乳化的概念

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是水,另一相是极性小的有机液体,习惯上统称为“油”。根据内外相的性质,乳状液主要有两种类型,一类是油分散在水中,如牛奶、雪花膏等,简称为水包油型乳状液,用O/W表示;另一种是水分散在油中,如原油、香脂等,简称为油包水型乳状液,用W/O表示。这里要指出的是,上面讲到的油、水相不一定是单一的组分,经常每一相都可包含有多种组分。除上述两类基本乳状液外,还有一种复合乳状液,它的分散相本身就是一种乳状液,如将一个W/O的乳状液分散到连续的水相中,而形成一种复合的W/O/W型乳状液。
乳状液的外观一般常呈乳白色不透明液状,乳状液之名即由此而得。乳状液的这种外观是与分散相粒子之大小有密切关系。由胶体的光学性质可知,对一多分散体系,其分散相与分散介质的折光率一般不同,光照射在分散微粒(液滴)上可以发生折射、反射、散射等现象。当液滴直径远大于入射光的波长时,主要发生光的反射(也可能有折射、吸收),当液滴直径远小于入射光波长时,则光可以完全透过,这时体系呈透明状。当液滴直径稍小于入射光波长时,则有光的散射现象发生,体系呈半透明状。一般乳状液的分散相液滴直径的大小大致在0.1-10μm(甚至更大)的范围,可见光波长为0.40-0.76μm,故乳状液中的反射较显著,因而一般乳状液是不透明的乳白色液体。这就是乳状液的微粒大小与外观之关系。对于液滴的直径在0.1μm以下的液-液分散体系,其外观是半透明的和透明,而不呈乳液状,常称为“微乳状液”,它的性质与乳状液有很大不同。
总之,可以这样说,界面张力的高低主要表明了乳状液形成之难易,并非为乳状液稳定性的必然的衡量标志。
(3) 界面膜的稳定理论 在体系中加入乳化剂后,在降低界面张力的同时,表面活性剂必然在界面发生吸附,形成一层界面膜。界面膜对分散相液滴具有保护作用,使其在布朗运动中的相互碰撞的液滴不易聚结,而液滴的聚结(破坏稳定性)是以界面膜的破裂为前提,因此,界面膜的机械强度是决定乳状液稳定的主要因素之一。
基于上述两段得讨论,可以得出这样得结论:降低体系得界面张力,是使乳状液体系稳定的必要条件:而形成较牢固的界面膜是乳状液稳定的充分条件。
(4) 电效应的稳定理论 对乳状液来说,若乳化剂是离子型的表面活性剂,则在界面上,主要由于电离还有吸附等作用,使得乳状液的液滴带有电荷,其电荷大小依电离强度而定;而对非离子表面活性剂,则主要由于吸附还有摩擦等作用,使得液滴带有电荷,其电荷大小与外相离子浓度及介电常熟和摩擦常数有关。带电的液滴靠近时,产生排斥力。使得难以聚结,因而提高了乳状液的稳定性。乳状液的带电液滴在界面的两侧构成双电层结构,双电层的排斥作用,对乳状液的稳定有很大的意义。双电层之间的排斥能取决于液滴大小及双电层厚度1/κ,还有ξ电势(或电势φ0)。当无电介质表面活性剂存在存在时,虽然界面两侧的电势差ΔV很大,但界面电位φ0却很小,所以液滴能相互靠拢而发生聚沉,这对乳状液很不利。当有电解质表面活性剂存在时,令液滴带电。O/W型的乳状液多带负电荷;而W/O型的多带正电荷。这时活性剂离子吸附在界面上并定向排列,以带电端指向水相,便将反号离子吸引过来形成扩散双电层。具有较高的φ0及较厚的双电层,而使乳状液稳定。若在上面的乳状液中加入大量的电解质盐,则由于水相中反号离子的浓度增加,一方面会压缩双电层,使其厚度变薄,另一方面他会进入表面活性剂的吸附层中,形成一层很薄的等电势层,此时,尽管电势差值不便,但是φ0减小,双电层的厚度也减薄,因而乳状液的稳定性下降。
此结论都与高强度的界面膜是乳状液稳定的主要原因的解释相一致。如果使用适当的混合乳化剂有可能形成更致密的“界面复合膜”,甚至形成带电膜,从而增加乳状液的稳定性。如在乳状液中加入一些水溶性的乳化剂,而油溶性的乳化剂又能与它在界面上发生作用,便形成更致密的界面复合膜。由此可以看出,使用混合乳化剂,以使能形成的界面膜有较大的强度,来提高乳化效率,增加乳状液的稳定性。在实践中,经常是使用混合乳化剂的乳状液比使用单一乳化剂的更稳定,混合表面活性剂的表面活性比单一表面活性剂往往要优越得多。
