第四章 晶体缺陷
晶体中的点缺陷和面缺陷

(2)杂质缺陷(组成缺陷) ——外来原子进入晶格成为晶体中的杂质。 杂质原子进入晶体后,破坏了晶体中原子有规则的排列, 并且杂质原子周围的周期势场发生变化,而形成缺陷。 ※ 杂质原子可以取代原来的原子进入正常格点的位置, 形成置换型杂质;也可以进入晶格的间隙位置成为填隙 式杂质原子,即为间隙型杂质,如图。
热平衡态点缺陷:纯净和严格化学配比的晶体中,由于体系能量涨落而形
成的,浓度大小取决于温度和缺陷形成能。
非平衡态点缺陷:通过各种手段在晶体中引入额外的点缺陷,形态和数量
完全取决于产生点缺陷的方法,不受体系温度控制。
晶体中引入非平衡态点缺陷的方法:
快速冷却 低温,形成过饱和点缺陷 (1)淬火 :高温---------
1
缺陷分类
按作用范围和几何形状分:
1、点缺陷:零维缺陷,尺寸在一、二个原子大小的级别。 按点缺陷产生原因划分:热缺陷、杂质缺陷、非化学计 量结构缺陷:
2、线缺陷:一维缺陷,通常指位错。 3、面缺陷:二维缺陷,如:界面和表面等。
2
§4-1 热力学平衡态点缺陷
一.点缺陷及其分类
1、点缺陷 ——造成晶体结构的不完整性,仅局限在原子位置,称 为点缺陷。 如:理想晶体中的一些原子被外界原子所代替;晶格间隙中掺入 原子;结构中产生原子空位等都属点缺陷(缺陷尺寸在一两个原 子的大小范围)。
设:构成完整单质晶体的原子数为N;
TK时形成n个空位,每个空位的形成能为⊿h;
这个过程的自由能变化为⊿G,热焓变化为⊿H,熵变为 ⊿S; 则: ⊿G = ⊿H- T⊿S= n⊿h - T⊿S
11
其中熵变⊿S分为两部分:
①混合熵⊿Sc = klnw
(由微观状态数增加而造成),
k——波尔兹曼常数;w是热力学几率,指n个空位在 n+N个晶格位置不同分布时排列的总数目, w=(N+n)!/N!n! ②振动熵⊿S
第4章 晶体缺陷

刃位错的滑移
螺位错的滑移
刃、螺型位错的滑移特点
特征差异:
切应力方向不同 刃型:F⊥l;螺型:F∥l
位错运动方向与晶体滑移方向关系 刃型:运动方向与滑移 方向一致;螺型:运动方向与滑移方向垂直。 统一之处: 两者的滑移情况均与各自的b一致。
b) 位错环(混合型位错)的滑移
A、B处为刃型位错,C、D处为螺型位错,其余各处为 混合型位错。 位错环可以沿法线方向向外扩张而离开晶体;也可以反 向缩小而消失。
透射电镜下观察到的位错线
第三节 位错的能量及交互作用
位错线周围的原子偏离平衡位置,处于较高的能量状 态,高出的这部分能量称为位错的应变能(位错能)
一、位错的应变能
位错的应变能可分为:位错中心畸变能Ec和位错应 力场引起的弹性应变能Ee。 Ec:位错中心点阵畸变较大,需借助点阵模型直接考虑晶体
结构和原子间的相互作用,其能量约为总应变能的1/10~ 1/15,常予以忽略。
和间隙原子的“间隙-空位”对。
Frenkel defect
化合物离子晶体中的两种点缺陷 金属晶体:弗兰克尔缺陷比肖脱基缺陷少得多 离子晶体:结构配位数低-弗兰克尔缺陷较常见
结构配位数高-肖脱基缺陷较重要
间隙原子
定义:晶体中的原子进入晶格的间隙位置而形成 的缺陷。
Interstitial defect
b 2 r
Gb 2 r
b 2 r dr L L Gb
位错线
半原子面
刃型位错的特点
滑移面
a、属于线型位错,但在晶体中为狭长的管道畸变区;
b、是晶体中滑移区与未滑移区的分界线,不一定是 直线,也可以是折线或曲线; c、不能中断于晶体内部
固体物理第四章_晶体的缺陷

