素原(proinsulin),随后被运至高尔基复合体进一步加工,最后经剪切形成胰岛素和连接肽(connecting peptide, C肽)。
由于C肽与胰岛素一同被释放入血,两者的分泌量呈平行关系,故测定C肽含量可反映β细胞的分泌功能。
β细胞分泌时亦有少量的胰岛素原进入血液,但其生物活性仅为胰岛素的3%-5%。
C肽虽无胰岛素活性,但具有激活钠泵及内皮细胞中的一氧化氮合酶等作用。
正常成年人胰岛素的分泌量为40-50U/d(1.6-2.0mg/d)。
空腹时,血清胰岛素浓度约为10uU/ml(69pmol/L或40ng/dI)。
胰岛素在血液中以与血浆蛋白结合和游离的两种形式存在,二者之间保持动态平衡,只有游离的胰岛素具有生物活性。
胰岛素由哪个器官分泌
胰岛素由哪个器官分泌
一、胰岛素由哪个器官分泌二、胰岛素注射液的用法用量三、胰岛素的副作用
胰岛素由哪个器官分泌1、胰岛素由哪个器官分泌
胰岛素是由胰脏内的胰岛β细胞受内源性或外源性物质如葡萄糖、乳糖、核糖、精氨酸、胰高血糖素等的刺激而分泌的一种蛋白质激素。
胰岛素是机体内唯一降低血糖的激素,同时促进糖原、脂肪、蛋白质合成。
外源性胰岛素主要用来糖尿病治疗。
2、胰岛素化验结果的临床意义
2、1型糖尿病患者多在5μU/ml以下,2型患者血浆胰岛胰岛素水平可正常、偏低或高于正常。
增高明显者呈高胰岛素血症,提示有胰岛素抵抗。
在进行OGTT的同时测定血浆胰岛胰岛素浓度,了解胰岛β细胞功能,以鉴别1型糖尿病和2型糖尿病。
1型糖尿病患者空腹和糖刺激后胰岛素水平均较低,呈低平曲线。
2.2、血浆胰岛胰岛素降低尚可见于嗜铬细胞瘤、生长抑素瘤、醛固酮增多症、原发性甲状旁腺功能减退症等所引起的继发性糖尿病和胰岛B 细胞瘤、胰外肿瘤及垂体功能低下等所致的低血糖症。
2.3、X综合征患者多同时具有肥胖、高脂血症、高血压和高胰岛素血症。
3、胰岛素的作用
3.1、药理作用,糖尿病,浪费性疾病的治疗。
为促进血液循环,葡萄糖进入肝细胞、肌细胞、脂肪细胞等组织细胞合成糖原,以降低血糖,促进脂肪和蛋白质的合成。
3.2、生理作用,胰岛素的主要生理作用是调节代谢过程。
对糖代谢:促。
胰岛素的分泌
机
---- 嘌呤霉素,能减弱第二时相,但对 胰岛素释放的早期相没有影响。研究还发
制
现,β细胞内存在 2 个胰岛素释放池:
一个是由先合成的胰岛素组成的即刻释放
池,在快速分泌相排出;另一个是由新合
成的胰岛素和少量胰岛素原及贮存胰岛素
组成的继续释放池,在第二时相时分泌。
餐时胰岛素分泌
正常人进餐后8~10分钟血浆胰岛素水 平开始上升,30~45分钟达高峰,此后随 血糖水平的下降而降低,至餐后90~120 分钟恢复到基础水平。正常人餐后胰岛 素分泌约6~8个单位。
胰 岛 素 双
相 分
泌
第一时相:快速分泌相 反映B细胞贮存颗粒中胰岛素的分泌,与 糖耐量有一定关系。对调节肝脏葡萄糖 排出有重要意义,但不影响周围组织对 葡萄糖的利用。 0.5-1.0分钟出现 持续5-10分钟后下降 第二时相:延迟分泌相 30分钟后出现 缓慢而持久
讲
•分泌途径
解
思 路
•生理性分泌模式
•胰岛素的双相分泌
•胰岛素原分解成胰岛素、C
分
肽、精氨酸和赖氨酸
泌
•成熟颗粒内的INS(胰岛素)
途 径
与锌离子结合成晶体向微小 管移动,依靠其缩力,进而 与细胞膜融合
•通过胞吐作用释放胰岛素和 C肽
分 泌 途 径
合成的胰岛素六聚体图像 锌结晶胰岛素的立体结构=3+2
中心紫色代表二价锌离子
位于B链第10 位的组氨酸残 基的咪唑环与 锌原子方向一 致,依靠B链C 端的第24位和 26位的氨基酸 残基之间的氢 链,形成六聚 体,最终形成 反向平行的片 状结构。
分 泌 途 径
生理信号
胰岛B细胞
入血
生理信号:葡萄糖浓度增加,精氨酸刺激等
胰岛素分类及作用机制简介
胰岛素分类及作用机制简介胰岛素是一种重要的激素,在机体内发挥着调节血糖水平的关键作用。
本文将介绍胰岛素的分类以及其作用机制。
I. 胰岛素分类1. 依源泵分析-自源性胰岛素与外源性胰岛素自源性胰岛素是由胰腺分泌的内源胰岛素,其合成、储存和分泌均由机体自身调节。
而外源性胰岛素则是由外部补充的胰岛素,通常以注射剂的形式使用。
2. 依工艺分类-天然胰岛素、合成胰岛素与基因重组胰岛素天然胰岛素是从动物(如猪、牛)的胰腺中提取得到的,与人体胰岛素结构相似。
合成胰岛素则是通过人工合成得到,结构与天然胰岛素一致。
基因重组胰岛素是通过基因工程技术将胰岛素基因导入微生物或细胞表达,然后进行纯化和合成。
II. 胰岛素作用机制胰岛素通过多种方式调节机体血糖水平,下面将介绍其作用机制:1. 促进葡萄糖转运胰岛素能够促进细胞膜上葡萄糖转运体的激活,增强葡萄糖进入细胞内的能力,从而降低血糖浓度。
2. 促进糖的合成与储存胰岛素能够促进肝脏、肌肉和脂肪组织中糖原的合成与储存,将多余的葡萄糖转化为糖原,存储起来以备不时之需。
3. 抑制葡萄糖生成胰岛素通过抑制肝脏中糖异生相关酶的活性,降低葡萄糖的合成速率,从而减少肝脏对血液中糖的贡献。
