5相交线与平行线,北京西城区学探诊汇总

合集下载

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测题(答案解析)

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测题(答案解析)

一、选择题1.下列说法不正确...的是( ) A .对顶角相等B .两点确定一条直线C .一个角的补角一定大于这个角D .垂线段最短2.如图所示,已知//AB CD ,则( ).A .123∠=∠+∠B .123∠∠∠>+C .213∠=∠+∠D .123∠∠∠<+ 3.如图所示,//CD AB ,OE 平分∠AOD ,80EOF ∠=︒,60D ∠=︒,则∠BOF 为( )A .35︒B .40︒C .25︒D .20︒4.如图的四个图中,∠1与∠2是同位角的有( )A .②③B .①②③C .①D .①②④ 5.如图,某地域的江水经过B 、C 、D 三点处拐弯后,水流的方向与原来相同,若∠ABC =125°,∠BCD =75°,则∠CDE 的度数为( )A .20°B .25°C .35°D .50°6.如图,AB //CD ,AD ⊥AC ,∠BAD =35°,则∠ACD =( )A .35°B .45°C .55°D .70°7.如图,已知AB ∥CD ,EF ⊥CD ,若∠1=126°,则∠2的度数为( )A .26°B .36°C .54°D .64°8.如图,计划把河水引到水池A 中,可以先引AB CD ⊥,垂足为B ,然后沿AB 开渠,则能使所开的渠最短,这样设计的依据是( )A .垂线段最短B .两点之间,线段最短C .两点确定一条直线D .以上说法都不对 9.如图,直线AB ∥CD ,AP 平分∠BAC ,CP ⊥AP 于点P ,若∠1=50°,则∠2的度数为( )A .30°B .40°C .50°D .60°10.如图,直线AD //BC ,AC 平分∠DAB ,若∠1=65°,则∠2的度数为( )A .65°B .50°C .60°D .70°11.O 为直线AB 上一点,OC OD ⊥,若140∠=︒,则2∠=( )A .30°B .40°C .50°D .60°12.如图,已知CB ∥DF ,则下列结论成立的是( )A .∠1=∠2B .∠2=∠3C .∠1=∠3D .∠1+∠2=180º二、填空题13.一个角的余角比它的补角的一半少30,则这个角的度数为___________. 14.如图,AD //BC ,点P 是射线BC 上一动点,且不与点B 重合.AM AN 、分别平分BAP DAP ∠∠、,B α∠=,BAM β∠=,在点P 运动的过程中,当BAN BMA ∠=∠时,122αβ+=______.15.下列说法:①对顶角相等;②两点间线段是两点间距离;③过一点有且只有一条直线与已知直线平行;④过一点有且只有一条直线与已知直线垂直;⑤若AC BC =,则点C 是线段AB 的中点;⑥同角的余角相等正确的有_________.(填序号)16.如图,AB//CD ,直线EF 与AB 、CD 分别交于点G 、H ,GM ⊥GE ,∠BGM=20°,HN 平分∠CHE ,则∠NHD 的度数为_______.17.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.18.如图,直线AB ,CD 相交于点O ,OE ⊥AB ,O 为垂足,∠EOD=26°,则∠AOC=____,∠COB=___.19.如图,//AB CD ,点E 在CB 的延长线上,若60ABE ∠=︒,则ECD ∠的度数为__________.20.将如图1的长方形ABCD 纸片()//AD BC 沿EF 折叠得到图2,折叠后DE 与BF 相交于点P .如果70,EPF ∠=︒则PEF ∠的度数为____.三、解答题21.如图,找出标注角中的同位角、内错角和同旁内角.22.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD , OF ⊥CD ,若∠BOC 比∠DOE 大75o .求∠AOD 和∠EOF 的度数.23.如图,直角三角板ABC 的直角顶点C 在直线DE 上,CF 平分.BCD ∠()1如图①,若30BCE ∠=,求ACF ∠的度数;()2将图①中的三角板ABC 绕顶点C 转动到图②的位置,若140BCE ∠=,试求出,ACF ACE ∠∠的度数.24.如图,A ,O ,B 三点在同一条直线上,90DOE ∠=︒.(1)写出图中AOD ∠的补角是______,DOC ∠的余角是______;(2)如果OE 平分BOC ∠,36DOC ∠=︒,求AOE ∠的度数.25.直线AB 、CD 相交于点O ,OE 平分AOD ∠,90FOC ,50BOF ∠=︒,求AOC ∠与AOE ∠的度数.26.如图,直线AB ∥CD ,EB 平分∠AED ,170∠=︒,求∠2的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据对顶角的性质,直线的性质,补角的定义,垂线段的性质依次判断即可得到答案.【详解】解:A 、对顶角相等,故该项不符合题意;B 、两点确定一条直线,故该项不符合题意;C 、一个角的补角一定不大于这个角,故该项符合题意;D 、垂线段最短,故该项不符合题意;故选:C .【点睛】此题考查对顶角的性质,直线的性质,补角的定义,垂线段的性质,正确理解各性质及定义是解题的关键.2.A解析:A【分析】根据平行线的性质,得3ABO ∠=∠;根据补角的性质,得1801AOB ∠=-∠;根据角的和差的性质计算,即可得到123∠=∠+∠,从而完成求解.【详解】∵//AB CD∴3ABO ∠=∠∵1801AOB ∠=-∠又∵1802ABO ABO ∠=-∠-∠∴312∠=∠-∠∴123∠=∠+∠故选:A .【点睛】本题考查了平行线、角的知识;解题的关键是熟练掌握平行线、补角、角的和差的性质,从而完成求解.3.B解析:B【分析】由平行线的性质和角平分线的定义,求出60BOD D ∠=∠=︒,20DOF ∠=︒,然后即可求出∠BOF 的度数.【详解】解:∵//CD AB ,60D ∠=︒∴60BOD D ∠=∠=︒,18060120AOD ∠=︒-︒=︒,∵OE 平分∠AOD , ∴1120602DOE ∠=⨯︒=︒, ∴806020DOF EOF DOE ∠=∠-∠=︒-︒=︒;∴602040BOF BOD DOF ∠=∠-∠=︒-︒=︒;故选:B .【点睛】本题考查了平行线的性质,角平分线的定义,以及角的和差关系,解题的关键是熟练掌握所学的知识,正确的求出角的度数.4.D解析:D【分析】根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.【详解】解:①∠1和∠2是同位角;②∠1和∠2是同位角;③∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角;④∠1和∠2是同位角.∴∠1与∠2是同位角的有①②④.故选:D.【点睛】本题考查三线八角中的某两个角是不是同位角,同位角完全由两个角在图形中的相对位置决定.在复杂的图形中判别同位角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形.5.A解析:A【分析】由题意可得AB∥DE,过点C作CF∥AB,则CF∥DE,由平行线的性质可得∠BCF+∠ABC=180°,所以能求出∠BCF,继而求出∠DCF,再由平行线的性质,即可得出∠CDE的度数.【详解】解:由题意得,AB∥DE,如图,过点C作CF∥AB,则CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=180°-125°=55°,∴∠DCF=75°-55°=20°,∴∠CDE=∠DCF=20°.故选:A.【点睛】本题考查的知识点是平行线的性质,关键是过C点先作AB的平行线,由平行线的性质求解.6.C解析:C【分析】由平行线的性质可得∠ADC=∠BAD=35°,再由垂线的定义可得△ACD是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD的度数.【详解】∵AB∥CD,∠BAD=35°,∴∠ADC=∠BAD=35°,∵AD⊥AC,∴∠ADC+∠ACD=90°,∴∠ACD=90°﹣35°=55°,故选:C.【点睛】本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.7.B解析:B【分析】根据补角性质,可知∠1的补角是54°,利用平行线中角的性质,可以得知∠CEM=54°,然后利用角的和与差,得知∠1=90°与54°的差.【详解】如图所示:∠AOM=180°-∠1=180°-126°=54°,∵AB∥CD∴∠AOM=∠CEM=54°,∴∠1=90°-∠CEM=90°-54°=36°.故选B.【点睛】考查角度的求解,学生熟练掌握角度的和与差,补角的性质以及平行线中角的性质,本题解题关键是平行线中角的性质.8.A解析:A【分析】过直线外一点作直线的垂线,这一点与垂足之间的线段就是垂线段,且垂线段最短.【详解】解:根据垂线段定理,连接直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.故选:A.【点睛】本题考查了垂线段最短,掌握垂线段最短的内容是解此题的关键.9.B解析:B【分析】根据平行线的性质和角平分线的定义可得∠ACD=80°,再根据CP⊥AP,可得出∠ACP的度数,即可得∠2的度数.【详解】∵AB∥CD,∴∠BAC+∠ACD=180°,∵AP平分∠BAC,∴∠BAC=2∠1=100°,∴∠ACD=180°﹣100°=80°,∵CP⊥AP,∴∠P=90°,∴∠ACP=90°﹣∠1=90°﹣50°=40°,∴∠2=∠ACD-∠ACP=80°﹣40°=40°.故选:B.【点睛】本题考查平行线的性质、角平分线的定义及垂直的定义,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.10.B解析:B【分析】根据平行线性质得出∠1=∠DAC=65°,∠2+∠BAD=180°,求出∠BAD,即可得出∠2的度数【详解】解:∵AD∥BC,∴∠1=∠DAC=65°,∵AC平分∠DAB,∴∠BAD=2∠DAC =130°,∵AD∥BC,∴∠2+∠BAD=180°,∴∠2=180°-130°=50°故选:B.【点睛】本题考查了平行线性质和角平分线定义,关键是求出∠BAD的度数.11.C解析:C【分析】首先根据垂线的定义可知:∠COD=90°,从而可得到∠1+∠2=90°,由∠1=40°,即可得出结果.【详解】解:∵OC⊥OD,∴∠COD=90°,∵∠1=40°,∴∠2=180°-∠COD-∠1=180°-90°-40°=50°.故选:C .【点睛】本题主要考查的是垂线的定义、角的互余关系;熟练掌握垂线的定义是解决问题的关键. 12.B解析:B【分析】根据两条直线平行,同位角相等,即可判断.【详解】解:∵CB ∥DF ,∴∠2=∠3(两条直线平行,同位角相等).故选:B .【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.二、填空题13.【分析】这个角的度数为x 根据题意列一元一次方程并求解即可得到答案【详解】这个角的度数为x 根据题意得:∴∴故答案为:【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质从而完成 解析:60︒【分析】这个角的度数为x ,根据题意,列一元一次方程并求解,即可得到答案.【详解】这个角的度数为x根据题意得:()()190301802x x -+=- ∴180260180x x -+=-∴60x =故答案为:60︒.【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质,从而完成求解. 14.【分析】根据平行线的性质可得∠BMA=∠DAM ∠B+∠BAD=180°由角平分线的定义可得∠DAM=∠BAN 进一步可得从而可得结论【详解】解:∵AD//BC ∴∠BMA=∠DAM ∠B+∠BAD=180解析:90︒【分析】根据平行线的性质可得∠BMA=∠DAM ,∠B+∠BAD=180°,由角平分线的定义可得∠DAM=∠BAN ,进一步可得4180αβ+=︒,从而可得结论.【详解】解:∵AD//BC∴∠BMA=∠DAM ,∠B+∠BAD=180°∵AM 平分∠BAP ,∴∠BAM=∠MAP=12∠BAP , ∵AN 平分∠DAP ,∴∠DAN=∠NAP=12∠DAP , ∵∠BAN=∠BMA∴∠DAM=∠BAN∵∠BAM BAN MAN =∠-∠,∠DAN DAM MAN =∠-∠∴∠BAM DAN =∠∴∠14BAM BAD =∠ ∵B α∠=,BAM β∠=∴∠14BAM BAD β=∠= ∴∠4BAD β= ∴4180αβ+=︒ ∴12902αβ+=︒ 故答案为:90°.【点睛】 此题主要考查了角平分线的定义和平行线的性质,熟练掌握相关性质是解答此题的关键. 15.①④⑥【分析】利用对顶角的性质判断①利用两点距离定义判定②利用平行公理判定③利用垂线公里判定④利用线段中点定义判定⑤利用余角的性质判定⑥【详解】①对顶角相等正确;②由两点间线段的长度是两点间距离所以解析:①④⑥【分析】利用对顶角的性质判断①,利用两点距离定义判定②,利用平行公理判定③,利用垂线公里判定④,利用线段中点定义判定⑤,利用余角的性质判定⑥.【详解】①对顶角相等正确;②由两点间线段的长度是两点间距离,所以两点间线段是两点间距离不正确; ③由过直线外一点有且只有一条直线与已知直线平行,所以过一点有且只有一条直线与已知直线平行不正确;④过一点有且只有一条直线与已知直线垂直正确;=,点C在AB上,则点C是线段AB的中点,所以若⑤由线段中点的性质,若AC BC=,则点C是线段AB的中点不正确;AC BC⑥同角的余角相等正确;正确的有①④⑥.故答案为:①④⑥.【点睛】本题考查对顶角性质,两点间的距离,平行公理,垂线公里,线段的中点,余角的性质等问题,掌握对顶角性质,两点间的距离,平行公理,垂线公里,线段的中点,余角的性质是解题关键.16.125°【分析】由垂直的定义可得∠MGH=90°即可求出∠BGH的度数根据平行线的性质可得∠CHE=∠BGH根据角平分线的定义可得∠CHN=∠EHN=∠CHE 即可求出∠CNH的度数根据邻补角的定义即解析:125°【分析】由垂直的定义可得∠MGH=90°,即可求出∠BGH的度数,根据平行线的性质可得∠CHE,即可求出∠CNH的度∠CHE=∠BGH,根据角平分线的定义可得∠CHN=∠EHN=12数,根据邻补角的定义即可求出∠NHD的度数.【详解】∵GM⊥GE,∴∠MGH=90°,∵∠BGM=20°,∴∠BGH=∠MGH+∠BGM=110°,∵AB//CD,∴∠CHE=∠BGH=110°,∵HN平分∠CHE,∠CHE=55°,∴∠CHN=∠EHN=12∴∠NHD=180°-∠CHN=125°,故答案为:125°【点睛】本题考查垂直的定义、角平分线的定义及平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.17.20【分析】由已知珠江流域某江段江水流向经过BCD三点拐弯后与原来相同得AB∥DE过点C作CF∥AB则CF∥DE由平行线的性质可得∠BCF+∠ABC=180°所以能求出∠BCF继而求出∠DCF又由C解析:20【分析】由已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,得AB∥DE,过点C 作CF∥AB,则CF∥DE,由平行线的性质可得,∠BCF+∠ABC=180°,所以能求出∠BCF,继而求出∠DCF,又由CF∥DE,所以∠CDE=∠DCF.【详解】解:过点C作CF∥AB,已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,∴AB∥DE,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故答案为20.【点睛】此题考查的知识点是平行线的性质,关键是过C点先作AB的平行线,由平行线的性质求解.18.64°116°【分析】根据垂线的定义进行作答【详解】由OE⊥AB得到∠AOE=90°所以∠AOC=180°-∠EOD-∠AOE=64°;因为∠BOD=64°∠COB=180°-∠BOD=116°【点解析:64° 116°.【分析】根据垂线的定义进行作答.【详解】由OE⊥AB,得到∠AOE=90°,所以∠AOC=180°-∠EOD-∠AOE=64°;因为∠BOD=64°,∠COB=180°-∠BOD= 116°.【点睛】本题考查了垂线的定义,熟练掌握垂线的定义是本题解题关键.19.120°【分析】由∠ABE=60°根据邻补角的定义即可求得∠ABC的度数又由AB∥CD根据两直线平行内错角相等即可求得∠ECD的度数【详解】解:∵∠ABE=60°∴∠ABC=180°-∠ABE=18解析:120°.【分析】由∠ABE=60°,根据邻补角的定义,即可求得∠ABC的度数,又由AB∥CD,根据两直线平行,内错角相等,即可求得∠ECD的度数.【详解】解:∵∠ABE=60°,∴∠ABC=180°-∠ABE=180°-60°=120°,∵AB∥CD,∴∠ECD=∠ABC=120°.故答案为:120°.【点睛】此题考查了平行线的性质.此题比较简单,解题的关键是注意掌握两直线平行,内错角相等定理的应用.20.55°【分析】根据翻折可知对应角都相等另外两直线平行同旁内角互补利用这两条性质即可解答【详解】解:∵AE∥BF∴∠AEP=∠FPE=70°又∵折叠后DE 与BF相交于点P设∠PEF=x即∠AEP+2∠解析:55°【分析】根据翻折可知对应角都相等.另外两直线平行,同旁内角互补.利用这两条性质即可解答.【详解】解:∵AE∥BF,∴∠AEP=∠FPE=70°.又∵折叠后DE与BF相交于点P,设∠PEF=x,即∠AEP+2∠PEF=180°,即70°+2x=180°,x=55°.即∠PEF=55°,故答案为:55°.【点睛】解答此题的关键是要明白图形翻折变换后与原图形全等,对应的角和边均相等.三、解答题21.同位角有∠4与∠8、∠4与∠7、∠2与∠3;内错角有∠1与∠3、∠7与∠6、∠6与∠8;同旁内角有∠1与∠4、∠3与∠8,∠1与∠7.【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角;同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角,结合图形进行分析即可.【详解】同位角有∠4与∠8、∠4与∠7、∠2与∠3;内错角有∠1与∠3、∠7与∠6、∠6与∠8;同旁内角有∠1与∠4、∠3与∠8,∠1与∠7.【点睛】本题主要考查了三线八角,解题关键是掌握同位角的边构成“F ”形,内错角的边构成“Z ”形,同旁内角的边构成“U ”形.22.∠AOD=110°,∠EOF=55°【分析】设∠BOD=2x ,利用角平分线的∠BOE=x ;由∠BOC 比∠DOE 大75°可求∠BOC=∠DOE+75°=x+75°.根据题意列出方程x+75°+2x =180°,得出x=35°,求出∠BOD=70°,即可求出∠AOD=180°-70°=110°,由FO ⊥CD ,可求∠BOF=90°-∠BOD=20°,可求∠EOF=∠FOB+∠BOE=55°.【详解】解:设∠BOD=2x ,∵OE 平分∠BOD ,∴∠DOE=∠EOB=1BOD 2∠=x , ∵∠BOC=∠DOE+75°=x+75°.∴x+75°+2x =180°,解得:x=35°,∴∠BOD=2×35°=70°, ∴∠AOD=180°-∠BOD=180°-70°=110°,∵FO ⊥CD ,∴∠BOF=90°-∠BOD=90°-70°=20°,∴∠EOF=∠FOB+∠BOE=20°+35°=55°.【点睛】本题考查了角平分线、垂线、邻补角,一元一次方程等知识;弄清各个角之间的数量关系是解题的关键.23.(1)15ACF ∠=︒;(2)70ACF ∠=,130ACE ∠=.【分析】(1)、结合平角的定义和角平分线的定义解答;(2)、根据角平分线的定义、平角的定义以及角的和差关系解答即可.【详解】解:()1如题图①,因为90,30ACB BCE ∠=︒∠=︒,所以180903060,180ACD BCD ∠=︒-︒-︒=︒∠=︒30150-︒=︒又因为CF 平分,BCD ∠ 所以1752DCF BCF BCD ∠=∠=∠=︒,所以756015ACF DCF ACD ∠=∠-∠=︒-=︒;()2如题图②,因为140BCE ∠=︒,所以40BCD ∠=因为CF 平分,BCD ∠所以20BCF FCD ∠=∠=︒,所以9070ACF BCF ∠=︒-∠=,9050ACD BCD ∠=︒-∠=,所以180130ACE ACD ∠=︒-∠=.【点睛】考查了角的计算和角平分线的定义,主要考查学生的计算能力,求解过程类似. 24.(1)BOD ∠,COE ∠;(2)126︒【分析】(1)根据补角和余角的定义得出结果;(2)利用90DOE ∠=︒,36DOC ∠=︒,求出COE ∠的度数,再根据角平分线的性质得BOE COE ∠=∠,再由AOE AOB BOE ∠=∠-∠即可求出结果.【详解】解:(1)∵180AOD BOD ∠+∠=︒,∴AOD ∠的补角是BOD ∠,∵90DOC COE DOE ∠+∠=∠=︒,∴DOC ∠的余角是COE ∠,故答案是:BOD ∠,COE ∠;(2)∵90DOE ∠=︒,36DOC ∠=︒,∴903654COE DOE DOC ∠=∠-∠=︒-︒=︒,∵OE 平分COB ∠,∴54BOE COE ∠=∠=︒,∵A ,O ,B 三点在一条直线上,∴18054126AOE AOB BOE ∠=∠-∠=︒-︒=︒.【点睛】本题考查角度的求解,解题的关键是掌握余角和补角的定义,角平分线的性质. 25.40AOC ∠=︒;70AOE ∠=︒【分析】先利用平角定义与90FOC求出90FOD ∠=︒,再利用互余关系求=40BOD ∠︒,利用对顶角性质求40AOC ∠=︒,利用邻补角定义,求出140AOD ∠=︒,利用角平分线定义便可求出AOE ∠.【详解】 解:90FOC ∠=︒,∴1801809090FOD FOC ∠=︒-∠=︒-︒=︒,∵50BOF ∠=︒,90-50=40BOD FOD BOF ∴∠=∠-∠=︒︒︒,AOC ∠与BOD ∠是对顶角,40AOC BOD ∴∠=∠=︒;COD ∠是一个平角,∴∠AOC+∠AOD=180º,∵40AOC ∠=︒,140AOD ∴∠=︒, OE 平分AOD ∠, 12AOE AOD ∴∠=∠, 70AOE ∴∠=︒.【点睛】本题考查的知识点是对顶角、邻补角、两角互余、角平分线的意义,解题关键是熟练利用角平分线定理.26.55︒.【分析】先根据对顶角相等可得170BAE ∠=∠=︒,再根据平行线的性质可得110AED ∠=︒,然后根据角平分线的定义可得55BED ∠=︒,最后根据平行线的性质即可得.【详解】170∠=︒,170BAE ∴∠=∠=︒,//AB CD ,180110AED BAE ∴∠=︒-∠=︒,EB 平分AED ∠,1552BED AED ∴∠=∠=︒, 又//AB CD ,255BED ∴∠=∠=︒.【点睛】本题考查了对顶角相等、平行线的性质、角平分线的定义,熟练掌握平行线的性质是解题关键.。

北京市西城区重点中学2016年3月初一数学人教版七年级下册第五章相交线与平行线5.3平行线的性质教学

北京市西城区重点中学2016年3月初一数学人教版七年级下册第五章相交线与平行线5.3平行线的性质教学

4
两 条直 线被第三条直线所 截,如果同旁内角互补,那么这 两条直线平行. (3) 如何证明上述两种判定方
法 已知:如图,直线 a, b 被直线 c 所截,∠ 1=∠ 3, 求证: a∥ b.
行推理 训 练,体会转 化的数学思 想.
1 3
2
证明: ∵∠ 1=∠ 3(已知),
∠2=∠ 3(对顶角相等), ∴∠ 1=∠ 2. ∵∠ 1=∠ 2(已证), (初学者这一步不能省略) ∴a∥b(同位角相等,两直线平 行) . 想一想 :如何证明平行线判定方法 3 的证明 .
设计意图
学生回忆 “三线 八角 ”的知识并 回答教师问题 .
复习三线八 角的知识, 为平行线的 判定方法的
学习做好准 学生回忆 “两条 备.
直线的位置关
系及平行线的 概念 ”等知识并 回答教师问题 .
复 习 “两 条 直线的位置 关系及平行 线的概念 ”
等知识,为
平行线的判
定方法的学
进行观察、操 习 奠 定 基 作、说理等数学 础.
习了平行线的三个判定方法 .
它们都是通过相关角的数量
关系得出两条直线平行的位 置关系,因此要证明某两条直 线平行必须有第三条截线 . 2. 在本节平行线的判定方法提 出、证明及初步运用中,你有
小结反思本
师生共同小结 反思 .
节课的重难 点.
哪些感受和收获 ?还有哪些问
题?
学生活动的说明( 200 字内) ( 1) 注重学生观察、操作、说理、交流等数学活动的过程
利用判定方法 1,证明平行线 的判定方法 2、 或 3.
活动 4: 典型例题
典型例题分析 如图,
A1 32
B

D 5 4

数学:北京市西城区第五章《相交线与平行线》同步测试(七年级下)

数学:北京市西城区第五章《相交线与平行线》同步测试(七年级下)

第五章相交线与平行线测试1 相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角.3.对顶角的重要性质是_________________.4.如图,直线AB、CD相交于O点,∠AOE=90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角;∠2和∠3互为_______角;∠1和∠3互为______角;∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE-∠______=______°-______°=______°;∠4=∠______-∠1=______°-______°=______°.5.如图,直线AB与CD相交于O点,且∠COE=90°,则(1)与∠BOD互补的角有________________________;(2)与∠BOD互余的角有________________________;(3)与∠EOA互余的角有________________________;(4)若∠BOD =42°17′,则∠AOD =__________;∠EOD =______;∠AOE =______.二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF(C)∠AOF (D)∠BOE 和∠AOF8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ).(A)30° (B)45°(C)60° (D)135°9.如图所示,直线l 1,l 2,l 3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角. ( )11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角. ( )12.有一条公共边的两个角是邻补角. ( )13.如果两个角是邻补角,那么它们一定互为补角. ( )14.对顶角的角平分线在同一直线上.( )15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )综合、运用、诊断一、解答题16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF 的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD 是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?测试2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直.( ) 11.一条直线的垂线只能画一条.( ) 12.平面内,过线段AB外一点有且只有一条直线与AB垂直.( ) 13.连接直线l外一点到直线l上各点的6个有线段中,垂线段最短.( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离.( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离.( ) 16.在三角形ABC中,若∠B=90°,则AC>AB.( ) 二、选择题17.如图,若AO⊥CO,BO⊥DO,且∠BOC=,则∠AOD等于( ).(A)180°-2(B)180°- (C)α2190+︒ (D)2-90° 18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为PA =4cm ,PB =6cm ,PC=3cm ,则点P 到直线m 的距离为( ).(A)3cm (B)小于3cm(C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n(C)n ≤AC ≤m (D)n <AC <m20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( ).(A)0 (B)1 (C)2 (D)321.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有( ).(A)3条 (B)4条(C)7条 (D)8条三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG 平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC 与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?测试3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?测试4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD⊥DA,DA⊥AB,∠1=∠2.试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( ) ∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a______c.(2)证明思路分析:欲证a______c,只要证______∥______且______∥______.(3)证明过程:证明:∵∠1=∠2,( )∴a∥______.(________,________)①∵∠3+∠4=180°,( )∴c∥______.(________,________)②由①、②,因为a∥______,c∥______,∴a______c.(________,________)测试5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________)6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数.分析:可利用∠DCE作为中间量过渡.解法1:∵AB∥CD,∠B=50°,( )∴∠DCE=∠_______=_______°.(____________,______)又∵AD∥BC,( )∴∠D=∠______=_______°.(____________,____________) 想一想:如果以∠A作为中间量,如何求解?解法2:∵AD∥BC,∠B=50°,( )∴∠A+∠B=______.(____________,____________)即∠A=______-______=______°-______°=______°.∵DC∥AB,( )∴∠D+∠A=______.(_____________,_____________)即∠D=______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE ∥BC ,∠D ∶∠DBC =2∶1,∠1=∠2,求∠E 的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).测试6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14.不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( )二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”) 19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.测试7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?参考答案第五章相交线与平行线测试11.公共,反向延长线. 2.公共,反向延长线. 3.对顶角相等. 4.略.5.(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.6.A. 7.D. 8.B. 9.D.10.×,11.×,12.×,13.√,14.√,15.×.16.∠2=60°. 17.∠4=43°.18.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF=4x=120°.19.只要延长BO(或AO)至C,测出∠AOB的邻补角∠AOC(或∠BOC)的大小后,就可知道∠AOB的度数.20.∠AOC与∠BOD是对顶角,说理提示:只要说明A,O,B三点共线.证明:∵射线OA的端点在直线CD上,∴∠AOC与∠AOD互为邻补角,即∠AOC+∠AOD=180°,又∵∠BOD=∠AOC,从而∠BOD+∠AOD=180°,∴∠AOB是平角,从而A,O,B三点共线.∴∠AOC与∠BOD是对顶角.21.(1)有6对对顶角,12对邻补角.(2)有12对对顶角,24对邻补角.(3)有m(m-1)对对顶角,2m(m-1)对邻补角.测试21.互相垂直,垂,垂足.2.有且只有一条直线,所有线段,垂线段.3.垂线段的长度.4.AB⊥CD;AB⊥CD,垂足是O(或简写成AB⊥CD于O);P;CD;线段MO的长度.5~8.略.9.√,10.√,11.×,12.√,13.√,14.√,15.×,16.√.17.B. 18.B. 19.D. 20.C. 21.D.22.30°或150°. 23.55°.24.如图所示,不同的垂足为三个或两个或一个.这是因为:(1)当A ,B ,C 三点中任何两点的连线都不与直线m 垂直时,则分别过A ,B ,C 三点作直线m 的垂线时,有三个不同的垂足.(2)当A ,B ,C 三点中有且只有两点的连线与直线m 垂直时,则分别过A ,B ,C 三点作直线m 的垂线时,有两个不同的垂足.(3)当A ,B ,C 三点共线,且该线与直线m 垂直时,则只有一个垂足.25.以点M 为圆心,以R =1.5cm 长为半径画圆M ,在圆M 上任取四点A ,B ,C ,D ,依次连接AM ,BM ,CM ,DM ,再分别过A ,B ,C ,D 点作半径AM ,BM ,CM ,DM 的垂线l 1,l 2,l 3,l 4,则这四条直线为所求.26.相等或互补.27.提示:如图,,9073,9075 ⨯=∠⨯=∠FOC AOE.90710,9072 ⨯=∠⨯=∠∴BOC AOB .90712⨯=∠+∠∴BOC AOB ∴是712倍. 测试31.(1)邻补角,(2)对顶角,(3)同位角,(4)内错角, (5)同旁内角,(6)同位角,(7)内错角,(8)同旁内角, (9)同位角,(10)同位角.2.同位角有:∠3与∠7、∠4与∠6、∠2与∠8;内错角有:∠1与∠4、∠3与∠5、∠2与∠6、∠4与∠8;3.(1)BD,同位. (2)AB,CE,AC,内错.4.(1)ED,BC,AB,同位;(2)ED,BC,BD,内错;(3)ED,BC,AC,同旁内.5.C. 6.D. 7.B. 8.D.9.6对对顶角,12对邻补角,12对同位角,6对内错角,6对同旁内角.测试41.不相交,a∥b.2.相交、平行.3.经过直线外一点有且只有一条直线与这条直线平行.4.第三条直线平行,互相平行,a∥c.5.略.6.(1)EF∥DC,内错角相等,两直线平行.(2)AB∥EF,同位角相等,两直线平行.(3)AD∥BC,同旁内角互补,两直线平行.(4)AB∥DC,内错角相等,两直线平行.(5)AB∥DC,同旁内角互补,两直线平行.(6)AD∥BC,同位角相等,两直线平行.7.(1)AB,EC,同位角相等,两直线平行.(2)AC,ED,同位角相等,两直线平行.(3)AB,EC,内错角相等,两直线平行.(4)AB,EC,同旁内角互补,两直线平行.8.略. 9.略. 10.略. 11.同位角相等,两直线平行. 12.略. 13.略. 14.略.测试51.(1)两条平行线,相等,平行,相等.(2)被第三条直线所截,内错角,两直线平行,内错角相等.(3)两条平行线被第三条直线所截,互补.两直线平行,同旁内角互补.2.垂直于,线段的长度.3.(1)∠5,两直线平行,内错角相等.(2)∠1,两直线平行,同位角相等.(3)180°,两直线平行,同旁内角互补.(4)120°,两直线平行,同位角相等.(2)已知,∠B,两直线平行,同位角相等.(3)已知,∠2,两直线平行,同旁内角互补.5~12.略.13.30°.14.(1)(2)均是相等或互补.15.95°.16.提示:这是一道结论开放的探究性问题,由于E点位置的不确定性,可引起对E点不同位置的分类讨论.本题可分为AB,CD之间或之外.如:结论:①∠AEC=∠A+∠C②∠AEC+∠A+∠C=360°③∠AEC=∠C-∠A④∠AEC=∠A-∠C⑤∠AEC=∠A-∠C⑥∠AEC=∠C-∠A.测试61.判断、语句.2.题设,结论,已知事项,由已知事项推出的事项.3.题设,结论.4.一定成立,总是成立.5.题设是两条直线垂直于同一条直线;结论是这两条直线平行.6.题设是同位角相等;结论是两条直线平行.7.题设是两条直线平行;结论是同位角相等.8.题设是两个角是对顶角;结论是这两个角相等.9.如果一个角是90°,那么这个角是直角.10.如果一个整数的末位数字是零,那么这个整数能被5整除.11.如果有几个角相等,那么它们的余角相等.12.两直线被第三条直线截得的同旁内角互补,那么这两条直线平行.13.是,14.是,15.不是,16.不是,17.不是,18.是.19.√,20.√,21.×,22.×,23.√,24.√,25.×,26.×,27.√,28.√,29.×,30.×.31.正确的命题例如:(1)在四边形ABCD中,如果AB∥CD,BC∥AD,那么∠A=∠C.(2)在四边形ABCD中,如果AB∥CD,BC∥AD,那么AD=BC(3)在四边形ABCD中,如果AD∥BC,∠A=∠C,那么AB∥DC.32.已知:如图,AB∥CD,EF与AB、CD分别交于M,N,MQ平分∠AMN,NH平分∠END.求证:MQ∥NH.证明:略.测试71.LM,KJ,HI.2.(1)某一方向,相等,AB∥A1B1∥A2B2∥A3B3或在一条直线上,AB=A1B1=A2B2=A3B3.(2)平行或共线,相等.3.(1)某一方向,形状、大小.(2)相等,平行或共线. 4~7.略. 8.B9.利用图形平移的性质及连接两点的线中,线段最短,可知:AC+CD+DB=(ED+DB)+CD=EB+CD.而CD的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB最短.10.提示:正方形③的面积=正方形①的面积+正方形②的面积.AB2=AC2+BC2.。