(6) 液晶与乳状液的稳定性 液晶是一种在结构和力学性质都处于液体和晶体之间的物态,它既有液体的流动性,也具有固体分子排列的规则性。 1969年,弗里伯格(Friberg)等第一次发现在油水体系中加入表面活性剂时,即析出第三相--液晶相,此时乳状液的稳定性突然增加,这是由于液晶吸附在油水界面上,形成一层稳定的保护层,阻碍液滴因碰撞而粗化。同时液晶吸附层的存在会大大减少液滴之间的长程范德华力,因而起到稳定作用。此外,生成德液晶由于形成网状结构而提高了粘度,这些都会使乳状液变得更稳定。由此可以说,乳状液的概念已从“不能相互混合的两种液体中的一种向另一种液体中分散“,变成液晶与两种液体混合存在的三相分散体系。因此,液晶在乳化技术或在化妆品领域有着广泛应用的前景,已称为化妆品及乳化技术的一个重要研究课题。如研究液晶在乳化过程中生成的条件(乳化剂的类型及用量、温度等)和如何控制生成的液晶的状态。
(2) 界面张力理论 这种理论认为界面张力是影响乳状液稳定性的一个主要因素。因为乳状液的形成必然使体系界面积大大增加,也就是对体系要做功,从而增加了体系的界面能,这就是体系不稳定的来源。因此,为了增加体系的稳定性,可减少其界面张力,使总的界面能下降。由于表面活性剂能够降低界面张力,因此是良好的乳化剂。
2、 影响乳状液稳定的各种因素上面讨论了乳化剂之所以能够对乳状液起到稳定作用的几种理论,从这些理论中可以得出能对乳状液稳定性产生影响的各种因素。
(1) 对于应用表面活性剂作乳化剂的体系界面膜的形成与界面膜的强度是乳状液稳定的最主要的影响因素,而界面张力的降低与界面膜的强度对乳状液稳定性的影响,可以说前者为必要后者是充分的条件。而且它们都与乳化剂在界面上的吸附直接有关。要得到比较稳定的乳状液,首先应考虑乳化剂在界面上的吸附性质,吸附作用愈强,表面活性剂吸附分子在界面的吸附量愈大,表面张力则降低愈多,界面分子排列愈紧密,界面强度愈高。如果表面活性剂为离子型的,当它在界面的吸附增加时,其界面电荷强度也提高,这些都有利于形成稳定的乳状液。应用混合乳化剂,所生成的界面复合膜有较大的强度,因此常将水溶性的乳化剂和油溶性的乳化剂混合使用,以提高乳状液的稳定性。
此理论虽能定性的解释许多形成不同类型乳状液的原因,但常有不能用它解释的实例。理论上不足之处在于它只是从几何结构来考虑乳状液的稳定性,实际影响乳状液稳定的因素是多方面的。何况从几何上看,乳状液液滴的大小比乳化剂的分子要大得多,故液滴得曲表面对于其上得定向分子而言,实际近于平面,故乳化剂分子两端的大小就不是重要的,无所谓楔形插入了。
一、乳状液概述
乳状液(或称乳化体)是一种(或几种)液体以液珠形式分散在另一不相混容的液体之中所构成的分散体系。
乳状液中被分散的一相称作分散相或内相;另一相则称作分散介质或外相。显然,内相是不连续相,外相是连续相。
乳状液的分散相液珠直径约在0.1-10μm,故乳状液是粗分散体系的胶体。因此,稳定性较差和分散度低是乳状液的两个特征。 两个不相混容的纯液体不能形成稳定的乳状液,必须要加入第三组分(起稳定作用),才能形成乳状液。例如,将苯和水放在试管里,无论怎样用力摇荡,静置后苯与水都会很快分离。但是,如果往试管里加一点肥皂,再摇荡时就会形成象牛奶一样的乳白色液体。仔细观察发现,此时苯以很小的液珠形式分散在水中,在相当长的时间内保持稳定,这就是乳状液。这里称形成乳状液的过程为乳化。而称在此过程中所加入的添加物(如肥皂)为乳化剂。
乳化的概念:
乳化是液-液界面现象,两种不相溶的液体,如油与水,在容器中分成两层,密度小的油在上层,密度大的水在下层。若加入适当的表面活性剂在强烈的搅拌下,油被分散在水中,形成乳状液,该过程叫乳化。
乳化理论:
乳状液是化妆品中最广泛的剂型,从水样的流体到粘稠的膏霜等。因此,乳状液的讨论对化妆品的研究和生产及保存和使用有着极其重要的意义。