习题测试1.设晶体只有弗仑克尔缺陷, 填隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异?2.热膨胀引起的晶体尺寸的相对变化量与X射线衍射测定的晶格常数相对变化量存在差异,是何原因?3.KCl晶体生长时,在KCl溶液中加入适量的CaCl溶液,生长的KCl晶体的质量密度比理2论值小,是何原因?4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低?5.金属淬火后为什么变硬?6.在位错滑移时, 刃位错上原子受的力和螺位错上原子受的力各有什么特点?7.试指出立方密积和六角密积晶体滑移面的面指数.8.离子晶体中正负离子空位数目、填隙原子数目都相等, 在外电场作用下, 它们对导电的贡献完全相同吗?9.晶体结构对缺陷扩散有何影响?10.填隙原子机构的自扩散系数与空位机构自扩散系数, 哪一个大? 为什么?11.一个填隙原子平均花费多长时间才被复合掉? 该时间与一个正常格点上的原子变成间隙原子所需等待的时间相比, 哪个长?12.一个空位花费多长时间才被复合掉?13.自扩散系数的大小与哪些因素有关?14.替位式杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?15.填隙杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?16.你认为自扩散系数的理论值比实验值小很多的主要原因是什么?17.离子晶体的导电机构有几种?习题解答1.设晶体只有弗仑克尔缺陷, 填隙原子的振动频率、空位附近原子的振动频率与无缺陷时原子的振动频率有什么差异?[解答]正常格点的原子脱离晶格位置变成填隙原子, 同时原格点成为空位, 这种产生一个填隙原子将伴随产生一个空位的缺陷称为弗仑克尔缺陷. 填隙原子与相邻原子的距离要比正常格点原子间的距离小,填隙原子与相邻原子的力系数要比正常格点原子间的力系数大. 因为原子的振动频率与原子间力系数的开根近似成正比, 所以填隙原子的振动频率比正常格点原子的振动频率要高. 空位附近原子与空位另一边原子的距离, 比正常格点原子间的距离大得多, 它们之间的力系数比正常格点原子间的力系数小得多, 所以空位附近原子的振动频率比正常格点原子的振动频率要低.2.热膨胀引起的晶体尺寸的相对变化量与X射线衍射测定的晶格常数相对变化量存在差异,是何原因?[解答]肖特基缺陷指的是晶体内产生空位缺陷但不伴随出现填隙原子缺陷, 原空位处的原子跑到晶体表面层上去了. 也就是说, 肖特基缺陷将引起晶体体积的增大. 当温度不是太高时, 肖特基缺陷的数目要比弗仑克尔缺陷的数目大得多. X射线衍射测定的晶格常数相对变化量, 只是热膨胀引起的晶格常数相对变化量. 但晶体尺寸的相对变化量不仅包括了热膨胀引起的晶格常数相对变化量, 也包括了肖特基缺陷引起的晶体体积的增大. 因此, 当温度不是太高时, 一般有关系式>.溶液,生长的KCl晶体的质量密度比理3.KCl晶体生长时,在KCl溶液中加入适量的CaCl2论值小,是何原因?[解答]由于离子的半径(0.99)比离子的半径(1.33)小得不是太多, 所以离子难以进入KCl晶体的间隙位置, 而只能取代占据离子的位置. 但比高一价, 为了保持电中性(最小能量的约束), 占据离子的一个将引起相邻的一个变成空位. 也就是说, 加入的CaCl越多, 空位就越多. 又因为的原子量(40.08)与的2溶液引起空位, 将导致KCl 原子量(39.102)相近, 所以在KCl溶液中加入适量的CaCl2晶体的质量密度比理论值小.4.为什么形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量低?[解答]形成一个肖特基缺陷时,晶体内留下一个空位,晶体表面多一个原子. 因此形成形成一个肖特基缺陷所需的能量, 可以看成晶体表面一个原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子的相互作用能的差值. 形成一个弗仑克尔缺陷时,晶体内留下一个空位,多一个填隙原子. 因此形成一个弗仑克尔缺陷所需的能量, 可以看成晶体内部一个填隙原子与其它原子的相互作用能, 和晶体内部一个原子与其它原子相互作用能的差值. 填隙原子与相邻原子的距离非常小, 它与其它原子的排斥能比正常原子间的排斥能大得多. 由于排斥能是正值, 包括吸引能和排斥能的相互作用能是负值, 所以填隙原子与其它原子相互作用能的绝对值, 比晶体表面一个原子与其它原子相互作用能的绝对值要小. 也就是说, 形成一个肖特基缺陷所需能量比形成一个弗仑克尔缺陷所需能量要低.5.金属淬火后为什么变硬?[解答]我们已经知道晶体的一部分相对于另一部分的滑移, 实际是位错线的滑移, 位错线的移动是逐步进行的, 使得滑移的切应力最小. 这就是金属一般较软的原因之一. 显然, 要提高金属的强度和硬度, 似乎可以通过消除位错的办法来实现. 但事实上位错是很难消除的. 相反, 要提高金属的强度和硬度, 通常采用增加位错的办法来实现. 金属淬火就是增加位错的有效办法. 将金属加热到一定高温, 原子振动的幅度比常温时的幅度大得多, 原子脱离正常格点的几率比常温时大得多, 晶体中产生大量的空位、填隙缺陷. 这些点缺陷容易形成位错. 也就是说, 在高温时, 晶体内的位错缺陷比常温时多得多. 高温的晶体在适宜的液体中急冷, 高温时新产生的位错来不及恢复和消退, 大部分被存留了下来. 数目众多的位错相互交织在一起, 某一方向的位错的滑移, 会受到其它方向位错的牵制, 使位错滑移的阻力大大增加, 使得金属变硬.6.在位错滑移时, 刃位错上原子受的力和螺位错上原子受的力各有什么特点?[解答]在位错滑移时, 刃位错上原子受力的方向就是位错滑移的方向. 但螺位错滑移时, 螺位错上原子受力的方向与位错滑移的方向相垂直.7.试指出立方密积和六角密积晶体滑移面的面指数.[解答]滑移面一定是密积面, 因为密积面上的原子密度最大, 面与面的间距最大, 面与面之间原子的相互作用力最小. 对于立方密积, {111}是密积面. 对于六角密积, (001)是密积面. 因此, 立方密积和六角密积晶体滑移面的面指数分别为{111}和(001).8.离子晶体中正负离子空位数目、填隙原子数目都相等, 在外电场作用下, 它们对导电的贡献完全相同吗?[解答]由(4.48)式可知, 在正负离子空位数目、填隙离子数目都相等情况下, 离子晶体的热缺陷对导电的贡献只取决于它们的迁移率. 设正离子空位附近的离子和填隙离子的振动频率分别为和, 正离子空位附近的离子和填隙离子跳过的势垒高度分别为和, 负离子空位附近的离子和填隙离子的振动频率分别为和, 负离子空位附近的离子和填隙离子跳过的势垒高度分别为, 则由(4.47)矢可得,,,.由空位附近的离子跳到空位上的几率, 比填隙离子跳到相邻间隙位置上的几率大得多, 可以推断出空位附近的离子跳过的势垒高度, 比填隙离子跳过的势垒高度要低, 即<,<. 由问题1.已知, 所以有<, <. 另外, 由于和的离子半径不同, 质量不同, 所以一般, .也就是说, 一般. 因此, 即使离子晶体中正负离子空位数目、填隙离子数目都相等, 在外电场作用下, 它们对导电的贡献一般也不会相同.9.晶体结构对缺陷扩散有何影响?[解答]扩散是自然界中普遍存在的现象, 它的本质是离子作无规则的布郎运动. 通过扩散可实现质量的输运. 晶体中缺陷的扩散现象与气体分子的扩散相似, 不同之处是缺陷在晶体中运动要受到晶格周期性的限制, 要克服势垒的阻挡, 对于简单晶格, 缺陷每跳一步的间距等于跳跃方向上的周期.10.填隙原子机构的自扩散系数与空位机构自扩散系数, 哪一个大? 为什么?[解答]填隙原子机构的自扩散系数,空位机构自扩散系数.自扩散系数主要决定于指数因子, 由问题4.和8.已知, <,<, 所以填隙原子机构的自扩散系数小于空位机构的自扩散系数.11.一个填隙原子平均花费多长时间才被复合掉? 该时间与一个正常格点上的原子变成间隙原子所需等待的时间相比, 哪个长?[解答]与填隙原子相邻的一个格点是空位的几率是, 平均来说, 填隙原子要跳步才遇到一个空位并与之复合. 所以一个填隙原子平均花费的时间才被空位复合掉.由(4.5)式可得一个正常格点上的原子变成间隙原子所需等待的时间.由以上两式得>>1.这说明, 一个正常格点上的原子变成间隙原子所需等待的时间, 比一个填隙原子从出现到被空位复合掉所需要的时间要长得多.12.一个空位花费多长时间才被复合掉?[解答]对于借助于空位进行扩散的正常晶格上的原子, 只有它相邻的一个原子成为空位时, 它才扩散一步, 所需等待的时间是. 但它相邻的一个原子成为空位的几率是, 所以它等待到这个相邻原子成为空位, 并跳到此空位上所花费的时间.13.自扩散系数的大小与哪些因素有关?[解答]填隙原子机构的自扩散系数与空位机构自扩散系数可统一写成.可以看出, 自扩散系数与原子的振动频率, 晶体结构(晶格常数), 激活能()三因素有关.14.替位式杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]占据正常晶格位置的替位式杂质原子, 它的原子半径和电荷量都或多或少与母体原子半径和电荷量不同. 这种不同就会引起杂质原子附近的晶格发生畸变, 使得畸变区出现空位的几率大大增加, 进而使得杂质原子跳向空位的等待时间大为减少, 加大了杂质原子的扩散速度.15.填隙杂质原子扩散系数比晶体缺陷自扩散系数大的原因是什么?[解答]正常晶格位置上的一个原子等待了时间后变成填隙原子, 又平均花费时间后被空位复合重新进入正常晶格位置, 其中是填隙原子从一个间隙位置跳到相邻间隙位置所要等待的平均时间. 填隙原子自扩散系数反比于时间.因为>>,所以填隙原子自扩散系数近似反比于. 填隙杂质原子不存在由正常晶格位置变成填隙原子的漫长等待时间, 所以填隙杂质原子的扩散系数比母体填隙原子自扩散系数要大得多.16.你认为自扩散系数的理论值比实验值小很多的主要原因是什么?[解答]目前固体物理教科书对自扩散的分析, 是基于点缺陷的模型, 这一模型过于简单, 与晶体缺陷的实际情况可能有较大差别. 实际晶体中, 不仅存在点缺陷, 还存在线缺陷和面缺陷,这些线度更大的缺陷可能对扩散起到重要影响. 也许没有考虑线缺陷和面缺陷对自扩散系数的贡献是理论值比实验值小很多的主要原因.17.离子晶体的导电机构有几种?[解答]离子晶体导电是离子晶体中的热缺陷在外电场中的定向飘移引起的. 离子晶体中有4种缺陷: 填隙离子, 填隙离子, 空位, 空位. 也就是说, 离子晶体的导电机构有4种. 空位的扩散实际是空位附近离子跳到空位位置, 原来离子的位置变成了空位. 离子晶体中, 空位附近都是负离子, 空位附近都是正离子. 由此可知,空位的移动实际是负离子的移动, 空位的移动实际是正离子的移动. 因此, 在外电场作用下, 填隙离子和空位的漂移方向与外电场方向一致, 而填隙离子和空位的漂移方向与外电场方向相反.。
《材料科学基础》课件之第四章----04晶体缺陷