(北师大版)北京市七年级数学下册第二单元《相交线与平行线》检测题(包含答案解析)

(北师大版)北京市七年级数学下册第二单元《相交线与平行线》检测题(包含答案解析)

一、选择题1.如图,////,//AB CD EF CG AF ,那么图中与∠AFE 相等的角的个数是( )A .4B .5C .6D .7 2.下列说法不正确...的是( ) A .对顶角相等 B .两点确定一条直线C .一个角的补角一定大于这个角D .垂线段最短 3.如图所示,//CD AB ,OE 平分∠AOD ,80EOF ∠=︒,60D ∠=︒,则∠BOF 为( )A .35︒B .40︒C .25︒D .20︒4.如图,已知直线//AD BC ,BE 平分ABC ∠交直线DA 于点E ,若58DAB ∠=︒,则E ∠等于( )A .25°B .29°C .30°D .45° 5.用一副三角板不能画出的角是( ).A .75°B .105°C .110°D .135° 6.如图,直线AB ,CD 被直线EF 所截,与AB ,CD 分别交于点E ,F ,下列描述: ①∠1和∠2互为同位角 ②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是( )A .①③B .②④C .②③D .③④ 7.如图,AB //CD ,AD ⊥AC ,∠BAD =35°,则∠ACD =( )A .35°B .45°C .55°D .70° 8.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58° 9.如图,已知AD EF BC ,BD GF ∥,且BD 平分ADC ∠,则图中与1∠相等的角(1∠除外)共有( )A .4个B .5个C .6个D .7个10.如图,五边形ABCDE 中,AE ∥BC ,则∠C +∠D +∠E 的度数为( )A .180°B .270°C .360°D .450°11.α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等12.如图,将三角板的直角顶点放在直尺的一边上,若∠1=25°, 则∠2的度数为( )A .55°B .60°C .65°D .75°二、填空题13.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,若36DOE ∠=︒,则BOC ∠的度数为______.14.如图,直线AB 与CD 相交于点O ,OM AB ⊥,若55DOM ∠=︒,则AOC ∠=______°.15.在同一平面内,A ∠与B 的两边分别平行,若50A ∠=︒,则B 的度数为__________︒.16.如图,//,//,62AC ED AB FD A ∠=︒,则EDF ∠度数为___________.17.如图,AB//CD , 15,25A C ︒︒∠=∠=则M ∠=______18.在同一平面上有三条互相平行的直线,,a b c ,已知a 与b 的距离为5,cm b 与c 的距离为2cm ,则a 与c 的距离为________.19.将如图1的长方形ABCD 纸片()//AD BC 沿EF 折叠得到图2,折叠后DE 与BF 相交于点P .如果70,EPF ∠=︒则PEF ∠的度数为____.20.如图//a b ,M ,N 分别在直线a ,b 上,P 为两条平行线间的一点,则123∠+∠+∠=_________.三、解答题21.在平面内有三点A ,B ,C .(1)如图,作出A ,C 两点之间的最短路线;在射线BC 上找一点D ,使线段AD 长最短; (2)若A ,B ,C 三点共线,若20cm AB =,14cm BC =,点E ,F 分别是线段AB ,BC 的中点,求线段EF 的长.22.已知A ∠与B 互为余角,且A ∠的补角比B 的3倍少50︒,假设A x ∠=︒,求A ∠,B 的度数.23.如图,直线AB ,CD 相交于点O ,OA 平分EOC ∠.(1)若70EOC ∠=︒,求BOD ∠的度数;(2)若:4:5∠∠=EOC EOD ,求BOC ∠的度数.24.作图题:如图,A 为射线OB 外一点.(1)连接OA;(2)过点A画出射线OB的垂线AC,垂足为点C(可以使用各种数学工具);(3)在线段AC的延长线上取点D,使得CD AC(4)画出射线OD;(5)请直接写出上述所得图形中直角有个.25.如图,点O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处.射线OC平分∠MOB.(1)如图1,若∠AOM=30°,求∠CON的度数;(2)将图1中的直角三角板OMN绕顶点O顺时针旋转至图2的位置,一边OM在射线OB上方,另一边ON在直线AB的下方.①探究∠AOM和∠CON之间的数量关系,并说明理由;②当∠AOC=3∠BON时,求∠AOM的度数.26.如图,直线AB,CD相交于点O,OE平分∠BOC,FO⊥CD于点O,若∠BOD∶∠EOB=2∶3,求∠AOF的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据CD ∥EF 得出∠CGE=∠GCD ,再由CG ∥AF 得出∠CGE=∠AFE ,根据AB ∥CD ∥EF 可得出∠AFE=∠DHF=∠AHC=∠BAH ,由此可得出结论.【详解】解:∵CD ∥EF ,∴∠CGE=∠GCD ,∠AFE=∠DHF .∵CG ∥AF ,∴∠CGE=∠AFE .∵AB ∥CD ,∴∠BAH=∠DHF ,∴∠AFE=∠CGE=∠AFE=∠DHF=∠AHC=∠BAH .故选:B .【点睛】本题考查了平行线的性质,用到的知识点为:两直线平行,同位角相等,内错角相等. 2.C解析:C【分析】根据对顶角的性质,直线的性质,补角的定义,垂线段的性质依次判断即可得到答案.【详解】解:A 、对顶角相等,故该项不符合题意;B 、两点确定一条直线,故该项不符合题意;C 、一个角的补角一定不大于这个角,故该项符合题意;D 、垂线段最短,故该项不符合题意;故选:C .【点睛】此题考查对顶角的性质,直线的性质,补角的定义,垂线段的性质,正确理解各性质及定义是解题的关键.3.B解析:B【分析】由平行线的性质和角平分线的定义,求出60BOD D ∠=∠=︒,20DOF ∠=︒,然后即可求出∠BOF 的度数.【详解】解:∵//CD AB ,60D ∠=︒∴60BOD D ∠=∠=︒,18060120AOD ∠=︒-︒=︒,∵OE 平分∠AOD , ∴1120602DOE ∠=⨯︒=︒, ∴806020DOF EOF DOE ∠=∠-∠=︒-︒=︒;∴602040BOF BOD DOF ∠=∠-∠=︒-︒=︒;【点睛】本题考查了平行线的性质,角平分线的定义,以及角的和差关系,解题的关键是熟练掌握所学的知识,正确的求出角的度数.4.B解析:B【分析】根据平行线的性质可知∠ABC=58°,再根据角平分线的性质可求∠EBC=29°,再利用平行线的性质可求∠E .【详解】解:∵//AD BC ,∴58ABC DAB ∠=∠=︒,∵BE 平分ABC ∠, ∴1292EBC ABC ∠=∠=︒, ∵//AD BC ,∴29E EBC ∠=∠=︒,故选B .【点睛】本题考查了平行线的性质和角平分线的性质,灵活运用这两个性质是解题关键. 5.C解析:C【分析】105°=60°+45°,105°角可以用一幅三角板中的60°角和45°角画;75°=45°+30°,75°角可以用一幅三角板中的45°角和30°角画;135°=90°+45°,135°角可以用一幅三角板中的直角和90°角或45°角画;110°角用一副三角板不能画出.【详解】解:105°角可以用一幅三角板中的60°角和45°角画;75°角可以用一幅三角板中的45°角和30°角画;110°角用一副三角板不能画出;135°角可以用一幅三角板中的直角和90°角或45°角画。

西城区学习探究诊断_第五章__相交线与平行线

西城区学习探究诊断_第五章__相交线与平行线

第五章相交线与平行线测试1 相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角.3.对顶角的重要性质是_________________.4.如图,直线AB、CD相交于O点,∠AOE=90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角;∠2和∠3互为_______角;∠1和∠3互为______角;∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE-∠______=______°-______°=______°;∠4=∠______-∠1=______°-______°=______°.5.如图,直线AB与CD相交于O点,且∠COE=90°,则(1)与∠BOD互补的角有________________________;(2)与∠BOD互余的角有________________________;(3)与∠EOA互余的角有________________________;(4)若∠BOD=42°17′,则∠AOD=__________;∠EOD=______;∠AOE=______.二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC(B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ).(A)30° (B)45°(C)60° (D)135°9.如图所示,直线l 1,l 2,l 3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角. () 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( )12.有一条公共边的两个角是邻补角. () 13.如果两个角是邻补角,那么它们一定互为补角. () 14.对顶角的角平分线在同一直线上. () 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角. () 综合、运用、诊断一、解答题16.如图所示,AB ,CD ,EF 交于点O ,∠1=20°,∠BOC =80°,求∠2的度数.17.已知:如图,直线a ,b ,c 两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?测试2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB 及点P ,分别画出点P 到射线OA 、OB 的垂线段PM 及PN .图a 图b 图c8.如图,小明从A 村到B 村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直.( ) 11.一条直线的垂线只能画一条.( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直.( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短.( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离.( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离.( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB .( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α(B)180°-α (C)α2190+︒ (D)2α-90°18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为PA =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ).(A)3cm (B)小于3cm(C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n(C)n ≤AC ≤m (D)n <AC <m20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( ).(A)0 (B)1 (C)2 (D)321.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有( ).(A)3条 (B)4条(C)7条 (D)8条三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍? 测试3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?测试4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE ∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD⊥DA,DA⊥AB,∠1=∠2.试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF______AE.(2)证明思路分析:欲证DF______AE,只要证∠3=______.(3)证明过程:证明:∵CD⊥DA,DA⊥AB,( )∴∠CDA=∠DAB=______°.(垂直定义)又∠1=∠2,( )从而∠CDA-∠1=______-______,(等式的性质)即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( )∴∠2=∠______.(等量代换)∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______.(3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)①∵∠3+∠4=180°,( )∴c ∥______.(________,________)②由①、②,因为a ∥______,c ∥______,∴a ______c .(________,________)测试5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________) 6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数.分析:可利用∠DCE作为中间量过渡.解法1:∵AB∥CD,∠B=50°,( )∴∠DCE=∠_______=_______°.(____________,______)又∵AD∥BC,( )∴∠D=∠______=_______°.(____________,____________) 想一想:如果以∠A作为中间量,如何求解?解法2:∵AD∥BC,∠B=50°,( )∴∠A+∠B=______.(____________,____________)即∠A=______-______=______°-______°=______°.∵DC∥AB,( )∴∠D+∠A=______.(_____________,_____________)即∠D=______-______=______°-______°=______°.11.已知:如图,AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数.解:过P点作PM∥AB交AC于点M.∵AB∥CD,( )∴∠BAC+∠______=180°.( )∵PM∥AB,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行)∴∠3=∠______.(两直线平行,内错角相等)∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( ) ∴∠APC =∠2+∠3=∠1+∠4=90°.( )总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE ∥BC ,∠D ∶∠DBC =2∶1,∠1=∠2,求∠E 的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB ∥DE ,∠1=25°,∠2=110°,求∠BCD 的度数.16.如图,AB ,CD 是两根钉在木板上的平行木条,将一根橡皮筋固定在A ,C 两点,点E是橡皮筋上的一点,拽动E 点将橡皮筋拉紧后,请你探索∠A ,∠AEC ,∠C 之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).测试6 命 题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( )二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.测试7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?参考答案第五章相交线与平行线测试11.公共,反向延长线.2.公共,反向延长线.3.对顶角相等.4.略.5.(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.6.A.7.D.8.B.9.D.10.×,11.×,12.×,13.√,14.√,15.×.16.∠2=60°.17.∠4=43°.18.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF=4x=120°.19.只要延长BO(或AO)至C,测出∠AOB的邻补角∠AOC(或∠BOC)的大小后,就可知道∠AOB的度数.20.∠AOC与∠BOD是对顶角,说理提示:只要说明A,O,B三点共线.证明:∵射线OA的端点在直线CD上,∴∠AOC与∠AOD互为邻补角,即∠AOC+∠AOD=180°,又∵∠BOD=∠AOC,从而∠BOD+∠AOD=180°,∴∠AOB是平角,从而A,O,B三点共线.∴∠AOC与∠BOD是对顶角.21.(1)有6对对顶角,12对邻补角.(2)有12对对顶角,24对邻补角.(3)有m(m-1)对对顶角,2m(m-1)对邻补角.测试21.互相垂直,垂,垂足.2.有且只有一条直线,所有线段,垂线段.3.垂线段的长度.4.AB⊥CD;AB⊥CD,垂足是O(或简写成AB⊥CD于O);P;CD;线段MO的长度.5~8.略.9.√,10.√,11.×,12.√,13.√,14.√,15.×,16.√.17.B.18.B.19.D.20.C.21.D.22.30°或150°.23.55°.24.如图所示,不同的垂足为三个或两个或一个.这是因为:(1)当A ,B ,C 三点中任何两点的连线都不与直线m 垂直时,则分别过A ,B ,C 三点作直线m 的垂线时,有三个不同的垂足.(2)当A ,B ,C 三点中有且只有两点的连线与直线m 垂直时,则分别过A ,B ,C 三点作直线m 的垂线时,有两个不同的垂足.(3)当A ,B ,C 三点共线,且该线与直线m 垂直时,则只有一个垂足.25.以点M 为圆心,以R =1.5cm 长为半径画圆M ,在圆M 上任取四点A ,B ,C ,D ,依次连接AM ,BM ,CM ,DM ,再分别过A ,B ,C ,D 点作半径AM ,BM ,CM ,DM 的垂线l 1,l 2,l 3,l 4,则这四条直线为所求.26.相等或互补.27.提示:如图,,9073,9075 ⨯=∠⨯=∠FOC AOE.90710,9072 ⨯=∠⨯=∠∴BOC AOB .90712 ⨯=∠+∠∴BOC AOB ∴是712倍. 测试31.(1)邻补角,(2)对顶角,(3)同位角,(4)内错角,(5)同旁内角,(6)同位角,(7)内错角,(8)同旁内角,(9)同位角,(10)同位角.2.同位角有:∠3与∠7、∠4与∠6、∠2与∠8;内错角有:∠1与∠4、∠3与∠5、∠2与∠6、∠4与∠8;同旁内角有:∠2与∠4、∠2与∠5、∠4与∠5、∠3与∠6.3.(1)BD ,同位. (2)AB ,CE ,AC ,内错.4.(1)ED ,BC ,AB ,同位;(2)ED ,BC ,BD ,内错;(3)ED ,BC ,AC ,同旁内.5.C . 6.D . 7.B . 8.D .9.6对对顶角,12对邻补角,12对同位角,6对内错角,6对同旁内角.测试41.不相交,a∥b.2.相交、平行.3.经过直线外一点有且只有一条直线与这条直线平行.4.第三条直线平行,互相平行,a∥c.5.略.6.(1)EF∥DC,内错角相等,两直线平行.(2)AB∥EF,同位角相等,两直线平行.(3)AD∥BC,同旁内角互补,两直线平行.(4)AB∥DC,内错角相等,两直线平行.(5)AB∥DC,同旁内角互补,两直线平行.(6)AD∥BC,同位角相等,两直线平行.7.(1)AB,EC,同位角相等,两直线平行.(2)AC,ED,同位角相等,两直线平行.(3)AB,EC,内错角相等,两直线平行.(4)AB,EC,同旁内角互补,两直线平行.8.略.9.略.10.略.11.同位角相等,两直线平行.12.略.13.略.14.略.测试51.(1)两条平行线,相等,平行,相等.(2)被第三条直线所截,内错角,两直线平行,内错角相等.(3)两条平行线被第三条直线所截,互补.两直线平行,同旁内角互补.2.垂直于,线段的长度.3.(1)∠5,两直线平行,内错角相等.(2)∠1,两直线平行,同位角相等.(3)180°,两直线平行,同旁内角互补.(4)120°,两直线平行,同位角相等.4.(1)已知,∠5,两直线平行,内错角相等.(2)已知,∠B,两直线平行,同位角相等.(3)已知,∠2,两直线平行,同旁内角互补.5~12.略.13.30°.14.(1)(2)均是相等或互补.15.95°.16.提示:这是一道结论开放的探究性问题,由于E点位置的不确定性,可引起对E点不同位置的分类讨论.本题可分为AB,CD之间或之外.如:结论:①∠AEC=∠A+∠C②∠AEC+∠A+∠C=360°③∠AEC=∠C-∠A④∠AEC=∠A-∠C⑤∠AEC=∠A-∠C⑥∠AEC=∠C-∠A.测试61.判断、语句.2.题设,结论,已知事项,由已知事项推出的事项.3.题设,结论.4.一定成立,总是成立.5.题设是两条直线垂直于同一条直线;结论是这两条直线平行.6.题设是同位角相等;结论是两条直线平行.7.题设是两条直线平行;结论是同位角相等.8.题设是两个角是对顶角;结论是这两个角相等.9.如果一个角是90°,那么这个角是直角.10.如果一个整数的末位数字是零,那么这个整数能被5整除.11.如果有几个角相等,那么它们的余角相等.12.两直线被第三条直线截得的同旁内角互补,那么这两条直线平行.13.是,14.是,15.不是,16.不是,17.不是,18.是.19.√,20.√,21.×,22.×,23.√,24.√,25.×,26.×,27.√,28.√,29.×,30.×.31.正确的命题例如:(1)在四边形ABCD中,如果AB∥CD,BC∥AD,那么∠A=∠C.(2)在四边形ABCD中,如果AB∥CD,BC∥AD,那么AD=BC(3)在四边形ABCD中,如果AD∥BC,∠A=∠C,那么AB∥DC.32.已知:如图,AB∥CD,EF与AB、CD分别交于M,N,MQ平分∠AMN,NH平分∠END.求证:MQ∥NH.证明:略.测试71.LM,KJ,HI.2.(1)某一方向,相等,AB∥A1B1∥A2B2∥A3B3或在一条直线上,AB=A1B1=A2B2=A3B3.(2)平行或共线,相等.3.(1)某一方向,形状、大小.(2)相等,平行或共线. 4~7.略. 8.B9.利用图形平移的性质及连接两点的线中,线段最短,可知:AC +CD +DB =(ED +DB )+CD =EB +CD .而CD 的长度又是平行线PQ 与MN 之间的距离,所以AC +CD +DB 最短.10.提示:正方形③的面积=正方形①的面积+正方形②的面积.AB 2=AC 2+BC 2.西城区七年级数学第五章相交线与平行线测试一、选择题1.如图,AB ∥CD ,若∠2是∠1的4倍,则∠2的度数是( ).(A)144° (B)135°(C)126° (D)108°2.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3,则∠BOC 的度数为( ).(A)30° (B)60°(C)150° (D)30°或150°3.如图,直线l 1,l 2被l 3所截得的同旁内角为α,β ,要使l 1∥l 2,只要使().(A)α+β =90° (B)α=β(C)0°<α≤90°,90°≤β <180° (D) 603131=+βα4.如图,AB ∥CD ,FG ⊥CD 于N ,∠EMB =α,则∠EFG 等于( ).(A)180°-α (B)90°+α(C)180°+α (D)270°-α5.以下五个条件中,能得到互相垂直关系的有( ).①对顶角的平分线②邻补角的平分线③平行线截得的一组同位角的平分线④平行线截得的一组内错角的平分线⑤平行线截得的一组同旁内角的平分线(A)1个(B)2个(C)3个(D)4个6.如图,在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠ABC=∠ADC且∠3=∠4;④∠BAD+∠ABC=180°,能判定AB∥CD的有( ).(A)3个(B)2个(C)1个(D)0个7.在5×5的方格纸中,将图a中的图形N平移后的位置如图b所示,那么正确的平移方法是( ).图a 图b(A)先向下移动1格,再向左移动1格(B)先向下移动1格,再向左移动2格(C)先向下移动2格,再向左移动1格(D)先向下移动2格,再向左移动2格8.在下列四个图中,∠1与∠2是同位角的图是( ).图①图②图③图④(A)①②(B)①③(C)②③(D)③④9.如图,AB∥CD,若EM平分∠BEF,FM平分∠EFD,EN平分∠AEF,则与∠BEM互余的角有( ).(A)6个(B)5个(C)4个(D)3个10.把一张对边互相平行的纸条折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有( ).(1)∠C ′EF =32°(2)∠AEC =148°(3)∠BGE =64°(4)∠BFD =116°(A)1个 (B)2个(C)3个 (D)4个二、填空题11.若角α与β 互补,且 2031=-βα,则较小角的余角为____°. 12.如图,已知直线AB 、CD 相交于O ,如果∠AOC =2x °,∠BOC =(x +y +9)°,∠BOD=(y +4)°,则∠AOD 的度数为____.13.如图,DC ∥EF ∥AB ,EH ∥DB ,则图中与∠AHE 相等的角有____________________________________________________.14.如图,若AB ∥CD ,EF 与AB 、CD 分别相交于点E ,F ,EP 与∠EFD 的平分线相交于点P ,且∠EFD =60°,EP ⊥FP ,则∠BEP =______°.15.王强从A 处沿北偏东60°的方向到达B 处,又从B 处沿南偏西25°的方向到达C 处,则王强两次行进路线的夹角为______°.16.如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个.三、作图题17.如图是某次跳远测验中某同学跳远记录示意图.这个同学的成绩应如何测量,请你画出示意图.四、解答题18.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.19.已知:如图,AE⊥BC于E,∠1=∠2.求证:DC⊥BC.20.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.21.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.22.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.五、问题探究23.已知:如图,∠ABC 和∠ACB 的平分线交于点O ,EF 经过点O 且平行于BC ,分别与AB ,AC 交于点E ,F .(1)若∠ABC =50°,∠ACB =60°,求∠BOC 的度数;(2)若∠ABC =α,∠ACB =β ,用α,β 的代数式表示∠BOC 的度数.(3)在第(2)问的条件下,若∠ABC 和∠ACB 邻补角的平分线交于点O ,其他条件不变,请画出相应图形,并用α,β 的代数式表示∠BOC 的度数.24.已知:如图,AC ∥BD ,折线AMB 夹在两条平行线间.(1)判断∠M ,∠A ,∠B 的关系;(2)请你尝试改变问题中的某些条件,探索相应的结论.建议:①折线中折线段数量增加到n 条(n =3,4,…);②可如图1,图2,或M 点在平行线外侧.图1 图2参考答案第五章 相交线与平行线测试1.A . 2.D . 3.D . 4.B . 5.B . 6.C . 7.C . 8.B . 9.B . 10.C . 11.60. 12.110° 13.∠FEH ,∠DGE ,∠GDC ,∠FGB ,∠GBA .14.60. 15.35. 16.4. 17~22.略.23.(1)∠BOC =125°;(2))(21180βα+-=∠ BOC ;(3)⋅+=∠βα2121BOC 24.略.。

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测(含答案解析)

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测(含答案解析)