凡能降低界面张力的添加物都有利于乳状液的形成及稳定。在研究一系列的同族脂肪酸作乳化剂的效应时也说明了这一点。随着碳链的增长,界面张力的降低逐渐增大,乳化效应也逐渐增强,形成较高稳定性的乳状液。但是,低的界面张力并不是决定乳状液稳定性的唯一因素。有些低碳醇(如戊醇)能将油-水界面张力降至很低,但却不能形成稳定的乳状液。有些大分子(如明胶)的表面活性并不高,但却是很好的乳化剂。固体粉末作为乳化剂形成相当稳定的乳状液,则是更极端的例子。因此,降低界面张力虽使乳状液易于形成,但单靠界面张力的降低还不足以保证乳状液的稳定性。
与表面吸附膜的情形相似,当乳化剂浓度较低时,界面上吸附的分子较少,界面膜的强度较差,形成的乳状液不稳定。乳化剂浓度增高至一定程度后,界面膜则由比较紧密排列的定向吸附的分子组成,这样形成的界面膜强度高,大大提高了乳状液的稳定性。大量事实说明,要有足够量的乳化剂才能有良好的乳化效果,而且,直链结构的乳化剂的乳化效果一般优于支链结构的。
乳化剂为一价金属皂在油-水界面上作定向排列时,以具有较大极性头基团伸向水相;非极性的碳氢键深入油相,这时不仅降低了界面张力,而且也形成了一层保护膜,由于一价金属皂的极性部分之横界面比非极性碳氢键的横界面大,于是横界面大的一端排在外圈,这样外相水就把内相油完全包围起来,形成稳定的O/W型的乳状液。而乳化剂为二价金属皂液时,由于非极性碳氢键的横界面比极性基团的横界面大,于是极性基团(亲水的)伸向内相,所以内相是水,而非极性碳氢键(大头)伸向外相,外相是油相,这样就形成了稳定的W/O型乳状液。 这种形成乳状液的方式,乳化剂分子在界面上的排列就像木楔插入内相一样,故称为“定向楔”理论。
二、乳化原理和乳状液的稳定性
1、 乳化原理在制备乳状液时,是将分散相以细小的液滴分散于连续相中,这两个互不相溶的液相所形成的乳状液是不稳定的,而通过加入少量的乳化剂则能得到稳定的乳状液。对此,科学工作者从不同的角度提出了不同的理论解释,这些乳状液的稳定机理,对研究、生产乳状液的化妆品有着重要的理论指导意义。
(2) 乳状液的粘度乳状液中内相在重力作用下的沉降或上升,可致使内相外相分离,造成乳状液的不稳定。如同胶体的粒子沉降(或上升)一样,乳状液内相的沉降速度,仍是斯脱克斯方程式 v=2r2(ρ2-ρ1)g/9η 这里v为液滴的沉降速度,r为分散相液滴的半径,ρ2、ρ1为分散相和分散介质的密度,η为分散介质的粘度。由此公式可以得出,乳状液分散介质的粘度越大,则分散相液滴运动的速度愈慢,这有利于乳状液的稳定。因此,往往在分散介质中加入增稠剂(一般常为能溶于分散介质的高分子物质),以此来提高乳状液的稳定性。当然高分子物质的作用并不限于此,往往还能形成比较坚固的界面膜。如蛋白质就是此类典型的高分子物质。
(5) 固体微粒 作为乳化剂的稳定理论许多固体微粒,如碳酸钙、粘土、碳黑、石英、金属的碱式硫酸盐、金属氧化物以及硫化物等,可以作为乳化剂起到稳定乳状液的作用。显然,固体微粒只有存在于油水界面上才能起到乳化剂的作用。固体微粒是存在于油相、水相还是在它们的界面上,取决于油、水对固体微粒润湿性的相对大小,若固体微粒完全被水润湿,则在水中悬浮,微粒完全被油润湿,则在油中悬浮,只有当固体微粒既能被水、也能被油所润湿,才会停留在油水界面上,形成牢固的界面层(膜),而起到稳定作用。这种膜愈牢固,乳状液愈稳定。这种界面膜具有前述的表面活性剂吸附于界面的吸附膜类似的性质。
(1) 定向楔理论 这是1929年哈金斯(Harkins)早期提出的乳状液稳定理论。他认为在界面上乳化剂的密度最大,乳化剂分子以横截面较大的一端定向的指向分散介质,即总是以“大头朝外,小头朝里”的方式在小液滴的外面形成保护膜,从几何空间结构观点来看这是合理的,从能量角度来说是复合能量最低原则的,因而形成的乳状液相对稳定。并以此可解释乳化剂为一价金属皂液及二价金属皂液时,形成稳定的乳状液的机理。
相关文档
最新文档