4. 促进脂肪合成与抑制脂肪分解胰岛素能够刺激脂肪细胞中的葡萄糖转化为甘油三酯,并抑制脂肪分解酶的活性,从而促进脂肪合成,抑制脂肪组织中游离脂肪酸的产生。
5. 蛋白质合成与氨基酸吸收胰岛素能够促进蛋白质合成,增加肌肉组织对氨基酸的吸收和利用,同时抑制蛋白质降解,维持良好的氮平衡。
总结:胰岛素根据来源和工艺可分为自源性胰岛素和外源性胰岛素,以及天然胰岛素、合成胰岛素和基因重组胰岛素。
胰岛素通过促进葡萄糖转运、促进糖的合成与储存、抑制葡萄糖生成、促进脂肪合成与抑制脂肪分解,以及促进蛋白质合成与氨基酸吸收等多种机制来调节血糖水平。
了解胰岛素的分类和作用机制有助于我们深入理解其重要性及临床应用。
胰岛素分泌调节的分子机制
胰岛素分泌调节的分子机制胰岛素是一个重要的激素,它可以调节血糖水平、促进葡萄糖的吸收和利用。
当一个人摄取食物时,血糖水平会升高,这时胰岛素就会被分泌出来,以调节血糖水平。
但是,当这种分泌过度或不足时,就会导致一系列的代谢障碍。
因此,了解胰岛素分泌调节的分子机制是非常重要的。
胰岛素的分泌主要由胰岛β 细胞来控制。
当胰岛腺细胞感知到血糖水平上升时,它们会释放存储在内部的胰岛素颗粒。
但是,这个胰岛素的释放过程并不是一直发生的。
相反,它是涉及到多个信号分子和调节机制的。
一、Glucokinase一种胰岛β 细胞中的关键葡萄糖代谢酶是葡萄糖激酶(Glucokinase,GCK)。
这个酶介导葡萄糖转化成葡萄糖-6-磷酸,这是一种重要的代谢路径。
此外,它对于维持葡萄糖的舒适水平也很重要。
如果血糖水平太低,GCK 会失去其活性。
要想增进胰岛素的分泌,我们需要增加胰岛β 细胞的 GCK 活性。
二、增强响应的 AMPK腺苷酸酰化酶(AMPK)是一个细胞内的关键代谢调节因子,它在胰岛素的分泌调节中也扮演着一个非常重要的角色。
当AMPK 活性增强时,它可以促进胰岛素的分泌。
它也要求胰岛β 细胞增加其对葡萄糖和氧气的响应,这是 AMPK 能够调节胰岛素分泌的关键机制。
因此,AMPK 活性增强是一种增加胰岛素分泌的一种方法。
三、ATP敏感K+通道ATP 敏感 K+ 通道是胰岛β 细胞中的一种离子通道,它会受到胰岛素类物质的开放或关闭的调节。
当胰岛素浓度低时,ATP 敏感 K+ 通道被关闭,从而增加细胞膜上的电位差。
这种清除过程会在细胞膜上产生一种内向的离子流,这会导致胰岛素的分泌。
因此,ATP 敏感 K+ 通道在胰岛素分泌调节的分子机制中扮演着一个非常重要的角色。
四、肽类的调节因子在胰岛素的分泌调节中,还有一些其他的肽类因子,例如阻抗素、GLP-1(葡萄糖相关肽)和 GIP(胰高糖素样多肽)。
这些肽类因子可以增加胰岛素的分泌,并且它们对葡萄糖的吸收和利用也起着很重要的作用。
胰岛素的合成、分泌和作用机制
胰岛素的合成、分泌和作用机制胰岛素是由胰岛B细胞所分泌的,具有重要代谢调节作用的肽类激素。
旱在19世纪末期,von Mering和Minkowski即指出,胰腺在抗糖尿病的作用中起重要作用。
1909年和1917年,de Mayer和Sir Edward Sharpey—Schaffer分别命名这种胰岛内调节血糖水平的激素为“胰岛素”。
直到20世纪20年代初期,加拿大人Banting、Best和Collip才真正分离出牛胰岛素,并稍后作为特效药应用于糖尿病患者。
随后,结晶胰岛素的获得,氨基酸顺序的阐明,具生物活性的胰岛素的合成,胰岛素检测方法的建立,对胰岛素生物合成途径及分泌机制的认识,胰岛素受体的发现,均成为人类对胰岛素本身及相关疾病认识的里程碑。
随着医学及相关科学的发展,特别是近年来分子生物学方法的广泛应用,人们对这个领域的认识突飞猛进,也推动了糖尿病学的迅速发展。
一、胰岛素的提取、纯化及结构特征1.胰岛素的提取、纯化和检测 早期,胰岛素是以乙醇或酸性乙醇溶液来抽提的,以这种方法抽提可使胰岛素从组织中溶解出来,并灭活蛋白酶。
这种方法仍为现代提取方法的基础。
在有机溶剂提取脂肪后.含胰岛素的酸性乙醇的抽提物可经盐析及等电点沉淀等分离,进一步作凝胶过滤,离子交换,高效液相色谱等纯化。
以前曾一度认为以锌结晶方法可有助于胰岛素的纯化,现认为反复结晶仍不能去除胰岛中的其他成分,如胰升糖素、胰岛素原、胰岛素样类似物及部分降解的胰岛素片段,而且部分动物的胰岛素不能与锌结合或产生结晶。
基因重组胰岛素的生物合成技术可得到不含其他激素的较纯净的胰岛素,但仍常含有其他来自宿主细菌或真菌的蛋白质污染,经凝胶过滤和离子亲和层析后,可得到纯度高于99%的胰岛素。
这种胰岛素对人的抗原性远小于来自动物的结晶胰岛素,不易产生抗体,更有利于糖尿病病情的控制。
血清胰岛素测定可用放射免疫法等,但在精确度和敏感性方面仍有一定的局限性。
用聚丙烯酰胺凝胶电泳和高效液相色谱可鉴定胰岛素的量及纯度,并区分开胰岛素和胰岛素原。
胰岛素释放实验正常的标准