一、选择题1.如图,直线AB ∥CD ,AE ⊥CE ,∠1=125°,则∠C 等于( )A .35°B .45°C .50°D .55°2.如图,按照上北下南,左西右东的规定画出方向十字线,∠AOE =m °,∠EOF =90°,OM 、ON 分别平分∠AOE 和∠BOF ,下面说法:①点E 位于点O 的北偏西m °;②图中互余的角有4对;③若∠BOF =4∠AOE ,则∠DON =54°;④若MON n AOE BOF ,则n 的倒数是23,其中正确有( )A .3个B .2个C .1个D .0个3.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=50°,则∠AED 为( )A .130°B .115°C .125°D .120°4.如图,直线//a b ,直线l 与a ,b 分别相交于A ,B 两点,过点A 作直线l 的垂线交直线b 于点C ,若1=62∠︒,则2∠的度数为( )A .62︒B .38︒C .32︒D .28︒5.如图,直线,a b 与直线,c d 相交,已知341100∠=∠∠=︒,,则2∠的度数为( )A .110︒B .100︒C .80︒D .70︒6.如图,某地域的江水经过B 、C 、D 三点处拐弯后,水流的方向与原来相同,若∠ABC =125°,∠BCD =75°,则∠CDE 的度数为( )A .20°B .25°C .35°D .50°7.如图,AB ∥EF ,设∠C =90°,那么x 、y 和z 的关系是( )A .y =x+zB .x+y ﹣z =90°C .x+y+z =180°D .y+z ﹣x =90° 8.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58° 9.如图,已知AD EF BC ,BD GF ∥,且BD 平分ADC ∠,则图中与1∠相等的角(1∠除外)共有( )A .4个B .5个C .6个D .7个10.一辆行驶中的汽车经过两次拐弯后,仍向原方向行驶,则两次拐弯的角度可能是( ) A .先右转30,后左转60︒B .先右转30后左转60︒C .先右转30后左转150︒D .先右转30,后左转3011.如图,AB //EF,∠D=90°,则α,β,γ的大小关系是( )A .βαγ=+B .90βαγ=+-︒C .90βγα=+︒-D .90βαγ=+︒-12.如图,已知∠1=∠2,∠D =68°,则∠BCD =( )A .98°B .62°C .88°D .112°二、填空题13.如图,点A 在直线m 上,点B 在直线l 上,点A 到直线l 的距离为a ,点B 到直线m 的距离为b ,线段AB 的长度为c ,通过测量等方法可以判断在a ,b ,c 三个数据中,最大的是_____________.14.如图,AB ∥CD ,∠β=130°,则∠α=_______°.15.如图,AB//CD ,直线EF 与AB 、CD 分别交于点G 、H ,GM ⊥GE ,∠BGM=20°,HN 平分∠CHE ,则∠NHD 的度数为_______.16.如图,//AB CD ,若1120∠=︒,285∠=︒,则3∠=______.17.如图,将三角板的直角顶点落在直尺的一边上,若134∠=︒,则2∠的度数为_______.18.已知∠A 与∠B 的两边分别平行,其中∠A 为x °,∠B 的为(210﹣2x )°,则∠A =____度.19.在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使∠COD =90°,当∠AOC =50°时,∠BOD 的度数是____________.20.如图,直线AB CD 、相交于点,O OE AB ⊥于,56O AOC ∠=︒,则DOE ∠= ______________________.三、解答题21.综合与探究问题情境综合实践课上,王老师组织同学们开展了探究三角之间数量关系的数学活动. (1)如图1,//EF MN ,点,A B 分别为直线,EF MN 上的一点,点P 为平行线间一点且130,120PAF PBN ∠=︒∠=︒,求APB ∠度数;问题迁移(2)如图2,射线OM 与射线ON 交于点O ,直线//m n ,直线m 分别交,OM ON 于点,A D ,直线n 分别交,OM ON 于点,B C ,点P 在射线OM 上运动.①当点P 在,A B (不与,A B 重合)两点之间运动时,设,ADP BCP αβ∠=∠∠=∠.则,,CPD αβ∠∠∠之间有何数量关系?请说明理由;②若点P 不在线段AB 上运动时(点P 与点,,A B O 三点都不重合),请你直接写出,,CPD αβ∠∠∠间的数量关系.22.如图,找出标注角中的同位角、内错角和同旁内角.23.已知一个角的补角比这个角的余角的2倍大10°,求这个角的度数.24.如图,已知直线AB 与CD 相交于点40O OE CD AOC OF ︒⊥∠=,,,为AOD ∠的角平分线.(1)求EOB ∠的度数;(2)求EOF ∠的度数.25.(1)计算:(﹣3)2﹣(32)2×29﹣6÷23; (2)α∠的余角比这个角少20°,则α∠的补角为多少度? 26.直线AB 、CD 相交于点O ,OE 平分AOD ∠,90FOC ,50BOF ∠=︒,求AOC ∠与AOE ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】过点E作EF∥AB,则EF∥CD,利用“两直线平行,内错角相等”可得出∠BAE=∠AEF及∠C =∠CEF,结合∠AEF+∠CEF=90°可得出∠BAE+∠C=90°,由邻补角互补可求出∠BAE的度数,进而可求出∠C的度数.【详解】解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.2.B解析:B【分析】根据方位角的定义,以及角平分线的定义,分别求出所需角的度数,然后分别进行判断,即可得到答案.【详解】解:∵∠AOE =m °,∴∠EOD=90°-m°,∴点E 位于点O 的北偏西90°-m °;故①错误;∵∠EOF =90°,∴∠EOD+∠DOF =90°,∠AOE+∠BOF=90°,∵∠AOD =∠BOD=90°,∴∠AOE+∠EOD=90°,∠DOF+∠FOB=90°,∠AOM+∠MOD=90°,∠BON+∠DON=90°,∵OM 、ON 分别平分∠AOE 和∠BOF ,∴∠AOM=∠EOM ,∠BON=∠FON ,∴∠EOM+∠MOD=90°,∠FON+∠DON=90°,∴图中互余的角共有8对,故②错误;∵∠BOF =4∠AOE ,∠AOE+∠BOF=90°,∴∠BOF=72°,∴∠BON=36°,∴∠DON=90°-36°=54°;故③正确;∵∠AOE+∠BOF=90°,∴∠MOE+∠NOF=11()904522AOE BOF , ∴9045135MON , ∴1353902MON n AOE BOF , ∴n 的倒数是23,故④正确; ∴正确的选项有③④,共2个;故选:B .【点睛】本题考查了角平分线的定义,余角的定义,方位角的表示,以及角度的和差关系,解题的关键是熟练掌握题意,正确找出图中角的关系进行判断.3.B解析:B【分析】根据平行线的性质和角平分线的性质计算即可;【详解】∵AB ∥CD ,∴180C CAB ∠+∠=︒,∵∠C=50°,∴130CAB ∠=︒,∵AE 平分∠CAB ,∴65CAE BAE ∠=∠=︒,又∵180BAE AED ∠+∠=︒,∴18065115AED ∠=︒-︒=︒;故选:B .【点睛】本题主要考查了平行线的性质,结合角平分线的性质求解是解题的关键.4.D解析:D【分析】根据平行线的性质可得∠1+∠2+90°=180°,由∠1=62°可求解∠2的度数.【详解】解:∵a ∥b ,∴∠1+∠2+∠BAC=180°,∵∠BAC=90°,∠1=62°,∴∠2=180°-∠1-∠BAC=180°-62°-90°=28°,故选:D .【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.5.B解析:B【分析】根据平行线的性质定理和判定定理即可解答,由∠ 3=∠4可知a 与b 平行,从而推出∠2=∠1,即可得解;【详解】∵ ∠3=∠4,∴ a 与b 平行,∴ ∠1=∠2∴∠2=∠1=100°,故选:B .【点睛】本题考查了平行线的性质与判定,解决问题的关键是准确掌握平行线的判定与性质,并熟练运用;6.A解析:A【分析】由题意可得AB∥DE,过点C作CF∥AB,则CF∥DE,由平行线的性质可得∠BCF+∠ABC=180°,所以能求出∠BCF,继而求出∠DCF,再由平行线的性质,即可得出∠CDE的度数.【详解】解:由题意得,AB∥DE,如图,过点C作CF∥AB,则CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=180°-125°=55°,∴∠DCF=75°-55°=20°,∴∠CDE=∠DCF=20°.故选:A.【点睛】本题考查的知识点是平行线的性质,关键是过C点先作AB的平行线,由平行线的性质求解.7.B解析:B【分析】过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.【详解】解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.【点睛】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补. 8.B解析:B【解析】试题分析:如图,过点A 作AB ∥b ,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=32°,∵a ∥b ,AB ∥B ,∴AB ∥b ,∴∠2=∠4=32°,故选B .考点:平行线的性质.9.D解析:D【分析】依据AD EF BC BD GF ∥∥,∥,即可得到1,1ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,再根据BD 平分ADC ∠,即可得到ADB CDB CFG ∠=∠=∠.【详解】解:∵AD EF BC BD GF ∥∥,∥,∴11ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,,又∵BD 平分ADC ∠,∴ADB CDB CFG ∠=∠=∠,∴图中与1∠相等的角(1∠除外)共有7个,故选:D.此题主要考查了平行线的性质,此题充分运用平行线的性质以及角的等量代换就可以解决问题.10.D解析:D【分析】根据平行线的性质分别判断即可.【详解】解:因为两次拐弯后,行驶的方向与原来的方向相同,所以两边拐弯的方向相反,形成的角是同位角,故选:D.【点睛】本题考查平行线的性质,利用两直线平行,同位角相等是解题的关键.11.D解析:D【分析】通过作辅助线,过点C和点D作CG//AB,DH//AB,可得CG//DH//AB,根据AB//EF,可得AB//EF//CG//DH,再根据平行线的性质即可得γ+β-α=90°,进而可得结论.【详解】解:如图,过点C和点D作CG//AB,DH//AB,∵CG//AB,DH//AB,∴CG//DH//AB,∵AB//EF,∴AB//EF//CG//DH,∵CG//AB,∴∠BCG=α,∴∠GCD=∠BCD-∠BCG=β-α,∵CG//DH,∴∠CDH=∠GCD=β-α,∵HD//EF,∴∠HDE=γ,∵∠EDC=∠HDE+∠CDH=90°,∴γ+β-α=90°,∴β=α+90°-γ.故选:D.本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.12.D解析:D【分析】由∠1=∠2证明直线AD//BC,根据平行线的性质得∠D+∠BCD=180°,计算∠BCD的度数为112°.【详解】解:∵∠1=∠2,∴AD//BC,∴∠D+∠BCD=180°,又∵∠D=68°,∴∠BCD=112°,故选:D.【点睛】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.【分析】过点A作AD垂直于垂足为D过点B作BH垂直于垂足为H连接AB根据点到直线垂线段最短可知AB>ADAB>BH可得最大【详解】过点A作AD垂直于垂足为D过点B作BH垂直于垂足为H连接AB由题意得解析:c【分析】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,根据点到直线垂线段最短,可知AB>AD,AB>BH,可得c最大.【详解】过点A作AD垂直于l垂足为D,过点B作BH垂直于m垂足为H,连接AB,由题意得:AD=a, BH=b,AB=c;根据点到直线垂线段最短,可知AB>AD,AB>BH∴c>a,c>b;∴c最大故答案:c【点睛】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.14.50【分析】根据平行线的性质解答即可【详解】解:∵AB∥CD∴=∠1∵∠1+=180°∠=130°∴∠1=180°-=180°-130°=50°∴=50°故答案为:50【点睛】本题考查了平行线的性质解析:50【分析】根据平行线的性质解答即可.【详解】解:∵AB∥CD,∠ =∠1,∴α∵∠1+β∠=180°,∠β=130°,∴∠1=180°-β∠=180°-130°=50°,∴α∠=50°,故答案为:50.【点睛】本题考查了平行线的性质和平角的定义,解题的关键掌握平行线的性质和平角的定义.15.125°【分析】由垂直的定义可得∠MGH=90°即可求出∠BGH的度数根据平行线的性质可得∠CHE=∠BGH根据角平分线的定义可得∠CHN=∠EHN=∠CHE 即可求出∠CNH的度数根据邻补角的定义即解析:125°【分析】由垂直的定义可得∠MGH=90°,即可求出∠BGH的度数,根据平行线的性质可得∠CHE=∠BGH,根据角平分线的定义可得∠CHN=∠EHN=1∠CHE,即可求出∠CNH的度2数,根据邻补角的定义即可求出∠NHD的度数.【详解】∵GM⊥GE,∴∠MGH=90°,∵∠BGM=20°,∴∠BGH=∠MGH+∠BGM=110°,∵AB//CD,∴∠CHE=∠BGH=110°,∵HN平分∠CHE,∠CHE=55°,∴∠CHN=∠EHN=12∴∠NHD=180°-∠CHN=125°,故答案为:125°【点睛】本题考查垂直的定义、角平分线的定义及平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.16.【分析】过点E作EF∥AB由平行线的性质可知AB∥CD∥EF故可得出∠4及∠5的度数再由平行线的性质即可求出∠3的度数【详解】过点E作EF∥AB∵AB∥CD∴AB∥CD∥EF∴∠1+∠4=180°∠解析:145【分析】过点E作EF∥AB,由平行线的性质可知AB∥CD∥EF,故可得出∠4及∠5的度数,再由平行线的性质即可求出∠3的度数.【详解】过点E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠1+∠4=180°,∠3+∠5=180°,∵∠1=120°,∠2=85°,∴∠4=60°,∴∠5=180°-∠4-∠2=35°,∴∠3=180°-35°=145°.故答案为:145°.【点睛】本题考查了平行线的判定和性质,根据题意作出辅助线,构造出平行线是解答此题的关键.17.56°【分析】根据平行线的性质求解即可【详解】解:如下图由图可知∵∴故答案为:56°【点睛】本题考查的知识点是平行线的性质属于基础题目比较容易掌握解析:56°【分析】根据平行线的性质求解即可.【详解】解:如下图,由图可知,1390∠+∠=︒,23∠∠=,∵134∠=︒∴23903456∠=∠=︒-︒=︒故答案为:56°.【点睛】本题考查的知识点是平行线的性质,属于基础题目,比较容易掌握.18.70或30【分析】分∠A=∠B 与∠A+∠B=180°两种情况进行讨论即可求解【详解】解:根据题意有两种情况:(1)当∠A=∠B 可得:x=210﹣2x 解得:x=70;(2)当∠A+∠B=180°时可得解析:70或30.【分析】分∠A=∠B 与∠A+∠B=180°两种情况进行讨论即可求解.【详解】解:根据题意,有两种情况:(1)当∠A=∠B ,可得:x=210﹣2x ,解得:x=70;(2)当∠A+∠B=180°时,可得:x+210﹣2x=180,解得:x=30.故答案为:70或30.【点睛】本题考查的是平行线的性质,在解答此题时要注意分类讨论.19.40°或140°【分析】先根据题意可得OC分在AB同侧和异侧两种情況讨论并画出图然后根据OC⊥OD与∠AOC=50°计算∠BOD的度数【详解】解:当OCOD在直线AB同侧时如图∵∠COD=90°∠A解析:40°或140°【分析】先根据题意可得OC分在AB同侧和异侧两种情況讨论,并画出图,然后根据OC⊥OD与∠AOC=50°,计算∠BOD的度数.【详解】解:当OC、OD在直线AB同侧时,如图∵∠COD=90°,∠AOC=50°∴∠BOD=180°-∠COD-∠AOC=180°-90°-50°=40°当OC、OD在直线AB异侧时,如图∵∠COD=90°,∠AOC=50°∴∠BOD=180-∠AOD=180°-(∠DOC-∠AOC)=180°-(90°-50°)=140°.故答案为:40°或140°【点睛】解答此类问题时,要注意对不同的情况进行讨论,避免出现漏解.20.34°【分析】先求出∠AOD的度数再求∠DOE的度数即可【详解】解:∵∠AOC=56°∴∠AOD=180°-56°=124°∵OE⊥AB∴∠AOE=90°∴∠DOE=124°-90°=34°故答案为解析:34°【分析】先求出∠AOD的度数,再求∠DOE的度数即可.【详解】解:∵∠AOC=56°,∴∠AOD=180°-56°=124°,∵OE⊥AB,∴∠AOE=90°,∴∠DOE=124°-90°=34°.故答案为:34°.【点睛】本题考查了邻补角的定义,垂直的定义,以及角的和差计算,熟练掌握邻补角的定义和垂直的定义是解答本题的关键.三、解答题∠=∠+∠,见解析;②当P在BA延长线时,21.(1)110°;(2)①CPDαβ∠=∠-∠∠=∠-∠;当P在BO之间时,CPDαβCPDβα【分析】(1)过P作PG∥EF∥MN,,由平行线性质可得∠PAF+∠GPA=180°,∠PBN+∠GPB=180°,分别求出∠GPA、∠GPB,两角相加即可求解;PE AD交CD于E,根据平行线传递性可得AD∥PE∥BC,根据平行线(2)①过P作//的性质即可求解;②发两种情况讨论;当P在BA延长线时,当P在BO之间时,根据平行线的性质即可求解.【详解】.解:(1)如答图1,过P作PG∥EF∥MN,∴∠+∠=︒.PAF GPA180GPA PAF∴∠=︒-∠=︒-︒=︒.180********∴∠+∠=︒.PBN GPB180∴∠=︒-∠=︒-︒=︒,GPB PBN180********∴∠=︒+︒=︒.APB5060110(2)①CPD αβ∠=∠+∠,理由如下:如答图2,过P 作//PE AD 交CD 于E ,∵AD ∥BC ,////AD PE BC ∴,,DPE CPE αβ∴∠=∠∠=∠,CPD DPE CPE αβ∴∠=∠+∠=∠+∠;②当P 在BA 延长线时,过P 作//PE AD 交CD 于E ,∵AD ∥BC ,////AD PE BC ∴,,DPE CPE αβ∴∠=∠∠=∠,∴CPD βα∠=∠-∠;当P 在BO 之间时,过P 作//PE AD 交CD 于E ,∵AD ∥BC ,////AD PE BC ∴,,DPE CPE αβ∴∠=∠∠=∠,∴CPD αβ∠=∠-∠.【点睛】本题考查平行线的性质,解题的关键是熟练掌握平行线的性质,且学会做辅助线,同时注意分类思想的应用.22.同位角有∠4与∠8、∠4与∠7、∠2与∠3;内错角有∠1与∠3、∠7与∠6、∠6与∠8;同旁内角有∠1与∠4、∠3与∠8,∠1与∠7.【分析】根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角;内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角;同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角,结合图形进行分析即可.【详解】同位角有∠4与∠8、∠4与∠7、∠2与∠3;内错角有∠1与∠3、∠7与∠6、∠6与∠8;同旁内角有∠1与∠4、∠3与∠8,∠1与∠7.【点睛】本题主要考查了三线八角,解题关键是掌握同位角的边构成“F ”形,内错角的边构成“Z ”形,同旁内角的边构成“U ”形.23.10°【分析】设这个角的度数为x°,根据已知条件列出含有x 的方程,解方程即可得到答案 .【详解】解:设这个角的度数为x ,依题意有:()()18029010---=x x解得10x =︒故这个角的度数为10°【点睛】本题考查补角和余角的定义,熟练掌握利用方程解决几何问题是解题关键.24.(1)50EOB ∠=︒;(2)160EOF ∠=︒【分析】(1)由对顶角相等的性质得40BOD AOC ∠=∠=︒,再由90EOD ∠=︒,即可求出EOB ∠的度数;(2)先求出AOD ∠的度数,再由角平分线的性质得到FOD ∠的度数,即可求出EOF ∠的度数.【详解】解:(1)OE CD ⊥,∴90EOD ∠=︒,∵40BOD AOC ∠=∠=︒,50EOB EOD BOD ∴∠=∠-∠=︒;(2)∵直线AB 与CD 相交于点O ,40AOC BOD ∴∠=∠=︒,∴180140AOD BOD =︒-=︒∠∠, OF 为AOD ∠的角平分线,70AOF FOD ∴∠=∠=︒,160EOF EOD FOD ∴∠=∠+∠=︒.【点睛】本题考查角度求解,解题的关键是掌握对顶角的性质,垂直的性质,以及角平分线的性质.25.(1)12-;(2)125° 【分析】(1)先计算乘方,再计算乘除,最后计算加减;(2)根据题意可得关于α∠的方程,求出α∠后再根据互补的定义求解.【详解】 解:(1)原式=9﹣94×29﹣6×32=9﹣12﹣9=﹣12; (2)根据题意,得α∠﹣(90﹣α∠)=20°,解得:α∠=55°,所以α∠的补角为180°﹣55°=125°. 【点睛】本题考查了有理数的混合运算、余角和补角以及一元一次方程的求解等知识,熟练掌握上述知识是解题的关键.26.40AOC ∠=︒;70AOE ∠=︒【分析】先利用平角定义与90FOC求出90FOD ∠=︒,再利用互余关系求=40BOD ∠︒,利用对顶角性质求40AOC ∠=︒,利用邻补角定义,求出140AOD ∠=︒,利用角平分线定义便可求出AOE ∠.【详解】 解:90FOC ∠=︒,∴1801809090FOD FOC ∠=︒-∠=︒-︒=︒, ∵50BOF ∠=︒,90-50=40BOD FOD BOF ∴∠=∠-∠=︒︒︒,AOC ∠与BOD ∠是对顶角,40AOC BOD ∴∠=∠=︒;COD ∠是一个平角,∴∠AOC+∠AOD=180º,∵40AOC ∠=︒,140AOD ∴∠=︒, OE 平分AOD ∠,12AOE AOD ∴∠=∠, 70AOE ∴∠=︒.【点睛】本题考查的知识点是对顶角、邻补角、两角互余、角平分线的意义,解题关键是熟练利用角平分线定理.。

04_相交线与平行线(西城区最新复习材料)

04_相交线与平行线(西城区最新复习材料)

七年级(下)数学期末复习建议2015.6一、复习建议1.合理安排复习时间,制定好复习计划,具体到每一节课的内容,有针对性的展开复习;2. 结合每章的章节总结及知识梳理表,使知识更加系统化,条理化,螺旋上升,提高复习课的有效性;3.设计题组,在变式中逐步落实,层层深入;4.基础题反复练习,及时反馈,对错题要进行分析,以达到夯实基础、掌握基本方法的目的;5.注意每章节的核心数学思想方法的渗透,以及训练中的审题能力、规范书写习惯的培养。

二、参考课时(三周)第五章相交线与平行线2节第六章实数1节第七章平面直角坐标系1节第九章不等式与不等式组2节第十章数据的搜集、整理与描述1节第十一章三角形1节第十四章整式乘除(因式分解前) 2节专题/综合复习 2节综合练习3节三、各章基础复习内容第五章相交线与平行线知识要点1.同一平面内两条直线的位置关系:(1)相交(2)平行2.两条直线相交(1)两条直线相交只有一个交点;两条直线相交构成两对对顶角,四对邻补角;(2)对顶角、邻补角的定义;(3)对顶角、邻补角的性质:对顶角相等;邻补角互补.3. 垂线及其性质:(1)垂直的定义:两条直线相交,夹角为90°时,称这两条直线互相垂直,它们的交点称为垂足.(既是性质,又是判定)(2)垂线的性质:在同一平面内,过一点有且只有一条直线与已知直线垂直;连接直线外一点与直线上各点的所有线段中,垂线段最短.4.点到直线的距离:从直线外一点到这条直线的垂线段的长度,称为点到直线的距离;ι起跳B A CM NDCB A4321DCBA例1.如图是小凡同学在体育课上跳远后留下的脚印, 他的跳远成绩是线段_______的长度.例2.已知:如图,CD//EF ,∠1=65︒,∠2=35︒,求∠3与∠4的度数.例3.如图所示,∠BAC =90°,AD ⊥BC 于D ,则下列结论:①AB 与AC 互相垂直;②∠ADB =90°;③点C 到AB 的垂线段是线段AC ;④点A 到BC 的距离是线段AD ;⑤线段AB 的长度是点B 到AC 的距离; 其中正确的有( )(A )2个 (B )3个 (C )4个 (D )5个5.两条直线被第三条直线所截,常用的三种位置的角:同位角;内错角;同旁内角.(会识别) 6.平行线的定义:在同一平面内,不相交的两条直线叫做平行线; 7.平行公理及其推论:经过直线外一点,有且只有一条直线与已知直线平行;平行于同一条直线的两条直线互相平行.(判定平行的方法之一) 8.平行线的判定及性质:两条直线被第三条直线所截,例4.如图,若要推出AD ∥BC ,则需条件( )A .∠1=∠3B . ∠3=∠4C .∠1=∠2D . ∠B+∠BCD=∠180°例5.已知:如图,AB 是一条直线,∠C = ∠1,∠2和∠D 互余,BE ⊥FD 于G .求证:AB ∥CD .两条直线平行;同旁内角互补内错角相等同位角相等⇔⎪⎭⎪⎬⎫9.平移及其性质:(1)平移的要素:平移的方向移动的距离;(2)平移的性质:平移变换只改变图形的位置,不改变图形的形状和大小;平移前后的两个图中,连结各组对应点的线段平行(或共线)且相等.(3)平移的应用:构造图形;转化图形.例6.如图,在△ABC 中,BC=10cm ,BC 边上的高AD=2cm ,该三角形以每秒3cm 的速度沿DA 所在直线方向向上平移2s 到'''A B C ∆,折线..BAC ...扫过的面积为_______. 10. 命题、定理、证明;例7.命题“直角三角形中两直角边的平方和等于斜边的平方”题设是___________ ___,结论是___________ _________。