41
刃位错:插入半原子面,位错上方,原子间距变小, 产生压应变,下方原子间距变大,拉应变。过渡处 切应变,滑移面处有最大切应力,正应力为0。x NhomakorabeaGb
2 (1 )
y(3x2 (x2
y2) y2 )2
y
Gb
2 (1
)
y(x2 y2) (x2 y2)2
z ( x y )
x
xy
Gb
2 (1 )
21
刃位错b与位错线 垂直
螺位错b与位错线 平行
bb
l
l
正
负
b
b
右旋
左旋
任意一根位错线上各点b相同,同一位错只有一个b。
有大小的晶向指数表示
b a [uvw] 模 n
b a u2 v2 w2 n
22
Burgers矢量合成与分解:如果几条位错线在晶体内
部相交(交点称为节点),则指向节点的各位错的伯氏矢量 之和,必然等于离开节点的各位错的伯氏矢量之和 。
不可能中断于晶体内部(表面露头,终止与 晶界和相界,与其他位错相交,位错环)
半原子面及周围区域统称为位错
18
2. 螺位错
晶体在大于屈服值的切应力作用下,以某晶面为滑移面发生滑移。由于位错线周围 的一组原子面形成了一个连续的螺旋形坡面,故称为螺位错。
几何特征:位错线与原子滑移方向相平行;位错线周围原子的配置是螺旋状的。
d
34
六、位错应变能
位错原子偏移正常位置,产生畸变应力, 处于高能量状态,但偏移量很小,晶格为弹 性应变。
位错心部应变较大,超出弹性范围, 但这部分能量所占比例较小, <10%,可以近似忽略。
35
1. 理论基础:连续弹性介质模型
晶体的缺陷

原子绝对严格按晶格的周期性排列的晶体是不存 在的,实际晶体中或多或少都存在缺陷,至少晶 体不可能是无穷大的。晶体缺陷按几何形态划分 为点缺陷、线缺陷和面缺陷。
点缺陷是原子热运动造成的,在平衡时,这些热 缺陷的数目是一定的。缺陷的扩散不仅受到晶格 周期性的约束,还会发生复合现象。杂质原子的 扩散系数比晶体原子自扩散系数大。离子沿外电 场方向的扩散便构成了离子导电。
-e
Na+ Cl- Na+
用X射线或 射线辐照、用中子或电子轰击晶体。
色心是指晶体中存在的能对特定波长的光产生吸 收的点缺陷。在特定的条件下,很多材料中都可 观察到色心。容易产生色心的材料有碱金属卤化 物、碱土金属氟化物和部分金属氧化物。色心可 以在电离辐射的照射下产生,也可以在一定的氧 化或还原性气氛中加热晶体得到,还可以用电化 学方法产生出一些特定的色心。最常见并研究的 最充分的是碱金属或碱土金属卤化物中的F色心, F色心是俘获了电子的负离子空位。正离子空位 缺陷俘获空穴形成的色心称做V色心。另外,还 有其他类型的色心,如H色心、M色心和R色心 等。BaFBr:Eu中的F色心有F(F)和F(Br) 两种,分别对应于材料中俘获了电子的两种阴离 子空位。
替位式杂质在晶体中的溶解度也决定于原子的 几何尺寸和化学因素。如果杂质和基质具有相近的 原子尺寸和电负性,可以有较大的溶解度。但也只有 在二者化学性质相近的情况下,才能得到高的固溶 度。 元素半导体、氧化物及化合物半导体晶体中的 替位式杂质,通常引起并存的电子缺陷,从而明显 的改变材料的导电性。例如:Si晶体中含有As5+时, 由于金刚石四面体键仅需4个电子,所以每个As多 了一个电子;如果Si晶体中含有三价原子时,由于 共价键中缺少一个电子而形成电子空位即空穴,这 种掺杂的Si晶体都因杂质原子的存在而是电导率有 很大提高。
固体物理-第4章-晶体中的缺陷和扩散-4

(成对出现)
4、杂质原子 在材料制备中,有控制地在晶体中引入杂质原子
A、杂质原子取代基质原子而占据格点位置,称替代式杂质。
(二者相接近或前者大一些)
B、杂质原子占据格点间的间隙位置,称填隙式杂质。
(杂质原子比基质原子小)
点缺陷的运动 1、空位的运动
空位运动势场示意图
原子结合成晶体的源动力:原子间的吸引力. 理想晶体的生长
问题4:当初如何提出位错概念?位错滑移如何理解?
Ax A d
a
x a 2
xa 2
弹性形变
范性形变 原子不能回到原来位置,易到A
即发生滑移
Ax A
d a
?有问题
最初认为: 滑移是相邻两晶面整体的相对刚性滑移
则可计算:使其滑移的最小切应力: c
第四章 晶体中的缺陷和扩散
原子绝对严格按晶格的周期性排列的晶体不存在
缺陷举例: 如晶体表面、晶粒间界、人为掺杂等
如金刚石
空位
点缺陷 填隙原子 (0维)
杂质原子
刃位错
线缺陷
晶体缺陷的基本类型 (1维)
(按维度或尺寸分类)
螺位错
大角晶界
晶粒间界
面缺陷
小角晶界
(2维) 堆垛间界(层错)
问题1:点缺陷的定义、分类、运动及其对晶体性能影响?
若某一晶面A丢失,则原子面排列: ABCABCBCABC………..
问题7:一定温度下,系统达统计平衡时,
热缺陷(空位.间隙原子)数目?
热力学平衡条件
平衡状态下晶体内的热缺陷数目
系统自由能F U TS 最小
F n T
0
热缺陷的数目
1、肖脱基缺陷(或空位)浓度
第四章 晶体结构缺陷习题与解答