胰岛素释放实验正常的标准胰岛素释放实验是一种常用的研究方法,用来评估胰岛素的分泌水平和功能。
胰岛素是一种重要的激素,能够调节血糖水平,并参与脂肪代谢和蛋白质合成等生理过程。
胰岛素释放实验正常的标准根据个体的性别、年龄以及饮食等因素而有所不同。
下面是一些一般情况下认定为正常的标准:1. 空腹胰岛素分泌:正常情况下,胰岛在空腹状态下会持续分泌一定量的胰岛素,以维持正常的血糖水平。
正常人的空腹胰岛素水平通常在2-20 mU/L之间。
2. 餐后胰岛素分泌:正常人在餐后会有胰岛素的峰值分泌,以帮助降低血糖水平。
正常人的餐后胰岛素水平通常在30-300 mU/L之间。
这个范围可以根据个体的体重和代谢情况而有所不同。
3. 胰岛素反应曲线:在胰岛素释放实验中,测量胰岛素血浆浓度的变化可以绘制胰岛素反应曲线。
正常的反应曲线通常是一个尖峰型,显示出快速的胰岛素释放和迅速的血糖降低。
这表明胰岛素的分泌和血糖调节功能处于正常范围内。
4. 胰岛素抗性评估:通过胰岛素释放实验可以评估胰岛素抗性程度。
正常情况下,胰岛素在餐后迅速释放,使血糖水平迅速下降。
而胰岛素抗性较高的人则会出现胰岛素分泌不足或者胰岛素分泌过多,导致血糖无法得到有效控制。
综上,胰岛素释放实验正常的标准包括空腹胰岛素分泌范围、餐后胰岛素水平范围、胰岛素反应曲线形态以及胰岛素抗性程度。
这些标准可以帮助检测和评估个体的胰岛素分泌和功能是否正常,为临床诊断和治疗提供参考依据。
需要注意的是,这些标准可能根据个体的特殊情况而有所不同,所以在进行胰岛素释放实验时应该考虑个体的生理特征和疾病状况。
人体胰岛素是由什么分泌
人体胰岛素是由什么分泌文章目录*一、人体胰岛素是由什么分泌*二、影响胰岛素分泌的因素*三、胰岛素的功能作用人体胰岛素是由什么分泌1、人体胰岛素是由什么分泌胰岛素在胰岛B细胞中分泌。
胰岛素合成的控制基因在第11对染色体短臂上。
基因正常则生成的胰岛素结构是正常的;若基因突变则生成的胰岛素结构是不正常的,为变异胰岛素。
在 B 细胞的细胞核中,第11对染色体短臂上胰岛素基因区DNA向mRNA 转录,mRNA从细胞核移向细胞浆的内质网,转译成氨基酸相连的长肽--前胰岛素原,前胰岛素原经过蛋白水解作用除其前肽,生成胰岛素原。
2、胰岛素的分类2.1、动物胰岛素:从猪和牛的胰腺中提取,两者药效相同,但与人胰岛素相比,猪胰岛素中有1个氨基酸不同,牛胰岛素中有3个氨基酸不同,因而易产生抗体。
2.2、半合成人胰岛素:将猪胰岛素第30位丙氨酸,置换成与人胰岛素相同的苏氨酸,即为半合成人胰岛素。
2.3、生物合成人胰岛素(现阶段临床最常使用的胰岛素):利用生物工程技术,获得的高纯度的生物合成人胰岛素,其氨基酸排列顺序及生物活性与人体本身的胰岛素完全相同。
3、胰岛素治疗的适应证1型糖尿病;2型糖尿病患者经饮食及口服降糖药治疗未获得良好控制;合并重症感染、消耗性疾病、视网膜病变、肾病、神经病变、急性心肌梗死、脑血管意外、高热、妊娠、创伤以及手术的各型糖尿病发生各种急性或严重并发症的糖尿病,如糖尿病酮症酸中毒、高渗性昏迷和乳酸性酸中毒伴高血糖时;酮症酸中毒治疗原则是立即给予足够的胰岛素,纠正失水、电解质紊乱等异常体液环境和去除诱因。
高渗性非酮症性糖尿病昏迷治疗原则是纠正高血糖、高渗状态及酸中毒,适当补钾,但不去贸然使用大量胰岛素,以免血糖下降过快,细胞外液中水分向高渗的细胞内转移,导致或加重脑水肿。
影响胰岛素分泌的因素1、血糖浓度是影响胰岛素分泌的最重要因素。
口服或静脉注射葡萄糖后,胰岛素释放呈两相反应。
早期快速相,门静脉血浆中胰岛素在2分钟内即达到最高值,随即迅速下降;延迟缓慢相,10分钟后血浆胰岛素水平又逐渐上升,一直延续1小时以上。
胰岛素的生理作用及其分泌调节
胰岛素的生理作用及其分泌调节。
答:生理作用:(1)糖代谢降低血糖
(2)脂肪代谢:促进脂肪合成,抑制脂肪分解
(3)蛋白质代谢:促进蛋白质合成、抑制蛋白质分解
分泌调节:(1)营养成分的调节:胰岛素的分泌可直接受外源性营养成分的调节。
血中葡萄糖水平
是刺激胰岛素分泌最重要的因素;许多氨基酸都能刺激胰岛素的分泌,其中精氨酸和赖氨酸的作用最强;许多氨基酸都能刺激胰岛素的分泌,其中精氨酸和赖氨酸的作用最强。
(2)激素的调节:在胃肠激素中,胃泌素、促胰液素、缩胆囊素
和抑胃肤等均能促进胰岛素分泌;生长激素、皮质醇和甲状腺激素可通过升高血糖而间接刺激胰岛素分泌。
胰岛A细胞分泌的胰高血糖素和D细胞分泌的生长抑素,可分别刺激和抑制B细胞分泌胰岛素。
胰高血糖素引起的血糖升高又可进一步引起胰岛素的释放。
(3)神经调节:胰岛受交感和副交感神经的双重支配。
刺激右侧迷走神经,既可通过M受体直接促进胰岛素分泌,也可通过刺激胃肠激素释放而间接促进胰岛素的分泌。
交感神经兴奋时,其末梢释放去甲肾上腺素,后者作用于B细胞的α2受体,抑制胰岛素的分泌。
胰岛素分泌调控与胰岛素抵抗的平衡
胰岛素分泌调控与胰岛素抵抗的平衡胰岛素是一种重要的激素,在机体内起着糖代谢调节的关键作用。