西城区学习探究诊断_第二十七章__相似

西城区学习探究诊断_第二十七章__相似

第二十七章 相似测试1 图形的相似学习要求1.理解相似图形、相似多边形和相似比的概念. 2.掌握相似多边形的两个基本性质.3.理解四条线段是“成比例线段”的概念,掌握比例的基本性质.课堂学习检测一、填空题1.________________________是相似图形.2.对于四条线段a ,b ,c ,d ,如果____________与____________(如dcb a =),那么称这四条线段是成比例线段,简称__________________.3.如果两个多边形满足____________,____________那么这两个多边形叫做相似多边形.4.相似多边形____________称为相似比.当相似比为1时,相似的两个图形____________.若甲多边形与乙多边形的相似比为k ,则乙多边形与甲多边形的相似比为____________.5.相似多边形的两个基本性质是____________,____________.6.比例的基本性质是如果不等于零的四个数成比例,那么___________. 反之亦真.即⇔=dcb a ______(a ,b ,c ,d 不为零). 7.已知2a -3b =0,b ≠0,则a ∶b =______. 8.若,571=+x x 则x =______. 9.若,532z y x ==则=-+x z y x 2______.10.在一张比例尺为1∶20000的地图上,量得A 与B 两地的距离是5cm ,则A ,B 两地实际距离为______m .二、选择题11.在下面的图形中,形状相似的一组是( )12.下列图形一定是相似图形的是( )A .任意两个菱形B .任意两个正三角形C .两个等腰三角形D .两个矩形13.要做甲、乙两个形状相同(相似)的三角形框架,已知三角形框架甲的三边分别为50cm ,60cm ,80cm ,三角形框架乙的一边长为20cm ,那么,符合条件的三角形框架乙共有( ) A .1种 B .2种 C .3种 D .4种三、解答题14.已知:如图,梯形ABCD 与梯形A ′B ′C ′D ′相似,AD ∥BC ,A ′D ′∥B ′C ′,∠A=∠A′.AD=4,A′D′=6,AB=6,B′C′=12.求:(1)梯形ABCD与梯形A′B′C′D′的相似比k;(2)A′B′和BC的长;(3)D′C′∶DC.综合、运用、诊断15.已知:如图,△ABC中,AB=20,BC=14,AC=12.△ADE与△ACB相似,∠AED=∠B,DE=5.求AD,AE的长.16.已知:如图,四边形ABCD的对角线相交于点O,A′,B′,C′,D′分别是OA,OB,OC,OD的中点,试判断四边形ABCD与四边形A′B′C'D′是否相似,并说明理由.拓展、探究、思考17.如下图甲所示,在矩形ABCD中,AB=2AD.如图乙所示,线段EF=10,在EF 上取一点M,分别以EM,MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN ∽矩形ABCD,设MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?测试2 相似三角形学习要求1.理解相似三角形的有关概念,能正确找到对应角、对应边. 2.掌握相似三角形判定的基本定理.课堂学习检测一、填空题1.△DEF ∽△ABC 表示△DEF 与△ABC ______,其中D 点与______对应,E 点与 ______对应,F 点与______对应;∠E =______;DE ∶AB =______∶BC ,AC ∶DF =AB ∶______.2.△DEF ∽△ABC ,若相似比k =1,则△DEF ______△ABC ;若相似比k =2,则=AC DF ______,=EFBC______. 3.若△ABC ∽△A 1B 1C 1,且相似比为k 1;△A 1B 1C 1∽△A 2B 2C 2,且相似比为k 2,则△ABC ______△A 2B 2C 2,且相似比为______. 4.相似三角形判定的基本定理是平行于三角形____________和其他两边相交,所_____ ____________与原三角形______. 5.已知:如图,△ADE 中,BC ∥DE ,则①△ADE ∽______; ②;)(,)(BC AB AD AE AB AD == ③⋅==CABA BD AE DB AD )(,)( 二、解答题6.已知:如图所示,试分别依下列条件写出对应边的比例式.(1)若△ADC ∽△CDB ;(2)若△ACD ∽△ABC ;(3)若△BCD ∽△BAC .综合、运用、诊断7.已知:如图,△ABC 中,AB =20cm ,BC =15cm ,AD =12.5cm ,DE ∥BC .求DE 的长.8.已知:如图,AD ∥BE ∥CF .(1)求证:;DFDEAC AB (2)若AB =4,BC =6,DE =5,求EF .9.如图所示,在△APM 的边AP 上任取两点B ,C ,过B 作AM 的平行线交PM 于N ,过N 作MC 的平行线交AP 于D .求证:P A ∶PB =PC ∶PD .拓展、探究、思考10.已知:如图,E 是□ABCD 的边AD 上的一点,且23=DE AE ,CE 交BD 于点F ,BF =15cm ,求DF 的长.11.已知:如图,AD 是△ABC 的中线.(1)若E 为AD 的中点,射线CE 交AB 于F ,求BFAF; (2)若E 为AD 上的一点,且kED AE 1=,射线CE 交AB 于F ,求⋅BF AF测试3 相似三角形的判定学习要求1.掌握相似三角形的判定定理.2.能通过证三角形相似,证明成比例线段或进行计算.课堂学习检测一、填空题1.______三角形一边的______和其他两边______,所构成的三角形与原三角形相似.2.如果两个三角形的______对应边的______,那么这两个三角形相似.3.如果两个三角形的______对应边的比相等,并且______相等,那么这两个三角形相似.4.如果一个三角形的______角与另一个三角形的______,那么这两个三角形相似.5.在△ABC和△A′B′C′中,如果∠A=56°,∠B=28°,∠A′=56°,∠C′=28°,那么这两个三角形能否相似的结论是______.理由是________________.6.在△ABC和△A'B′C′中,如果∠A=48°,∠C=102°,∠A′=48°,∠B′=30°,那么这两个三角形能否相似的结论是______.理由是________________.7.在△ABC和△A'B′C′中,如果∠A=34°,AC=5cm,AB=4cm,∠A′=34°,A'C′=2cm,A′B′=1.6cm,那么这两个三角形能否相似的结论是______,理由是____________________.8.在△ABC和△DEF中,如果AB=4,BC=3,AC=6;DE=2.4,EF=1.2,FD=1.6,那么这两个三角形能否相似的结论是____________,理由是__________________.9.如图所示,△ABC的高AD,BE交于点F,则图中的相似三角形共有______对.9题图10.如图所示,□ABCD中,G是BC延长线上的一点,AG与BD交于点E,与DC交于点F,此图中的相似三角形共有______对.10题图二、选择题11.如图所示,不能判定△ABC∽△DAC的条件是( )A.∠B=∠DACB.∠BAC=∠ADCC.AC2=DC·BCD.AD2=BD·BC12.如图,在平行四边形ABCD中,AB=10,AD=6,E是AD的中点,在AB上取一点F,使△CBF∽△CDE,则BF的长是( )A.5 B.8.2C.6.4 D.1.813.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是( )三、解答题14.已知:如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,想一想,(1)图中有哪两个三角形相似?(2)求证:AC2=AD·AB;BC2=BD·BA;(3)若AD=2,DB=8,求AC,BC,CD;(4)若AC=6,DB=9,求AD,CD,BC;(5)求证:AC·BC=AB·CD.15.如图所示,如果D,E,F分别在OA,OB,OC上,且DF∥AC,EF∥BC.求证:(1)OD∶OA=OE∶OB;(2)△ODE∽△OAB;(3)△ABC∽△DEF.综合、运用、诊断16.如图所示,已知AB∥CD,AD,BC交于点E,F为BC上一点,且∠EAF=∠C.求证:(1)∠EAF=∠B;(2)AF2=FE·FB.17.已知:如图,在梯形ABCD中,AB∥CD,∠B=90°,以AD为直径的半圆与BC 相切于E点.求证:AB·CD=BE·EC.18.如图所示,AB是⊙O的直径,BC是⊙O的切线,切点为点B,点D是⊙O上的一点,且AD∥OC.求证:AD·BC=OB·BD.19.如图所示,在⊙O中,CD过圆心O,且CD⊥AB于D,弦CF交AB于E.求证:CB2=CF·CE.拓展、探究、思考20.已知D是BC边延长线上的一点,BC=3CD,DF交AC边于E点,且AE=2EC.试求AF与FB的比.21.已知:如图,在△ABC中,∠BAC=90°,AH⊥BC于H,以AB和AC为边在Rt△ABC外作等边△ABD和△ACE,试判断△BDH与△AEH是否相似,并说明理由.22.已知:如图,在△ABC中,∠C=90°,P是AB上一点,且点P不与点A重合,过点P作PE⊥AB交AC于E,点E不与点C重合,若AB=10,AC=8,设AP=x,四边形PECB的周长为y,求y与x的函数关系式.测试4 相似三角形应用举例学习要求能运用相似三角形的知识,解决简单的实际问题.课堂学习检测一、选择题1.已知一棵树的影长是30m ,同一时刻一根长1.5m 的标杆的影长为3m ,则这棵树的高度是( )A .15mB .60mC .20mD .m 3102.一斜坡长70m ,它的高为5m ,将某物从斜坡起点推到坡上20m 处停止下,停下地点的高度为( ) A .m 711 B .m 710 C .m 79 D .m 23 3.如图所示阳光从教室的窗户射入室内,窗户框AB 在地面上的影长DE =1.8m ,窗户下檐距地面的距离BC =1m ,EC =1.2m ,那么窗户的高AB 为( )第3题图A .1.5mB .1.6mC .1.86mD .2.16m 4.如图所示,AB 是斜靠在墙壁上的长梯,梯脚B 距离墙角1.6m ,梯上点D 距离墙1.4m ,BD 长0.55m ,则梯子长为( )第4题图A .3.85mB .4.00mC .4.40mD .4.50m 二、填空题5.如图所示,为了测量一棵树AB 的高度,测量者在D 点立一高CD =2m 的标杆,现测量者从E 处可以看到杆顶C 与树顶A 在同一条直线上,如果测得BD =20m ,FD =4m ,EF =1.8m ,则树AB 的高度为______m .第5题图6.如图所示,有点光源S 在平面镜上面,若在P 点看到点光源的反射光线,并测得AB=10m,BC=20cm,PC⊥AC,且PC=24cm,则点光源S到平面镜的距离即SA的长度为______cm.第6题图三、解答题7.已知:如图所示,要在高AD=80mm,底边BC=120mm的三角形余料中截出一个正方形板材PQMN.求它的边长.8.如果课本上正文字的大小为4mm×3.5mm(高×宽),一学生座位到黑板的距离是5m,教师在黑板上写多大的字,才能使该学生望去时,同他看书桌上相距30cm垂直放置的课本上的字感觉相同?综合、运用、诊断9.一位同学想利用树影测量树高,他在某一时刻测得长为1m的竹竿影长0.8m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上,如图所示,他先测得留在墙上的影高为1.2m,又测得地面部分的影长为5m,请算一下这棵树的高是多少?10.(针孔成像问题)根据图中尺寸(如图,AB∥A′B′),可以知道物像A′B′的长与物AB的长之间有什么关系?你能说出其中的道理吗?11.在一次数学活动课上,李老师带领学生去测教学楼的高度,在阳光下,测得身高为1.65m的黄丽同学BC的影长BA为1.1m,与此同时,测得教学楼DE的影长DF为12.1m,如图所示,请你根据已测得的数据,测出教学楼DE的高度.(精确到0.1m)12.(1)已知:如图所示,矩形ABCD中,AC,BD相交于O点,OE⊥BC于E点,连结ED交OC于F点,作FG⊥BC于G点,求证点G是线段BC的一个三等分点.(2)请你仿照上面的画法,在原图上画出BC的一个四等分点.(要求:写出作法,保留画图痕迹,不要求证明)测试5 相似三角形的性质学习要求掌握相似三角形的性质,解决有关的计算或证明问题.课堂学习检测一、填空题1.相似三角形的对应角______,对应边的比等于______.2.相似三角形对应边上的中线之比等于______,对应边上的高之比等于______,对应角的角平分线之比等于______.3.相似三角形的周长比等于______.4.相似三角形的面积比等于______.5.相似多边形的周长比等于______,相似多边形的面积比等于______. 6.若两个相似多边形的面积比是16∶25,则它们的周长比等于______.7.若两个相似多边形的对应边之比为5∶2,则它们的周长比是______,面积比是______.8.同一个圆的内接正三角形与其外切正三角形的周长比是______,面积比是______. 9.同一个圆的内接正方形与其外切正方形的周长比是______,面积比是______.10.同一个圆的内接正六边形与其外切正六边形的周长比是______,面积比是______. 11.正六边形的内切圆与它的外接圆的周长比是______,面积比是______. 12.在比例尺1∶1000的地图上,1cm 2所表示的实际面积是______. 二、选择题13.已知相似三角形面积的比为9∶4,那么这两个三角形的周长之比为( )A .9∶4B .4∶9C .3∶2D .81∶1614.如图所示,在平行四边形ABCD 中,E 为DC 边的中点,AE 交BD 于点Q ,若△DQE 的面积为9,则△AQB 的面积为( )A .18B .27C .36D .4515.如图所示,把△ABC 沿AB 平移到△A ′B ′C ′的位置,它们的重叠部分的面积是△ABC 面积的一半,若2=AB ,则此三角形移动的距离AA '是( )A .12-B .22 C .1 D .21 三、解答题16.已知:如图,E 、M 是AB 边的三等分点,EF ∥MN ∥BC .求:△AEF 的面积∶四边形EMNF 的面积∶四边形MBCN 的面积.综合、运用、诊断17.已知:如图,△ABC 中,∠A =36°,AB =AC ,BD 是角平分线.(1)求证:AD 2=CD ·AC ; (2)若AC =a ,求AD .18.已知:如图,□ABCD 中,E 是BC 边上一点,且AE BD EC BE ,,21相交于F 点.(1)求△BEF 的周长与△AFD 的周长之比;(2)若△BEF 的面积S △BEF =6cm 2,求△AFD 的面积S △AFD .19.已知:如图,Rt △ABC 中,AC =4,BC =3,DE ∥AB .(1)当△CDE 的面积与四边形DABE 的面积相等时,求CD 的长; (2)当△CDE 的周长与四边形DABE 的周长相等时,求CD 的长.拓展、探究、思考20.已知:如图所示,以线段AB 上的两点C ,D 为顶点,作等边△PCD .(1)当AC,CD,DB满足怎样的关系时,△ACP∽△PDB.(2)当△ACP∽△PDB时,求∠APB.21.如图所示,梯形ABCD中,AB∥CD,对角线AC,BD交于O点,若S△AOD∶S△DOC =2∶3,求S△AOB∶S△COD.22.已知:如图,梯形ABCD中,AB∥DC,∠B=90°,AB=3,BC=11,DC=6.请问:在BC上若存在点P,使得△ABP与△PCD相似,求BP的长及它们的面积比.测试6 位似学习要求1.理解位似图形的有关概念,能利用位似变换将一个图形放大或缩小.2.能用坐标表示位似变形下图形的位置.课堂学习检测1.已知:四边形ABCD及点O,试以O点为位似中心,将四边形放大为原来的两倍.(1) (2)(3) (4)2.如图,以某点为位似中心,将△AOB进行位似变换得到△CDE,记△AOB与△CDE对应边的比为k,则位似中心的坐标和k的值分别为( )A.(0,0),21B.(2,2),2C.(2,2),2D.(2,2),3综合、运用、诊断3.已知:如图,四边形ABCD的顶点坐标分别为A(-4,2),B(-2,-4),C(6,-2),D(2,4).试以O点为位似中心作四边形A'B'C'D′,使四边形ABCD与四边形A′B′C′D′的相似比为1∶2,并写出各对应顶点的坐标.4.已知:如下图,是由一个等边△ABE和一个矩形BCDE拼成的一个图形,其B,C,D 点的坐标分别为(1,2),(1,1),(3,1).(1)求E点和A点的坐标;(2)试以点P(0,2)为位似中心,作出相似比为3的位似图形A1B1C1D1E1,并写出各对应点的坐标;(3)将图形A1B1C1D1E1向右平移4个单位长度后,再作关于x轴的对称图形,得到图形A2B2C2D2E2,这时它的各顶点坐标分别是多少?拓展、探究、思考5.在已知三角形内求作内接正方形.6.在已知半圆内求作内接正方形.答案与提示第二十七章 相 似测试11.形状相同的图形.2.其中两条线段的比,另两条线段的比相等,比例线段. 3.对应角相等,对应边的比相等. 4.对应边的比,全等,⋅k1 5.对应角相等,对应边的比相等.6.两个内项之积等于两个外项之积,ad =bc . 7.3∶2. 8.⋅259.1. 10.1 000.11.C . 12.B . 13.C .14.(1)k =2∶3;(2)A 'B '=9,BC =8;(3)3∶2. 15.⋅==750,730AE AD 16.相似. 17.25=x 时,S 的最大值为⋅225 测试21.相似,A 点,B 点,C 点,∠B ,EF ,DE . 2.≌,2,⋅213.∽;k 1k 2.4.一边的直线,构成的三角形,相似. 5.①△ABC ;②AC ,DE ;③EC ,CE . 6.(1);BC CA BD CD CD AD == (2);BC CD AC AD AB AC == (3)⋅==ACCDBC BD BA BC 7.9.375cm .8.(1)提示:过A 点作直线AF '∥DF ,交直线BE 于E ',交直线CF 于F '. (2)7.5.9.提示:P A ∶PB =PM ∶PN ,PC ∶PO =PM ∶PN . 10.OF =6cm .提示:△DEF ∽△BCF . 11.(1);21=BF AF (2)1∶2k . 测试31.平行于,直线,相交. 2.三组,比相等. 3.两组,相应的夹角. 4.两个,两个角对应相等. 5.△ABC ∽△A 'C 'B ',因为这两个三角形中有两对角对应相等. 6.△ABC ∽△A 'B 'C '.因为这两个三角形中有两对角对应相等. 7.△ABC ∽△A 'B 'C ',因为这两个三角形中,有两组对应边的比相等,且相应的夹角相等.8.△ABC ∽△DFE .因为这两个三角形中,三组对应边的比相等. 9.6对. 10.6对.11.D . 12.D . 13.A .14.(1)△ADC ∽△CDB ,△ADC ∽△ACB ,△ACB ∽△CDB ;(2)略;(3);4,54,52===CD BC AC (4);36,33,3===BC CD AD(5)提示:AC ·BC =2S △ABC =AB ·CD .15.提示:(1)OD ∶OA =OF ∶OC ,OE ∶OB =OF ∶OC ;(2)OD ∶OA =OE ∶OB ,∠DOE =∠AOB ,得△ODE ∽△OAB ; (3)证DF ∶AC =EF ∶BC =DE ∶AB . 16.略.17.提示:连结AE 、ED ,证△ABE ∽△ECD . 18.提示:关键是证明△OBC ∽△ADB .∵AB 是⊙O 的直径,∴∠D =90°. ∵BC 是⊙O 的切线,∴OB ⊥BC . ∴∠OBC =90°.∴∠D =∠OBC .∵AD ∥OC ,∴∠A =∠BOC .∴△ADB ∽△OBC .⋅=∴CBBDOB AD ∴AD ·BC =OB ·BD . 19.提示:连接BF 、AC ,证∠CFB =∠CBE20.⋅=21FB AF 提示:过C 作CM ∥BA ,交ED 于M . 21.相似.提示:由△BHA ∽△AHC 得,ACBAAH BH =再有BA =BD ,AC =AE .则:,AE BD AH BH =再有∠HBD =∠HAE ,得△BDH ∽△AEH .22..2423+-=x y 提示:可证△APE ∽△ACB ,则⋅=ACAPBC PE则).10(6)458(43,45,43x x x y x AE x PE -++-+===测试41.A . 2.B . 3.A . 4.C .5.3. 6.12. 7.48mm .8.教师在黑板上写的字的大小约为7cm ×6cm(高×宽). 9.树高7.45m . 10..31AB B A ='' 11.∵EF ∥AC ,∴∠CAB =∠EFD .又∠CBA =∠EDF =90°,∴△ABC ∽△FDE .)m (2.181.11.1265.1≈⨯=⋅=∴⋅=∴BA DF BC DE DF BA DE BC 故教学楼的高度约为18.2m .12.(1)提示:先证EF ∶ED =1∶3.(2)略.测试51.相等,相似比. 2.相似比、相似比、相似比. 3.相似比. 4.相似比的平方.5.相似比.相似比的平方. 6.4∶5. 7.5∶2,25∶4. 8.1∶2,1∶4. 9..2:1,2:1 10..4:3,2:3 11..4:3,2:3 12.100m 2.13.C. 14.C . 15.A . 16.1∶3∶5. 17.(1)提示:证△ABC ∽△BCD ;(2).215a - 18.(1);31 (2)54cm 2. 19.(1);22 (2)⋅724 20.(1)CD 2=AC ·DB ;(2)∠APB =120°. 21.4∶922.BP =2,或,311或9. 当BP =2时,S △ABP ∶S △PCD =1∶9; 当311=BP 时,S △ABP ∶S △DCP =1∶4; 当BP =9时,S △ABP :S △PCD =9∶4.测试61.略. 2.C .3.图略.A '(-2,1),B '(-1,-2),C '(3,-1),D '(1,2). 4.(1));32,2(),2,3(+A E(2)).332,6(1+A B 1(3,2),C 1(3,-1),D 1(9,-1),E 1(9,2); (3)),332,10(2--A B 2(7,-2),C 2(7,1),D 2(13,1),E 2(13,-2). 5.方法1:利用位似形的性质作图法(图16)图16作法:(1)在AB 上任取一点G ',作G 'D '⊥BC ;(2)以G 'D '为边,在△ABC 内作一正方形D 'E 'F 'G ';(3)连结BF ',延长交AC 于F ;(4)作FG ∥CB ,交AB 于G ,从F ,G 各作BC 的垂线FE ,GD ,那么DEFG 就是所求作的内接正方形.方法2:利用代数解析法作图(图17)图17(1)作AH (h )⊥BC (a );(2)求h +a ,a ,h 的比例第四项x ; (3)在AH 上取KH =x ;(4)过K 作GF ∥BC ,交两边于G ,F ,从G ,F 各作BC 的垂线GD ,FE ,那么DEFG 就是所求的内接正方形. 6.提示:正方形EFGH 即为所求.第二十七章 相似全章测试一、选择题1.如图所示,在△ABC 中,DE ∥BC ,若AD =1,DB =2,则BCDE的值为( )第1题图A .32 B .41 C .31D .21 2.如图所示,△ABC 中DE ∥BC ,若AD ∶DB =1∶2,则下列结论中正确的是( )第2题图A .21=BC DE B .21=∆∆的周长的周长ABC ADEC .的面积的面积ABC ADE ∆∆31=D .的周长的周长ABC ADE ∆∆31=3.如图所示,在△ABC 中∠BAC =90°,D 是BC 中点,AE ⊥AD 交CB 延长线于E 点,则下列结论正确的是( )第3题图A .△AED ∽△ACB B .△AEB ∽△ACDC .△BAE ∽△ACED .△AEC ∽△DAC4.如图所示,在△ABC 中D 为AC 边上一点,若∠DBC =∠A ,6=BC ,AC =3,则CD 长为( )第4题图A .1B .23 C .2 D .25 5.若P 是Rt △ABC 的斜边BC 上异于B ,C 的一点,过点P 作直线截△ABC ,截得的三角形与原△ABC 相似,满足这样条件的直线共有( ) A .1条 B .2条 C .3条 D .4条6.如图所示,△ABC 中若DE ∥BC ,EF ∥AB ,则下列比例式正确的是( )第6题图A .BC DEDB AD =B .ADEFBC BF =C .FCBF EC AE =D .BCDEAB EF =7.如图所示,⊙O 中,弦AB ,CD 相交于P 点,则下列结论正确的是( )第7题图A .P A ·AB =PC ·PB B .P A ·PB =PC ·PD C .P A ·AB =PC ·CD D .P A ∶PB =PC ∶PD 8.如图所示,△ABC 中,AD ⊥BC 于D ,对于下列中的每一个条件第8题图①∠B +∠DAC =90° ②∠B =∠DAC ③CD :AD =AC :AB ④AB 2=BD ·BC 其中一定能判定△ABC 是直角三角形的共有( ) A .3个 B .2个 C .1个 D .0个二、填空题9.如图9所示,身高1.6m 的小华站在距路灯杆5m 的C 点处,测得她在灯光下的影长CD 为2.5m ,则路灯的高度AB 为______.图910.如图所示,△ABC 中,AD 是BC 边上的中线,F 是AD 边上一点,且61EB AE ,射线CF 交AB 于E 点,则FDAF等于______.第10题图11.如图所示,△ABC 中,DE ∥BC ,AE ∶EB =2∶3,若△AED 的面积是4m 2,则四边形DEBC 的面积为______.第11题图12.若两个相似多边形的对应边的比是5∶4,则这两个多边形的周长比是______. 三、解答题13.已知,如图,△ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1.(1)求证:△ABD ∽△CBA ;(2)作DE ∥AB 交AC 于点E ,请再写出另一个与△ABD 相似的三角形,并直接写出DE 的长.14.已知:如图,AB 是半圆O 的直径,CD ⊥AB 于D 点,AD =4cm ,DB =9cm ,求CB 的长.15.如图所示,在由边长为1的25个小正方形组成的正方形网格上有一个△ABC,试在这个网格上画一个与△ABC相似,且面积最大的△A1B1C1(A1,B1,C1三点都在格点上),并求出这个三角形的面积.16.如图所示,在5×5的方格纸上建立直角坐标系,A(1,0),B(0,2),试以5×5的格点为顶点作△ABC与△OAB相似(相似比不为1),并写出C点的坐标.17.如图所示,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D点,OC交AB于E点.(1)求∠D的度数;(2)求证:AC2=AD·CE.18.已知:如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B,C点重合),∠ADE=45°.(1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式; (3)当△ADE 是等腰三角形时,求AE 的长.19.已知:如图,△ABC 中,AB =4,D 是AB 边上的一个动点,DE ∥BC ,连结DC ,设△ABC 的面积为S ,△DCE 的面积为S ′.(1)当D 为AB 边的中点时,求S ′∶S 的值;(2)若设,,y SS x AD ='=试求y 与x 之间的函数关系式及x 的取值范围.20.已知:如图,抛物线y =x 2-x -1与y 轴交于C 点,以原点O 为圆心,OC 长为半径作⊙O ,交x 轴于A ,B 两点,交y 轴于另一点D .设点P 为抛物线y =x 2-x -1上的一点,作PM ⊥x 轴于M 点,求使△PMB ∽△ADB 时的点P 的坐标.21.在平面直角坐标系xOy 中,已知关于x 的二次函数y =x 2+(k -1)x +2k -1的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C (0,-3). 求这个二次函数的解析式及A ,B 两点的坐标.22.如图所示,在平面直角坐标系xOy 内已知点A 和点B 的坐标分别为(0,6),(8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P ,Q 移动的时间为t 秒.(1)求直线AB 的解析式;(2)当t 为何值时,△APQ 与△ABO 相似? (3)当t 为何值时,△APQ 的面积为524个平方单位?23.已知:如图,□ABCD 中,AB =4,BC =3,∠BAD =120°,E 为BC 上一动点(不与B 点重合),作EF ⊥AB 于F ,FE ,DC 的延长线交于点G ,设BE =x ,△DEF 的面积为S .(1)求证:△BEF ∽△CEG ;(2)求用x 表示S 的函数表达式,并写出x 的取值范围; (3)当E 点运动到何处时,S 有最大值,最大值为多少?答案与提示第二十七章 相似全章测试1.C . 2.D . 3.C . 4.C . 5.C . 6.C . 7.B . 8.A . 9.4.8m . 10.⋅3111.21m 2. 12.5∶4.13.(1),BABDCB AB =CBA ABD ∠=∠,得△HBD ∽△CBA ; (2)△ABC ∽△CDE ,DE =1.5. 14..cm 133提示:连结AC .15.提示:.52,10,25111111===C B B A C A △A 1B 1C 1的面积为5. 16.C (4,4)或C (5,2).17.提示:(1)连结OB .∠D =45°.(2)由∠BAC =∠D ,∠ACE =∠DAC 得△ACE ∽△DAC .18.(1)提示:除∠B =∠C 外,证∠ADB =∠DEC .(2)提示:由已知及△ABD ∽△DCE 可得.22x x CE -=从而y =AC -CE =x 2-.12+x (其中20<<x ).(3)当∠ADE 为顶角时:.22-=AE 提示:当△ADE 是等腰三角形时, △ABD ≌△DCE .可得.12-=x 当∠ADE 为底角时:⋅=21AE 19.(1)S '∶S =1∶4;(2)).40(41162<<+-=x x x y 20.提示:设P 点的横坐标x P =a ,则P 点的纵坐标y P =a 2-a -1.则PM =|a 2-a -1|,BM =|a -1|.因为△ADB 为等腰直角三角形,所以欲使△PMB ∽△ADB ,只要使PM =BM .即|a 2-a -1|=|a -1|.不难得a 1=0..2.2.2432-===a a a∴P 点坐标分别为P 1(0,-1).P 2(2,1).).21,2().21,2(43+--P P 21.(1)y =x 2-2x -3,A (-1,0),B (3,0);(2))49,43(-D 或D (1,-2). 22.(1);643+-=x y(2)1130=t 或;1350 (3)t =2或3. 23.(1)略;(2));30(8311832≤<+-=x x x S (3)当x =3时,S 最大值33=.。

西城区学习探究诊断--相交线与平行线

西城区学习探究诊断--相交线与平行线

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载西城区学习探究诊断--相交线与平行线地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第五章相交线与平行线测试1 相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角.3.对顶角的重要性质是_________________.4.如图,直线AB、CD相交于O点,∠AOE=90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角;∠2和∠3互为_______角;∠1和∠3互为______角;∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE-∠______=______°-______°=______°;∠4=∠______-∠1=______°-______°=______°.5.如图,直线AB与CD相交于O点,且∠COE=90°,则(1)与∠BOD互补的角有________________________;(2)与∠BOD互余的角有________________________;(3)与∠EOA互余的角有________________________;(4)若∠BOD=42°17′,则∠AOD=__________;∠EOD=______;∠AOE=______.二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC(B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ).(A)30° (B)45°(C)60° (D)135°9.如图所示,直线l 1,l 2,l 3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角. () 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( )12.有一条公共边的两个角是邻补角. () 13.如果两个角是邻补角,那么它们一定互为补角. () 14.对顶角的角平分线在同一直线上. () 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角. () 综合、运用、诊断一、解答题16.如图所示,AB ,CD ,EF 交于点O ,∠1=20°,∠BOC =80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?测试2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直.( ) 11.一条直线的垂线只能画一条.( )12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直.( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短.( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离.( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离.( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB .( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α(B)180°-α (C)α2190+︒ (D)2α-90°18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为PA =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ).(A)3cm (B)小于3cm(C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n(C)n ≤AC ≤m (D)n <AC <m20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( ).(A)0 (B)1 (C)2 (D)321.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有( ).(A)3条 (B)4条(C)7条 (D)8条三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?测试3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?测试4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE ∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD⊥DA,DA⊥AB,∠1=∠2.试确定射线DF与AE的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______.(3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义)又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质)即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( )∴∠2=∠______.(等量代换)∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______.(3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)①∵∠3+∠4=180°,( )∴c∥______.(________,________)②由①、②,因为a∥______,c∥______,∴a______c.(________,________)测试5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)。

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测卷(答案解析)(3)

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测卷(答案解析)(3)

一、选择题1.如图,AD BC ⊥,ED AB ⊥,表示点D 到直线AB 距离的是线段( )的长度A .DBB .DEC .DAD .AE 2.一艘船停留在海面上,如果从船上看灯塔位于北偏东30°,那么从灯塔看船上位于灯塔的( )A .北偏东30°B .北偏东60°C .南偏西30°D .南偏西60° 3.如图,直线AB 、CD 相交于点O ,OE 平分AOC ∠,若70BOD ∠=︒,则COE ∠的度数是( )A .70°B .50°C .40°D .35°4.如图,某地域的江水经过B 、C 、D 三点处拐弯后,水流的方向与原来相同,若∠ABC =125°,∠BCD =75°,则∠CDE 的度数为( )A .20°B .25°C .35°D .50°5.如图所示,下列条件能判断a ∥b 的有( )A .∠1+∠2=180°B .∠2=∠4C .∠2+∠3=180°D .∠1=∠3 6.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若∠1=124°,∠2=88°,则∠3的度数为( )A .26°B .36°C .46°D .56°7.如图,a ∥b ,点A 在直线a 上,点B ,C 在直线b 上,AC ⊥b ,如果AB=5cm ,BC=3cm ,那么平行线a ,b 之间的距离为( )A .5cmB .4cmC .3cmD .不能确定 8.如图,有A ,B ,C 三个地点,且AB ⊥BC ,从A 地测得B 地在A 地的北偏东43°的方向上,那么从B 地测得C 地在B 地的( )A .北偏西47B .南偏东47C .北偏东43D .南偏西43 9.α∠与β∠的度数分别是219m -和77m -,且α∠与β∠都是γ∠的补角,那么α∠与β∠的关系是( ).A .不互余且不相等B .不互余但相等C .互为余角但不相等D .互为余角且相等 10.如图,在△ABC 中,∠ABC =60°,点C 在直线b 上,若直线a ∥b ,∠2=26°,则∠1的度数为( )A .26°B .28°C .34°D .36°11.如图,AB //EF,∠D=90°,则α,β,γ的大小关系是( )A .βαγ=+B .90βαγ=+-︒C .90βγα=+︒-D .90βαγ=+︒-12.如图,已知∠1=∠2,∠D =68°,则∠BCD =( )A .98°B .62°C .88°D .112°二、填空题13.如图,直线AB ,CD 相交于点O ,AO 平分COE ∠,且50EOD ∠=︒,则DOB ∠的度数是________.14.若一个角的余角是它的补角的16,则这个角的度数为______________. 15.如图,直线AB 与CD 相交于点O ,OM AB ⊥,若55DOM ∠=︒,则AOC ∠=______°.16.如图,172∠=︒,262∠=︒,362∠=︒,则4∠的度数为__________.17.已知∠A 与∠B 的两边分别平行,其中∠A 为x °,∠B 的为(210﹣2x )°,则∠A =____度.18.如图,ED//AC ,BE//CD ,若C 60∠=︒,则E _______∠=︒19.如图,l 1∥l 2,AB ⊥l 1,垂足为O ,BC 交l 2于点E ,若∠ABC =125°,则∠1=_____°.20.如图,直线//a b ,1120∠=︒,240∠=︒,则3∠的度数为_______.三、解答题21.如图,已知A 、O 、B 三点在同一条直线上,OD 平分AOC ∠,OE 平分BOC ∠.(1)若54BOC ∠=︒,求DOE ∠的度数;(2)若BOC α∠=,求DOE ∠的度数;(3)请写出图中与∠BOE 互余的角.22.作图题:已知∠α,线段m 、n ,请按下列步骤完成作图(不需要写作法,保留作图痕迹)(1)作∠MON =∠α(2)在边OM 上截取OA =m ,在边ON 上截取OB =n .(3)作直线AB .23.如图,点D 、E 分别为AB 、AC 上的点,点F 、G 为BC 上的点,连接DE ,连接DG 、EF 交于点H .已知12180∠+∠=︒,3B ∠=∠,若66C ∠=︒,求DEC ∠的度数.请你将下面解答过程填写完整.解:∵12180∠+∠=︒∴//AB ________∴3ADE ∠=∠(________________________)∵3B ∠=∠∴_______B =∠∴//DE BC (____________________________)∴180C DEC ∠+∠=︒∵66C ∠=︒∴114DEC ∠=︒24.如图,点E 在直线DF 上,点B 在直线AC 上,若AGB EHF ∠=∠,C D ∠=∠.试说明:A F ∠=∠.请同学们补充下面的解答过程,并填空(填写理由或数学式).解:∵AGB DGF ∠=∠(______),AGB EHF ∠=∠(已知),∴DGF EHF ∠=∠(______),∴______∥_____(______),∴D ∠=_____(______).∵D C ∠=∠(已知),∴______C =∠(______),∴//DF AC (______),∴A F ∠=∠(______).25.如图,东西方向上有一条高速公路连接A ,B 两城市,在高速公路的一侧有一座水电站P ,现测得水电站在城市A 的东北方向上,在城市B 北偏西60°方向上.(1)求∠APB 的度数;(2)若一辆轿车以每小时90公里的速度沿AB 方向从A 城市开往B 城市,行驶1.5小时轿车正好在水电站P 的正南方向上,请用方向和距离描述轿车相对于水电站P 的位置.26.如图,已知//,12,40BE FG ABC ︒∠=∠∠=,试求BDE ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据从直线外一点到这直线的垂线段的长度叫做点到直线的距离解答.【详解】解:∵ED ⊥AB ,∴点D 到直线AB 距离的是线段DE 的长度.故选:B .【点睛】本题考查了点到直线的距离的定义,是基础题,熟记概念并准确识图是解题的关键.2.C解析:C【分析】根据方向角的表示方法,可得答案.【详解】解:设此船位于海面上的C处,灯塔位于D处,射线CA、DB的方向分别为正北方向与正南方向,如图所示.∵从船上看灯塔位于北偏东30°,∴∠ACD=30°.又∵AC∥BD,∴∠CDB=∠ACD=30°.即从灯塔看船位于灯塔的南偏西30°.故选:C.【点睛】本题考查了方向角,理解题意画出图形是解题的关键.3.D解析:D【分析】根据对顶角相等求出∠AOC,根据角平分线的定义计算即可求出∠COE的度数.【详解】∵∠BOD=70︒,∴∠AOC=∠BOD=70︒,∵OE平分∠AOC,∴∠COE=12∠AOC=170352⨯︒=︒,故选:D.【点睛】本题考察对顶角、角平分线的定义,掌握对顶角相等、角平分线的定义是解题的关键.4.A解析:A【分析】由题意可得AB∥DE,过点C作CF∥AB,则CF∥DE,由平行线的性质可得∠BCF+∠ABC=180°,所以能求出∠BCF,继而求出∠DCF,再由平行线的性质,即可得出∠CDE的度数.【详解】解:由题意得,AB∥DE,如图,过点C作CF∥AB,则CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=180°-125°=55°,∴∠DCF=75°-55°=20°,∴∠CDE=∠DCF=20°.故选:A.【点睛】本题考查的知识点是平行线的性质,关键是过C点先作AB的平行线,由平行线的性质求解.5.B解析:B【分析】通过平行线的判定的相关知识点,并结合题中所示条件进行相应的分析,即可得出答案.【详解】A.∠1 ,∠2是互补角,相加为180°不能证明平行,故A错误.B.∠2=∠4,内错角相等,两直线平行,所以B正确.C. ∠2+∠3=180°,不能证明a∥b,故C错误.D.虽然∠1=∠3,但是不能证明a∥b;故D错误.故答案选:B.【点睛】本题考查的知识点是平行线的判定,解题的关键是熟练的掌握平行线的判定.6.B解析:B【解析】试题分析:如图,首先根据平行线的性质(两直线平行,同旁内角互补),可求∠4=56°,然后借助平角的定义求得∠3=180°-∠2-∠4=36°.故选B考点:平行线的性质7.B解析:B【分析】从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,并由勾股定理可得出答案.【详解】解:∵AC⊥b,∴△ABC是直角三角形,∵AB=5cm,BC=3cm,∴22AB BC-22-(cm),53∴平行线a、b之间的距离是:AC=4cm.故选:B.【点睛】本题考查了平行线之间的距离,以及勾股定理,关键是掌握平行线之间距离的定义,以及勾股定理的运用.8.A解析:A【分析】根据方向角的概念和平行线的性质求解.【详解】解:∵AF∥DE,∴∠ABE=∠FAB=43°,∵AB⊥BC,∴∠ABC=90°,∴∠CBD=180°-∠ABC-∠ABE=47°,∴C地在B地的北偏西47°的方向上.故选:A.【点睛】本题主要考查了方位角,平行线的性质,正确的识别图形是解题的关键.9.D解析:D【分析】由α∠与β∠都是γ∠的补角可得αβ∠=∠,进而可得关于m 的方程,解方程即可求出m ,进一步即可进行判断.【详解】解:由α∠与β∠都是γ∠的补角,得αβ∠=∠,即21977m m -=-,解得:32m =,所以2197745m m -=-=.所以α∠与β∠互为余角且相等.故选:D .【点睛】本题考查了余角和补角以及简单的一元一次方程的解法,属于基本题型,熟练掌握上述基础知识是解题的关键.10.C解析:C【分析】如图,过点B 作BE ∥a .想办法证明∠1+∠2=60°即可解决问题.【详解】如图,过点B 作BE ∥a .∵a ∥b ,a ∥BE ,∴b ∥BE ,∴∠1=∠ABE ,∠2=∠CBE ,∵∠ABC =∠ABE+∠CBE =60°,∴∠1+∠2=60°,∵∠2=26°,∴∠1=34°,故选:C.【点睛】本题考查平行线的判定和性质,解题的关键是学会添加常用辅助线,构造平行线解决问题.11.D解析:D【分析】通过作辅助线,过点C和点D作CG//AB,DH//AB,可得CG//DH//AB,根据AB//EF,可得AB//EF//CG//DH,再根据平行线的性质即可得γ+β-α=90°,进而可得结论.【详解】解:如图,过点C和点D作CG//AB,DH//AB,∵CG//AB,DH//AB,∴CG//DH//AB,∵AB//EF,∴AB//EF//CG//DH,∵CG//AB,∴∠BCG=α,∴∠GCD=∠BCD-∠BCG=β-α,∵CG//DH,∴∠CDH=∠GCD=β-α,∵HD//EF,∴∠HDE=γ,∵∠EDC=∠HDE+∠CDH=90°,∴γ+β-α=90°,∴β=α+90°-γ.故选:D.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.12.D解析:D【分析】由∠1=∠2证明直线AD//BC,根据平行线的性质得∠D+∠BCD=180°,计算∠BCD的度数为112°.【详解】解:∵∠1=∠2,∴AD//BC ,∴∠D+∠BCD =180°,又∵∠D =68°,∴∠BCD =112°,故选:D .【点睛】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.【分析】根据求出利用AO 平分求得即可得到∠DOB=【详解】∵∴∵AO 平分∴∴∠DOB=故答案为:【点睛】此题考查求一个角的补角角平分线的性质对顶角相等正确理解补角定义求出是解题的关键解析:65︒【分析】根据180COE EOD ∠+∠=︒,50EOD ∠=︒,求出130COE ∠=︒,利用AO 平分COE ∠,求得65AOC ∠=︒,即可得到∠DOB=65AOC ∠=︒.【详解】∵180COE EOD ∠+∠=︒,50EOD ∠=︒,∴130COE ∠=︒,∵AO 平分COE ∠,∴65AOC ∠=︒,∴∠DOB=65AOC ∠=︒,故答案为:65︒.【点睛】此题考查求一个角的补角,角平分线的性质,对顶角相等,正确理解补角定义求出130COE ∠=︒是解题的关键.14.72°【分析】设这个角的度数为x 根据题意列方程求解即可【详解】设这个角的度数为x 根据题意得:解得x=故答案为:【点睛】此题考查余角补角的定义及计算掌握角的余角及补角的表示方法列出方程解答问题是解题的 解析:72°【分析】设这个角的度数为x ,根据题意列方程190(180)6x x ︒-=︒-,求解即可. 【详解】设这个角的度数为x , 根据题意得:190(180)6x x ︒-=︒-, 解得x=72︒,故答案为:72︒.【点睛】 此题考查余角、补角的定义及计算,掌握角的余角及补角的表示方法,列出方程解答问题是解题的关键.15.35°【分析】先根据垂直的定义和角的和差求出∠BOD 的度数再根据对顶角相等的性质解答即可【详解】解:∵∴∠BOM=90°∵∴∠BOD=90°-55°=35°∴∠AOC=∠BOD=35°故答案为:35解析:35°【分析】先根据垂直的定义和角的和差求出∠BOD 的度数,再根据对顶角相等的性质解答即可.【详解】解:∵OM AB ⊥,∴∠BOM =90°,∵55DOM ∠=︒,∴∠BOD =90°-55°=35°,∴∠AOC =∠BOD =35°,故答案为:35.【点睛】本题考查了垂直的定义、对顶角的性质和角的和差计算,属于基础题目,熟练掌握基本知识是解题的关键.16.108【分析】先根据题意得出a ∥b 再由平行线的性质即可得出结论【详解】解:如图∵∴∠2=∠3∴a ∥b ∵∠1=72°∴∠5=180°-72°=108°∴∠4=∠5=108°故答案为:108【点睛】本题解析:108【分析】先根据题意得出a ∥b ,再由平行线的性质即可得出结论.【详解】解:如图,∵262∠=︒,362∠=︒,∴∠2=∠3,∴a ∥b .∵∠1=72°,∴∠5=180°-72°=108°,∴∠4=∠5=108°.故答案为:108.【点睛】本题考查的是平行线的判定与性质,先根据题意得出直线a ∥b 是解答此题的关键. 17.70或30【分析】分∠A=∠B 与∠A+∠B=180°两种情况进行讨论即可求解【详解】解:根据题意有两种情况:(1)当∠A=∠B 可得:x=210﹣2x 解得:x=70;(2)当∠A+∠B=180°时可得解析:70或30.【分析】分∠A=∠B 与∠A+∠B=180°两种情况进行讨论即可求解.【详解】解:根据题意,有两种情况:(1)当∠A=∠B ,可得:x=210﹣2x ,解得:x=70;(2)当∠A+∠B=180°时,可得:x+210﹣2x=180,解得:x=30.故答案为:70或30.【点睛】本题考查的是平行线的性质,在解答此题时要注意分类讨论.18.60°【分析】根据平行线的性质可求∠ABE 再根据平行线的性质可求∠E【详解】解:∵BE ∥CD ∠C=60°∴∠ABE=60°∵ED ∥AC ∴∠E=60°故答案为:60【点睛】考查了平行线的性质关键是熟悉解析:60°【分析】根据平行线的性质可求∠ABE ,再根据平行线的性质可求∠E .【详解】解:∵BE∥CD,∠C=60°,∴∠ABE=60°,∵ED∥AC,∴∠E=60°.故答案为:60.【点睛】考查了平行线的性质,关键是熟悉两直线平行,同位角相等;两直线平行,内错角相等的知识点.19.【分析】过B作BF∥l2利用平行线的性质可得∠1=∠FBC然后求出∠FBC 的度数即可【详解】过B作BF∥l2∵l1∥l2∴BF∥l1∥l2∴∠ABF=∠2∠1=∠FBC∵AB⊥l1∴∠2=90°∴∠解析:【分析】过B作BF∥l2,利用平行线的性质可得∠1=∠FBC,然后求出∠FBC的度数即可.【详解】过B作BF∥l2,∵l1∥l2,∴BF∥l1∥l2,∴∠ABF=∠2,∠1=∠FBC,∵AB⊥l1,∴∠2=90°,∴∠ABF=90°,∵∠ABC=125°,∴∠FBC=35°,∴∠1=35°,故答案为:35.【点睛】本题主要考查了平行线的性质,关键是正确作出辅助线,掌握平行线的性质定理.20.【分析】如图(见解析)先根据平行线的性质可得再根据领补角的定义可得然后根据平角的定义即可得【详解】如图故答案为:【点睛】本题考查了平行线的性质领补角的定义平角的定义熟练掌握各定义与性质是解题关键解析:80【分析】如图(见解析),先根据平行线的性质可得4240∠=∠=︒,再根据领补角的定义可得560∠=︒,然后根据平角的定义即可得.【详解】如图,//,240a b ∠=︒,4240∴∠=∠=︒,1120∠=︒,5180160∴∠=︒-∠=︒,318045*********∴∠=︒-∠-∠=︒-︒-︒=︒,故答案为:80︒.【点睛】本题考查了平行线的性质、领补角的定义、平角的定义,熟练掌握各定义与性质是解题关键.三、解答题21.(1)90︒;(2)90︒;(3)COD ∠,AOD ∠【分析】(1)由OD 平分∠AOC ,OE 平分∠BOC ,得出∠DOE=12(∠BOC+∠COA)求解即可; (2)利用(1)的结论求解即可;(3)根据(1)(2)找出互余的角即可.【详解】解:(1)∵OE 平分BOC ∠, ∴1=2COE BOE BOC ∠∠=∠, OD 平分AOC ∠,12AOD DOC AOC ∴∠=∠=∠, ∴∠DOE=12(∠BOC+∠COA)=12×180°=90°; (2)由(1)知11()1809022DOE BOC COA ∠=∠+∠=⨯︒=︒; (3)∵90DOE ∠=︒,∴∠AOD+∠BOE=90°,∵∠AOD=∠COD ,∴∠COD+∠BOE=90°,∴与∠BOE互余的角有COD∠,AOD∠;【点睛】此题考查角平分线的意义,以及余角的意义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.22.(1)见解析;(2)见解析;(3)见解析【分析】(1)先画一条射线ON,以∠α的顶点为圆心,任意长度为半径画弧,交∠α的两个边于两个点,这两个点的距离记为a,接着以点O为圆心,同样的长度为半径画弧,交ON于一个点,以这个点为圆心,a为半径画弧,与刚刚画的弧有一个交点,连接这个点和点O,得到射线OM,即可得到∠MON=∠α;(2)以点O为圆心,m为半径画弧,交OM于点A,以点O为圆心,n为半径画弧,交ON于点B;(3)连接AB,线段AB所在的直线即直线AB.【详解】解:(1)如图所示,(2)如图所示,(3)如图所示,【点睛】本题考查尺规作图,解题的关键是掌握作已知角度的方法,截取线段和画直线的方法. 23.见解析.【分析】先根据平行线的判定可得//AB EF ,再根据平行线的性质可得3ADE ∠=∠,从而可得ADE B ∠=∠,然后根据平行线的判定与性质可得.【详解】解:∵12180∠+∠=︒,∴//AB EF ,∴3ADE ∠=∠(两直线平行,内错角相等),∵3B ∠=∠,∴ADE B ∠=∠,∴//DE BC (同位角相等,两直线平行),∴180C DEC ∠+∠=︒,∵66C ∠=︒,∴114DEC ∠=︒.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题关键. 24.对顶角相等;等量代换;DB ;EC ;同位角相等,两直线平行;FEC ∠;两直线平行,同位角相等;D ∠;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行的性质和判定的相关知识进行解答即可.【详解】解:∵AGB DGF ∠=∠(对顶角相等),AGB EHF ∠=∠(已知),∴DGF EHF ∠=∠(等量代换),∴DB EC (同位角相等,两直线平行),∴D FEC ∠=∠(两直线平行,同位角相等).∵D C ∠=∠(已知),∴FEC C ∠=∠(等量代换),∴DF AC(内错角相等,两直线平行),∠=∠(两直线平行,内错角相等).∴A F【点睛】本题主要考查了平行的性质和判定,灵活应用平行的性质定理、判定定理是解答本题的关键.25.(1)105°;(2)小轿车在水电站P正南方向,135km的公路上.【分析】(1)过点P作PE//BC交AB于点E.根据平行线的判定与性质即可求∠APB的度数;(2)根据每小时90公里的速度行驶1.5小时轿车正好在水电站P的正南方向上,即可用方向和距离描述轿车相对于水电站P的位置.【详解】解:(1)如图,过点P作PE//BC交AB于点E.由题意知:∠DAP=45°,∠CBP=60°AD//BC,∴∠CBP=∠BPE=60°(两直线平行,内错角相等),又∵PE//BC,AD//BC,∴PE//DA(平行于同一直线的两条直线互相平行),∴∠DAP=∠APE=45°(两直线平行,内错角相等),∴∠APB=∠APE+∠BPE=45°+60°=105°(2)由(1)知PE//DA,又∵∠DAE=90°,∴∠DAE=∠PEB=90°,∴PE⊥AB,∴∠AEP=90°,∴在△AEP中,∠AEP=90°,∠APE=45°,∴EA=EP,又∵EA=90×1.5=135 (km)∴EP=135(km).答:小轿车在水电站P正南方向,135km的公路上.【点睛】本题考查了平行线的判定与性质、方向角,解决本题的关键是掌握平行线的判定与性质.26.140°【分析】根据平行线的性质可得∠EBC=∠1,根据等量关系和平行线的判定可得DE∥BC,再根据平行线的性质进行解答.【详解】∵BE∥FG,∴∠EBC=∠1,∵∠1=∠2,∴∠EBC=∠2,∴DE∥BC,∵∠ABC=40°,∴∠BDE=180 -∠ABC=140°.【点睛】本题主要考查了平行线的判定与性质,关键是证明DE∥BC.。

