数值计算方法--第1-1 讲--绪论

合集下载

数值计算1-5章

数值计算1-5章

数值计算1-5章数值计算⽅法第1章绪论1.1数值计算⽅法的研究对象和特点数值计算⽅法也称数值分析,它研究⽤计算机求解各种数学问题的数值⽅法及其理论。

数学学科内容⼗分⼴泛,数值计算⽅法属于计算数学的范畴,这⾥只涉及科学和⼯程计算中常见的数学问题,如函数的插值、逼近、离散数据的拟合、数值积分与数值微分、线性和⾮线性⽅程数值解法和矩阵特征值问题数值解法和微分⽅程数值解法等.由于计算机科学与技术的迅速发展,数值计算⽅法的应⽤已经普遍深⼊到各个科学领域,很多复杂和⼤规模的计算问题都可以在计算机上进⾏计算,新的、有效的数值⽅法不断出现.现在,科学与⼯程中的数值计算已经成为各门⾃然科学和⼯程技术科学研究的⼀种重要⼿段,成为与实验和理论并列的⼀个不可缺少的环节.所以,数值计算⽅法既是⼀个基础性的,同时也是⼀个应⽤性的数学学科分⽀,与其他学科的联系⼗分紧密.⽤数值⽅法求解数学问题⾸先要构造算法,即由运算规则(包括算术运算、逻辑运算和运算顺序)构成的完整的解题过程.同⼀个数学问题可能有多种数值计算⽅法,但不⼀定都有效.评价⼀个算法的好坏主要有两条标准:计算结果的精度和得到结果所付出的代价.我们⾃然应该选择代价⼩⼜能满⾜精度要求的算法.计算代价也称为计算复杂性,包括时间复杂性和空间复杂性.时间复杂性好是指节省时间,主要由运算次数决定.空间复杂性好是指节省存储量,主要由使⽤的数据量决定.⽤计算机求数学问题的数值解不是简单地构造算法,它涉及多⽅⾯的理论问题,例如,算法的收敛性和稳定性等.除理论分析外,⼀个数值⽅法是否有效,最终要通过⼤量的数值实验来检验.数值计算⽅法具有理论性、实⽤性和实践性都很强的特点.作为数值计算⽅法的基础知识,本课程不可能⾯⾯俱到.除构造算法外,各章根据内容⾃⾝的特点,讨论的问题有所侧重.学习时我们⾸先要注意掌握⽅法的基本原理和思想,要注意⽅法处理的技巧及其与计算机的结合,要重视误差分析、收敛性和稳定性的基本理论.其次,要通过例⼦,学习使⽤各种数值⽅法解决实际计算问题,熟悉数值⽅法的计算过程.最后,为了掌握本课程的内容,还应做⼀定数量的理论分析与计算练习.1.2数值计算的误差1.2.1误差的来源应⽤数学⼯具解决实际问题,⾸先,要对被描述的实际问题进⾏抽象、简化,得到实际问题的数学模型.数学模型与实际问题之间会出现的误差,我们称之为模型误差.在数学模型中,通常要包含⼀些由观测数据确定的参数.数学模型中⼀些参数观测结果⼀般不是绝对准确的.我们把观测模型参数值产⽣的误差称为观测误差.例如,设⼀根铝棒在温度t时的实际长度为Lt,在t=0时的实际长度为L0,⽤lt来表⽰铝棒在温度为t时的长度计算值,并建⽴⼀个数学模型l t =L(1+at), a≈0.0000238/℃,其中a是由实验观测得到的常数,a∈[0.0000237,0.0000239],则称Lt -lt为模型误差,a-0.0000238是a 的观测误差.在解实际问题时,数学模型往往很复杂,因⽽不易获得分析解,这就需要建⽴⼀套⾏之有效的近似⽅法和数值⽅法.我们可能⽤容易计算的问题代替不易计算的问题⽽产⽣误差,也可能⽤有限的过程代替⽆限的过程⽽产⽣误差.我们将模型的准确解与⽤数值⽅法求得的准确解之间的误差称为截断误差或⽅法误差.例如,对函数()()35721sin 13!5!7!21!n x x x xn x x n +=-+-+++-+,该式右边有⽆限多项,计算机上⽆法计算.然⽽,根据微积分学中的泰勒(Taylor )定理,当|x |较⼩时,我们若⽤前3项作为sin x 的近似值,则截断误差的绝对值不超过77!x .⽤计算机做数值计算时,⼀般也不能获得数值计算公式的准确解,需要对原始数据、中间结果和最终结果取有限位数字.我们将计算过程中取有限位数字进⾏运算⽽引起的误差称为舍⼊误差.例如,13=0.33333…,如果我们取⼩数点后4位数字,则13-0.3333=0.000033…就是舍⼊误差.在数值分析中,除了研究数学问题的算法外,还要研究计算结果的误差是否满⾜精度要求,这就是误差估计问题.