它的分泌量与胰岛素抵抗之间的平衡是维持血糖稳定的重要因素。
本文将从胰岛素的分泌调控和胰岛素抵抗的影响下,探讨这种平衡的重要性及其可能产生的影响。
一、胰岛素分泌调控胰岛素的分泌主要受到以下几个因素的调节:1. 血糖水平:血糖水平是胰岛素分泌最重要的调节因素之一。
当血糖升高时,胰岛β细胞受到刺激,释放胰岛素使血糖降低。
相反,当血糖水平降低时,胰岛素的分泌也相应减少。
2. 胰高血糖素:胰高血糖素是一种由胰α细胞分泌的激素,在胰岛素分泌调控中起到重要的抑制作用。
当血糖升高时,胰高血糖素的分泌增加,通过抑制胰岛素的释放来维持血糖平衡。
3. 胰岛素样生长因子1(IGF-1):IGF-1是胰岛素激素家族中的一个成员,它能够刺激胰岛素的合成和分泌。
二、胰岛素抵抗的平衡胰岛素抵抗是指机体对胰岛素的敏感性降低,导致细胞对胰岛素的作用减弱。
胰岛素抵抗的主要原因包括以下几个方面:1. 遗传因素:遗传因素在胰岛素抵抗的发生中起着重要作用。
一些基因突变会导致胰岛素信号传导通路的异常,从而影响胰岛素的作用。
2. 脂肪组织的增加:过多的脂肪组织会导致脂肪细胞释放大量脂肪酸和炎性因子,进而干扰胰岛素信号传导通路,导致胰岛素抵抗。
3. 生活方式:不良的生活方式如高脂饮食、缺乏运动等也是导致胰岛素抵抗的重要原因之一。
胰岛素分泌调控与胰岛素抵抗的平衡对机体的健康非常关键。
当胰岛素分泌过多,而胰岛素抵抗较低时,会导致血糖过低,引起低血糖症状,如头晕、出汗等;相反,胰岛素分泌不足且胰岛素抵抗过高时,会导致高血糖,最终发展为糖尿病。
因此,维持胰岛素分泌与抵抗的平衡对于防治糖尿病至关重要。
为了维持这种平衡,我们可以通过以下方式来改善胰岛素敏感性和增加胰岛素分泌:1. 良好的饮食习惯:均衡饮食、减少高糖和高脂食物的摄入,增加纤维素和富含维生素的食物的摄入,有助于提高胰岛素敏感性和减少胰岛素抵抗。
胰岛素分泌调控的分子机制
胰岛素分泌调控的分子机制胰岛素是一种由胰岛素细胞合成并分泌的激素,它在机体代谢中发挥着至关重要的作用。
胰岛素可以促进葡萄糖的进入细胞,并在肝脏中促进糖原形成以及脂肪酸和蛋白质的合成。
因此,胰岛素分泌调控的分子机制一直备受关注。
本文将探讨胰岛素分泌调控的分子机制,包括胰岛素的合成、分泌和信号传递等方面。
1. 胰岛素的合成胰岛素是由胰岛素原(proinsulin)分子经过剪接和氧化还原过程后形成的。
在胰岛素细胞内,胰岛素原由B链和A链连接而成。
B链和A链之间含有一个C肽,称为连接肽(connecting peptide)。
该连接肽剪切后就能形成胰岛素分子。
连接肽被剪切后,其余残基在细胞内形成胰岛素分子。
参与合成胰岛素的一些酶包括转酰基辅酶A羧基化酶(acetyl-CoA carboxylase)、己糖激酶(hexokinase)和磷酸烯醇化酶(phosphoenolpyruvate carboxykinase)等。
2. 胰岛素的分泌胰岛素分泌是通过胰岛素细胞上面的离子通道和膜上受体来调控的。
胰岛素细胞有两种类型的离子通道:ATP敏感的离子通道和电压敏感的离子通道。
活跃的ATP敏感的离子通道可以增加细胞内钙离子的浓度,这是促进胰岛素的排泄的关键因素。
ATP敏感的离子通道受到细胞外环境中的葡萄糖和药物的影响。
当葡萄糖浓度升高时,ATP敏感的钾通道关闭,使钠离子进入胰岛素细胞,并引起胰岛素的分泌。
胰岛素分泌可以受到神经系统和消化激素的影响。
当食物的消化开始时,神经系统和消化激素会释放出胰高血糖素、胃泌素、胰腺多肽和神经肽Y等激素,这些激素可以刺激胰岛素的分泌。
3. 胰岛素分泌的信号传递在胰岛素分泌的信号转导过程中,有几个重要的信号通路需要被提及。
它们包括三磷酸腺苷(ATP)/遗传学与胰岛素(GLUT)通道、内质网应激和胰岛素生长因子(IGF)信号通路。
ATP/Glut通道,一种ATP敏感的离子通道,可以反应细胞内ATP和葡萄糖的浓度,促进或抑制钙离子通道的开闭,进而调节胰岛素分泌。
胰岛素的合成分泌和作用机制
胰岛素的合成分泌和作用机制胰岛素是由胰岛素细胞合成和分泌的一种激素,它在体内调节血糖水平的作用非常重要。
下面将详细介绍胰岛素的合成、分泌和作用机制。
胰岛素的合成主要发生在胰腺的胰岛素细胞内。
胰岛素由前体分子“前胰岛素”先后切割产生,前胰岛素包含有两个多肽链,即A链和B链。
切割合成过程由胰岛素钩端蛋白酶(PC SK)和异戊型胰岛素(C-Peptide)介导,最终形成活性胰岛素。
分泌机制胰岛素的分泌是由胰岛素细胞内的胰岛素颗粒调节的,分泌机制主要涉及到胰岛素合成后的储存、胰岛素颗粒的释放和调控三个过程。
1.储存:胰岛素合成后会被包裹在内质网上的囊泡内形成胰岛素颗粒,这些胰岛素颗粒会保持在胰岛素细胞内。
2.释放:胰岛素的释放是由一系列信号传导机制调控的。
当血液中的葡萄糖浓度升高时,葡萄糖进入胰岛素细胞,并被代谢为葡萄糖-6-磷酸。
这会导致细胞内ATP/ADP比值增加,细胞膜的K+通道被关闭,引起细胞内K+浓度增加,膜电位增加。