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测(答案解析)(5)

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测(答案解析)(5)

一、选择题1.如图的四个图中,∠1与∠2是同位角的有( )A .②③B .①②③C .①D .①②④ 2.在同一平面内,两条直线的位置关系可能是( )A .相交或垂直B .垂直或平行C .平行或相交D .相交或垂直或平行3.下列说法正确的有( )①绝对值等于本身的数是正数.②将数60340精确到千位是6.0×104.③连结两点的线段的长度,叫做这两点的距离.④若AC =BC ,则点C 就是线段AB 的中点.⑤不相交的两条直线是平行线A .1个B .2个C .3个D .4个4.如图,直线//a b ,直线l 与a ,b 分别相交于A ,B 两点,过点A 作直线l 的垂线交直线b 于点C ,若1=62∠︒,则2∠的度数为( )A .62︒B .38︒C .32︒D .28︒5.我们利用尺规作图可以作一个角()''A O B ∠等于已知角()AOB ∠,如下所示:(1)作射线OA ;(2)以O 为圆心,任意长为半径作弧,交OA 于C ,交OB 于D ;(3)以O '为圆心,OC 为半径作弧,交OA '于'C ;(4)以C '为圆心,OC 为半径作弧,交前面的弧于D ;(5)连接'O D '作射线,O B ''则A O B '''∠就是所求作的角.以上作法中,错误的一步是( )A .()2B .()3C .()4D .()56.如图,直线AB ,CD 被直线EF 所截,与AB ,CD 分别交于点E ,F ,下列描述: ①∠1和∠2互为同位角 ②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是( )A .①③B .②④C .②③D .③④ 7.如图,已知AD EF BC ,BD GF ∥,且BD 平分ADC ∠,则图中与1∠相等的角(1∠除外)共有( )A .4个B .5个C .6个D .7个8.已知a ∥b ,将等腰直角三角形ABC 按如图所示的方式放置,其中锐角顶点B ,直角顶点C 分别落在直线a ,b 上,若∠1=15°,则∠2的度数是( )A .15°B .22.5°C .30°D .45° 9.如图,P 是直线l 外一点,A ,B ,C 三点在直线l 上,且PB l ⊥于点B ,90APC ∠=︒,则下列结论:①线段AP 是点A 到直线PC 的距离;②线段BP 的长是点P 到直线l 的距离;③PA ,PB ,PC 三条线段中,PB 最短;④线段PC 的长是点P 到直线l 的距离.其中正确的是( )A .②③B .①②③C .③④D .①②③④ 10.如图,∠BCD =70°,AB ∥DE ,则∠α与∠β满足( )A .∠α+∠β=110°B .∠α+∠β=70°C .∠β﹣∠α=70°D .∠α+∠β=90° 11.如图,在△ABC 中,∠ABC =60°,点C 在直线b 上,若直线a ∥b ,∠2=26°,则∠1的度数为( )A .26°B .28°C .34°D .36°12.如图,已知∠1=∠2,∠D =68°,则∠BCD =( )A .98°B .62°C .88°D .112°二、填空题13.若一个角的余角是它的补角的16,则这个角的度数为______________. 14.在同一平面内,直线AB 与直线CD 相交于点O ,40AOC ∠=︒,射线OE CD ⊥,则∠BOE 的度数为________︒.15.如图所示,直线PQ ∥MN ,C 是MN 上一点,CE 交PQ 于A ,CF 交PQ 于B ,且∠ECF =90°,如果∠FBQ =50°,则∠ECM 的度数为__________;16.如图,ED//AC ,BE//CD ,若C 60∠=︒,则E _______∠=︒17.如图,AB CD ∥,EF 平分BED ∠,66DEF D ︒∠+∠=,28B D ∠-∠=︒,则BED ∠=__________.18.如图,点O 为线段AB 上一点,若点,D E 不在线段AB 上,,40OD OE AOD ⊥∠=︒,则∠BOE 度数为____________________.19.如图,直线//a b ,1120∠=︒,240∠=︒,则3∠的度数为_______.20.如图,已知11∥l 2,∠C =90°,∠1=40°,则∠2的度数是_____.三、解答题21.在一张地图上有、、A B C 三地,但地图被墨迹污染,C 地具体位置看不清楚,但知道C 地在A 地的北偏东30°方向,在B 地南偏东45°方向.(1)根据以上条件,在地图上画出C 地的位置;(2)直接写出ACB ∠的度数.22.利用网格画图,每个小正方形边长均为1(1)过点C 画AB 的平行线CD ;(2)仅用直尺,过点C 画AB 的垂线,垂足为E ;(3)连接CA 、CB ,在线段CA 、CB 、CE 中,线段______最短,理由___________. (4)直接写出△ABC 的面积为 _________.23.如图//AB CD ,62B ∠=︒,EG 平分BED ∠,EG EF ⊥,求CEF ∠的度数.24.在如图所示的方格纸中,每个小正方形的顶点称为格点,点,,A B C 都在格点上. ()1找一格点D ,使得直线//CD AB ,画出直线CD ;()2找一格点E ,使得直线AE BC ⊥于点F ,画出直线AE ,并注明垂足F ; ()3找一格点G ,使得直线BG AB ⊥,画出直线BG ;()4连接AG ,则线段,,AB AF AG 的大小关系是 (用“<”连接).25.如图,点E 在直线DF 上,点B 在直线AC 上,若AGB EHF ∠=∠,C D ∠=∠.试说明:A F ∠=∠.请同学们补充下面的解答过程,并填空(填写理由或数学式).解:∵AGB DGF ∠=∠(______),AGB EHF ∠=∠(已知),∴DGF EHF ∠=∠(______),∴______∥_____(______),∴D ∠=_____(______).∵D C ∠=∠(已知),∴______C =∠(______),∴//DF AC (______),∴A F ∠=∠(______).26.把一块含60°角的直角三角尺()0090,60EFG EFG EGF ∠=∠=放在两条平行线,AB CD 之间.(1)如图1,若三角形的60°角的顶点G 放在CD 上,且221∠=∠,求1∠的度数; (2)如图2,若把三角尺的两个锐角的顶点,E G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠间的数量关系;(3)如图3,若把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上,请直接写出AEG ∠与CFG ∠的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.【详解】解:①∠1和∠2是同位角;②∠1和∠2是同位角;③∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角;④∠1和∠2是同位角.∴∠1与∠2是同位角的有①②④.故选:D.【点睛】本题考查三线八角中的某两个角是不是同位角,同位角完全由两个角在图形中的相对位置决定.在复杂的图形中判别同位角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形.2.C解析:C【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【详解】在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C正确;故选:C.【点睛】本题主要考查了同一平面内,两条直线的位置关系,注意垂直是相交的一种特殊情况,不能单独作为一类.3.B解析:B【分析】根据绝对值的性质,科学记数法与近似数,两点之间的距离,线段的中点的定义,平行线的定义对各小题分析判断即可得解.【详解】解:①绝对值等于本身的数是非负数,故①错误;②将数60340精确到千位是6.0×104,故②正确;③连接两点的线段的长度就是两点间的距离,故③正确;④当点A、B、C不共线时,AC=BC,则点C也不是线段AB的中点,故④错误;⑤不相交的两条直线如果不在同一平面,它们不是平行线,故⑤错误;故选:B.【点睛】本题考查绝对值的性质,科学记数法与近似数,两点之间的距离,线段的中点的定义,平行线的定义等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.4.D解析:D【分析】根据平行线的性质可得∠1+∠2+90°=180°,由∠1=62°可求解∠2的度数.【详解】解:∵a∥b,∴∠1+∠2+∠BAC=180°,∵∠BAC=90°,∠1=62°,∴∠2=180°-∠1-∠BAC=180°-62°-90°=28°,故选:D.【点睛】本题主要考查平行线的性质,掌握平行线的性质是解题的关键.5.C解析:C【分析】根据作一个角等于已知角的方法解决问题即可.【详解】解:(4)错误.应该是以C'为圆心,CD为半径作弧,交前面的弧于D';故选:C.【点睛】本题考查作图-复杂作图,作一个角等于已知角,解题的关键是熟练掌握五种基本作图,属于中考常考题型.6.C解析:C【分析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB不平行于CD,∴∠4+∠5≠180°故错误,故选:C.【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.7.D解析:D【分析】∥∥,∥,即可得到依据AD EF BC BD GF∠,即可得到∠=∠=∠=∠=∠∠=∠,再根据BD平分ADC ADB DBC FGC EFG EHB1,1∠=∠=∠.ADB CDB CFG【详解】解:∵AD EF BC BD GF ∥∥,∥,∴11ADB DBC FGC EFG EHB ∠=∠=∠=∠=∠∠=∠,,又∵BD 平分ADC ∠,∴ADB CDB CFG ∠=∠=∠,∴图中与1∠相等的角(1∠除外)共有7个,故选:D.【点睛】此题主要考查了平行线的性质,此题充分运用平行线的性质以及角的等量代换就可以解决问题.8.C解析:C【分析】利用等腰直角三角形的定义求∠3,再由平行线的性质求出∠2即可.【详解】如图,∵△ABC 是等腰直角三角形,∴∠1+∠3=45°,∵∠1=15°,∴∠3=30°,∵a ∥b ,∴∠2=∠3=30°,故选C .【点睛】本题考查平行线的性质,解题的关键是熟练掌握基本知识.9.A解析:A【分析】根据“从直线外一点到这条直线上各点所连的线段中,垂线段最短”;“从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离”进行判断,即可解答.【详解】解:①线段AP是点A到直线PC的距离,错误;②线段BP的长是点P到直线l的距离,正确;③PA,PB,PC三条线段中,PB最短,正确;④线段PC的长是点P到直线l的距离,错误,故选:A.【点睛】此题主要考查了垂线的两条性质:①从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.②从直线外一点到这条直线上各点所连的线段中,垂线段最短.10.B解析:B【分析】过点C作CF∥AB,根据平行线的性质得到∠BCF=∠α,∠DCF=∠β,由此即可解答.【详解】如图,过点C作CF∥AB,∵AB∥DE,∴AB∥CF∥DE,∴∠BCF=∠α,∠DCF=∠β,∵∠BCD=70°,∴∠BCD =∠BCF+∠DCF=∠α+∠β=70°,∴∠α+∠β=70°.故选B.【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线的性质进行推理证明是解决本题的关键.11.C解析:C【分析】如图,过点B作BE∥a.想办法证明∠1+∠2=60°即可解决问题.【详解】如图,过点B作BE∥a.∵a∥b,a∥BE,∴b∥BE,∴∠1=∠ABE,∠2=∠CBE,∵∠ABC=∠ABE+∠CBE=60°,∴∠1+∠2=60°,∵∠2=26°,∴∠1=34°,故选:C.【点睛】本题考查平行线的判定和性质,解题的关键是学会添加常用辅助线,构造平行线解决问题.12.D解析:D【分析】由∠1=∠2证明直线AD//BC,根据平行线的性质得∠D+∠BCD=180°,计算∠BCD的度数为112°.【详解】解:∵∠1=∠2,∴AD//BC,∴∠D+∠BCD=180°,又∵∠D=68°,∴∠BCD=112°,故选:D.【点睛】本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.72°【分析】设这个角的度数为x根据题意列方程求解即可【详解】设这个角的度数为x根据题意得:解得x=故答案为:【点睛】此题考查余角补角的定义及计算掌握角的余角及补角的表示方法列出方程解答问题是解题的 解析:72°【分析】设这个角的度数为x ,根据题意列方程190(180)6x x ︒-=︒-,求解即可. 【详解】设这个角的度数为x ,根据题意得:190(180)6x x ︒-=︒-, 解得x=72︒,故答案为:72︒.【点睛】此题考查余角、补角的定义及计算,掌握角的余角及补角的表示方法,列出方程解答问题是解题的关键. 14.50°或130°【分析】先根据垂直的定义求出∠DOE=90°然后根据对顶角相等求出∠DOB 的度数再根据角的和差求出∠BOE 的度数【详解】解:如图1:∵OE ⊥CD ∴∠DOE=90°∵∴∠DOB=°∴∠解析:50°或130°【分析】先根据垂直的定义求出∠DOE=90°,然后根据对顶角相等求出∠DOB 的度数,再根据角的和差求出∠BOE 的度数.【详解】解:如图1:∵OE ⊥CD ,∴∠DOE=90°,∵40AOC ∠=︒,∴∠DOB=40AOC ∠=︒°,∴∠BOE=90°-40°=50°,如图2:∵OE ⊥CD ,∴∠DOE =90°,∵40AOC ∠=︒,∴∠DOB=40AOC ∠=︒°,∴∠BOE=90°+40°=130°,故答案为:50°或130°.【点睛】本题考查了垂线的定义,对顶角相等,要注意领会由垂直得直角这一要点.15.40°【分析】先根据两直线平行同位角相等求出∠BCN 再利用平角定义即可求出【详解】∵PQ ∥MN ∠FBQ=50°∴∠BCN=∠FBQ=50°又∠ECF=90°∴∠ECM=180°-90°-50°=40解析:40°【分析】先根据两直线平行,同位角相等求出∠BCN ,再利用平角定义即可求出.【详解】∵PQ ∥MN ,∠FBQ=50°,∴∠BCN=∠FBQ=50°,又∠ECF=90°,∴∠ECM=180°-90°-50°=40°.故答案为:40°.【点睛】本题是基础题,主要利用平行线的性质和平角的定义解答.16.60°【分析】根据平行线的性质可求∠ABE 再根据平行线的性质可求∠E【详解】解:∵BE ∥CD ∠C=60°∴∠ABE=60°∵ED ∥AC ∴∠E=60°故答案为:60【点睛】考查了平行线的性质关键是熟悉解析:60°【分析】根据平行线的性质可求∠ABE ,再根据平行线的性质可求∠E .【详解】解:∵BE ∥CD ,∠C=60°,∴∠ABE=60°,∵ED∥AC,∴∠E=60°.故答案为:60.【点睛】考查了平行线的性质,关键是熟悉两直线平行,同位角相等;两直线平行,内错角相等的知识点.17.【分析】过E点作EM∥AB根据平行线的性质可得∠BED=∠B+∠D利用角平分线的定义可求得∠B+3∠D=132°结合∠B-∠D=28°即可求解【详解】解:过E 点作EM∥AB∴∠B=∠BEM∵AB∥C解析:80【分析】过E点作EM∥AB,根据平行线的性质可得∠BED=∠B+∠D,利用角平分线的定义可求得∠B+3∠D=132°,结合∠B-∠D=28°即可求解.【详解】解:过E点作EM∥AB,∴∠B=∠BEM,∵AB∥CD,∴EM∥CD,∴∠MED=∠D,∴∠BED=∠B+∠D,∵EF平分∠BED,∠BED,∴∠DEF=12∵∠DEF+∠D=66°,∠BED+∠D=66°,∴12∴∠BED+2∠D=132°,即∠B+3∠D=132°,∵∠B-∠D=28°,∴∠B=54°,∠D=26°,∴∠BED=80°.故答案为:80°.【点睛】本题主要考查平行线的性质,角平分线的定义,作出辅助线证出∠BED =∠B +∠D 是解题的关键.18.或【分析】可分两种情况当位于线段同侧时或异侧时根据垂线的定义结合平角的定义可计算求解【详解】解:当位于线段同侧时如图1;当位于线段两侧时如图2故答案为:或【点睛】本题主要考查垂线的定义理解好题意分类 解析:50或130【分析】可分两种情况当OD ,OE 位于线段AB 同侧时或异侧时,根据垂线的定义,结合平角的定义可计算求解.【详解】解:当OD ,OE 位于线段AB 同侧时,如图1,OD OE ⊥,90DOE ∴∠=︒,180AOD DOE BOE ∠+∠+∠=︒,40AOD ∠=︒,180904050BOE ∴∠=︒-︒-︒=︒;当OD ,OE 位于线段AB 两侧时,如图2,OD OE ⊥,90DOE ∴∠=︒,40AOD ∠=︒,904050AOE ∴∠=︒-︒=︒,180AOE BOE ∠+∠=︒,18050130BOE ∴∠=︒-︒=︒.故答案为:50︒或130︒.【点睛】本题主要考查垂线的定义,理解好题意,分类讨论,灵活运用垂线的定义计算角的度数是解题的关键.19.【分析】如图(见解析)先根据平行线的性质可得再根据领补角的定义可得然后根据平角的定义即可得【详解】如图故答案为:【点睛】本题考查了平行线的性质领补角的定义平角的定义熟练掌握各定义与性质是解题关键 解析:80︒【分析】如图(见解析),先根据平行线的性质可得4240∠=∠=︒,再根据领补角的定义可得560∠=︒,然后根据平角的定义即可得.【详解】a b∠=︒,如图,//,240∴∠=∠=︒,4240∠=︒,1120∴∠=︒-∠=︒,5180160∴∠=︒-∠-∠=︒-︒-︒=︒,318045*********故答案为:80︒.【点睛】本题考查了平行线的性质、领补角的定义、平角的定义,熟练掌握各定义与性质是解题关键.20.50°【分析】通过作平行线l利用平行线的性质将角与角间的关系转化为∠1+∠2=∠3+∠4易得∠2的度数【详解】解:如图过点C作直线l使l∥11∥l2则∠1=∠3∠2=∠4∵∠3+∠4=90∠1=40解析:50°【分析】通过作平行线l,利用平行线的性质将角与角间的关系转化为∠1+∠2=∠3+∠4,易得∠2的度数.【详解】解:如图,过点C作直线l,使l∥11∥l2,则∠1=∠3,∠2=∠4.∵∠3+∠4=90,∠1=40°,∴∠2=90°﹣40°=50°.故答案是:50°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.三、解答题21.(1)见详解;(2)105°.【分析】(1)过点A、B作正北方向,再据方位角的含义画射线BX和AY,两射线之交点即是C 地;(2)记过点A的正北方向线与射线BX之交点为D,先求得∠CDA的度数,最后由三角形内角和为180°计算得∠ACB的度数.【详解】(1)如下图,第一步过B作m的平行线BS,以B为顶点作射线BX,使∠SBX=45°;第二步过A作m的平行线AN交BX于点D,以A为顶点作射线AY,使∠NAY=30°;则射线BX与射线AY的交点就是C地.(2)如上图,由C地在B地南偏东45°方向得∠SBX=45°∵SB∥m,AN∥m∴SB∥AN∴∠ADC=∠SBX=45°由C地在A地的北偏东30°方向得∠NAY=30°,∴∠ACB=180°-∠ADC-∠NAY=180°-45°-30°=105°.【点睛】此题考查方位角、平行线等知识,其中理解方位角正确画出图形是关键.22.(1)见详解;(2)见详解;(3)CE,垂线段最短;(4)8.【分析】(1)取点D作直线CD即可;(2)取点F作直线CF交AB与E即可;(3)根据垂线段最短即可解决问题;(4)用割补法,大长方形的面积减去三个小三角形的面积即可;【详解】解:(1)直线CD 即为所求;(2)直线CE 即为所求;(3)在线段CA 、CB 、CE 中,线段CE 最短,理由:垂线段最短;故答案为CE ,垂线段最短;(4) S △ABC =18﹣12×1×5﹣12×1×3﹣12×2×6=8, ∴△ABC 的面积为8.【点睛】本题主要考查垂线、平行线及其做图,注意作图的准确性.23.59°【分析】由题意,先求出BED ∠,由角平分线定义得到GED ∠,再结合垂直和平角的定义,即可求出答案.【详解】解:根据题意,∵//AB CD ,∴62BED B ∠=∠=︒,∵EG 平分BED ∠, ∴11623122GED BED ∠=∠=⨯︒=︒, ∵EG EF ⊥,∴90FEG ∠=︒,∴180319059CEF ∠=︒-︒-︒=︒;【点睛】本题考查了角平分线的定义,平行线的性质,以及余角、补角的定义,解题的关键是熟练掌握所学的知识,正确求出角的度数.24.(1)见解析;(2)见解析;(3)见解析;(4)AF AB AG <<【分析】(1)将AB 沿着BC 方向平移,使其过点C ,此时经过的格点即为所求;(2)延长CB ,作AE 与CB 交于F 点,此时E 点即为所求;(3)过B 点作AB 的垂线,经过的格点即为所求;(4)在两个直角三角形中比较即可得出结论.【详解】(1)如图所示,符合题意的格点有D 1,D 2两个,画出其中一个即可;(2)如图所示:E 点即为所求,垂足为F 点;(3)如图所示,点G 即为所求;(4)如图所示,显然,在Rt ABF 中,AB AF >;在Rt ABG 中,AG AB >, 故答案为:AF AB AG <<.【点睛】本题考查应用与设计作图,平行线的判定与性质以及垂线的定义,熟练掌握基本性质定理是解题关键.25.对顶角相等;等量代换;DB ;EC ;同位角相等,两直线平行;FEC ∠;两直线平行,同位角相等;D ∠;等量代换;内错角相等,两直线平行;两直线平行,内错角相等【分析】根据平行的性质和判定的相关知识进行解答即可.【详解】解:∵AGB DGF ∠=∠(对顶角相等),AGB EHF ∠=∠(已知),∴DGF EHF ∠=∠(等量代换),∴DB EC (同位角相等,两直线平行),∴D FEC ∠=∠(两直线平行,同位角相等).∵D C ∠=∠(已知),∴FEC C ∠=∠(等量代换),∴DF AC (内错角相等,两直线平行),∴A F ∠=∠(两直线平行,内错角相等).【点睛】本题主要考查了平行的性质和判定,灵活应用平行的性质定理、判定定理是解答本题的关键.26.(1)40°;(2)∠AEF+∠FGC=90°;(3)AEG ∠+CFG ∠=300°【分析】(1)根据平行线的性质得:1=∠EGD ,结合∠2=2∠1和平角的定义,即可求解; (2)过点F 作FP ∥AB ,根据平行线的性质和直角的意义,即可求解;(3)根据平行线的性质得∠AEF+∠CFE=180°,结合条件,即可求解.【详解】(1)∵AB ∥CD ,∴∠1=∠EGD ,∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)如图,过点F 作FP ∥AB ,∵CD ∥AB ,∴FP ∥AB ∥CD ,∴∠AEF=∠EFP ,∠FGC=∠GFP .∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG ,∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3) AEG ∠+CFG ∠=300°,理由如下:∵AB ∥CD ,∴∠AEF+∠CFE=180°,即AEG ∠−30°+CFG ∠−90°=180°, 整理得:AEG ∠+CFG ∠=300°.【点睛】本题主要考查平行线的性质,添加辅助线,构造相等的角,是解题的关键。

北京喇叭沟门满族中学七年级数学下册第五单元《相交线与平行线》知识点总结(含答案)

北京喇叭沟门满族中学七年级数学下册第五单元《相交线与平行线》知识点总结(含答案)