第四章晶体结构缺陷习题与解答4.1 名词解释(a)弗伦克尔缺陷与肖特基缺陷;(b)刃型位错和螺型位错解:(a)当晶体热振动时,一些能量足够大的原子离开平衡位置而挤到晶格点的间隙中,形成间隙原子,而原来位置上形成空位,这种缺陷称为弗伦克尔缺陷。
如果正常格点上原子,热起伏后获得能量离开平衡位置,跃迁到晶体的表面,在原正常格点上留下空位,这种缺陷称为肖特基缺陷。
(b)滑移方向与位错线垂直的位错称为刃型位错。
位错线与滑移方向相互平行的位错称为螺型位错。
4.2试述晶体结构中点缺陷的类型。
以通用的表示法写出晶体中各种点缺陷的表示符号。
试举例写出CaCl2中Ca2+置换KCl中K+或进入到KCl间隙中去的两种点缺陷反应表示式。
解:晶体结构中的点缺陷类型共分:间隙原子、空位和杂质原子等三种。
在MX 晶体中,间隙原子的表示符号为MI或XI;空位缺陷的表示符号为:VM或VX。
如果进入MX晶体的杂质原子是A,则其表示符号可写成:AM或AX(取代式)以及Ai(间隙式)。
当CaCl2中Ca2+置换KCl中K+而出现点缺陷,其缺陷反应式如下:CaCl2++2Cl ClCaCl2中Ca2+进入到KCl间隙中而形成点缺陷的反应式为:CaCl2+2+2Cl Cl4.3在缺陷反应方程式中,所谓位置平衡、电中性、质量平衡是指什么?解:位置平衡是指在化合物MaXb中,M格点数与X格点数保持正确的比例关系,即M:X=a:b。
电中性是指在方程式两边应具有相同的有效电荷。
质量平衡是指方程式两边应保持物质质量的守恒。
4.4(a)在MgO晶体中,肖特基缺陷的生成能为6ev,计算在25℃和1600℃时热缺陷的浓度。
(b)如果MgO晶体中,含有百万分之一mol的Al2O3杂质,则在1600℃时,MgO晶体中是热缺陷占优势还是杂质缺陷占优势?说明原因。
解:(a)根据热缺陷浓度公式:exp(-)由题意△G=6ev=6×1.602×10-19=9.612×10-19JK=1.38×10-23 J/KT1=25+273=298K T2=1600+273=1873K298K:exp=1.92×10-511873K:exp=8×10-9(b)在MgO中加入百万分之一的Al2O3杂质,缺陷反应方程为:此时产生的缺陷为[ ]杂质。
第四章晶体缺陷

空位形成引起点阵畸变,亦会割断键力,故空位形成需能量, 空位形成能(ΔEV)为形成一个空位所需能量。
点缺陷是热力学稳定的缺陷: 点缺陷与线、面缺陷的区别 之一是后者为热力学不稳定的缺陷 。在一定温度下,晶体中
有一定平衡数量的空位和间隙原子,其数量可近似算出。
设自由能G=H-TS H为焓,S为系统熵(包括振动熵SV和排列熵SC) 空位的引入,一方面由于弹性畸变使晶体内能增加; 另一方面又使晶体中混乱度增加,使熵增加。而熵 的变化包括两部分: ① 空位改变它周围原子的振动频率引起振动熵,SV ② 空位在晶体点阵中的排列可有许多不同的几何 组态,使排列熵SC增加。
一些能量较大的质点 离开平衡位置后,进 入到间隙位置,形成间隙质点,而在原来位置上 形成空位
(2)肖特基空位: 如果正常格点上的 质点,在热起伏过程中 获得能量离开平衡位置迁移到晶体的表面,而在晶体
内部正常格点上留下空位
材料科学基础
2 间隙原子 原子或离子进入晶体中正常结点之间的间隙位置, 成为填隙原子(或离子)或间隙原子(或离子)。 从成分上看,填隙质点可以是晶体自身的质点,
Example 6.1 SOLUTION The lattice parameter of FCC copper is 0.36151 nm. The basis is 1, therefore, the number of copper atoms, or lattice points, per cm3 is:
Example 4.1 The Effect of Temperature on Vacancy Concentrations
Calculate the concentration of vacancies in copper at room temperature (25oC). What temperature will be needed to heat treat copper such that the concentration of vacancies produced will be 1000 times more than the equilibrium concentration of vacancies at room temperature? Assume that 20,000 cal are required to produce a mole of vacancies in copper.
晶体结构缺陷(陈春华)

“完美晶体”只是一种想象,缺陷晶体则是绝对的。
结构缺陷显著影响材料的各种物理、化学性质: 力学性质、扩散特性、反应活性、烧结活性、光电 特性等。 结构缺陷的调控是材料科学的“焦点”。
References: 1. “Basic Solid State Chemistry” Anthony R. West, 2th
vacancy pair
interstitial anion
Anion vacancy
第二节:结构缺陷形成热力学和 缺陷结构的绝对性
Perfect crystals are built up of regular arrangements of atoms in three dimensions; in a perfect crystal, all the atoms at rest on their correct lattice positions.
ΔH ≈ const. and ΔSvib ≈ const. Not true!
ΔSconf
= k lnW
= k ln (N + nV )! N !nV !
⎛ ⎜W ⎝
=
(
N + nV ) N !nV !
!
⎞ ⎟ ⎠
considering N >> 1 and nV >> 1 (N >> nV ) and applying Stirling ' s Approximation : ln x! = x ln x + x (x >> 1)
Cl Na Cl Na Cl Na Na Cl Na Cl Na Cl Cl Na e’ Na Cl Na Na Cl Na Cl Na Cl Cl Na Cl Na Cl Na
4. 晶体缺陷

螺型位错的滑移:在图示的晶体上施加一切应力,当应力足够大 时,有使晶体的左右部分发生上下移动的趋势。假如晶体中有一 螺型位错,显然位错在晶体中向后发生移动,移动过的区间右边 晶体向下移动一柏氏矢量。因此,①螺位错也是在外加切应力的 作用下发生运动;②位错移动的方向总是和位错线垂直;③运动 位错扫过的区域晶体的两部分发生了柏氏矢量大小的相对运动 (滑移);④位错移过部分在表面留下部分台阶,全部移出晶体 的表面上产生柏氏矢量大小的完整台阶。这四点同刃型位错。
第二节 位错的基本概念
一.位错概念的引入
★1926年 Frank计算了理论剪切强度,与实际剪切 强度相比,相差3~4个数量级,当时无法解释, 此矛盾持续了很长时间 。
★1934年 Taylor在晶体中引入位错概念,将位错与 晶体结构、晶体的滑移联系起来解释了这种差异 。
★ 1939年 Burgers提出柏氏矢量b以表征位错的特征, 阐述了位错弹性应力场理论。
例题
Cu晶体的空位形成能uv=0.9ev/atom或 1.44*10-19J/atom材料常数A取作1,k=1.38*10-23. 计算:
1)在500℃下,每立方米中的空位数目; 2)500 ℃下的平衡空位浓度 。
解:首先确定1m3体积内原子Cu原子总数 (已知Cu的摩尔质量MCu=63.54g/mol,500 ℃
螺型位错
τb
晶体的局部滑移
螺型位错的原子组态
混合型位错: 晶体的局部滑移
τ∧ b
混合型位错的原子组态
线缺陷:在三维空间的一个方向上的尺寸很大(晶粒数量级),
另外两个方向上的尺寸很小(原子尺寸大小)的晶体缺陷。其 具体形式就是晶体中的位错Dislocation
一、位错的原子模型
第四章 凝固、晶体缺陷与固体扩散