在数值计算⽅法中,主要讨论的是截断误差和舍⼊误差.1.2.2 误差与有效数字定义1.1 设x 是某实数的精确值,A x 是它的⼀个近似值,则称x -A x 为近似值A x 的绝对误差,或简称误差.Ax x x-称为x A 的相对误差.当x =0时,相对误差没有意义.在实际计算中,精确值x 往往是不知道的,所以通常把AAx x x -作为A x 的相对误差.定义1.2 设x 是某实值的精确值,A x 是它的⼀个近似值,并可对A x 的绝对误差作估计|x -A x |?A ε,则称εA 是A x 的绝对误差界,或简称误差界.称AAx ε是A x 的相对误差界.例 1.1 我们知道π=3.1415926…,若取近似值πA =3.14,则π-πA =0.0015926…,可以估计绝对误差界为0.002,相对误差界为0.0006.例 1.2 测量⼀⽊板长是954 cm,问测量的相对误差界是多⼤?解因为实际问题中所截取的近似数,其绝对误差界⼀般不超过最⼩刻度的半个单位,所以当x =954 cm 时,有A ε=0.5 cm ,其相对误差界为0.50.00052410.053%954AAx ε==< .定义1.3 设A x 是x 的⼀个近似值,将A x 写成12100.,k A i x a a a =±? , (1.1) 它可以是有限或⽆限⼩数的形式,其中i a (i =1,2,…)是0,1,…,9中的⼀个数字,1a ≠0,k 为整数.如果|x -A x |?0.5×10k n -,则称A x 为x 的具有n 位有效数字的近似值.可见,若近似值A x 的误差界是某⼀位的半个单位,该位到A x 的第⼀位⾮零数字共有n 位,则A x 有n 位有效数字.通常在x 的准确值已知的情况下,若要取有限位数的数字作为近似值,就采⽤四舍五⼊的原则,不难验证,采⽤四舍五⼊得到的近似值,其绝对误差界可以取为被保留的最后数位上的半个单位.例如|π-3.14|?0.5×210-, |π-3.142|?0.5×310-.按定义,3.14和3.142分别是具有3位和4位有效数字的近似值.显然,近似值的有效数字位数越多,相对误差界就越⼩,反之也对.下⾯,我们给出相对误差界与有效数字的关系.定理1.1 设x 的近似值A x 有(1.1)式的表达式. (1) 如果A x 有n 位有效数字,则 111×102A nAx x x a --≤; (1.2)(2) 如果()111×1021A nAx x x a --≤+, (1.3)则A x ⾄少具有n 位有效数字.证由(1.1)式可得到()111--?+≤≤?k A k a x a . (1.4)所以,当A x 有n 位有效数字时11110.5101×10,×102k nA nk Ax x x a a ----?≤=即(1.2)式得证.由(1.3)式和(1.4)式有()()nk nk AAA A a a x x x x x x ---?=?+?+≤-=-105.0101211011111,即说明A x 有n 位有效数字,(2)得证.例1.30.1%,应取⼏位有效数字?解由于因此1a =4,设有n 位有效数字,则由(1.2)式,可令11110a -?≤,即410n -?18,得n ?4.故只要对4位有效数字,其相对误差就可⼩于0.1%,4.472.例1.4 已知近似数A x 的相对误差界为0.3%,问A x ⾄少有⼏位有效数字?解设A x 有n 位有效数字,由于A x 的第⼀个有效数1a 没有具体给定,⽽我们知道1a ⼀定是1,2,…,9中的⼀个,由于()12311101000210291A Ax x x --≤<=+,故由(1.3)式知n=2,即A x ⾄少有2位有效数字.1.2.3 函数求值的误差估计对⼀元函数f(x ),⾃变量x 的⼀个近似值为A x ,以f(A x )近似f(x ),其误差界记作ε(f(A x )).若f(x )具有⼆阶连续导数,f′(A x )与f″(A x )的⽐值不太⼤,则可忽略|x -A x |的⼆次项,由Taylor 展开式得到f(A x )的⼀个近似误差界ε(f(A x ))≈|f′(A x )|ε(A x ).