一、选择题1.如图33⨯网格中,每一横行、每一竖列以及两条斜对角线上的三个数的和都相等,则b a -的值是( )A .3-B .2-C .2D .32.定义运算“*”,其规则为2*3a b a b +=,则方程4*4x =的解为( ) A .3x =- B .3x = C .2x = D .4x = 3.某地为了打造千年古镇旅游景点,将修建一条长为3600m 的旅游大道.此项工程由A 、B 两个工程队接力完成,共用时20天.若A 、B 两个工程队每天分别能修建240m 、160m ,设A 工程队修建此项工程xm ,则可列方程为( )A .360020240160x x -+=B .360020160240x x -+= C .360020160240x x +-= D .360020160240x x --= 4.下列变形中,正确的是( )A .2x +6=0变形为2x =6B .x+32=2+x 变形为x +3=4+2xC .−2(x −4)=2变形为x −4=1D .−x+12=12变形为−x +1=1 5.下列解方程中去分母正确的是( ) A .由x 3−1=1−x 2,得2x −1=3−3x B .由x−22−3x−24=−1,得2(x −2)−3x −2=−4 C .由y+12=y 3−3y−16−y ,得3y +3=2y −3y +1−6y D .由4y 5−1=y+43,得12y −1=5y +206.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:“你抱怨干嘛?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴子原来所驮货物的袋数是( )A .5袋B .6袋C .7袋D .8袋7.一个两位数,十位上的数比个位上的数的3倍大1,个位上的数与十位上的数的和等于9,这个两位数是( )A .54B .72C .45D .628.如图,长方形ABCD 中,AB 3cm =,BC 2cm =,点P 从A 出发,以1cm/s 的速度沿A B C →→运动,最终到达点C ,在点P 运动了3秒后点Q 开始以2cm /s 的速度从D 运动到A ,在运动过程中,设点P 的运动时间为t ,则当APQ △的面积为22cm 时,t 的值为( )A .2或103B .2或113C .1或103D .1或1339.若正方形的边长增加3cm ,它的面积就增加39cm ,则正方形的边长原来是( ) A .8cmB .6cmC .5cmD .10cm 10.将方程2152132x x -+=-去分母,得( ) A .()()211352x x -=-+ B .416152x x -=-+C .416152x x -=--D .()()2216352x x -=-+ 11.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为( )A .(9﹣7)x=1B .(9+7)x=1C .11()179x -= D .11()179x += 12.下列说法正确的是( )A .若a c =b c ,则a=bB .若-12x=4y ,则x=-2y C .若ax=bx ,则a=b D .若a 2=b 2,则a=b13.宜宾某机械厂加工车间有34名工人,平均每名工人每天加工小齿轮20个或大齿轮15个.已知3个小齿轮和2个大齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天生产的齿轮刚好配套?若设加工小齿轮的工人有x 名,则可列方程为( ) A .2015(34)x x =-B .220315(34)x x ⨯=⨯-C .320215(34)x x ⨯=⨯-D .320(34)215x x ⨯-=⨯ 14.下列方程的变形,符合等式的性质的是( ) A .由2x ﹣3=7,得2x=7﹣3B .由3x ﹣2=x+1,得3x ﹣x=1﹣2C .由﹣2x=5,得x=﹣3D .由﹣13x=1,得x=﹣315.商店将进价2400元的彩电标价3200元出售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( )A .九折B .八五折C .八折D .七五折二、填空题16.一条河的水流速度为3km/h ,船在静水中的速度为xkm/h ,则船在这条河中顺水行驶的速度是____km/h ;17.若x 取一切有理数时,(23)(3)251m x m n x +--=+均成立,则m n +的值是_________.18.5个人用5天完成了某项工程的14,如果再增加工作效率相同的10个人,那么完成这项工作前后共用_____天.19.猪是中国十二生肖排行第十二的动物,对应地支为“亥”.现规定一种新的运算,a 亥b ab b =-,则满足等式123x -亥61=-的x 的值为__________. 20.对于数a ,b 定义这样一种运算:*2a b b a =-,例如1*3231=⨯-,若()3*11x +=,则x 的值为______.21.日历中同一竖列相邻三个数的和是63,则这三个数分别是______________.22.有一旅客携带了30公斤行李从重庆江北国际机场乘飞机去武汉,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购买行李票,现该旅客购买了120元的行李票,则他的飞机票价格是______.23.(1)如果33x y -=,那么x =_________;(2)如果2m n =,那么3m =___________. 24.一个圆柱形铁块,底面半径是20cm ,高16cm .若将其锻造成为长、宽分别是20cm 、8cm 的长方体,如果设长方体的高为cm x .根据题意,列出方程为___________. 25.已知关于x 的方程3223x m -=+的解是x m =,则m 的值为_________. 26.把方程|21|5x -=化成两个一元一次方程是___________________.三、解答题27.大明共有4800元,他将一部分钱按活期存了一年,剩下的钱买了企业债券,一年后共获利24.8元,知活期储蓄的年利率是0.35%,企业债券的年利率是0.6%,则大明存活期和买债券各用了多少元?28.一位商人来到一座新城市,想租一套房子,A 家房东的条件是先交2000元,每月租金1200元;B 家房东的条件是每月租金1400元.(1)这位商人想在这座城市住半年,则租哪家的房子划算?(2)如果这位商人想住一年,租哪家的房子划算?(3)这位商人住多长时间时,租两家的房子租金一样?29.检验下列方程后面小括号内的数是否为相应方程的解.(1)2x+5=10x-3(x=1);(2)2(x-1)-12(x+1)=3(x+1)-13(x-1)(x=0). 30.设a ,b ,c ,d 为有理数,现规定一种新的运算:a bad bc c d =-,那么当35727x-=时,x 的值是多少?。

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测(答案解析)(4)

(常考题)北师大版初中数学七年级数学下册第二单元《相交线与平行线》检测(答案解析)(4)

一、选择题1.如图,////,//AB CD EF CG AF ,那么图中与∠AFE 相等的角的个数是( )A .4B .5C .6D .72.如图,一副三角尺按不同的位置摆放,下列摆放方式中α∠与β∠互补的是( ) A . B . C . D .3.下列语句中正确的是( )A .直线AB 和直线BA 是两条不同的直线B .连接两点间的线段叫两点的距离C .一条射线就是一个周角D .一个角的余角比这个角的补角小 4.如图,按照上北下南,左西右东的规定画出方向十字线,∠AOE =m °,∠EOF =90°,OM 、ON 分别平分∠AOE 和∠BOF ,下面说法:①点E 位于点O 的北偏西m °;②图中互余的角有4对;③若∠BOF =4∠AOE ,则∠DON =54°;④若MON n AOE BOF ,则n 的倒数是23,其中正确有( )A .3个B .2个C .1个D .0个5.如图,已知直线//AD BC ,BE 平分ABC ∠交直线DA 于点E ,若58DAB ∠=︒,则E ∠等于( )A .25°B .29°C .30°D .45°6.如图,直线12l l //,被直线3l 、4l 所截,并且34l l ⊥,144∠=,则2∠等于( )A .56°B .36°C .44°D .46°7.如图,在三角形ABC 中,90ACB ∠=︒,4AC =,点D 是线段BC 上任意一点,连接AD ,则线段AD 的长不可能...是( )A .3B .4C .5D .68.如图,直线12//,,140l l αβ∠=∠∠=︒,则2∠等于( )A .140︒B .130︒C .120︒D .110︒ 9.如图,直线a b 、被直线c 所截,若//a b ,则下列不正确的是( )A .12∠=∠B .24∠∠=C .14∠=∠D .15∠=∠10.如图,AB //EF,∠D=90°,则α,β,γ的大小关系是( )A .βαγ=+B .90βαγ=+-︒C .90βγα=+︒-D .90βαγ=+︒-11.如图,直线AB ,CD 相交于点O ,EO ⊥AB ,若∠AOC =24°,则∠DOE 的度数是( )A .24°B .54°C .66°D .76° 12.如果A ∠与B 的两边分别平行,A ∠比B 的3倍少36,则A ∠的度数是( )A .18B .126C .18或126D .以上都不对 二、填空题13.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD =︒∠,那么AEC ∠=___________.14.已知70AOB ∠=︒,COB ∠与AOB ∠互余,则AOC ∠的度数为______.15.两条直线相交所构成的四个角,其中:①有三个角都相等;②有一对对顶角相等;③有一个角是直角;④有一对邻补角相等,能判定这两条直线垂直的有_______. 16.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.17.在数学拓展课程《玩转学具》课堂中,老师把我们常用的一副三角板带进了课堂.(1)嘉嘉将一副三角板按如图1所示的方式放置,使点A 落在DE 上,且//BC DE ,则ACE ∠的度数为__________.(2)如图2,淇淇将等腰直角三角板放在一组平行的直线与之间,并使直角顶点A 在直线a 上,顶点C 在直线b 上,现测得130∠=,则2∠的度数为__________.18.如图,//AB CD ,点E 在CB 的延长线上,若60ABE ∠=︒,则ECD ∠的度数为__________.19.如图,在三角形ABC 中,90BAC ∠=,AD BC ⊥于点D ,比较线段AB ,BC ,AD 长度的大小,用“<”连接为__________.20.将一副三角板(30A ∠=︒)按如图所示方式摆放,使得AB EF ,则1∠等于______度.三、解答题21.如图,直线AB 、CD 相交于点O ,已知80AOC ︒∠=,射线OE 把BOD ∠分成两个角,且∠BOE ;3:5EOD ∠=.(1)求EOB ∠的度数;(2)过点O 作射线OF OE ⊥,求BOF ∠的度数.22.如图,直线AB 与CD 交于点O ,OF AB ⊥垂足为O ,OE 平分FOD ∠.(1)若70AOC ∠=︒,求BOD ∠和EOB ∠的度数;(2)若AOC α∠=,则EOB ∠=___________.(用含α的代数式表示)23.如图,直线AB 与直线CD 相交于点O ,射线OE 在AOD ∠内部,OA 平分EOC ∠. (1)当OE CD ⊥时,写出图中所有与BOD ∠互补的角.(2)当:2:3EOC EOD ∠∠=时,求BOD ∠的度数.24.如图,已知长方形ABCD 中,10cm AD =,6cm DC =,点F 是DC 的中点,点E 从A 点出发在AD 上以每秒1cm 的速度向D 点运动,运动时间设为t 秒.(假定0t 10<<)(1)当5t =秒时,求阴影部分(即三角形BEF )的面积;(2)用含t 的式子表示阴影部分的面积;并求出当三角形EDF 的面积等于3时,阴影部分的面积是多少?(3)过点E 作//EG AB 交BF 于点G ,过点F 作//FH BC 交BE 于点H ,请直接写出在E 点运动过程中,EG 和FH 的数量关系.25.如图,已知直线AB ,CD 相交于点O ,AOE ∠与AOC ∠互余.(1)若32BOD ∠=︒,求AOE ∠的度数;(2)若:05:1AOD A C ∠∠=,求∠BOE 的度数.26.在如图所示的方格纸中,每个小正方形的顶点称为格点,点,,A B C 都在格点上. ()1找一格点D ,使得直线//CD AB ,画出直线CD ;()2找一格点E ,使得直线AE BC ⊥于点F ,画出直线AE ,并注明垂足F ; ()3找一格点G ,使得直线BG AB ⊥,画出直线BG ;()4连接AG ,则线段,,AB AF AG 的大小关系是 (用“<”连接).【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先根据CD∥EF得出∠CGE=∠GCD,再由CG∥AF得出∠CGE=∠AFE,根据AB∥CD∥EF可得出∠AFE=∠DHF=∠AHC=∠BAH,由此可得出结论.【详解】解:∵CD∥EF,∴∠CGE=∠GCD,∠AFE=∠DHF.∵CG∥AF,∴∠CGE=∠AFE.∵AB∥CD,∴∠BAH=∠DHF,∴∠AFE=∠CGE=∠AFE=∠DHF=∠AHC=∠BAH.故选:B.【点睛】本题考查了平行线的性质,用到的知识点为:两直线平行,同位角相等,内错角相等.2.D解析:D【分析】根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.【详解】解:A、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项不符合题意;B、图中∠α=∠β,不一定互余,故本选项错误;C、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D、图中∠α+∠β=180°,互为补角,故本选项正确.故选:D.【点睛】本题考查了余角和补角,是基础题,熟记概念与性质是解题的关键.3.D解析:D【分析】根据射线、直线的定义,余角与补角,周角的定义,以及线段的性质即可求解.【详解】A、直线AB和直线BA是一条直线,原来的说法是错误的,不符合题意;B、连接两点间的线段的长度叫两点的距离,原来的说法是错误的,不符合题意;C、周角的特点是两条边重合成射线.但不能说成周角是一条射线,原来的说法是错误的,不符合题意;D、一个角的余角比这个角的补角小是正确的,符合题意;故选:D .【点睛】本题考查了射线、直线的定义,余角与补角,周角的定义,以及线段的性质,是基础题,熟记相关概念与性质是解题的关键.4.B解析:B【分析】根据方位角的定义,以及角平分线的定义,分别求出所需角的度数,然后分别进行判断,即可得到答案.【详解】解:∵∠AOE =m °,∴∠EOD=90°-m°,∴点E 位于点O 的北偏西90°-m °;故①错误;∵∠EOF =90°,∴∠EOD+∠DOF =90°,∠AOE+∠BOF=90°,∵∠AOD =∠BOD=90°,∴∠AOE+∠EOD=90°,∠DOF+∠FOB=90°,∠AOM+∠MOD=90°,∠BON+∠DON=90°,∵OM 、ON 分别平分∠AOE 和∠BOF ,∴∠AOM=∠EOM ,∠BON=∠FON ,∴∠EOM+∠MOD=90°,∠FON+∠DON=90°,∴图中互余的角共有8对,故②错误;∵∠BOF =4∠AOE ,∠AOE+∠BOF=90°,∴∠BOF=72°,∴∠BON=36°,∴∠DON=90°-36°=54°;故③正确;∵∠AOE+∠BOF=90°,∴∠MOE+∠NOF=11()904522AOE BOF , ∴9045135MON , ∴1353902MON n AOE BOF , ∴n 的倒数是23,故④正确; ∴正确的选项有③④,共2个;故选:B .【点睛】本题考查了角平分线的定义,余角的定义,方位角的表示,以及角度的和差关系,解题的关键是熟练掌握题意,正确找出图中角的关系进行判断.5.B解析:B【分析】根据平行线的性质可知∠ABC=58°,再根据角平分线的性质可求∠EBC=29°,再利用平行线的性质可求∠E .【详解】解:∵//AD BC ,∴58ABC DAB ∠=∠=︒,∵BE 平分ABC ∠, ∴1292EBC ABC ∠=∠=︒, ∵//AD BC ,∴29E EBC ∠=∠=︒,故选B .【点睛】本题考查了平行线的性质和角平分线的性质,灵活运用这两个性质是解题关键. 6.D解析:D【分析】依据l 1∥l 2,即可得到∠1=∠3=44°,再根据l 3⊥l 4,可得∠2=90°-44°=46°.【详解】解:如图,∵l 1∥l 2,∴∠1=∠3=44°,又∵l 3⊥l 4,∴∠2=90°-44°=46°,故选:D .【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.7.A解析:A【分析】根据垂线段最短即可判断.【详解】∵90ACB ∠=︒∴点A 到线段CB 最短的最短距离为AC=4∴AD 的长最短为4故选A .【点睛】本题考查了垂线段最短,直线外一点与直线上各点连接的所有线段中,垂线段最短. 8.A解析:A【分析】作出如下图所示的辅助线,然后再利用平行线的性质即可求解.【详解】解:如图所示,作直线m ∥n ∥l 1∥l 2,此时有∠3=∠1=40°,∠6=180°-∠2,∠4=∠5,又∠α=∠3+∠4,∠β=∠5+∠6=∠5+(180°-∠2),且∠α=∠β,∴∠3+∠4=∠5+(180°-∠2),由于∠4=∠5,∴∠3=180°-∠2,代入数据:40°=180°-∠2,∴∠2=140°,故选:A .【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题的关键.9.D解析:D【分析】根据平行线的性质得出∠2=∠4,∠1=∠4,根据对顶角相等和邻补角互补得出∠1=∠2,∠1+∠5=180°,即可得出选项.【详解】解:∵a∥b,∴∠2=∠4,∠1=∠4,∵∠4+∠5=180°,∴∠1+∠5=180°,∵∠1=∠2(对顶角相等),所以选项A、B、C答案正确,只有选项D答案错误;故选:D.【点睛】本题考查了平行线的性质,对顶角相等,邻补角互补等知识点,能灵活运用知识点进行推理是解此题的关键.10.D解析:D【分析】通过作辅助线,过点C和点D作CG//AB,DH//AB,可得CG//DH//AB,根据AB//EF,可得AB//EF//CG//DH,再根据平行线的性质即可得γ+β-α=90°,进而可得结论.【详解】解:如图,过点C和点D作CG//AB,DH//AB,∵CG//AB,DH//AB,∴CG//DH//AB,∵AB//EF,∴AB//EF//CG//DH,∵CG//AB,∴∠BCG=α,∴∠GCD=∠BCD-∠BCG=β-α,∵CG//DH,∴∠CDH=∠GCD=β-α,∵HD//EF,∴∠HDE=γ,∵∠EDC=∠HDE+∠CDH=90°,∴γ+β-α=90°,∴β=α+90°-γ.故选:D.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.11.C解析:C【分析】根据对顶角相等求∠BOD,由垂直的性质求∠BOE,根据∠DOE=∠BOE−∠BOD求解.【详解】∵直线AB,CD相交于点O,∠AOC=24°,∴∠BOD=∠AOC=24°,∵EO⊥AB,∴∠BOE=90°,∴∠DOE=∠BOE−∠BOD=90°−24°=66°.故选:C.【点睛】本题考查了对顶角,垂直的定义.解题的关键是采用形数结合的方法得到∠DOE=∠BOE−∠BOD.12.C解析:C【分析】由∠A与∠B的两边分别平行,即可得∠A与∠B相等或互补,然后分两种情况,分别从∠A与∠B相等或互补去分析,即可求得∠A的度数.【详解】解:∵∠A与∠B的两边分别平行,∴∠A与∠B相等或互补.分两种情况:①如图1,当∠A+∠B=180°时,∠A=3∠B-36°,解得:∠A=126°;②如图2,当∠A=∠B,∠A=3∠B-36°,解得:∠A=18°.所以∠A=18°或126°.故选:C.【点睛】此题考查的是平行线的性质,如果两角的两边分别平行,则这两个角相等或互补.此题还考查了方程组的解法.解题要注意列出准确的方程组.二、填空题13.146°【分析】根据平行线的性质和角平分线的性质可以得到∠AEC 的度数本题得以解决【详解】解:∵l1∥l2∴∠BAD+∠ABC=180°∵∠BAD=136°∴∠ABC=44°∵BD 平分∠ABC ∴∠D 解析:146°【分析】根据平行线的性质和角平分线的性质,可以得到∠AEC 的度数,本题得以解决.【详解】解:∵l 1∥l 2,∴∠BAD+∠ABC=180°,∵∠BAD=136°,∴∠ABC=44°,∵BD 平分∠ABC ,∴∠DBC=22°,∵BD ⊥CD ,∴∠BDC=90°,∴∠BCD=68°,∵CE 平分∠DCB ,∴∠ECB=34°,∵l 1∥l 2,∴∠AEC+∠ECB=180°,∴∠AEC=146°,故答案为:146°.【点睛】本题考查平行线的性质、角平分线的性质、垂线,解答本题的关键是明确题意,利用数形结合的思想解答.14.90°或50°【分析】根据互余的特点分射线OC 在内部和外部进行求解即可;【详解】∵与互余∴当OC 在内部时;当OC 在外部时;故答案是90°或50°【点睛】本题主要考查了角的计算准确计算是解题的关键解析:90°或50°【分析】根据互余的特点,分射线OC 在AOB ∠内部和外部进行求解即可;【详解】∵70AOB ∠=︒,COB ∠与AOB ∠互余,∴20COB ∠=︒,当OC 在AOB ∠内部时,702050AOC ∠=︒-︒=︒;当OC 在AOB ∠外部时,702090AOC ∠=︒+︒=︒;故答案是90°或50°.【点睛】本题主要考查了角的计算,准确计算是解题的关键.15.①③④【分析】①根据对顶角相等可以判定四个角相等由周角360°可知四个角都为90°则AB ⊥CD ;②因为对顶角相等但不能说明有角为90°不能说明这两条直线垂直;③根据垂直定义得:AB ⊥CD ;④因为邻补解析:①③④【分析】①根据对顶角相等可以判定四个角相等,由周角360°可知,四个角都为90°,则AB ⊥CD ;②因为对顶角相等,但不能说明有角为90°,不能说明这两条直线垂直;③根据垂直定义得:AB ⊥CD ;④因为邻补角的和为180°,又相等,所以每个角为90°,则AB ⊥CD .【详解】①如图,若∠AOC=∠COB=∠BOD ,∵∠AOD=∠COB ,∴∠AOC=∠COB=∠BOD=∠AOD ,∵∠AOC+∠COB+∠BOD+∠AOD=360°,∴∠AOC=∠COB=∠BOD=∠AOD=90°,∴AB ⊥CD ;所以此选项能判定这两条直线垂直;②∠AOC=∠BOD ,∠AOD=∠COB ,但不能说明有角为90°,所以此选项不能判定这两条直线垂直;③若∠AOC=90°,∴AB ⊥CD ,所以此选项能判定这两条直线垂直;④若∠AOC=∠AOD ,∵∠AOC+∠AOD=180°,∴∠AOC=∠BOD=90°,所以此选项能判定这两条直线垂直;故能判定这两条直线垂直的有:①③④;故答案为:①③④.【点睛】本题考查了对顶角、邻补角以及垂直的定义,熟练掌握两条直线垂直的定义是关键.16.40°【分析】本题主要利用两直线平行同旁内角互补两直线平行内错角相等以及角平分线的定义进行做题【详解】∵AD∥BC∴∠BCD=180°-∠D=80°又∵CA 平分∠BCD∴∠ACB=∠BCD=40°∴解析:40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD∥BC,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∠BCD=40°,∴∠ACB=12∴∠DAC=∠ACB=40°.【点睛】本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.17.15°15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°从而得到∠BCD再利用角的和差得到∠ACE;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=180°再由等腰直角三角形解析:15° 15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°,从而得到∠BCD,再利用角的和差得到∠ACE;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=180°,再由等腰直角三角形的性质得到∠BAC=90°,∠ACB=45°,结合∠1的度数可得结果.【详解】解:(1)由三角板的性质可知:∠D=60°,∠ACB=45°,∠DCE=90°,∵BC∥DE,∴∠D+∠BCD=180°,∴∠BCD=120°,∴∠BCE=∠BCD-∠DCE=30°,∴∠ACE=∠ACB-∠BCE=15°,故答案为:15°;(2)∵a∥b,∴∠2+∠BAC+∠ACB+∠1=180°,∵△ABC为等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠2=180°-∠BAC-∠ACB=45°,∵∠1=30°,∴∠2=15°,故答案为:15°.【点睛】本题考查了三角板的性质,平行线的性质,解题时注意:两直线平行,同旁内角互补.18.120°【分析】由∠ABE=60°根据邻补角的定义即可求得∠ABC的度数又由AB∥CD根据两直线平行内错角相等即可求得∠ECD的度数【详解】解:∵∠ABE=60°∴∠ABC=180°-∠ABE=18解析:120°.【分析】由∠ABE=60°,根据邻补角的定义,即可求得∠ABC的度数,又由AB∥CD,根据两直线平行,内错角相等,即可求得∠ECD的度数.【详解】解:∵∠ABE=60°,∴∠ABC=180°-∠ABE=180°-60°=120°,∵AB∥CD,∴∠ECD=∠ABC=120°.故答案为:120°.【点睛】此题考查了平行线的性质.此题比较简单,解题的关键是注意掌握两直线平行,内错角相等定理的应用.19.AD<AB<BC【分析】根据垂线段的性质即可得到结论【详解】解:∵在三角形ABC中∠BAC=90°AD⊥BC于点D∴AD<AB<BC故答案为:AD<AB<BC 【点睛】本题考查了垂线段熟练掌握垂线段最解析:AD<AB<BC.【分析】根据垂线段的性质即可得到结论.【详解】解:∵在三角形ABC中,∠BAC=90°,AD⊥BC于点D,∴AD<AB<BC,故答案为:AD<AB<BC.本题考查了垂线段,熟练掌握垂线段最短是解题的关键.20.105°【分析】依据AB∥EF即可得∠BDE=∠E=45°再根据∠A=30°可得∠B=60°利用三角形外角性质即可得到∠1=∠BDE+∠B=105°【详解】∵AB∥EF∴∠BDE=∠E=45°又∵∠解析:105°【分析】依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.【详解】∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,【点睛】本题考查平行线的性质和三角形外角的性质,解题的关键是掌握平行线的性质和三角形外角的性质.三、解答题21.(1)30°;(2)120°或60°【分析】(1)根据对顶角相等可得∠BOD=∠AOC,然后根据比例求解即可;(2)分OF在∠AOD的内部时,∠BOF=∠EOF+∠BOE,OF在∠BOC的内部时,∠BOF=∠EOF-∠BOE进行计算即可得解.【详解】解:(1)∵∠AOC=80°,∴∠BOD=∠AOC=80°,∵∠BOE:∠EOD=3:5,∴∠BOE=80°×3=30°;35(2)∵OF⊥OE,∴∠EOF=90°,OF在∠AOD的内部时,∠BOF=∠EOF+∠BOE=90°+30°,=120°,OF在∠BOC的内部时,∠BOF=∠EOF-∠BOE=60°,综上所述:∠DOF =120°或60°.【点睛】本题考查了对顶角相等的性质,角的计算,熟记概念并准确识图是解题的关键. 22.(1)70,10BOD EOB ∠=︒∠=︒;(2)452α︒-【分析】(1)根据对顶角相等求得∠BOD 的度数,利用垂直的定义求得90FOB ∠=︒,然后利用角的和差运算及角平分线的定义求解;(2)根据角的和差运算及角平分线的定义列式求解.【详解】解:(1) ∵AOC ∠与BOD ∠是对顶角∴70AOC BOD ∠=∠=︒(对顶角相等)∵FO OB ⊥∴90FOB ∠=︒∴9070160FOD FOB BOD ︒︒∠=∠+∠=+=︒∵OE 平分FOD ∠ ∴111608022FOE FOD ∠=∠==︒⨯︒ ∴908010EOB FOB FOE ∠=∠-∠=︒-=︒︒(2)由题意可得:AOC BOD α∠=∠=∵FO OB ⊥∴90FOB ∠=︒∴90FOD FOB BOD α∠=∠+=︒∠+∵OE 平分FOD ∠ ∴2(90)112FOE FOD α=∠=︒+∠ ∴1(90)452290EOB FOB FOE αα︒∠=∠-∠==︒+︒--故答案为:452α︒-.【点睛】本题考查对顶角相等,角平分线的定义及角的和差运算,准确识图,掌握相关概念正确推理计算是解题解题关键.23.(1)AOD ∠、BOC ∠、∠BOE ;(2)36°.【分析】(1)根据题意,由角平分线的定义,先求出45AOC AOE BOD ∠=∠=∠=︒,然后求出135AOD BOC BOE ∠=∠=∠=︒,即可得到答案;(2)根据角的比例,先求出72EOC ∠=︒,由角平分线的定义和对顶角定理,即可得到答案.【详解】解:(1)∵OE CD ⊥,∴90COE EOD ∠=∠=︒,∵OA 平分EOC ∠, ∴190452AOC AOE ∠=∠=⨯︒=︒, ∴45BOD ∠=︒,∴18045135AOD BOC BOE ∠=∠=∠=︒-︒=︒,∴与BOD ∠互补的角有AOD ∠、BOC ∠、∠BOE ;(2)根据题意,∵:2:3EOC EOD ∠∠=,又∵180EOC EOD ∠+∠=︒, ∴21807223EOC ∠=⨯︒=︒+, ∵OA 平分EOC ∠, ∴172362AOC AOE ∠=∠=⨯︒=︒, ∴36BOD AOC ∠=∠=︒;【点睛】本题考查了角平分线的定义,余角和补角的定义,对顶角相等,以及平角的定义,解题的关键是熟练掌握所学的知识,正确的理解题意,得到角的关系进行解题.24.(1)4522cm ;(2)23302t cm ⎛⎫- ⎪⎝⎭;218cm ;(3)53EG FH = 【分析】(1)由长方形的性质得出10cm BC AD ==,6cm AB DC ==,由5t =得AE=5,DE=10-5=5,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形即可求解;(2)由题意得AE=t ,DE=10-t ,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形表示出阴影部分的面积;由12EDF S DE DF =⋅△求出t 的值,代入计算即可; (3)由长方形ABCD 得AD CD ⊥,根据平行线的性质得EG HF ⊥,根据平行线间的距离相等可得DE ,AE ,DF ,CF 分别等于,,,EGF EGB EHF BHF △△△△的高,由BEF S 的面积即可得出结论.【详解】解:(1)∵长方形ABCD 中,10cm AD =,6cm DC =,∴10cm BC AD ==,6cm AB DC ==,∵点F 是DC 的中点,∴3cm DF CF ==,当5t =秒时,AE=5cm ,DE=10-5=5 cm ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()()1111066510353222⨯-⨯-⨯-⨯ =156015152--- =4522cm ; (2)由题意得AE=t ,DE=10-t ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()1111066103310222t t ⨯-⨯-⨯-⨯⨯- =360315152t t ---+ =3302t -, ∴用含t 的式子表示阴影部分的面积为:23302t cm ⎛⎫-⎪⎝⎭; 当三角形EDF 的面积等于3时,12EDF S DE DF =⋅△=()13102t ⨯⨯-=3, 解得:8t =, 8t =时,38=30=182S ⨯-阴影2cm ; (3)∵长方形ABCD∴AD CD ⊥,//,//AB CD AD BC ,∵//EG AB ,//FH BC ,∴EG HF ⊥,,AD EG CD HF ⊥⊥,∴DE ,AE 分别等于,EGF EGB △△的EG 边上的高,DF ,CF 分别等于,EHF BHF △△的FH 边上的高, ∴11112222BEF S EG DE EG AE HF DF HF CF =⋅+⋅=⋅+⋅△,∴()()1122EG DE AE HF DF CF +=+,即EG AD HF CD ⋅=⋅, ∵10cm AD =,6cm DC =, ∴106EG HF =,即53EG FH =.【点睛】本题是一个动点问题,考查了平行线间的距离,三角形面积的计算,解题的关键是熟练掌握平行线的性质和三角形面积的计算方法.25.(1)58°;(2)120°【分析】(1)先根据对顶角的性质证得32AOC BOD ∠=∠=︒,根据AOE ∠与AOC ∠互余计算即可得到答案;(2)根据:5:1AOD AOC ∠∠=,180AOC AOD ∠+∠=︒,求得30AOC ∠=︒,得到30BOD AOC ∠=∠=︒,由90COE DOE ∠=∠=︒即可求出结果.【详解】解(1)因为AOC ∠与BOD ∠是对顶角,所以32AOC BOD ∠=∠=︒,因为AOE ∠与AOC ∠互余,所以90AOE AOC ∠+∠=︒,所以90AOE AOC ∠=︒-∠9032=︒-︒58=︒;(2)因为:5:1AOD AOC ∠∠=,所以5AOD AOC ∠=∠,因为180AOC AOD ∠+∠=︒,所以6180AOC ∠=︒,30AOC ∠=︒,又30BOD AOC ∠=∠=︒,90COE DOE ∠=∠=︒,所以BOE DOE BOD ∠=∠+∠9030=︒+︒120=︒.【点睛】此题考查几何图形中角度计算,余角的定义及求一个角的余角,邻补角的定义及求一个角的邻补角的度数,对顶角的性质,掌握图形中各角度的位置关系是解题的关键. 26.(1)见解析;(2)见解析;(3)见解析;(4)AF AB AG <<【分析】(1)将AB 沿着BC 方向平移,使其过点C ,此时经过的格点即为所求;(2)延长CB ,作AE 与CB 交于F 点,此时E 点即为所求;(3)过B 点作AB 的垂线,经过的格点即为所求;(4)在两个直角三角形中比较即可得出结论.【详解】(1)如图所示,符合题意的格点有D 1,D 2两个,画出其中一个即可;(2)如图所示:E 点即为所求,垂足为F 点;(3)如图所示,点G 即为所求;(4)如图所示,显然,在Rt ABF 中,AB AF >;在Rt ABG 中,AG AB >, 故答案为:AF AB AG <<.【点睛】本题考查应用与设计作图,平行线的判定与性质以及垂线的定义,熟练掌握基本性质定理是解题关键.。

北京北小营中学七年级数学下册第五章《相交线与平行线》复习题(含答案)

北京北小营中学七年级数学下册第五章《相交线与平行线》复习题(含答案)