组成合金的最基本的独立单元叫组元; 由两个组元组成的合金叫二元合金。 合金中有两类基本相:①金属间化合物——合金组元通过金属键、离子键、 共价键或范德瓦耳斯键形成的成分(范围)固定、且结构不同于任一组元的具有 金属性质的中间相。 金属间化合物通常具有较复杂的晶体结构, 熔点高, 硬而脆, 常作为合金中的强化相。 ②固溶体——合金组元通过溶解形成的一种成分和性能 均匀的、且结构与组元之一相同的固相。与固溶体晶格相同的组元称为溶剂。 按溶质原子在溶剂晶格中的位置,分为置换固溶体和间隙固溶体两种。 一.置换固溶体(Substitutional Solid Solutions ) 溶质原子代换了溶剂晶格某些结点的原子形成的固溶体。如图 Fig4.14。尽 管溶剂原子被置换后,点阵类型没发生变化,但是,由于组元原子半径或其它理 化性能差异,晶格或多或少会产生畸变。当 rA >rB 时产生负畸变(收缩) ,相反产 生正畸变(膨胀) 。当∆r/rA >30%时,就不容易形成置换固溶体,而形成间隙固溶 体或金属间化合物。 根据固溶体溶解度的大小,置换固溶体可以是有限固溶体或无限固溶体。形 成无限固溶体必须满足以下四个条件: 1) 原子半径相近,∆r /rA <15%; 2) 组元 A、B 有相同的晶格类型; 3) 组元 A、B 有相似的电负性; 4) 有相同的价电子浓度。 以上四点是形成无限固溶体的必要条件,但不是充分条件。一般,∆r /rA ↗、 电负性差异↗、价电子浓度差异↗,溶解度↘。如果 A、B 能形成无限固溶体, 则 A、B 的晶格类型一定是相同的。 二.间隙固溶体(Interstitutional Solid Solutions ) 溶质原子填充在溶剂原子晶格的间隙之中而形成的一种固溶体。如前所述, 当∆r /rA >30%时不容易形成置换固溶体。如果,AB 组元原子半径相差更大,例 如,∆r /rA >41%,rB 就与 FCC 晶格的溶剂原子的当量间隙半径相当。通常金属晶 格的间隙尺寸都比较小, 能够形成间隙固溶体的溶质原子只是那些原子半径小于 0.1nm 的非金属元素,如 H、C、 N、O、B 等。间隙固溶体都是有限固溶体。
材料基础-第四章固体材料的缺陷

例如,Fe的剪切模量大约100GPa,则理论剪切 模量应为3000MPa。但是,单晶体Fe的实际强度仅 为1-10MPa,晶面之间的滑移用相当小剪力就能移 动。理论值与实际值相差巨大。因而,人们就猜测 晶体中存在着象位错这样的线缺陷。 当时仅是理论上的一种推测,没有真正看到。 直到50年代,透射电镜(TEM)的研发成功,才从 实验中观察到实际的位错形貌。 当晶体的一部分相对于另一部分进行局部滑移 时,晶体的已滑移部分与未滑移部分的交界线形成 分界线,即位错,用TEM可观察到(见图4-4)。 位错主要分两种类型:刃型位错和螺型位错。
按晶体缺陷的几何特征,可以分成四种 基本类型:点缺陷、线缺陷(位错)、面缺陷 和体缺陷,如图4-1所示。 但需记住,这些缺陷只代表理想原子排 列中的缺陷。而实用上,为了获得所要求的 材料性能如强度、硬度、塑性等,有时要有 意地制造一些缺陷,即通过合金化、扩散、 热处理和表面处理,设计和控制这些缺陷。 因此,设计和控制晶体缺陷是改进产品 质量的关键,特别是对晶体生长以及使用过 程中控制缺陷的形成、类型以及变化,都是 极为重要的。
图4-3 晶格节点的置换原子
4. 点缺陷对材料性能的影响 在一般情况下,点缺陷主要影响晶体的物 理性质,如比容、比热容、电阻率等。 (1)比容 为了在晶体内部产生一个空位,需将该处 的原子移到晶体表面上,这就导致体积的增加。
(2)比热容 由于形成点缺陷,需向晶体提供附加的能 量(空位生成焓),因而引起附加的比热容。
断裂,而不会沿垂直截面的方向断裂,原因在于 材料在变形过程中发生了滑移,如图4-10所示。
图4-10 单晶体的拉伸断裂 及晶面滑移形貌
这是因为,材料的塑性变形通常会沿着晶体原子 的密排方向滑移,见图4-11 外加拉应力、滑移方向和滑移面的关系
第四章 晶体缺陷与缺陷运动

第四章晶体缺陷与缺陷运动§4.1 晶体缺陷的基本类型§4.2 位错缺陷的性质、晶体滑移的本质§4.3 热缺陷数目的统计平衡理论§4.4 热缺陷的运动、产生和复合§4.5 晶体中的扩散过程§4.6 离子晶体中的点缺陷与导电性前言理想晶体的主要特征是原子(或分子)的严格规则排列、周期性实际晶体中的原子排列会由于各种原因或多或少地偏离严格的周期性,存在着偏离了理想晶体结构的区域,于是就形成了晶体的缺陷。
晶体中虽然存在各种各样的缺陷,但实际在晶体中偏离平衡位置的原子数目很少(相对于晶体原子总数),在最严重的情况下,一般不会超过原子总数的万分之一,因而实际晶体结构从整体上看还是比较完整的。
缺陷——偏离了晶体周期性排列的局部区域。
前言(续)晶体中缺陷的种类很多,它们分别影响着晶体的力学、热学、电学、光学等各方面的性质。
然而,尽管在晶体中缺陷的数目很少,它们的产生和发展、运动和相互作用、以及合并和消失,对晶体的性能有重要的影响。
因此,晶体缺陷是固体物理中一个重要的研究领域,它对于研究和理解一些不能用完整晶体理论解释和理解的现象具有重要的意义。
例如:塑性与强度、扩散、相变、再结晶、离子电导以及半导体的缺陷导电等现象。
§4.1 晶体缺陷的基本类型一、点缺陷点缺陷——发生在一个或几个晶格常数范围内的缺陷。
如:空位、填隙原子、杂质原子等。
这些空位、填隙原子是由热起伏原因而产生的,所以又称为热缺陷。
晶体中存在的缺陷种类很多,但由于晶体中的晶体结构具有规律性,因此晶体中实际出现缺陷的类型也不是无限制的。
根据晶体缺陷在空间延伸的线度,晶体缺陷可分为点缺陷、线缺陷、面缺陷和体缺陷。
几种重要的点缺陷:1)弗仑克尔缺陷和肖脱基缺陷原子(或离子)在格点平衡位置附近振动,由于存在这样的热振动的能量涨落,使得当某一原子能量大到某一程度时,原子就会克服平衡位置势阱的束缚,脱离格点,而到达邻近的原子空隙中,当它失去多余动能后,就会被束缚在那里,这样产生一个暂时的空位和一个暂时的填隙原子,当又经过一段时间后,填隙原子会与空位相遇,并同空位复合;也有可能跳到较远的间隙中去或跳到晶体边界上去。
大学材料科学基础第四章晶体缺陷

Point defects: (a) vacancy, (b) interstitial atom, © small substitutional atom, (d) large substitutional atom, (e) Frenkel defect-ionic cystals (f) Schottky defect- ionic crystals. All of these defects disrupt the perfect arrangement of the surrounding atoms.
第一节 点缺陷
一、点缺陷的类型 1.点缺陷的概念 指在三维方向上尺寸都很小的原子错排区 域,不能理解为一个几何点。
(1) vacancy; (2) selfinterstitial; (3) interstitial impurity; (4), (5) substitutional impurities. The arrows show the local stresses introduced by the point defects.
3830 6480 10960 2630
0.786 0.49 2.75 0.393
2.位错学说的提出
图5 位错滑动模型
位错理论发展进程 1934年,Talay和Orowa 度低于理论强度的现象。 1939 1939年,Burgers提出用柏氏矢量来表征位错 Burgers 类型,为用数学方法处理位错奠定了基础。 1947年,Cottrell提出柯氏气团钉扎模型,成 功地解释了低碳钢的屈服现象。 1950年,Frank和Read提出金属塑性变形中位 错增殖机制,即Frank-Read位错源学说。
刃型位错柏氏矢量确定
第4章晶体缺陷-位错3.15