这导致细胞膜上钙离子通道开放,细胞内Ca2+浓度升高。
胰岛素颗粒内的胰岛素与Ca2+结合,胰岛素颗粒与细胞膜发生融合,胰岛素从胰岛素细胞内释放到外界。
3.调控:胰岛素的分泌受到多种调节因素的控制。
葡萄糖是最重要的调节因子之一,当血糖升高时,刺激胰岛素的合成和分泌;胰高糖素、肾上腺素和胰岛素样生长因子也会促进胰岛素的分泌。
另外,胰岛素的分泌也受到神经调节的影响,交感神经活动会抑制胰岛素的分泌,副交感神经活动则促进胰岛素的分泌。
作用机制胰岛素的主要作用是降低血糖浓度,它具有多种机制来实现这一作用。
1.促进葡萄糖的摄取:胰岛素会促进肌肉和脂肪细胞中的葡萄糖摄取。
胰岛素通过GLUT4蛋白的转位作用,将GLUT4蛋白从胞浆膜转位到细胞膜上,使细胞膜上的GLUT4蛋白数量增加,从而增加葡萄糖的摄取。
2.促进肝糖的合成和储存:胰岛素通过抑制肝葡萄糖酶的活性,降低肝糖的分解,从而促进肝糖的合成和储存,增加肝糖原的含量。
胰岛素分泌机制
胰岛素是机体最重要的激素之一,它调节机体的血糖稳定、促进同化代谢、调节细胞的分裂分化和生长发育.胰岛β细胞的胰岛素分泌受到营养物质、神经递质和激素的精确调控.它们的作用部位可分为改变胞内第二信使物质水平的近端调节步骤(钙依赖性),和直接作用于胞吐分子构件的末端调节步骤(钙非依赖性).胰岛素的胞吐过程与神经递质的释放机制类似.葡萄糖等营养物质主要通过升高胞内的ATP/ADP比率,导致ATP敏感钾通道关闭、细胞膜去极化、钙内流这一途径增加胰岛素的分泌.神经递质和部分激素通过其G蛋白偶联受体-G蛋白系统的跨膜信号转换后,影响胞内IP3、DAG、Ca2+等第二信使物质水平,主要通过PKA、PKC等蛋白激酶途径,调节胰岛素的分泌.胞内单体G蛋白参与了对囊泡运输和胞吐过程的调控,G蛋白也可能直接作用于胞吐过程,在分泌过程中发挥了重要的调节作用.。
胰岛素分泌机制及胰岛素抵抗性的发生机制
胰岛素分泌机制及胰岛素抵抗性的发生机制胰岛素是人体内一种重要的激素,它有助于调节人体内的血糖水平,在胰腺中,并由Langerhans岛屿细胞分泌出来。
胰岛素的正常分泌机制一直是医学专家们关注的问题之一,而胰岛素抵抗性的发生机制也备受关注。
以下将详细介绍胰岛素分泌机制及胰岛素抵抗性的发生机制。
一、胰岛素分泌机制胰岛素是由β细胞分泌的,而其分泌的过程涉及到许多复杂的机制。
一般而言,胰岛素的分泌是受血糖水平的影响的,当血糖升高时,胰岛素分泌也会相应增加。
具体的细节机制如下:1.糖酵解途径的作用糖酵解途径是胰岛素分泌途径的首要环节。
糖酵解途径产生的ATP会关闭KATP通道,细胞内部的胰岛素颗粒贩运至细胞膜上,并释放胰岛素。
2.动作电位的作用胰岛素细胞在受到β-肾上腺素受体刺激时,会产生动作电位,从而导致Ca2 +流入细胞。
Ca2+的变化增加了胰岛素颗粒的移动,并促进胰岛素的释放。
3.神经系统的作用交感神经会转运来自肾上腺的肾上腺素进入β细胞,从而促进胰岛素的分泌。
副交感神经剂可以抑制胰岛素的分泌。
以上这些因素共同作用,进而影响β细胞的分泌能力,并决定胰岛素的分泌量。
二、胰岛素抵抗的发生机制胰岛素抵抗是一种长期血糖控制不良的情况,它是糖尿病的风险因素之一,诸如高血压、肥胖等因素也可能加剧该病状。
胰岛素抵抗的发生机制如下:1.胰岛素受体的异常胰岛素抵抗性机制的主要问题就是胰岛素受体的异常,使得胰岛素在胰岛素受体上无法正常结合,进而失去作用。
其实,问题并不是胰岛素受体数量的问题,而是其功能的问题。
胰岛素受体功能的下降,会导致胰岛素的血糖调节功能也随之下降,从而使胰岛素抵抗发生。
2.胰岛素的敏感性下降当人体的代谢水平开始放缓时,人们往往会感到体力逐渐减弱,当血糖控制失去平衡后,人体的胰岛素敏感性逐渐下降,从而导致胰岛素抵抗发生。
这也是胰岛素抵抗实际上比较容易发生的原因。
三、如何避免胰岛素抵抗胰岛素抵抗的预防和治疗方法相对比较简单,以下是几种常见的方法:1.饮食控制饮食控制也是最基本的方法之一,您可以使用低GI的饮食,就是同时减少添加糖和白粉质,并多吃新鲜蔬菜和高纤维素水果。
胰岛素的合成、分泌和作用机制
胰岛素的合成、分泌和作用机制胰岛素是由胰岛B细胞所分泌的,具有重要代谢调节作用的肽类激素。
旱在19世纪末期,von Mering和Minkowski即指出,胰腺在抗糖尿病的作用中起重要作用。
1909年和1917年,de Mayer和Sir Edward Sharpey—Schaffer分别命名这种胰岛内调节血糖水平的激素为“胰岛素”。
直到20世纪20年代初期,加拿大人Banting、Best和Collip才真正分离出牛胰岛素,并稍后作为特效药应用于糖尿病患者。
随后,结晶胰岛素的获得,氨基酸顺序的阐明,具生物活性的胰岛素的合成,胰岛素检测方法的建立,对胰岛素生物合成途径及分泌机制的认识,胰岛素受体的发现,均成为人类对胰岛素本身及相关疾病认识的里程碑。
随着医学及相关科学的发展,特别是近年来分子生物学方法的广泛应用,人们对这个领域的认识突飞猛进,也推动了糖尿病学的迅速发展。