一、选择题1.下列说法不正确的是()A.同一平面上的两条直线不平行就相交B.同位角相等,两直线平行C.过直线外一点只有一条直线与已知直线平行D.同位角互补,两直线平行D解析:D【分析】根据平行线的概念对选项A进行判断;根据平行线的性质对选项B进行判断;根据平行线的公理和判定定理对选项C和D进行判断.【详解】A. 同一平面上的两条直线不平行就相交,所以选项A正确;B. 同位角相等,两直线平行,这是平行线的判定定理,所以B选项正确;C.过直线外一点有且只有一条直线与已知直线平行,所以选项C正确;D. 同旁内角互补,两直线平行,所以选项D错误.故选D.【点睛】本题是一道关于平行线的题目,掌握平行线的性质和定理是解决此题的关键.2.下列命题中是真命题的有()①两个角的和等于平角时,这两个角互为邻补角;②过一点有且只有一条直线与已知直线平行;③两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行;④图形B由图形A平移得到,则图形B与图形A中的对应点所连线段平行(或在同一条直线上)且相等;A.1个B.2个C.3个D.4个B解析:B【分析】根据补角和邻补角的定义可判断①,根据平行公理可判断②,根据平行线的性质和判定可判断③,根据平移的性质可判断④,进而可得答案.【详解】解:两个角的和等于平角时,这两个角互为补角,故命题①是假命题;过直线外一点有且只有一条直线与已知直线平行,故命题②是假命题;两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行,故命题③是真命题;图形B由图形A平移得到,则图形B与图形A中的对应点所连线段平行(或在同一条直线上)且相等,故命题④是真命题.综上,真命题有2个.故选:B.【点睛】本题考查了真假命题、平行线的判定和性质以及平移的性质等知识,属于基础题型,熟练掌握上述知识是解题的关键.3.如图,把一长方形纸片ABCD 沿EG 折叠后,AEG A EG '∠=∠,点A 、B 分别落在A '、B ′的位置,EA '与BC 相交于点F ,已知1125∠=︒,则2∠的度数是( )A .55°B .60°C .70°D .75°C解析:C【分析】 先根据平行线的性质可得55AEG ∠=︒,再根据平角的定义可得70∠︒=DEF ,然后根据平行线的性质即可得.【详解】由题意得://AD BC ,1125∠=︒,180155AEG ∴∠=︒-∠=︒,AEG A EG '∠=∠,55A EG '∴∠=︒,18070DEF AEG A EG '∴∠=︒-∠-∠=︒,又//AD BC ,270DEF ∴∠=∠=︒,故选:C .【点睛】本题考查了平角的定义、平行线的性质,熟练掌握平行线的性质是解题关键.4.下面的语句,不正确的是( )A .对顶角相等B .相等的角是对顶角C .两直线平行,内错角相等D .在同一平面内,经过一点,有且只有一条直线与已知直线垂直B解析:B【分析】根据对顶角的性质、平行线的性质和垂线的基本性质逐项进行分析,即可得出答案.【详解】A 、根据对顶角的性质可知,对顶角相等,故本选项正确;B 、相等的角不一定是对顶角,故本选项错误;C 、两直线平行,内错角相等,故本选项正确;D 、根据垂线的基本性质可知在同一平面内,过直线上或直线外的一点,有且只有一条直线和已知直线垂直.故本选项正确.故选:B .【点睛】本题主要考查了对顶角的性质、平行线的性质和垂线的基本性质等知识点,解题的关键是了解垂线的性质、对顶角的定义、平行线的性质等知识,难度不大.5.如图,25AOB ︒∠=,90AOC ︒∠=,点B ,O ,D 在同一直线上,则COD ∠的度数为( )A .65B .25C .115D .155C解析:C【分析】 先求出∠BOC ,再由邻补角关系求出∠COD 的度数.【详解】∵∠AOB=25°,∠AOC=90°,∴∠BOC=90°-25°=65°,∴∠COD=180°-65°=115°.故选:C .【点睛】本题考查了余角、邻补角的定义和角的计算;弄清各个角之间的关系是解题的关键. 6.如图,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角A 解析:A【分析】 根据同位角的定义求解.【详解】解:直线a ,b 被直线c 所截,∠1与∠2是同位角.故选:A .【点睛】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.7.下面命题中是真命题的有()①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A.1个B.2个C.3个D.4个C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.8.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为()A.10°B.20°C.25°D.30°C解析:C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.9.如图,一副直角三角板图示放置,点C在DF的延长线上,点A在边EF上,∠=()∠=∠=︒,则CAF//AB CD,90ACB EDFA .10︒B .15︒C .20︒D .25︒B解析:B【分析】 根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。

北京第二十二中学七年级数学下册第一单元《相交线与平行线》检测(含答案解析)

北京第二十二中学七年级数学下册第一单元《相交线与平行线》检测(含答案解析)

一、选择题1.下列命题:①相等的角是对顶角;②同角的余角相等;③垂直于同一条直线的两直线互相平行;④在同一平面内,如果两条直线不平行,它们一定相交;⑤同位角相等;⑥如果直线a ∥b ,b ⊥c ,那么a ⊥c ,其中真命题的个数是( )A .4个B .3个C .2个D .以上都不对 2.下面的语句,不正确的是( )A .对顶角相等B .相等的角是对顶角C .两直线平行,内错角相等D .在同一平面内,经过一点,有且只有一条直线与已知直线垂直3.如图,由点B 观察点A 的方向是( ).A .南偏东62︒B .北偏东28︒C .南偏西28︒D .北偏东62︒ 4.如图,若180A ABC ∠+∠=︒,则下列结论正确的是( )A .12∠=∠B .24∠∠=C .13∠=∠D .23∠∠= 5.下列命题中,是真命题的是( ) A .对顶角相等B .两直线被第三条直线所截,截得的内错角相等 C .等腰直角三角形都全等D .如果a b >,那么22a b > 6.如图,25AOB ︒∠=,90AOC ︒∠=,点B ,O ,D 在同一直线上,则COD ∠的度数为( )A .65B .25C .115D .155 7.如图,直线12l l ,130∠=︒,则23∠+∠=( )A .150°B .180°C .210°D .240°8.光线在不同介质中的传播速度不同,因此当光线从空气射向水中时,会发生折射.如图,在空气中平行的两条入射光线,在水中的两条折射光线也是平行的.若水面和杯底互相平行,且∠1=122°,则∠2=( )A .61°B .58°C .48°D .41°9.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠ 10.如图,直线a 和直线b 被直线c 所载,且a//b ,∠2=110°,则∠3=70°,下面推理过程错误的是( )A .因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒B .//,13,12180a b ︒∴∠=∠∠+∠=1180218011070︒︒︒︒∴∠=-∠=-=所以370︒∠=C .因为a//b 所以25∠=∠又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=D .//,42110a b ︒∴∠=∠=,43180︒∠+∠=,∴∠3=180°−∠4=180°−110°=70° 所以3180418011070︒︒︒︒∠=-∠=-=11.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个12.如图,A 、P 是直线m 上的任意两个点,B 、C 是直线n 上的两个定点,且直线m ∥n .则下列说法正确的是( )A .AC=BPB .△ABC 的周长等于△BCP 的周长 C .△ABC 的面积等于△ABP 的面积D .△ABC 的面积等于△PBC 的面积二、填空题13.把命题“两直线平行,同位角相等”改写成“若…,则…”__.14.将长度为5cm 的线段向上平移3cm 后所得线段的长度为__.15.“等腰三角形的两条边相等”的逆命题是________________.(填真命题或假命题) 16.如图,AB ∥CD ,AD 与BC 交于点O ,OP 平分∠BOD ,交CO 的延长线于P ,若∠A=100º,∠B=30º,则∠P 的度数是__________17.如图,点A 、B 为定点,直线l ∥AB,P 是直线l 上一动点,对于下列各值:①线段AB 的长;②△PAB 的周长;③△PAB 的面积;④∠APB 的度数,其中不会随点P 的移动而变化的是(填写所有正确结论的序号)______________.18.小明用一副三角板自制对顶角的“小仪器”,第一步固定直角三角板ABC ,并将边AC 延长至点P ,第二步将另一块三角板CDE 的直角顶点与三角板ABC 的直角顶点C 重合,摆放成如图所示,延长DC 至点F ,PCD ∠与ACF ∠就是一组对顶角,若30ACF ∠=,则PCD ∠=__________,若重叠所成的(090)BCE n n ∠=<<,则PCF ∠的度数__________.19.一副直角三角尺叠放如图 1 所示,现将 45°的三角尺ADE 固定不动,将含 30°的三角尺ABC 绕顶点 A 顺时针转动(旋转角不超过 180 度),使两块三角尺至少有一组边互相平行.如图 2:当∠BAD=15°时,BC∥DE.则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为________.20.如图,AB∥CD,∠1=64°,FG平分∠EFD,则∠EGF=__________________°.三、解答题、、、在方格纸中小正方21.在如图所示的方格中,每个小正方形的边长为1,点A B C D形的顶点上.(1)画线段AB;(2)画图并说理:①画出点C到线段AB的最短线路CE,理由是;②画出一点P ,使AP DP CP EP +++最短,理由是 .22.三角形ABC 中,D 是AB 上一点,//DE BC 交AC 于点E ,点F 是线段DE 延长线上一点,连接FC ,180BCF ADE ∠+∠=︒.(1)如图1,求证://CF AB ;(2)如图2,连接BE ,若40ABE ∠=︒,60ACF ∠=︒,求BEC ∠的度数; (3)如图3,在(2)的条件下,点G 是线段FC 延长线上一点,若:7:13EBC ECB ∠∠=,BE 平分ABG ∠,求CBG ∠的度数.23.如图,直线AB ∥CD ,EB 平分∠AED ,170∠=︒,求∠2的度数.24.如图,已知O 为直线AD 上一点,OB 是AOC ∠内部一条射线且满足AOB ∠与AOC ∠互补,OM ,ON 分别为AOC ∠,AOB ∠的平分线.(1)COD ∠与AOB ∠相等吗?请说明理由;(2)若30AOB ∠=︒,试求MON ∠的度数;(3)若MON α∠=,请直接写出AOC ∠的度数.(用含α的式子表示)25.如图,//,//DE BC EF AB ,图中与∠BFE 互补的角有几个,请分别写出来.26.如图,AD 平分BAC ∠,点E ,F 分别在边BC ,AB 上,且BFE DAC ∠=∠,延∠=∠.长EF,CA交于点G,求证:G AFG【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用对顶角的定义、余角的定义、两直线的位置关系等知识分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故错误,是假命题;②同角的余角相等,正确,为真命题;③在同一平面内,垂直于同一条直线的两直线互相平行,故错误,是假命题;④在同一平面内,如果两条直线不平行,它们一定相交,正确,为真命题;⑤两直线平行,同位角相等,故错误,是假命题;⑥如果直线a∥b,b⊥c,那么a⊥c,正确,为真命题,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、余角的定义、两直线的位置关系等知识,属于基础题,难度不大.2.B解析:B【分析】根据对顶角的性质、平行线的性质和垂线的基本性质逐项进行分析,即可得出答案.【详解】A、根据对顶角的性质可知,对顶角相等,故本选项正确;B、相等的角不一定是对顶角,故本选项错误;C、两直线平行,内错角相等,故本选项正确;D、根据垂线的基本性质可知在同一平面内,过直线上或直线外的一点,有且只有一条直线和已知直线垂直.故本选项正确.故选:B .【点睛】本题主要考查了对顶角的性质、平行线的性质和垂线的基本性质等知识点,解题的关键是了解垂线的性质、对顶角的定义、平行线的性质等知识,难度不大.3.B解析:B【分析】根据平行线的性质求出∠ABE ,求出∠CBA ,根据图形和角的度数即可得出答案.【详解】解:如图所示:∵东西方向是平行的,∴∠ABE=∠DAB= 62° ,∵∠CBE=90°,∴∠CBA=90°-62°=28°,即由点B 观察点A 的方向是北偏东28°,故选:B .【点睛】本题考查了平行线的性质和方向角的应用,根据题意得出∠ABE 的度数是解题的关键. 4.C解析:C【分析】由∠A+∠ABC=180°可得到AD ∥BC ,再根据平行线的性质判断即可得答案.【详解】∵180A ABC ∠+∠=︒,∴//AD BC (同旁内角互补,两直线平行),∴13∠=∠(两直线平行,内错角相等).故选:C .【点睛】本题考查的是平行线的判定与性质,同旁内角互补,两直线平行;两直线平行内错角相等;熟知平行线的判定定理是解答此题的关键.5.A解析:A【分析】分别利用对顶角的性质、平行线的性质及不等式的性质分别判断后即可确定正确的选项.【详解】解:A.对顶角相等,正确,是真命题;B.两直线被第三条直线所截,内错角相等,错误,是假命题;C.等腰直角三角形不一定都全等,是假命题;D.如果0>a >b ,那么a 2<b 2,是假命题.【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的性质及不等式的性质,难度不大.6.C解析:C【分析】先求出∠BOC ,再由邻补角关系求出∠COD 的度数.【详解】∵∠AOB=25°,∠AOC=90°,∴∠BOC=90°-25°=65°,∴∠COD=180°-65°=115°.故选:C .【点睛】本题考查了余角、邻补角的定义和角的计算;弄清各个角之间的关系是解题的关键. 7.C解析:C【分析】根据题意作直线l 平行于直线l 1和l 2,再根据平行线的性质求解即可.【详解】解:作直线l 平行于直线l 1和l 212////l l l1430;35180︒︒∴∠=∠=∠+∠=245∠=∠+∠2+3=4+5+3=30180210︒︒︒∴∠∠∠∠∠+=故选C.【点睛】本题主要考查平行线的性质,关键在于等量替换的应用,两直线平行同旁内角互补,两直线平行内错角相等.8.B解析:B【分析】由水面和杯底互相平行,利用“两直线平行,同旁内角互补”可求出∠3的度数,由水中的两条折射光线平行,利用“两直线平行,同位角相等”可得出∠2的度数.【详解】如图,∵水面和杯底互相平行,∴∠1+∠3=180°,∴∠3=180°﹣∠1=180°﹣122°=58°.∵水中的两条折射光线平行,∴∠2=∠3=58°.故选:B .【点睛】本题考查了平行线的性质,牢记“两直线平行,同旁内角互补”和“两直线平行,同位角相等”是解题的关键.9.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A 、正确,符合不等式的性质;B 、正确,符合不等式的性质.C 、正确,符合不等式的性质;D 、错误,例如a=2,b=0;故选D .【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.10.D解析:D【分析】根据平行线的性质结合邻补角的性质对各选项逐一进行分析判断即可得.【详解】A . 因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒,正确,不符合题意;B . //,13,12180a b ︒∴∠=∠∠+∠=,1180218011070︒︒︒︒∴∠=-∠=-=,所以370︒∠=,正确,不符合题意;C . 因为a//b ,所以25∠=∠,又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=,正确 ,不符合题意;D . //,42180a b ︒∴∠+∠=,∴∠4=180°-∠2=180°-110°=70°,43∠=∠,∴∠3=70°,故D 选项错误,故选D .【点睛】本题考查了平行线的性质,熟练掌握“两直线平行,同位角相等”、“两直线平行,内错角相等”、“两直线平行,同旁内角互补”是解题的关键.11.C解析:C【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C .【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.D解析:D【分析】根据平行线之间的距离及三角形的面积即可得出答案.【详解】解:∵A、P是直线m上的任意两个点,B、C是直线n上的两个定点,且直线m∥n,根据平行线之间的距离相等可得:△ABC与△PBC是同底等高的三角形,故△ABC的面积等于△PBC的面积.故选D.【点睛】本题考查平行线之间的距离;三角形的面积.二、填空题13.若两直线平行则同位角相等【分析】命题写成如果…那么…的形式如果后面接的部分是题设那么后面解的部分是结论【详解】解:命题两直线平行同位角相等可以改写成若两直线平行则同位角相等故答案为:若两直线平行则同解析:若两直线平行,则同位角相等【分析】命题写成“如果…,那么…”的形式,“如果”后面接的部分是题设,“那么”后面解的部分是结论.【详解】解:命题“两直线平行,同位角相等”可以改写成“若两直线平行,则同位角相等”,故答案为:“若两直线平行,则同位角相等”.【点睛】本题考查了命题的概念,掌握命题写成“如果…,那么…”的形式,“如果”后面接的部分是题设,“那么”后面解的部分是结论是解题的关键.14.5cm【分析】根据平移的性质:①平移不改变图形的形状和大小;②经过平移对应点所连的线段平行且相等对应线段平行且相等对应角相等【详解】解:∵平移不改变图形的形状和大小∴线段长度不变还是5cm故答案为:解析:5cm【分析】根据平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.【详解】解:∵平移不改变图形的形状和大小∴线段长度不变,还是5cm.故答案为:5cm.【点睛】此题主要考查平移的基本性质,解题的关键是掌握平移的性质即可.15.真命题【分析】交换命题的题设和结论即可得到该命题的逆命题根据等腰三角形的定义判断即可【详解】等腰三角形的两条边相等的逆命题是:两条边相等的三角形是等腰三角形;它是真命题故答案为:真命题【点睛】本题考解析:真命题【分析】交换命题的题设和结论即可得到该命题的逆命题,根据等腰三角形的定义判断即可.【详解】“等腰三角形的两条边相等”的逆命题是:两条边相等的三角形是等腰三角形;它是真命题,故答案为:真命题.【点睛】本题考查了命题的真假判断、逆命题的概念,掌握等腰三角形的定义是解题的关键. 16.35°【分析】根据平行性质求出利用互补和角平分线便可求出了【详解】解:AB ∥CD ∠A=100º∠B=30º∴°°∵OP 平分∠BOD ∴∴故答案为35°【点睛】本题考查平行线性质以及三角形内角和知识掌握解析:35°【分析】根据平行性质,求出COD ∠,利用互补和角平分线便可求出了.【详解】解:AB ∥CD ,∠A=100º,∠B=30º∴30C ∠=° 100ODC ∠=°18050COD C ODC ∴∠=-∠-= 80ODP ∠=∵OP 平分∠BOD ∴11(180)6522DOP BOD COD ∠=∠=-∠= ∴18035P DOP ODP ∠=-∠-∠=故答案为35°【点睛】本题考查平行线性质,以及三角形内角和知识,掌握基础知识才是关键.17.①③【分析】求出AB 长为定值P 到AB 的距离为定值再根据三角形的面积公式进行计算即可;根据运动得出PA+PB 不断发生变化∠APB 的大小不断发生变化【详解】解:∵AB 为定点∴AB 长为定值∴①正确;∵点A解析:①③【分析】求出AB 长为定值,P 到AB 的距离为定值,再根据三角形的面积公式进行计算即可;根据运动得出PA+PB 不断发生变化、∠APB 的大小不断发生变化.【详解】解:∵A 、B 为定点,∴AB 长为定值,∴①正确;∵点A ,B 为定点,直线l ∥AB ,∴P到AB的距离为定值,故△APB的面积不变,∴③正确;当P点移动时,PA+PB的长发生变化,∴△PAB的周长发生变化,∴②错误;当P点移动时,∠APB发生变化,∴④错误;故选A.【点睛】本题考查了平行线的性质,等底等高的三角形的面积相等,平行线间的距离的运用,熟记定理是解题的关键.18.30°180°-n°【分析】(1)根据对顶角相等可得答案;(2)根据角的和差可得答案【详解】解:(1)若∠ACF=30°则∠PCD=30°理由是对顶角相等(2)由角的和差得∠ACD+∠BCE=∠AC解析:30° 180°-n°【分析】(1)根据对顶角相等,可得答案;(2)根据角的和差,可得答案.【详解】解:(1)若∠ACF=30°,则∠PCD=30°,理由是对顶角相等.(2)由角的和差,得∠ACD+∠BCE=∠ACB+∠BCD+∠BCE=∠ACB+∠DCE=180°,∴∠ACD=180°-∠BCE=180°-n°.故答案为:30°,180°-n°.【点睛】本题考查了对顶角的性质、角的和差,由图形得到各角之间的数量关系是解答本题的关键.19.45°60°105°135°【解析】分析:根据题意画出图形再由平行线的判定定理即可得出结论详解:如图当AC∥DE时∠BAD=∠DAE=45°;当BC∥AD时∠DAE=∠B=60°;当BC∥AE时∵∠解析:45°,60°,105°,135°.【解析】分析:根据题意画出图形,再由平行线的判定定理即可得出结论.详解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAE=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故答案为45°,60°,105°,135°.点睛:本题考查了平行线的判定与性质.要证明两直线平行,需使其所构成的同位角、内错角相等(或同旁内角是否互补).20.【分析】根据两直线平行同位角相等求出∠EFD再根据角平分线的定义求出∠GFD然后根据两直线平行内错角相等解答【详解】解:∵AB∥CD∠1=64°∴∠EFD=∠1=64°∵FG平分∠EFD∴∠GFD=解析:【分析】根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,内错角相等解答.【详解】解:∵AB∥CD,∠1=64°,∴∠EFD=∠1=64°,∵FG平分∠EFD,∴∠GFD=12∠EFD=12×64°=32°,∵AB∥CD,∴∠EGF=∠GFD=32°.故答案为:32.考点:平行线的性质.三、解答题21.(1)图见解析;(2)图见解析,点到直线的距离垂线段最短;(3)图见解析,两点之间线段最短.【分析】(1)根据题意画图即可;(2)①借助网格作CE⊥AB,根据点到直线距离垂线段最短可得符合条件的E点;②连接AD 和CE 交于P 点,根据两点之间线段最短可得AP DP CP EP AD CE +++=+.【详解】(1)连接AB 如下图所示;(2)①如图所示CE 为最短路径,理由是点到直线的距离垂线段最短,故答案为:点到直线的距离垂线段最短;②如图所示P 点为AP DP CP EP +++最短,理由是:两点之间线段最短,故答案为:两点之间线段最短.【点睛】本题考查两点之间的距离,垂线段最短和根据要求画线段.理解点到直线的距离垂线段最短和两点之间线段最短是解题关键.22.(1)证明见解析;(2)100°;(3)12°.【分析】(1)根据平行线的判定及其性质即可求证结论;(2)过E 作//EK AB 可得//CF AB ∥EK ,再根据平行线的性质即可求解;(3)根据题意设7EBC x ∠=︒,则13ECB x ∠=︒,根据∠AED +∠DEB +BEC =180°,可得关于x 的方程,解方程即可求解.【详解】(1)证明:∵DE ∥BC ,∴ADE B ∠=∠,又∵∠BCF +∠ADE =180°,∴180BCF B ∠+∠=︒,∴//CF AB ,(2)解:过E 作//EK AB ,∵//CF AB ,∴//CF EK ,∵//EK AB ,40ABE ∠=︒,∴40BEK ABE ∠=∠=︒,∵//CF EK ,60ACF ∠=︒,∴60CEK ACF ∠=∠=︒,又∵BEC BEK CEK ∠=∠+∠,∴4060100BEC ∠=︒+︒=︒,答:BEC ∠的度数是100°,(3)解:∵BE 平分ABG ∠, 40ABE ∠=︒,∴40EBG ABE ∠=∠=︒,∴:7:13EBC ECB ∠∠=,∴设7EBC x ∠=︒,则13ECB x ∠=︒,∵DE ∥BC ,∴7DEB EBC x ∠=∠=︒,13AED ECB x ∠=∠=︒,∵180AED DEB BEC ∠+∠+∠=︒,∴137100180x x ++=,∴4x =,∴728EBC x ∠=︒=︒,又∵EBG EBC CBG ∠=∠+∠,∴CBG EBG EBC ∠=∠-∠,∴402812CBG ∠=-=︒,答:CBG ∠的度数是12°.【点睛】本题考查平行线的判定及其性质,解题的关键是熟练掌握平行线的判定及其性质的有关知识.23.55︒.【分析】先根据对顶角相等可得170BAE ∠=∠=︒,再根据平行线的性质可得110AED ∠=︒,然后根据角平分线的定义可得55BED ∠=︒,最后根据平行线的性质即可得.【详解】170∠=︒,170BAE ∴∠=∠=︒,//AB CD ,180110AED BAE ∴∠=︒-∠=︒, EB 平分AED ∠,1552BED AED ∴∠=∠=︒, 又//AB CD ,255BED ∴∠=∠=︒.【点睛】 本题考查了对顶角相等、平行线的性质、角平分线的定义,熟练掌握平行线的性质是解题关键.24.(1)相等,理由见解析;(2)60°;(3)90AOC α∠=︒+.【分析】(1)根据题意和邻补角的性质即可求解.(2)结合题意和角平分线的性质即可求出MON ∠.(3)结合图形和角平分线的性质与(1)的结论即可求出AOC ∠的大小.【详解】(1)∵AOC ∠与AOB ∠互补,∴180AOC AOB ∠+∠=︒,∵180AOC DOC ∠+∠=︒,∴COD AOB ∠=∠(2)∵AOB ∠与AOC ∠互补,30AOB ∠=︒,∴18030150AOC ∠=︒-︒=︒,∵OM 为AOC ∠的平分线,∴75AOM ∠=︒,∵ON 为AOB ∠的平分线,∴15AON ∠=︒,∴751560MON ∠=︒-︒=︒(3)∵AOC AOB BOC ∠=∠+∠,180AOB AOC ∠=︒-∠,∴180AOC AOC BOC ∠=︒-∠+∠.∵BOC BOM COM ∠=∠+∠,∴180AOC AOC BOM COM ∠=︒-∠+∠+∠,∵BOM MON BON ∠=∠-∠,12COM AOC ∠=∠, ∴11802AOC AOC MON BON AOC ∠=︒-∠+∠-∠+∠, 又∵MON α∠=,12BON AOB ∠=∠, ∴11180(180)22AOC AOC AOC AOC α∠=︒-∠+-︒-∠+∠, ∴90AOC α∠=︒+.【点睛】本题考查邻补角和角平分线的性质.利用邻补角的性质求证COD AOB ∠=∠是解题的关键.25.∠EFC 、∠DEF 、∠ADE 、∠B .【分析】根据平行的性质得EFC DEF ADE B ∠=∠=∠=∠,由180BFE EFC ∠+∠=︒,可知这些角与BFE ∠都互补.【详解】解:180BFE EFC ∠+∠=︒,∵//DE BC ,∴DEF EFC ∠=∠,∴180BFE DEF ∠+∠=︒,∵//EF AB ,∴DEF ADE ∠=∠,∴180BFE ADE ∠+∠=︒,∵//DE BC ,∴ADE B ∠=∠,∴180BFE B ∠+∠=︒,与∠BFE 互补的角有4个,分别为:∠EFC 、∠DEF 、∠ADE 、∠B .【点睛】本题考查平行线的性质,解题的关键利用平行线的性质找相等的角.26.证明见解析.【分析】先根据角平分线的定义可得∠=∠DAB DAC ,从而可得BFE DAB ∠=∠,再根据平行线的判定与性质可得G DAC ∠=∠,从而可得G BFE ∠=∠,然后根据对顶角相等可得BFE AFG ∠=∠,最后根据等量代换即可得证.【详解】 AD 平分BAC ∠,DAB DAC ∴∠=∠,BFE DAC ∠=∠,BFE DAB ∴∠=∠,//AD EG ∴,G DAC ∴∠=∠,又BFE DAC ∠=∠,G BFE ∴∠=∠,由对顶角相等得:BFE AFG ∠=∠,A G G F ∴∠=∠.【点睛】本题考查了角平分线的定义、对顶角相等、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.。

北京回民学校七年级数学下册第一单元《相交线与平行线》检测题(有答案解析)

北京回民学校七年级数学下册第一单元《相交线与平行线》检测题(有答案解析)