根据原子的滑移方向和位错线取向的几何 特征,位错可分为:
刃位错 螺位错 混合位错
返回 15:07
GARREY
机电工程学院
4.0 概述
4.1 点缺陷
4.2 位错的 基本概念
4.3 位错的 能量及交互 作用
4.4晶体中 的界面
Foundation of Materials Science
二.位错类型
4.2 位错基本概念
的b矢量之和为零。
GARREY
机电工程学院
Foundation of Materials Science
柏氏矢量与位错线
1. 刃位错柏氏矢量⊥位错线,可以为任何形状;
2. 螺位错柏氏矢量∥位错线,只能为直线;
3. b∥t则为螺位错,同向为右螺,反向为左螺;b⊥t为刃位错; 任意角度φ为混合位错,刃位错分量:bsin φ,螺位错分量: bcosφ
4. 同一根位错线上各处柏氏矢量一定相同;
5. 位错线只能终止在晶界或表面,不能终止在晶体内部,在内 部只能形成封闭环或空间网络。(位错是滑移区的边界)
15:07
GARREY
机电工程学院
4.0 概述 4.1 点缺陷 4.2 位错的 基本概念 4.3 位错的 能量及交互 作用 4.4晶体中 的界面
返回 15:07
★1934年 Taylor在晶体中引入位错概念,将位错与 晶体结构、晶体的滑移联系起来解释了这种差异 。
★1939年 Burgers提出柏氏矢量b以表征位错的特征, 阐述了位错弹性应力场理论。
★1947年 Cottrell发表了溶质原子与位错间交互作用 的研究报告 。
返回 15:07
GARREY
机电工程学院
返回 15:07
晶体缺陷理论典型晶体结构中的位错

★见弗兰克 不全位错swf
•位错反应--位错之间的相互转化 •位错的能量越低越稳定
(1)晶胞中选取四个近邻原子位置,000
、 1 2
0
1 2
、0
1 2
1 2
、
1 2
1 2
0
,分别为D、B、A、C点。
(2)A、B、C、D相连构成正四面体,为Thmpson。
第5层原子由A位置滑移到C位置,第6层以上原子依次滑移一个原子间距……
,产生2个次近邻层错ABC和BAC
插一层不同位置的原子
纸面为 1100
E型堆垛层错
8
8
7
7
0001
6
6
5
5
插入
4
1 1 00 4
3
3
2
2
1
0001 1
AB C A B C A B C A B C A B
AB C A B C A B C A B C A B
1 211
6
8
8
7
7
6
6
5
5
4
4
滑移
3
3
2
2
1
1
AB C A B C A B C A B C A B
AB C A B C A B C A B C A B
在切应力作用下,第4层原子由A位置滑移到B位置,其上各层原子依 次滑移,排列成为了ABCBCABC,出现了内禀层错,即在fcc结构中 形成了BCBC的hcp结构,及BCB与CBC孪晶。与抽出型层错相同。
晶体缺陷理论
第4章 典型晶体结构中的位错
§1 面心立方晶体中的位错 §2 密排六方晶体中的位错 §3 体心立方晶体中的位错
材料物理化学-第四章 晶体的点缺陷与线缺陷

第四章晶体结构缺陷晶体缺陷的产生与晶体的生长条件,晶体中原子的热运动以及对晶体的加工工艺等有关。
事实上,任何晶体即使在绝对零度都含有缺陷,自然界中理想晶体是不存在的。
既然存在着对称性的缺陷,平移操作不能复制全部格点,那么空间点阵的概念似乎不能用到含有缺陷的晶体中,亦即晶体理论的基石不再牢固。
但缺陷的存在只是晶体中局部的破坏。
作为一种统计,一种近似,一种几何模型,缺陷存在的比例毕竟只是一个很小的量(这指的是通常的情况),从占有原子百分数来说,晶体中的缺陷在数量上是微不足道的。
因此,整体上看,可以认为一般晶体是近乎完整的。
因而对于实际晶体中存在的缺陷可以用确切的几何图形来描述,这一点非常重要。
它是我们今后讨论缺陷形态的基本出发点。
事实上,把晶体看成近乎完整的并不是一种凭空的假设,大量的实验事实(X射线及电子衍射实验提供了足够的实验证据)都支持这种近乎理想的对称性。
当然不能否认,当缺陷比例过高以致于这种“完整性”无论从实验或从理论上都不复存在时,此时的固体便不能用空间点阵来描述,也不能被称之为晶体。
这便是材料中的另一大类别:非晶态固体。
对非晶固体和晶体,无论在原子结构理论上或是材料学家对它们完美性追求的哲学思想上都存在着很大差异,有兴趣的同学可以对此作进一步的理解。
缺陷是晶体理论中最重要的内容之一。
晶体的生长、性能以及加工等无一不与缺陷紧密相关。
因为正是这千分之一、万分之一的缺陷,对晶体的性能产生了不容小视的作用。
这种影响无论在微观或宏观上都具有相当的重要性。
4.1热力学平衡态点缺陷4.1.1 热缺陷的基本类型点缺陷形成的热力学平衡当晶体的温度高于绝对零度时,晶格内原子吸收能量,在其平衡位置附近温度越高,热振动幅度加大,原子的平均动能随之增加。
热振动的原子在某一瞬间可以获得较大的能量,挣脱周围质点的作用,离开平衡位置,进入到晶格内的其它位置,而在原来的平衡格点位置上留下空位。
这种由于晶体内部质点热运动而形成的缺陷称为热缺陷。
第四章 晶体缺陷

第四章晶体缺陷按照点阵结构理论,晶体的主要特征是其结构基元作周期性的排列,但实际晶体中的原子或离子总是或多或少地偏离了严格的晶体周期性,因而出现了各种各样的结构缺陷,并对晶体的各种物理性质产生的重要影响。
根据晶体缺陷在空间延伸的线度晶体缺陷可分为点缺陷、线缺陷、面缺陷和体缺陷。
本章主要讲述晶体缺陷的典型形式以及对晶体性质的主要影响。
§4.1 点缺陷点缺陷,是指那些对晶体结构的干扰仅在几个原子间距范围内的晶体缺陷,空位和间隙原子就是点缺陷的典型例子,它们是晶体中最小的、也是最基本的缺陷形式。
空位就是在晶格中原本应该有原子的位置上缺少了原子,间隙原子则是在原本不应该有原子的点阵间隙位置上出现的原子,也被称为填隙原子。
后面我们会看到,在热作用下完整晶体中会自发地出现空位和间隙原子,这是一种本体性的结构缺陷,称为本征结构缺陷。
与此相对的,晶体中还有另一类点缺陷,称为杂质原子,按照其出现的位置可以分为替位杂质和填隙杂质,由于它们改变了晶体的化学成分,因而也被称为化学点缺陷。
点缺陷影响着晶体的许多物理性质,特别与晶体中物质输运过程有关的一些性质受点缺陷的影响最大。
此外,点缺陷还通过对导电电子的散射影响了金属的电导率,通过对声子的散射影响了晶体的导热性;在半导体晶体中杂质原子作为施主或受主显著地影响着半导体的电学性质;在离子晶体中,由于在带隙中造成缺陷能级而影响其光学性质,而离子晶体的离子导电现象则更是直接来源于点缺陷的运动。
4.1.1热缺陷的形成与平衡浓度晶体中原子或离子由于热振动的能量起伏可能离开理想的晶格位置,从而产生空位或间隙原子,这样形成的点缺陷称为热缺陷。
显然,热缺陷是本征结构缺陷。
晶格中的空位和间隙原子可以籍由不同的机制产生。
在晶格内部的原子可以因为热涨落由格点跳进间隙位置,从而同时产生一个空位和一个间隙原子。
由这种方式产生的空位和间隙原子对被称为弗伦克尔缺陷,如图4.1(a)所示。
邻近表面的原子也可以由于热涨落跳到晶体的表面,从而在晶体内留下一个空位。
固体物理第四章_晶体的缺陷