一、胰岛素的提取、纯化及结构特征1.胰岛素的提取、纯化和检测早期,胰岛素是以乙醇或酸性乙醇溶液来抽提的,以这种方法抽提可使胰岛素从组织中溶解出来,并灭活蛋白酶。
这种方法仍为现代提取方法的基础。
在有机溶剂提取脂肪后.含胰岛素的酸性乙醇的抽提物可经盐析及等电点沉淀等分离,进一步作凝胶过滤,离子交换,高效液相色谱等纯化。
以前曾一度认为以锌结晶方法可有助于胰岛素的纯化,现认为反复结晶仍不能去除胰岛中的其他成分,如胰升糖素、胰岛素原、胰岛素样类似物及部分降解的胰岛素片段,而且部分动物的胰岛素不能与锌结合或产生结晶。
基因重组胰岛素的生物合成技术可得到不含其他激素的较纯净的胰岛素,但仍常含有其他来自宿主细菌或真菌的蛋白质污染,经凝胶过滤和离子亲和层析后,可得到纯度高于99%的胰岛素。
这种胰岛素对人的抗原性远小于来自动物的结晶胰岛素,不易产生抗体,更有利于糖尿病病情的控制。
血清胰岛素测定可用放射免疫法等,但在精确度和敏感性方面仍有一定的局限性。
用聚丙烯酰胺凝胶电泳和高效液相色谱可鉴定胰岛素的量及纯度,并区分开胰岛素和胰岛素原。
人体胰岛素的分泌规律
人体内的胰岛素分泌受到多种因素的调控,主要是血糖水平的变化。
一般来说,胰岛素的分泌规律可以总结为以下几个方面:
1. 餐后胰岛素分泌:在进食后,血糖水平升高,胰岛素分泌细胞(β细胞)受到刺激,开始释放胰岛素以促进组织对血糖的摄取和利用,从而使血糖水平迅速下降。
2. 基础胰岛素分泌:即使在未进食状态下,胰岛素仍会以较为稳定的速率被分泌,以维持基础的代谢需要和血糖水平的稳定。
3. 运动和应激时的胰岛素分泌:运动和身体应激状态下,交感神经系统的兴奋和肾上腺素的分泌也会刺激胰岛素的释放,以应对机体的能量需求变化。
4. 睡眠时的胰岛素分泌:研究表明,人体的胰岛素分泌还受到昼夜节律的影响,在晚间睡眠时,胰岛素分泌较为稳定。
总的来说,胰岛素分泌是一个动态平衡过程,受到血糖水平、神经系统调节、内分泌系统的相互作用等多种因素的影响。
这些调节机制保证了人体血糖水平在正常范围内波动,从而维持了整个机体的代谢稳态。
胰岛素分泌及其在糖尿病中的作用
胰岛素分泌及其在糖尿病中的作用在我们的身体内,胰岛素是非常重要的东西。
它是一种蛋白质荷尔蒙,由胰腺分泌,并在我们的身体中起着调节血糖水平的作用。
一旦胰岛素分泌不足,我们就会出现糖尿病的症状。
胰岛素分泌的过程我们的胰腺中含有许多小小的群体,叫做胰岛。
胰岛中含有两种主要的细胞,一种叫做α细胞,它分泌一种荷尔蒙叫做胰高血糖素,而另一种则叫做β细胞,它则分泌胰岛素。
正常情况下,当我们的血液中的血糖水平升高时,我们的β细胞就会分泌胰岛素。
胰岛素会刺激我们的细胞摄取血液中的葡萄糖,从而降低我们的血糖水平。
与此同时,当我们的血糖水平下降时,我们的α细胞会分泌胰高血糖素来逆转这个过程,使得我们的细胞开始释放葡萄糖到我们的血液中。
糖尿病中的问题然而,在糖尿病患者身上,这个过程并不如应有的那样运转。
在类型1糖尿病中,我们的免疫系统会攻击并摧毁胰腺中分泌胰岛素的β细胞,从而使得我们无法分泌足够的胰岛素。
而在类型2糖尿病中,则通常是由于胰岛素的作用变得越来越不敏锐,从而使得我们的细胞无法正确地摄取葡萄糖,最终导致我们的血糖水平升高。
如果我们的血糖水平过高,那么就会给我们的身体造成损害。
高血糖水平可以伤害我们的神经系统、心血管系统,还可以导致眼睛、肾脏、神经等部位的功能失调。
因此,我们需要控制我们的血糖水平以避免这些发生。
治疗糖尿病治疗糖尿病的最重要的就是控制我们的血糖水平。
这可以通过多种途径来实现,如药物治疗、运动和饮食控制等。
最常见的是药物治疗,这些药物可以增加我们的胰岛素分泌、改善胰岛素的作用或使我们的肝脏更好地吸收葡萄糖。
此外,通过运动可以增加我们的胰岛素敏感性,并使得我们的细胞更加容易摄取葡萄糖。
同时,饮食控制也非常重要。
尽管没有一个通用的饮食方案来对付糖尿病,但是我们需要限制摄入高糖分的食物,并确保总体上摄入的糖分不会让我们的血糖水平升高过高。
总结胰岛素是我们身体内的重要物质,它可以调节血糖水平。
当我们患有糖尿病时,我们的胰岛素分泌和/或作用可能出现问题,从而导致我们的血糖水平升高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
胰岛是在胰脏腺泡之间的散在的细胞团。
胰岛能分泌胰岛素与胰高血糖素等激素。
参考资料:胰岛人类的胰岛细胞按其染色和形态学特点,主要分为A细胞、B细胞、D 细胞及PP细胞。
A细胞约占胰胰岛细胞的20%,分泌胰主血糖素(glucagon);B细胞占胰岛细胞的60%-70%,分泌胰岛素(insulin);D细胞占胰岛细胞的10%,分泌生成抑素;PP细胞数量很少,分泌胰多肽(pancreatic polyeptide)。
一、胰岛素胰岛素是含有51个氨基酸的小分子蛋白质,分子量为6000,胰岛素分子有靠两个二硫键结合的A链(21个氨基酸)与B链(30个氨基酸),如果二硫键被打开则失去活性(图11-21)。