一、选择题1.如图,把一长方形纸片ABCD 沿EG 折叠后,AEG A EG '∠=∠,点A 、B 分别落在A '、B ′的位置,EA '与BC 相交于点F ,已知1125∠=︒,则2∠的度数是( )A .55°B .60°C .70°D .75°2.关于平移后对应点所连的线段,下列说法正确的是( )①对应点所连的线段一定平行,但不一定相等;②对应点所连的线段一定相等,但不一定平行,有可能相交;③对应点所连的线段平行且相等,也有可能在同一条直线上;④有可能所有对应点的连线都在同一条直线上.A .①③B .②③C .③④D .①② 3.下列说法正确的是( )A .命题一定是正确的B .定理都是真命题C .不正确的判断就不是命题D .基本事实不一定是真命题 4.下列命题中是真命题的是( )A .如果0a b +<那么0ab <B .内错角相等C .三角形的内角和等于180︒D .相等的角是对顶角 5.下列语句是命题的是( )A .平分一条线段B .直角都相等C .在直线AB 上取一点D .你喜欢数学吗? 6.下列哪个图形是由图1平移得到的( )A.B.C.D.7.下列命题:①两边及其中一边的对角对应相等的两个三角形全等;②两角及其中一角的对边对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等;④面积相等的两个三角形肯定全等;⑤有两条直角边对应相等的两个直角三角形全等.其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB∥CE,且∠ADC=∠B:④AB∥CE,且∠BCD=∠BAD.其中能推出BC∥AD的条件为()A.①②B.②④C.②③D.②③④9.如图所示,下列条件能判断a∥b的有()A .∠1+∠2=180°B .∠2=∠4C .∠2+∠3=180°D .∠1=∠3 10.下列说法中,正确的是 A .相等的角是对顶角 B .有公共点并且相等的角是对顶角 C .如果1∠和2∠是对顶角,那么12∠=∠ D .两条直线相交所成的角是对顶角 11.如图,下列不能判定DF ∥AC 的条件是( )A .∠A =∠BDFB .∠2=∠4C .∠1=∠3D .∠A +∠ADF =180°12.如图是一块长方形ABCD 的场地,长102AB m =,宽51AD m =,从A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为2m ,其余部分种植草坪,则草坪面积为( )A .5050m 2B .5000m 2C .4900m 2D .4998m 2二、填空题13.用一组a ,b 的值说明命题“若a b >,则22a b >”是错误的,这组值可以是a =____,b = ____14.阅读下面材料:在数学课上,老师提出如下问题:如图,需要在A 、B 两地和公路l 之间修地下管道.请你设计一种最节省材料的修路方案:小丽设计的方案如下:如图,(1)连接AB ;(2)过点A 画线段AC ⊥直线l 于点C ,所以线段BA 和线段AC 即为所求.老师说:“小丽的画法正确”请回答:小丽的画图依据是___.15.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移2个单位后,得到A B C ''',连接A C ',则A B C ''的周长为________.16.如图,//AB CD ,点M 为CD 上一点,MF 平分∠CME .若∠1=57°,则∠EMD 的大小为_____度.17.如图,AB ∥CD ,AB ⊥AE ,∠CAE =42°,则∠ACD 的度数为__.18.如图,//,//,62AC ED AB FD A ∠=︒,则EDF ∠度数为___________.19.如图,已知12∠=∠,求证:A BCH ∠=∠.证明:∵12∠=∠(已知)23∠∠=(______)∴13∠=∠(等量代换)∴//CH (______)(同位角相等,两直线平行)∴A BCH ∠=∠(______)20.如图,CB ∥OA ,∠B =∠A =100°,E 、F 在CB 上,且满足∠FOC =∠AOC ,OE 平分∠BOF ,若平行移动AC ,当∠OCA 的度数为_____时,可以使∠OEB =∠OCA .三、解答题21.利用网格画图,每个小正方形边长均为1(1)过点C 画AB 的平行线CD ;(2)仅用直尺,过点C 画AB 的垂线,垂足为E ;(3)连接CA 、CB ,在线段CA 、CB 、CE 中,线段______最短,理由___________. (4)直接写出△ABC 的面积为 _________.22.如图,已知BC AE ⊥,DE AE ⊥,23180∠+∠=︒.(1)请你判断1∠与ABD ∠的数量关系,并说明理由;(2)若170∠=︒,BC 平分ABD ∠,试求ACF ∠的度数.23.如图:AD 是BAC ∠的角平分线,点E 是射线AC 上一点,延长ED 至点F ,180CAD ADF ︒∠+∠=.求证:(1)//AB EF ;(2)2ADE CEF ∠=∠24.已知:如图,//,12180EF CD ︒∠+∠=.(1)求证://GD CA .(2)若CD 平分,ACB DG 平分CDB ∠,且36A ︒∠=,求ACB ∠的度数. 25.已知:如图,∠AGD =∠ACB ,∠1=∠2,CD 与EF 平行吗?为什么?26.试用举反例的方法说明下列命题是假命题.例如:如果ab <0,那么a +b <0.反例:设a =4,b =-3,ab =4⨯(-3)=-12<0,而a +b =4+(-3)=1>0,所以这个命题是假命题.(1)如果a +b >0,那么ab >0.(2)如果a 是无理数,b 也是无理数,那么a +b 也是无理数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先根据平行线的性质可得55AEG ∠=︒,再根据平角的定义可得70∠︒=DEF ,然后根据平行线的性质即可得.【详解】由题意得://AD BC ,1125∠=︒,180155AEG ∴∠=︒-∠=︒,AEG A EG '∠=∠,55A EG '∴∠=︒,18070DEF AEG A EG '∴∠=︒-∠-∠=︒,又//AD BC ,270DEF ∴∠=∠=︒,故选:C .【点睛】本题考查了平角的定义、平行线的性质,熟练掌握平行线的性质是解题关键.2.C解析:C【分析】根据平移的性质,对应点所连的线段一定平行或在一条直线上,对应点所连的线段一定相等,分别求解即可.【详解】①的说法“对应点所连的线段一定相等,但不一定平行”错误;②的说法“对应点所连的线段一定相等,但不一定平行,有可能相交”错误;③的说法“对应点所连的线段平行且相等,也有可能在同一条直线上”正确;④的说法“有可能所有对应点的连线都在同一条直线上”正确;故正确的说法为③④.故选:C .【点睛】本题主要考查了平移的性质:①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行或在一条直线上且相等.3.B解析:B【分析】根据命题的定义、真命题与假命题的定义逐项判断即可得.【详解】A 、命题有真命题和假命题,此项说法错误;B 、定理都是经过推论、论证的真命题,此项说法正确;C 、不正确的判断是假命题,此项说法错误;D、基本事实是真命题,此项说法错误;故选:B.【点睛】本题考查了命题、真命题与假命题,熟练掌握理解各概念是解题关键.4.C解析:C【分析】利用反例对A进行判断;根据平行线的性质对B进行判断;根据三角形内角和定理对C进行判断;根据对顶角定义对D进行判断.【详解】解:A、当a=-2,b=-1时,则a+b<0,ab>0,所以A选项错误;B、两直线平行,内错角相等,所以B选项错误,是假命题;C、三角形的内角和等于180°,所以C选项为真命题;D、对顶角既有大小关系,又有位置关系,相等的角是对顶角的说法错误,所以D选项错误,是假命题;【点睛】本题考查命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.B解析:B【分析】根据命题的定义分别进行判断.【详解】A.平分一条线段,为描述性语言,不是命题;B.直角都相等,是命题;C.在直线AB上取一点,为描述性语言,不是命题;D.你喜欢数学吗?是疑问句,不是命题.故选:B.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.6.B解析:B【分析】根据平移的性质,结合图形,对选项进行一一分析,排除错误答案.【详解】A.不是由图1平移得到的,故错误;B.是由图1平移得到的,故正确;C.不是由图1平移得到的,故错误;D.不是由图1平移得到的,故错误;故选:B.【点睛】考查平移的性质,平移前后,图形的大小和形状没有变化.7.B解析:B【分析】根据全等三角形的判断定理逐项判断即可.【详解】解:①两边及其夹角对应相等的两个三角形全等,故该项错误;②两角及其中一角的对边对应相等的两个三角形全等,符合AAS定理,故该项正确;③有两条边和第三条边上的高对应相等的两个三角形不一定全等,有可能是锐角三角形,也有可能是钝角三角形,故该项错误;④面积相等的两个三角形不一定全等,因为形状可能不相同,故该项错误;⑤有两条直角边对应相等的两个直角三角形全等,符合ASA定理,故该项正确.故选:B.【点睛】此题主要考查对全等三角形的判定定理的掌握,正确理解判定定理是解题关键.8.D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.故选:D.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.9.B解析:B【分析】通过平行线的判定的相关知识点,并结合题中所示条件进行相应的分析,即可得出答案.【详解】A.∠1 ,∠2是互补角,相加为180°不能证明平行,故A错误.B.∠2=∠4,内错角相等,两直线平行,所以B正确.C. ∠2+∠3=180°,不能证明a∥b,故C错误.D.虽然∠1=∠3,但是不能证明a∥b;故D错误.故答案选:B.【点睛】本题考查的知识点是平行线的判定,解题的关键是熟练的掌握平行线的判定.10.C解析:C【分析】本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.由此逐一判断.【详解】A、对顶角是有公共顶点,且两边互为反向延长线,相等只是其性质,错误;B、对顶角应该是有公共顶点,且两边互为反向延长线,错误;C、角的两边互为反向延长线的两个角是对顶角,符合对顶角的定义,正确.D、两条直线相交所成的角有对顶角、邻补角,错误;故选C.【点睛】要根据对顶角的定义来判断,这是需要熟记的内容.11.B解析:B【分析】根据选项中角的关系,结合平行线的判定,进行判断.【详解】解:A.∠A=∠BDF,由同位角相等,两直线平行,可判断DF∥AC;B.∠2=∠4,不能判断DF∥AC;C.∠1=∠3由内错角相等,两直线平行,可判断DF∥AC;D.∠A+∠ADF=180°,由同旁内角互补,两直线平行,可判断DF∥AC;故选:B.【点睛】此题考查平行线的判定,熟练掌握内错角相等,两直线平行;同位角相等,两直线平行;同旁内角互补,两直线平行.12.B解析:B【详解】解:由图可知:矩形ABCD中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(102-2)米,宽为(51-1)米.所以草坪的面积应该是长×宽=(102-2)(51-1)=5000(米2).故选B.二、填空题13.1(答案不唯一)-2(答案不唯一)【分析】举出一个反例:a=1b=-2说明命题若a>b则a2>b2是错误的即可【详解】解:当a=1b=-2时满足a>b但是a2=1b2=4a2<b2∴命题若a>b则a解析:1(答案不唯一) -2(答案不唯一)【分析】举出一个反例:a=1,b=-2,说明命题“若a>b,则a2>b2”是错误的即可.【详解】解:当a=1,b=-2时,满足a>b,但是a2=1,b2=4,a2<b2,∴命题“若a>b,则a2>b2”是错误的.故答案为:1、-2.(答案不唯一)【点睛】此题主要考查了命题与定理,要熟练掌握,解答此题的关键是要明确:任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.14.两点之间线段最短;直线外一点到这条直线上所有点连结的线段中垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解【详解】由垂线段最短可知点A到直线l的最短距离为AC由两点之间线段最短可解析:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解.【详解】由垂线段最短可知,点A到直线l的最短距离为AC,由两点之间线段最短可知,点B到点A的最短距离为AB.故答案为:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短);【点睛】本题考察线段的概念和垂线的性质,熟练掌握其概念和性质是解题的关键.15.12【分析】根据平移的性质得则可计算则可判断为等边三角形继而可求得的周长【详解】平移两个单位得到的又是等边三角形的周长为故答案为:12【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动会 解析:12【分析】根据平移的性质得2BB '=,4A B AB ''==,=60A B C B ∠''∠=︒,则可计算624B C BC BB '=-'=-=,则4A B B C ''='=,可判断A B C ''△为等边三角形,继而可求得A B C ''△的周长.【详解】 ABC 平移两个单位得到的A B C ''',2BB ∴'=,AB A B ='',4AB =,6BC =,4A B AB ∴''==,624B C BC BB '=-'=-=,4A B B C ∴''='=,又60B ∠=︒,60A B C ∴∠''=︒,A B C ∴''是等边三角形,A B C ∴''的周长为4312⨯=.故答案为:12.【点睛】 本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.16.【分析】根据AB ∥CD 求得∠CMF=∠1=57°利用MF 平分∠CME 求得∠CME=2∠CMF =114°根据∠EMD=180°-∠CME 求出结果【详解】∵AB ∥CD ∴∠CMF=∠1=57°∵MF 平分∠解析:66【分析】根据AB ∥CD ,求得∠CMF=∠1=57°,利用MF 平分∠CME ,求得∠CME=2∠CMF =114°,根据∠EMD=180°-∠CME 求出结果.【详解】∵AB ∥CD ,∴∠CMF=∠1=57°,∵MF 平分∠CME ,∴∠CME=2∠CMF =114°,∴∠EMD=180°-∠CME =66°,故答案为:66.【点睛】此题考查平行线的性质,角平分线的有关计算,理解图形中角之间的和差关系是解题的关键.17.132°【分析】直接利用平行线的性质结合垂直定义得出∠BAC度数以及∠ACD的度数【详解】解:∵AB⊥AE∠CAE=42°∴∠BAC=90°﹣42°=48°∵AB∥CD∴∠BAC+∠ACD=180°解析:132°【分析】直接利用平行线的性质结合垂直定义得出∠BAC度数以及∠ACD的度数.【详解】解:∵AB⊥AE,∠CAE=42°,∴∠BAC=90°﹣42°=48°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠ACD=132°.故答案为:132°.【点睛】此题主要考查了平行线的性质,正确得出∠BAC度数是解题关键.18.62°【分析】首先根据两直线平行同位角相等求出∠DEB的度数再根据两直线平行内错角相等求出∠EDF的度数【详解】解:∵AC//DE∠A=62°∴∠DEB=∠A=62°(两直线平行同位角相等)∵DF/解析:62°【分析】首先根据两直线平行,同位角相等求出∠DEB的度数,再根据两直线平行,内错角相等求出∠EDF的度数.【详解】解:∵AC//DE,∠A=62°,∴∠DEB=∠A=62°(两直线平行,同位角相等),∵DF//AB,∴∠EDF=∠DEB=62°(两直线平行,内错角相等).故答案为:62°.【点睛】本题考查了平行线的性质,解决本题的关键是熟记平行线的性质.平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.19.对顶角相等AG两直线平行同位角相等【分析】根据对顶角的定义可得再根据平行线的判定可得CH//AG最后由两直线平行同位角相等即可证明【详解】解:证明:∵(已知)(对顶角相等)∴(等量代换)∴(AG)(解析:对顶角相等,AG ,两直线平行,同位角相等.【分析】根据对顶角的定义可得23∠∠=,再根据平行线的判定可得CH//AG,最后由两直线平行、同位角相等即可证明.【详解】解:证明:∵12∠=∠(已知)23∠∠=(对顶角相等)∴13∠=∠(等量代换)∴//CH (AG )(同位角相等,两直线平行)∴A BCH ∠=∠(两直线平行,同位角相等).故答案为:对顶角相等,AG ,两直线平行,同位角相等.【点睛】本题考查了对顶角的定义、平行线的性质和判定定理等知识,灵活应用平行线的性质和判定定理是解答本题的关键.20.60°【分析】设∠OCA=a ∠AOC=x 利用三角形外角内角和定理平行线定理即可解答【详解】解:设∠OCA=a ∠AOC=x 已知CB ∥OA ∠B=∠A=100°即a+x=80°又因为∠OEB=∠EOC+∠解析:60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答.【详解】解:设∠OCA=a,∠AOC=x,已知CB ∥OA ,∠B=∠A=100°,即a+x=80°,又因为∠OEB=∠EOC+∠ECO=40°+x.当∠OEB=∠OCA ,a=80°-x,40°+x=a,解得∠OCA=60°.【点睛】本题考查角度变换和平行线定理的综合运用,熟悉掌握是解题关键.三、解答题21.(1)见详解;(2)见详解;(3)CE ,垂线段最短;(4)8.【分析】(1)取点D 作直线CD 即可;(2)取点F 作直线CF 交AB 与E 即可;(3)根据垂线段最短即可解决问题;(4)用割补法,大长方形的面积减去三个小三角形的面积即可;【详解】解:(1)直线CD 即为所求;(2)直线CE 即为所求;(3)在线段CA 、CB 、CE 中,线段CE 最短,理由:垂线段最短;故答案为CE ,垂线段最短;(4) S △ABC =18﹣12×1×5﹣12×1×3﹣12×2×6=8, ∴△ABC 的面积为8.【点睛】本题主要考查垂线、平行线及其做图,注意作图的准确性.22.(1)∠1=∠ABD ,证明见解析;(2)∠ACF=55°.【分析】(1)先根据在平面内,垂直于同一条直线的两条直线互相平行得出BC ∥DE ,再根据平行线的性质结合23180∠+∠=︒可得∠2=∠CBD ,从而可得CF ∥DB 得出∠1=∠ABD ; (2)利用平行线的性质以及角平分线的定义,即可得出∠2的度数,再根据∠ACB 为直角,即可得出∠ACF .【详解】解:(1)∠1=∠ABD ,理由:∵BC ⊥AE ,DE ⊥AE ,∴BC ∥DE ,∴∠3+∠CBD=180°,又∵∠2+∠3=180°,∴∠2=∠CBD ,∴CF ∥DB ,∴∠1=∠ABD .(2)∵∠1=70°,CF ∥DB ,∴∠ABD=70°,又∵BC 平分∠ABD , ∴1352DBC ABD ︒∠=∠=, ∴∠2=∠DBC=35°,又∵BC ⊥AG ,∴∠ACF=90°-∠2=90°-35°=55°.【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.23.(1)证明见解析;(2)证明见解析.【分析】(1)根据角平分线和同旁内角互补两直线平行即可证得;(2)由(1)得2CEF EAB DAB ∠=∠=∠,又因为DAB ADE ∠=∠,即可证得.【详解】(1)AD 是BAC ∠的角平分线.CAD DAB ∴∠=∠ 又180CAD ADF ︒∠+∠=180DAB ADF ︒∠+∠=//AB EF ∴(2)//AB EF2CEF EAB DAB ∴∠=∠=∠又DAB ADE ∠=∠2ADE CEF ∴∠=∠【点睛】本题考查角平分线和平行线的证明与性质,掌握平行线证明方法是解题的关键. 24.(1)证明见解析.(2)72°.【分析】(1)利用两直线平行,同旁内角互补可得∠1+∠ECD=180°,从而可得∠2=∠ECD ,再根据内错角相等两直线平行可得GD ∥CA ;(2)由GD ∥CA ,得∠A=∠GDB=∠2=36°=∠ACD ,由角平分线的性质可求得∠ACB 的度数.【详解】解:(1)∵EF ∥CD∴∠1+∠ECD=180°又∵∠1+∠2=180°∴∠2=∠ECD∴GD ∥CA(2)由(1)得:GD ∥CA ,∴∠BDG=∠A=36°,∠ACD=∠2,∵DG 平分∠CDB ,∴∠2=∠BDG=36°,∴∠ACD=∠2=36°,∵CD 平分∠ACB ,∴∠ACB=2∠ACD=72°.【点睛】本题考查角平分线的有关证明和平行线的性质和判定.能正确识别同位角、内错角、同旁内角是解题关键.25.平行,见解析.【分析】先判定GD//CB,然后根据平行的性质得到∠1=∠BCD,然后利用同位角相等、两直线平行即可证明.【详解】解:平行. 理由如下:∵∠AGD =∠ACB,(已知)∴ GD∥BC(同位角相等,两直线平行)∴∠1=∠BCD(两直线平行,内错角相等)∵∠1=∠2,(已知)∴∠2=∠BCD(等量代换)∴ CD∥EF(同位角相等,两直线平行).【点睛】本题考查了平行线的判定与性质,灵活运用同位角相等、两直线平行是解答本题的关键.26.(1)见解析;(2)见解析.【分析】(1)此题是一道开放题,可举的例子多,但只举一例就可.如果a+b>0,那么ab>0;所举的反例就是,a、b一个为正数,一个为负数,且正数的绝对值大于负数.(2)可利用平方差公式找这样的无理数,比如【详解】解:(1)取a=2,b=-1,则a+b=1>0,但ab=-2<0.所以此命题是假命题.(2)取,,a、b均为无理数.但a+b=2是有理数,所以此命题是假命题.【点睛】本题主要锻炼了学生的逆向思维.在证明几何题的过程中,有时需从反例上先去判断,然后再证明.。

第二学期初一数学

第二学期初一数学

北京市西城区重点中学2016-2017 学年度第二学期初一数学 人教版七年级下册 第五章 相交线与平行线 全章测试题(本试卷100分,用时45分钟)一、选择题(每小题3分,共27分。

在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。

1、如图所示,下列判断正确的是( )A 、图⑴中∠1和∠2是一组对顶角B 、图⑵中∠1和∠2是一组对顶角C 、图⑶中∠1和∠2是一对邻补角D 、图⑷中∠1和∠2互为邻补角 2、P 为直线l 上的一点,Q 为l 外一点,下列说法不正确的是( ) A 、过P 可画直线垂直于l B 、过Q 可画直线l 的垂线 C 、连结PQ 使PQ ⊥l D 、过Q 可画直线与l 垂直 3、如图,图中∠1与∠2是同位角的是( )A 、⑵⑶B 、⑵⑶⑷C 、⑴⑵⑷D 、⑶⑷4、设c b a ,,是三条不同的直线,则在下面四个命题中,正确的有( )①如果a 与b 相交,b 与c 相交,那么a 与c 相交;②如果a 与b 平行,b 与c 平行,那么a 与c 平行;③如果a 与b 垂直,b 与c 垂直,那么a 与c 垂直;④如果a 与b 平行,b 与c 相交,那么a 与c 相交。

A 、4个 B 、3个 C 、2个 D 、1个 5、下列关系中,互相垂直的两条直线是( )A 、互为对顶角的两角的平分线B 、两直线相交成的四角中相邻两角的角平分线C 、互为补角的两角的平分线D 、相邻两角的角平分线6、在下列说法中:⑴△ABC 在平移过程中,对应线段一定相等⑵△ABC 在平移过程中,对应线段一定平行⑶△ABC 在平移过程中,周长保持不变⑷△ABC 在平移过程中,对应边中点的连线段的长等于平移的距离⑸△ABC 在平移过程中,面积不变.其中正确的有( )A 、⑴⑵⑶⑷B 、⑴⑵⑶⑷⑸C 、⑴⑵⑶⑸D 、⑴⑶⑷⑸7、如图,AB ⊥BC ,BC ⊥CD ,∠EBC=∠BCF ,则∠ABE 与∠DCF 的位置和大小关系是( ) A 、是同位角且相等 B 、不是同位角但相等C 、是同位角但不等 D 、不是同位角也不等 8、如果∠α与∠β的两边分别平行,∠α与∠β的3倍少36°,则∠α的度数是( ) A 、18° B 、126° C 、18°或126° D 、以上都不对9、如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB=60°,则∠AED ′=( )A 、50°B 、55°C 、60°D 、65°二、填空题:(本大题共6个小题,每小题4分,共24分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 相交线一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角. 3.对顶角的重要性质是_________________.4.如图,直线AB 、CD 相交于O 点,∠AOE =90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角;∠2和∠3互为_______角;∠1和∠3互为______角; ∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE -∠______=______°-______°=______°; ∠4=∠______-∠1=______°-______°=______°.5.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则(1)与∠BOD 互补的角有________________________; (2)与∠BOD 互余的角有________________________; (3)与∠EOA 互余的角有________________________;(4)若∠BOD =42°17′,则∠AOD =__________;∠EOD =______;∠AOE =______. 二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF (C)∠AOF(D)∠BOE 和∠AOF8.如图,直线AB 与CD 相交于点O ,若A O D AO C ∠=∠31,则∠BOD 的度数为( ).(A)30° (B)45° (C)60° (D)135°9.如图所示,直线l 1,l 2,l 3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60° (B)∠1=∠3=90°,∠2=∠4=30° (C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30° 三、判断正误10.如果两个角相等,那么这两个角是对顶角. ( )12.有一条公共边的两个角是邻补角.( )13.如果两个角是邻补角,那么它们一定互为补角.( )14.对顶角的角平分线在同一直线上.( )15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF 的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD 是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?2.垂线一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A 点作BC 边所在直线的垂线EF ,垂足是D ,并量出A 点到BC 边的距离.图a 图b 图c7.如图,已知∠AOB 及点P ,分别画出点P 到射线OA 、OB 的垂线段PM 及PN .图a 图b 图c8.如图,小明从A 村到B 村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直. ( ) 11.一条直线的垂线只能画一条. ( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直. ( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短. ( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离. ( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离. ( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB .( )17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α (B)180°-α(C)α2190+︒(D)2α-90°18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ).(A)3cm (B)小于3cm(C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm 的点的个数是( ). (A)0 (B)1 (C)2 (D)321.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC 于点E ,能表示点到直线(或线段)的距离的线段有( ).(A)3条 (B)4条 (C)7条 (D)8条 三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG 平分∠BOF .求∠DOG .24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC 与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?3 同位角、内错角、同旁内角一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a______c.(2)证明思路分析:欲证a______c,只要证______∥______且______∥______.(3)证明过程:证明:∵∠1=∠2,( )∴a∥______.(________,________)①∵∠3+∠4=180°,( )∴c∥______.(________,________)②由①、②,因为a∥______,c∥______,∴a______c.(________,________)测试5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________) 6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数.分析:可利用∠DCE作为中间量过渡.解法1:∵AB∥CD,∠B=50°,( )∴∠DCE=∠_______=_______°.(____________,______)又∵AD∥BC,( )∴∠D=∠______=_______°.(____________,____________) 想一想:如果以∠A作为中间量,如何求解?解法2:∵AD∥BC,∠B=50°,( )∴∠A +∠B =______.(____________,____________)即∠A =______-______=______°-______°=______°. ∵DC ∥AB ,( )∴∠D +∠A =______.(_____________,_____________) 即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE ∥BC ,∠D ∶∠DBC =2∶1,∠1=∠2,求∠E 的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).测试6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( )二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”) 19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.测试7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B 间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD 位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?参考答案第五章相交线与平行线测试11.公共,反向延长线.2.公共,反向延长线.3.对顶角相等.4.略.5.(1)∠BOC,∠AOD;(2)∠AOE;(3)∠AOC,∠BOD;(4)137°43′,90°,47°43′.6.A.7.D.8.B.9.D.10.×,11.×,12.×,13.√,14.√,15.×.16.∠2=60°.17.∠4=43°.18.120°.提示:设∠DOE=x°,由∠AOB=∠AOD+∠DOB=6x=180°,可得x=30°,∠AOF=4x=120°.19.只要延长BO(或AO)至C,测出∠AOB的邻补角∠AOC(或∠BOC)的大小后,就可知道∠AOB的度数.20.∠AOC与∠BOD是对顶角,说理提示:只要说明A,O,B三点共线.证明:∵射线OA的端点在直线CD上,∴∠AOC与∠AOD互为邻补角,即∠AOC+∠AOD=180°,又∵∠BOD=∠AOC,从而∠BOD+∠AOD=180°,∴∠AOB是平角,从而A,O,B三点共线.∴∠AOC与∠BOD是对顶角.21.(1)有6对对顶角,12对邻补角.(2)有12对对顶角,24对邻补角.(3)有m(m-1)对对顶角,2m(m-1)对邻补角.测试21.互相垂直,垂,垂足.2.有且只有一条直线,所有线段,垂线段.3.垂线段的长度.4.AB⊥CD;AB⊥CD,垂足是O(或简写成AB⊥CD于O);P;CD;线段MO的长度.5~8.略.9.√,10.√,11.×,12.√,13.√,14.√,15.×,16.√.17.B.18.B.19.D.20.C.21.D.22.30°或150°.23.55°.24.如图所示,不同的垂足为三个或两个或一个.这是因为:(1)当A,B,C三点中任何两点的连线都不与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有三个不同的垂足.(2)当A,B,C三点中有且只有两点的连线与直线m垂直时,则分别过A,B,C三点作直线m的垂线时,有两个不同的垂足.(3)当A,B,C三点共线,且该线与直线m垂直时,则只有一个垂足.25.以点M为圆心,以R=1.5cm长为半径画圆M,在圆M上任取四点A,B,C,D,依次连接AM,BM,CM,DM,再分别过A,B,C,D点作半径AM,BM,CM,DM的垂线l1,l2,l3,l4,则这四条直线为所求.26.相等或互补.27.提示:如图,,9073,9075 ⨯=∠⨯=∠FOC AOE.90710,9072 ⨯=∠⨯=∠∴BOC AOB .90712⨯=∠+∠∴BOC AOB ∴是712倍. 测试31.(1)邻补角,(2)对顶角,(3)同位角,(4)内错角, (5)同旁内角,(6)同位角,(7)内错角,(8)同旁内角, (9)同位角,(10)同位角.2.同位角有:∠3与∠7、∠4与∠6、∠2与∠8;内错角有:∠1与∠4、∠3与∠5、∠2与∠6、∠4与∠8; 同旁内角有:∠2与∠4、∠2与∠5、∠4与∠5、∠3与∠6. 3.(1)BD ,同位. (2)AB ,CE ,AC ,内错.4.(1)ED ,BC ,AB ,同位;(2)ED ,BC ,BD ,内错;(3)ED ,BC ,AC ,同旁内. 5.C . 6.D . 7.B . 8.D .9.6对对顶角,12对邻补角,12对同位角,6对内错角,6对同旁内角.测试41.不相交,a ∥b . 2.相交、平行.3.经过直线外一点有且只有一条直线与这条直线平行. 4.第三条直线平行,互相平行,a ∥c . 5.略.6.(1)EF ∥DC ,内错角相等,两直线平行. (2)AB ∥EF ,同位角相等,两直线平行. (3)AD ∥BC ,同旁内角互补,两直线平行. (4)AB ∥DC ,内错角相等,两直线平行.(5)AB∥DC,同旁内角互补,两直线平行.(6)AD∥BC,同位角相等,两直线平行.7.(1)AB,EC,同位角相等,两直线平行.(2)AC,ED,同位角相等,两直线平行.(3)AB,EC,内错角相等,两直线平行.(4)AB,EC,同旁内角互补,两直线平行.8.略.9.略.10.略.11.同位角相等,两直线平行.12.略.13.略.14.略.测试51.(1)两条平行线,相等,平行,相等.(2)被第三条直线所截,内错角,两直线平行,内错角相等.(3)两条平行线被第三条直线所截,互补.两直线平行,同旁内角互补.2.垂直于,线段的长度.3.(1)∠5,两直线平行,内错角相等.(2)∠1,两直线平行,同位角相等.(3)180°,两直线平行,同旁内角互补.(4)120°,两直线平行,同位角相等.4.(1)已知,∠5,两直线平行,内错角相等.(2)已知,∠B,两直线平行,同位角相等.(3)已知,∠2,两直线平行,同旁内角互补.5~12.略.13.30°.14.(1)(2)均是相等或互补.15.95°.16.提示:这是一道结论开放的探究性问题,由于E点位置的不确定性,可引起对E点不同位置的分类讨论.本题可分为AB,CD之间或之外.如:结论:①∠AEC=∠A+∠C②∠AEC+∠A+∠C=360°③∠AEC=∠C-∠A④∠AEC=∠A-∠C⑤∠AEC=∠A-∠C⑥∠AEC=∠C-∠A.测试61.判断、语句.2.题设,结论,已知事项,由已知事项推出的事项.3.题设,结论.4.一定成立,总是成立.5.题设是两条直线垂直于同一条直线;结论是这两条直线平行.6.题设是同位角相等;结论是两条直线平行.7.题设是两条直线平行;结论是同位角相等.8.题设是两个角是对顶角;结论是这两个角相等.9.如果一个角是90°,那么这个角是直角.10.如果一个整数的末位数字是零,那么这个整数能被5整除.11.如果有几个角相等,那么它们的余角相等.12.两直线被第三条直线截得的同旁内角互补,那么这两条直线平行.13.是,14.是,15.不是,16.不是,17.不是,18.是.19.√,20.√,21.×,22.×,23.√,24.√,25.×,26.×,27.√,28.√,29.×,30.×.31.正确的命题例如:(1)在四边形ABCD中,如果AB∥CD,BC∥AD,那么∠A=∠C.(2)在四边形ABCD中,如果AB∥CD,BC∥AD,那么AD=BC(3)在四边形ABCD中,如果AD∥BC,∠A=∠C,那么AB∥DC.32.已知:如图,AB∥CD,EF与AB、CD分别交于M,N,MQ平分∠AMN,NH平分∠END.求证:MQ∥NH.证明:略.测试71.LM,KJ,HI.2.(1)某一方向,相等,AB∥A1B1∥A2B2∥A3B3或在一条直线上,AB=A1B1=A2B2=A3B3.(2)平行或共线,相等.3.(1)某一方向,形状、大小.(2)相等,平行或共线.4~7.略.8.B9.利用图形平移的性质及连接两点的线中,线段最短,可知:AC+CD+DB=(ED+DB)+CD=EB+CD.而CD 的长度又是平行线PQ与MN之间的距离,所以AC+CD+DB最短.10.提示:正方形③的面积=正方形①的面积+正方形②的面积.AB2=AC2+BC2.西城区七年级数学第五章相交线与平行线测试一、选择题1.如图,AB ∥CD ,若∠2是∠1的4倍,则∠2的度数是( ).(A)144° (B)135° (C)126° (D)108°2.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3,则∠BOC 的度数为( ). (A)30° (B)60° (C)150° (D)30°或150°3.如图,直线l 1,l 2被l 3所截得的同旁内角为α,β ,要使l 1∥l 2,只要使( ).(A)α+β =90° (B)α=β (C)0°<α≤90°,90°≤β <180°(D) 603131=+βα 4.如图,AB ∥CD ,FG ⊥CD 于N ,∠EMB =α,则∠EFG 等于( ).(A)180°-α (B)90°+α (C)180°+α (D)270°-α 5.以下五个条件中,能得到互相垂直关系的有( ). ①对顶角的平分线 ②邻补角的平分线③平行线截得的一组同位角的平分线 ④平行线截得的一组内错角的平分线 ⑤平行线截得的一组同旁内角的平分线 (A)1个 (B)2个 (C)3个 (D)4个6.如图,在下列条件中:①∠1=∠2;②∠BAD =∠BCD ;③∠ABC =∠ADC 且∠3=∠4;④∠BAD +∠ABC =180°,能判定AB ∥CD 的有( ).(A)3个 (B)2个 (C)1个 (D)0个7.在5×5的方格纸中,将图a 中的图形N 平移后的位置如图b 所示,那么正确的平移方法是( ).(A)先向下移动1格,再向左移动1格(B)先向下移动1格,再向左移动2格 (C)先向下移动2格,再向左移动1格 (D)先向下移动2格,再向左移动2格8.在下列四个图中,∠1与∠2是同位角的图是( ).图① 图② 图③ 图④(A)①② (B)①③ (C)②③ (D)③④9.如图,AB ∥CD ,若EM 平分∠BEF ,FM 平分∠EFD ,EN 平分∠AEF ,则与∠BEM 互余的角有( ).(A)6个 (B)5个(C)4个 (D)3个10.把一张对边互相平行的纸条折成如图所示,EF 是折痕,若∠EFB =32°,则下列结论正确的有( ).(1)∠C ′EF =32° (2)∠AEC =148°(3)∠BGE =64° (4)∠BFD =116° (A)1个 (B)2个 (C)3个 (D)4个 二、填空题11.若角α与β 互补,且 2031=-βα,则较小角的余角为____°.12.如图,已知直线AB 、CD 相交于O ,如果∠AOC =2x °,∠BOC =(x +y +9)°,∠BOD=(y +4)°,则∠AOD 的度数为____.13.如图,DC ∥EF ∥AB ,EH ∥DB ,则图中与∠AHE 相等的角有____________________________________________________.14.如图,若AB ∥CD ,EF 与AB 、CD 分别相交于点E ,F ,EP 与∠EFD 的平分线相交于点P ,且∠EFD =60°,EP ⊥FP ,则∠BEP =______°.15.王强从A 处沿北偏东60°的方向到达B 处,又从B 处沿南偏西25°的方向到达C 处,则王强两次行进路线的夹角为______°.16.已知:如图,CD 是直线,E 在直线CD 上,∠1=130°,∠A =50°,求证:AB ∥CD .17.已知:如图,AE ⊥BC 于E ,∠1=∠2.求证:DC ⊥BC .18.已知:如图,CD⊥AB于D,DE∥BC,EF⊥AB于F,求证:∠FED=∠BCD.19.已知:如图,AB∥DE,CM平分∠BCE,CN⊥CM.求证:∠B=2∠DCN.20.已知:如图,AD∥BC,∠BAD=∠BCD,AF平分∠BAD,CE平分∠BCD.求证:AF∥EC.。

相关文档
最新文档