A
未滑动的晶面
EC
F
B
滑动前的晶格
D
刃位错的晶格
刃位错: F原子链。 EF是晶体的挤压区与未挤压区的分界线:
F以下原子间距变大,原子间有较强吸引力;
F的左右晶格被挤压,原子间的排斥力增大。
16
例:实际晶体的小角倾斜 晶体由倾斜角很小的两部分晶体结合而成。为了使 结合部的原子尽可能地规则排列,就得每隔一定距 离多生长出一层原子面,这些多生长出来的半截原 子面的顶端原子链就是刃错位。
添加Fe、Co、Mn等“硬性”添加物后,这些 原子占据Zr或Ti的格点,显著提高该铁电材料的 机械品质因数。
9
4、色心 能吸收光的点缺陷
完善的卤化碱晶体是无色透明的。众多的 色心缺陷能使晶体呈现一定的颜色。
例如:F心,把卤化碱晶体在相应的碱金 属蒸气中加热,然后骤冷到室温,则原来透明 的晶体就出现了颜色。
实验临界切应力比理 论值小的根源
30
2、螺位错的滑移 螺位错的滑移与刃位错的滑移相类似,只是螺位的 滑移方向与晶体所受切应力的方向相垂直。
BC原子 受到向 下的拉 力
螺位 错线 滑移
BC列原子受到右边原子的下拉力,BC原子有向下 位移的趋势,BC原子下移一定的距离; 使BC 变为螺错位。
31
二、螺位错与晶体生长
4
§4.1 晶体缺陷的基本类型
本章主要讨论单晶的缺陷:多晶体是由许多小晶粒 构成,每个晶粒可看成是小单晶。晶粒间界不仅原 子排列混乱,而且是杂质聚集的地方。因此晶粒间 界是一种性质复杂的晶体缺陷。
一、点缺陷
晶体中的填隙原子、空位、俘获电子的空位、杂质 原子等。这些缺陷约占一个原子尺寸,引起晶格周 期性在一到几个原胞范围内发生紊乱。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章晶体缺陷(Defects in crystals)推荐书:《金属物理》、《物理金属学》,冯端著缺陷的魅力所在:钻石中的杂质产生五颜六色。
本征缺陷(Intrinsic defects)是满足物理规律要求所必须存在的缺陷,外来缺陷(Extrinsic defects)占大部分。
为什么重要?很少量都对材料性能产生很大影响。
没有缺陷,固态电子器件就不存在,金属不能更强,陶瓷会更硬,晶体无颜色。
斯梅克耳(A. Smeikel)将固体的性能分为两类:一类是非结构敏感的,如弹性模量、密度、热容量等,对于同一种材料的不同样品进行测量的结果差别不大,而且和将晶体视为理想的完整晶体的理论计算结果基本相符;另一类是结构敏感的,如屈服强度与断裂强度,对于同一种材料的不同样品测得的结果往往差异很大,而且和根据理想完整晶体的理论计算结果有显著的分歧,例如实际晶体的屈服强度只有理论值的千分之一左右。
虽然这种区分并不是绝对的。
实质上,所谓结构敏感性,无非是反映了晶体中的缺陷对于性能的影响,因此绝对的非结构敏感的性能是不存在的。
每一种性能都或多或少地受到晶体缺陷的影响。
研究结构敏感的性能,晶体的缺陷分布和运动对其起了关键性的作用,必须通过细致的实验来揭示晶体中缺陷的具体情况,再在晶体缺陷的基础上进行理论的解释。
晶体的缺陷是指实际晶体结构中和理想的点阵结构发生偏差的区域。
由于晶体结构具有规律性,结构中出现缺陷的形式往往可以归结为几种标准的类型,而每一种都可以用相当确切的几何图象加以描述。
按照缺陷在空间分布的情况,可以将晶体结构中存在的缺陷分为三类:(1)点缺陷(Point Defect),它们在三维空间的尺寸很小(和原子大小相同的量级),相对于整个晶体来说,可以把它们看成是零维的,即看成是1个点,故称点缺陷。
晶体中的空位、间隙原子、杂质原子等是点缺陷。
(2)线缺陷(line Defect),它们在二维方向上的尺寸很小,仅在1个方向上的尺寸较大,相对于整个晶体来说,可以把它们看成是一维的,即看成一根线,故称线缺陷。
晶体中的位错就是线缺陷,包括刃型位错(Edge dislocation)和螺型位错(Screw dislocation),后者在晶体生长中很重要。
(3)面缺陷(Plane Defect),它们在一维方向上的尺寸很小,而在其它二维方向上的尺寸比较大,相对于整个晶体来说,可以把它们看成是二维的,即看成是一个面,故称面缺陷。
晶体中的晶界、相界(Phase boundaries)、孪晶界、堆垛层错等是面缺陷。
缺陷的尺度:点缺陷约0.1nm;线缺陷约10nm(位错);界面(Interfacial defects)约10-100nm;体缺陷约0.01-1mm。
在晶体中,缺陷并不是静止地、稳定不变地存在着,而是随着各种条件的改变而不断变动的,它们可以产生、发展、运动和交互作用,而且能合并和消失。
尽管从整个晶体来看,原子(离子,原子团)是规则排列的,但在微观区域却存在不规则性(缺陷),这些不规则性对晶体很多物理化学过程以及性质起重要作用,特别是对塑性、强度、扩散等有着决定性的作用,在这些过程中常常扮演主要角色。
其中位错理论是晶体缺陷理论的中心问题,也是理解其他类型晶体缺陷的一把钥匙。
4.1 点缺陷点缺陷包括空位(Vacancy)、自间隙原子(Self-interstitial Atom)、分位间隙原子(Split-interstitial Atom)、间隙性杂质原子和置换性杂质原子,以及由它们组合而成的复杂缺陷(如空位对或空位片等)等。
空位是晶体中1个空的点阵位置,自间隙是一个原子挤入正常点阵的间隙中。
如果1个原子离开了点阵正常位置(从而产生个空位)并挤入1个间隙位置中(从而产生一个自间隙),这样的一对点缺陷成为弗伦克尔(Frenkel)缺陷。
自间隙原子还可以和一个近邻点阵原子共同占据该点阵位置,形成分位间隙。
上述的空位、自间隙等点缺陷的存在都会破坏晶体的规则排列,它们使近邻的原子发生位移,即晶体发生畸变,从而产生点阵应变能。
置换和间隙杂质(或溶质)原子也会使晶体产生畸变,也可认为是点缺陷。
较小的杂质原子替代会引起张应力(tensile strain);较大的杂质原子替代会引起压应力。
经典的空位图像是很简单的:原子去掉后,周围的原子基本上保留在原有的座位上,留下一个很明确的空位。
如果周围原子向空位做较大的松弛,甚至崩塌到空位中去,就形成一种弥散的空位或者十几个原子构成的松弛集团,称为松弛群。