B细胞先合成一个大分子的前胰岛素原,以后加工成八十六肽的胰岛素原,再经水解成为胰岛素与连接肽(C 肽)。
图11-21 人胰岛素的化学结构胰岛素与C肽共同释入血中,也有少量的胰岛素原进入血液,但其生物活性只有胰岛素的3%-5%,而C肽无胰岛素活性。
由于C肽是在胰岛素合成过程产生的,其数量与胰岛素的分泌量有平行关系,因此测定血中C肽含量可反映B 细胞的分泌功能。
正常人空腹状态下血清胰岛素浓度为35-145pmol/L。
胰岛素在血中的半衰期只有5min,主要在肝灭活,肌肉与肾等组织也能使胰岛素失活。
1965年,我国生化学家首先人工合成了具有高度生物活性的胰岛素,成为人类历史上第一次人工合成生命物质(蛋白质)的创举。
(一)胰岛素的生物学作用胰岛素是促进合成代谢、调节血糖稳定的主要激素。
1.对糖代谢的调节胰岛素促进组织、细胞对葡萄糖的摄取和利用,加速葡萄糖合成为糖原,贮存于肝和肌肉中,并抑制糖异生,促进葡萄糖转变为脂肪酸,贮存于脂肪组织,导致血糖水平下降。
胰岛素缺乏时,血糖浓度升高,如超过肾糖阈,尿中将出现糖,引起糖尿病。
2.对脂肪代谢的调节胰岛素促进肝合成脂肪酸,然后转运到脂肪细胞贮存。
在胰岛素的作用下,脂肪细胞也能合成少量的脂肪酸。
胰岛素还促进葡萄糖进入脂肪细胞,除了用于合成脂肪酸外,还可转化为α-磷酸甘油,脂肪酸与α-磷酸甘油形成甘油三酯,贮存于脂肪细胞中,同时,胰岛素还抑制脂肪酶的活性,减少脂肪的分解。
胰岛素缺乏时,出现脂肪代谢紊乱,脂肪分解增强,血脂升高,加速脂肪酸在肝内氧化,生成大量酮体,由于糖氧化过程发和障碍,不能很好处理酮体,以致引起酮血症与酸中毒。
3.对蛋白质代谢的调节胰岛素促进蛋白质合成过程,其作用可在蛋白质合成的各个环节上:①促进氨基酸通过膜的转运进入细胞;②可使细胞核的复制和转录过程加快,增加DNA和RNA 的生成;③作用于核糖体,加速翻译过程,促进蛋白质合成;另外,胰岛素还可抑制蛋白质分解和肝糖异生。
由于胰岛素能增强蛋白质的合成过程,所以,它对机体的生长也有促进作用,但胰岛素单独作用时,对生长的促进作用并不很强,只有与生长素共同作用时,才能发挥明显的效应。
近年的研究表明,几乎体内所有细胞的膜上都有胰岛素受体。
胰岛素受体已纯化成功,并阐明了其化学结构。
胰岛素受体是由两个α亚单位和两个β亚单位构成的四聚体,α亚单位由719个氨基酸组成,完全裸露在细胞膜外,是受体结合胰岛素的主要部位。
α与α亚单位、α与β亚单位之间靠二硫键结合。
β亚单位由620个氨基酸残基组成,分为三个结构域:N端194个氨基酸残基伸出膜外;中间是含有23个氨基酸残基的跨膜结构域;C端伸向膜内侧为蛋白激酶结构域。
胰岛素受体本身具有酪氨酸蛋白激酶活性,胰岛素与受体结合可激活该酶,使受体内的酪氨酸残基发生磷酸化,这对跨膜信息传递、调节细胞的功能起着十分重要的作用。
关于胰岛素与受体结合启动的一系列反应,相当复杂,尚不十分清楚。
(二)胰岛素分泌的调节1.血糖的作用血糖浓度是调节胰岛素分泌的最重要因素,当血糖浓度升高时,胰岛素分泌明显增加,从而促进血糖降低。
当血糖浓度下降至正常水平时,胰岛素分泌也迅速恢复到基础水平。
在持续高血糖的刺激下,胰岛素的分泌可分为三个阶段:血糖升高5min内,胰岛素的分泌可增加约10倍,主要来源于B细胞贮存的激素释放,因此持续时间不长,5-10min后胰岛素的分泌便下降50%;血糖升高15min后,出现胰岛素分泌的第二次增多,在2-3h 达高峰,并持续较长的时间,分泌速率也远大于第一相,这主要是激活了B细胞胰岛素合成酶系,促进了合成与释放;倘若高血糖持续一周左右,胰岛素的分泌可进一步增加,这是由于长时间的高血糖刺激B细胞增生布引起的。
2.氨基酸和脂肪酸的作用许多氨基酸都有刺激胰岛素分泌的作用,其中以精氨酸和赖氨酸的作用最强。
在血糖浓度正常时,血中氨基酸含量增加,只能对胰岛素的分泌有轻微的刺激作用,但如果在血糖升高的情况下,过量的氨基酸则可使血糖引起的胰岛素分泌加倍增多。
务右脂肪酸和酮体大量增加时,也可促进胰岛素分泌。
3.激素的作用影响胰岛素分泌的激素主要有:①胃肠激素,如胃泌素、促胰液素、胆囊收缩素和抑胃肽都有促胰岛素分泌的作用,但前三者是在药理剂量时才有促胰岛素分泌作用,不像是一引起生理刺激物,只有抑胃肽(GIP)或称依赖葡萄糖的促胰岛素多肽(glucose-dependent insulin-stimulating polypeptide)才可能对胰岛素的分泌起调节作用。
②生长素、皮质醇、甲状腺激素以及胰高血糖素告示可通过升高血糖浓度而间接刺激胰岛素分泌,因此长期大剂量应用这些激素,有可能使B细胞衰竭而导致糖尿病;③胰岛D细胞分泌的生长抑至少可通过旁分泌作用,抑制胰岛素和胰高血糖的分泌,而胰高血糖素也可直接刺激B细胞分泌胰岛素(图11-22)。
图11-22 胰岛细胞的分布及其分泌激素之间的相互影响→表示促进----→表示抑制GIH:生长抑素4.神经调节胰岛受迷走神经与交感神经支配。
刺激迷起神经,可通过乙酰胆碱作用于M受体,直接促进胰岛素的分泌;迷走神经还可通过刺激胃肠激素的释放,间接促进胰岛素的分泌。
交感神经兴奋时,则通过去甲肾上腺素作用于α2受体,抑制胰岛素的分泌。
二、胰高血糖素人胰高血糖是由29个氨基酸组成的直链多肽,分子量为3485,它也是由一个大分子的前体裂解而来。
胰高血糖在血清中的浓度为50-100ng/L,在血浆中的半衰期为5-10min, 主要在肝灭活,肾也有降解作用。
(一)胰高血糖的主要作用与胰岛素的作用相反,胰高血糖素是一种促进分解代谢的激素。
胰高血糖素具有很强的促进糖原分解和糖异生作用,使血糖明显升高,1mol/L的激素可使3×106mol/L的葡萄糖迅速从糖原分解出来。
胰高血糖素通过cAMP-PK系统,激活肝细胞的磷酸化酶,加速糖原分解。
糖异生增强是因为激素加速氨基酸进入肝细胞,并激活糖异生过程有关的酶系。
胰高血糖素还可激活脂肪酶,促进脂肪分解,同时又能加强脂肪酸氧化,使酮体生成增多。
胰高血糖素产生上述代谢效应的靶器官是肝,切除肝或阻断肝血流,这些作用便消失。
另外,胰高血糖素可促进胰岛素和胰岛生长抑素的分泌。
药理剂量的胰高血糖素可使心肌细胞内cAMP 含量增加,心肌收缩增强。
(二)胰高血糖素分泌的调节影响胰高血糖素分泌的因素很多,血糖浓度是重要的因素。
血糖降低时,胰高血糖素胰分泌增加;血糖升高时,则胰高血糖素分泌减少。
氨基酸的作用与葡萄糖相反,能促进胰高血糖素的分泌。
蛋白餐或静脉注入各种氨基酸均可使胰高血糖素分泌增多。
血中氨基酸增多一方面促进胰岛素释放,可使血糖降低,另一方面还能同时刺激胰高血糖素分泌,这对防止低血糖有一定的生理意义。
胰岛素可通过降低血糖间接刺激胰高血糖素的分泌,但B细胞分泌的胰岛不比和D细胞分泌的生长抑素可直接作用于邻近的A细胞,抑制胰高血糖素的分泌(图11-22)。
胰岛素与胰高血糖素是一对作用相反的激素,它们都与血糖水平之间构成负反馈调节环路。
因此,当机体外于不同的功能状态时,血中胰岛素与胰高血糖素的摩尔比值(I/G)也是不同的。
一般在隔夜空腹条件下,I/G比值为2.3,但当饥饿或长时间运动时,比例可降至0.5以下。
比例变小是由于胰岛素分泌减少与胰高血糖素分泌增多所致,这有利于糖原分解和糖异生,维持血糖水平,适应心、脑对葡萄糖的需要,并有利于脂肪分解,增强脂肪酸氧化供能。
相反,在摄食或糖负荷后,比值可升至10以上,这是由于胰岛素分泌增加而胰高血糖素分泌减少所致。
在这种情况下,胰岛不比的作用占优势。
胰岛素(insulin)为胰腺中胰岛β细胞分泌的一种激素。
1922年由英国的班廷(Banting)和贝斯特(Best)所发现,为一种能降低血糖的物质。
1926年获得结晶的胰岛素。
1954年阐明胰岛素的氨基酸组成。
到60年代中期,已进行人工合成。
我国于1965年首次用化学方法合成了具有生物活性的结晶牛胰岛素;随后,查明了胰岛素的三级空间结构。
胰岛素由51个氨基酸组成A、B两条肽链,A链含21个氨基酸,B 链含30个氨基酸,两条肽链之间借两个二硫键联结,A链的第6与第11位氨基酸之间也有一个二硫键。
人胰岛素分子量为5734道尔顿,等电点为pH5.6。
在酸性环境(pH2.5~3.5)较稳定,在碱性溶液中易被破坏,可形成锌、钴等胰岛素结晶。
又由于其分子中酸性氨基酸较多,可与碱性蛋白如鱼精蛋白等结合,形成分子量大、溶解量低的鱼精蛋白锌胰岛素。
此种制剂注入皮下或肌肉吸收较慢,作用时间长,为长效胰岛素。
从胰岛分泌的胰岛素,经门脉进入肝脏,40~50%在肝内分解,其余进入体循环分布于全身。
从静脉注射胰岛素,90%在20分钟内从血液中消失,绝大部分被组织吸收或被肝脏灭活。
胰岛素的生理作用主要为促进合成代谢,主要靶器官是肝脏、脂肪组织、骨骼肌。
对糖代谢的调节:血糖浓度为生理条件下对胰岛素分泌的最重要调节因素。
当血糖升高时,胰岛素分泌可使肝脏、肌肉和脂肪组织加速摄取、贮存和利用葡萄糖,以使血糖水平下降。
胰岛素使进食后吸收的葡萄糖大量转化成糖原贮存,并促进葡萄糖转变成脂肪酸,转运到脂肪贮存。
抑制糖原异生。
肌肉组织在无胰岛素作用时,几乎不能摄取葡萄糖。
胰岛素可使葡萄糖转运入肌细胞,并可加速葡萄糖利用和肌糖原合成,致血糖降低。
对脂肪代谢的调节:胰岛素对脂肪合成和贮存起重要作用,在肝脏加速葡萄糖合成脂肪酸,贮存于脂肪细胞,脂肪本身在胰岛素作用下也可合成少量脂肪酸,促进葡萄糖进入脂肪细胞,使其转化成α-磷酸甘油,并与脂肪酸形成甘油三酯贮存于脂肪细胞中。
对蛋白质代谢的调节:胰岛素对蛋白质合成和贮存起主要作用。
促进氨基酸转运入细胞,并作用于核糖体,增加核糖核酸和脱氧核糖核酸生成,从而进一步增加蛋白质合成。
抑制蛋白质分解,抑制糖原异生。
如胰岛素缺乏时,体内蛋白质极度消耗,蛋白质分解和脂肪分解快而导致体重显著减轻。
胰岛素分泌的调节:血糖浓度是生理条件下对胰岛素分泌的最主要调节因素。