实际在较低温度下空位是很明确的,符合于经典的图像;只有在接近于熔点的温度,才和松弛群的图象有些类似。
面心立方晶体中的间隙原子有三种可能组态:1)体心组态,面心立方晶体中有八面体和四面体两种主要间隙位置,间隙原子处在八面体位置的正中心[1/2,1/2,1/2],将周围的原子稍加挤开,产生球面对称的畸变;2)间隙原子沿<100>方向偏离一些,将点阵上的一个近邻原子也挤离了平衡位置,形成两原子对分的间隙组态----分位间隙,产生的畸变具有四方对称性;3)挤列组态(crowdion),沿密排方向有(n+1)个原子挤占了n个原子座位。
如上所述,空位和自间隙原子存在会产生点阵应变能,使晶体的内能(和焓)增加,也使振动熵增加。
较精确地计算点缺陷的形成能,需要全面考虑缺陷周围的畸变情况及缺陷对于电子状态的影响,因而是一个复杂的问题,有不同的解决方法。
空位引起的畸变较小,在形成能的计算中,电子能占了首要的地位,畸变能只引起附加的校正项。
间隙原子的情形相反,畸变能占了首要的地位,计算结果表明,间隙原子的形成能比空位大好几倍。
且一般分位间隙的能量最低,应为平衡状态。
点阵模型对空位周围原子组态的计算表明在密集结构中,原子位移不大(<5%),接近于经典的空位图像。
数个点缺陷也可能组合起来形成能量更低的缺陷集团,例如空位对、三空位、空位集团,以及点缺陷与杂质原子的组合等。
点缺陷的存在使晶体的内能增加,由于混乱程度的增加,也使晶体的熵增大。
根据自由能表示式F=U-TS 可以看出,一定量的点缺陷有可能使晶体的自由能反而下降。
产生1个空位(自间隙)所增加的焓即增加的振动熵分别称为空位(自间隙)形成焓∆H f 即形成熵∆S f 。
另一方面,空位(自间隙)的存在破坏了晶体的规则排列,因而又比完整晶体更大的组态熵。
在N 个阵点中有n 个空位(自间隙)存在,引起系统的吉布斯自由能变化为:∆G=n(∆H f -T ∆S f )-T ∆S m =n ∆G f -T ∆S m =… 式中∆G f 是空位形成的自由能变化;∆S m 是在N 个点阵总村在n 个空位所引起的组态熵变化。
∆G 随空位数目n而变化,并有极小值。
因n 比N 小得多,对上式求极值,并利用Stirling近似值lnN!≈NlnN-N,得到空位的平衡浓度c 为:)/exp(]/)(exp[kT H A kT TS H nN nc f f f -=--=-≈ 这里的A=exp(S f /k)。
可见平衡浓度随温度的上升而增加。
一般金属中的H f 约为1eV 。
金属中的空位浓度是很低的,即使在接近熔点温度也只有约10-4。
例如铝的∆H f =73.3x104J/mol, ∆Sf =20J/(mol ⋅K),按上式计算所得在靠近熔点温度(933K )的平衡空位浓度c=8.7x10-4。
空位浓度和温度间呈指数关系,所以在熔点以下比较低的温度平衡空位浓度就更低。
如Cu在1300K时v 10-5,在300K时约为10-22。
自间隙的平衡浓度也可用上式计算,不过此时的形成焓和形成熵都要换成自间隙的相成焓和形成熵。
由于自间隙的形成焓比空位的约达1个数量级,所以它的平衡浓度在熔点附近一般也只有10-15。
从高温冷却下来,空位平衡浓度应降低,为此空位需移动到它们可以淹没的如表面、界面或位错等点阵位置。
如果冷却速度过快,空位来不及移动到这些地方,过剩的空位就留下来,形成过饱和空位,这些空位对物理化学过程的动力学有很重要的影响。
自间隙原子的平衡浓度很低,一般并不重要。
但是经过很大的冷加工变形的金属,特别是遭受高能粒子辐照的固体,会产生大量的自间隙原子,这是其作用就不能忽略了。
结论:点缺陷的平衡浓度随温度上升而增加,其数值与点缺陷的形成能有很大关系。
金属中H f约为1eV。
间隙原子浓度一般可以忽略。
点缺陷的存在是传导电子受到散射,产生附加的电阻。
附加电阻的大小与点缺陷浓度成正比,因而从附加电组合温度的关系可以定出空位的形成能。
如果知道了空位集团的结合能,也可以约略地估计其平衡浓度。
点缺陷对物理性能的影响除电阻外还有体积(密度):理论计算结果表明,间隙原子引起的体积膨胀约为1到2倍原子体积,而空位的体膨胀约为0.5原子体积。
晶体中点阵B处的原子跳入A处的空位,就相当于空位自A移到B,在移动过程中原子要通过它们中间的非点阵位置C。
当原子处在C 位置上时,引起点阵的畸变较大,因而能量较高,故称为鞍点组态。
鞍点组态和正常空位组态的能量差即相当于空位移动的激活能。
但由于鞍点位置实际上处于不平衡状态,很难精确计算其能量。
空位周围的原子经常作不规则的热运动,当其所具有的动能超过激活能时,即可越过势垒跳入空位,使空位移动一个原子间距。
因此点缺陷不是静止的,而是在不停地作不规则的布朗运动,形成晶体中的自扩散。
自扩散决定于空位的浓度和空位跃迁的频率,因此金属的自扩散激活能应为空位的形成能与移动激活能的总和。
另一方面,点缺陷运动时可能碰到点缺陷的漏洞(如自由表面、晶界、位错等),即消失在漏洞中,引起了点缺陷的回复。
回复过程的快慢是和温度和移动的激活能有关的。
4.2 线缺陷——位错及位错理论晶体的机械性能(屈服强度、断裂强度等)和晶体的物理性能(比热容、弹性模量等)不同,使结构敏感的。
即使是同一种材料,其力学性能因经历的热或冷加工过程不同而不同。
另外,根据晶体结构计算出来的理论强度和实际测量的强度之间的巨大差异,人们推测晶体结构远非完整,其内部一定存在某种缺陷,且这种缺陷的运动及交互作用决定了晶体的力学性质。
20世纪30年代初,人们引入位错这种晶体缺陷,并发现它们会影响材料的宏观性质。
在随后的二十多年发展了一套较为完整的位错理论,成功地解释了晶体的很多力学行为。
在20世纪50年代末,在电镜下直接观察到了位错,从而为错理论就成为解释和研究晶体力学行为的基础。
对于晶体结构来说,规则的完整排列是主要的,而非完整性是次要的;但对于晶体的力学性能来说,起主要作用的却是晶体的非完整性。
当然,晶体的力学性能还与其电子结构有关,而且无论是单独的或群体的位错,对晶态固体的其它化学和物理性能也都有很大影响。
位错具有比较复杂的几何组态,而其易于运动的特征又是由它的几何组态所决定的。