对n 元函数f(x 1,x 2,…,x n ),⾃变量x 1,x 2,…,x n 的近似值分别为x 1A ,x 2A ,…,x n A ,则有()()()12121,,,,,,nn A A nA k kA k k Af f x x x f x x x x x x=??-≈- ∑ ,其中()12,,,A A nA k k f f x x x x x A.因此,可以得到函数值的⼀个近似误差界()()()121,,,nAA nA kA k k Af f x x x x x εε=??≈ ∑. 特别地,对f(x 1,x 2)=x 1±x 2有ε(x 1A ±x 2A )=ε(x 1A )+ε(x 2A ).同样,可以得到ε(x 1A x 2A )≈|x 1A |ε(x 2A )+|x 2A |ε(x 1A ),()()12211222A A A A A A A x x x x x x x εεε+??≈,20A x ≠例1.5 设有长为l,宽为d 的某场地.现测得l 的近似值l A =120 m,d 的近似值d A =90 m ,并已知它们的误差界为|l-l A |?0.2 m,|d-d A |?0.2 m.试估计该场地⾯积S=ld 的误差界和相对误差界.解这⾥ε(l A )=0.2,ε(d A )=0.2,并且有2,,10800A A A S S d l S l d mld====.于是有误差界()21200.2900.242A S m ε≈?+?=,相对误差界()()420.39%10800A r A AS S l dεε=≈=.例1.6 设有3个近似数a=2.31, b=1.93, c=2.24,它们都有3位有效数字.试计算p=a+bc 的误差界和相对误差界,并问p 的计算结果能有⼏位有效数字?解 p=2.31+1.93×2.24=6.6332.于是有误差界ε(p)=ε(a)+ε(bc)≈ε(a)+|b|ε(c)+|c|ε(b) =0.005+0.005(1.93+2.24)=0.02585,相对误差界εr (p)=()0.025856.6332p pε≈≈0.39%.因为ε(p)≈0.02585<0.05,所以p=6.6332能有2位有效数字.1.2.4 计算机中数的表⽰任意⼀个⾮零实数⽤(1.1)式表⽰,是规格化的⼗进制科学记数⽅法.在计算机中通常采⽤⼆进制的数系(或其变形的⼗六进制等),并且表⽰成与⼗进制类似的规格化形式,即浮点形式±2m ×0.β1β2…βt ,这⾥整数m 称为阶码,⽤⼆进制表⽰为m=±α1α2…αs , αj =0或1(j=1,2,…,s),s 是阶的位数.⼩数0.β1β2…βt 称为尾数,其中β1=1,βj =0或1(j=2,3,…,t),t 是尾数部位的位数.s 和t 与具体的机器有关.由于计算机的字长总是有限位的,所以计算机所能表⽰的数系是⼀个特殊的离散集合,此集合的数称为机器数.⽤浮点⽅式表⽰的数有⽐较⼤的取值范围.⼗进制输⼊计算机时转换成⼆进制,并对t 位后⾯的数作舍⼊处理,使得尾数为t 位,因此⼀般都有舍⼊误差.两个⼆进制数作算术运算时,对计算结果也要作类似的舍⼊处理,使得尾数为t 位,从⽽也有舍⼊误差.在实现算法时,计算的最后结果与算法的精确解之间的误差,从根本上说是由机器的舍⼊误差造成的,包括输⼊数据和算术运算的舍⼊误差.因此有必要对计算机中数的浮点表⽰⽅法和舍⼊误差有⼀个初步的了解.有时为了分析某⼀个计算⽅法可能出现的误差现象,为了适应⼈们的习惯,我们会采⽤⼗进制实数系统进⾏误差分析.1.3 数值稳定性和要注意的若⼲原则 1.3.1 数值⽅法的稳定性实际计算时,给定的数据会有误差,数值计算中也会产⽣误差,并且,这些误差在进⼀步的计算中会有误差传播.因此,尽管数值计算中的误差估计⽐较困难,我们还是应该重视计算过程中的误差分析.定义 1.4 对于某个数值计算⽅法,如果输⼊数据的误差在计算过程中迅速增长⽽得不到控制,则称该算法是数值不稳定的,否则是数值稳定的.下⾯举例说明误差传播的现象.例 1.7 计算积分值105nxdx I x =+?, n=0,1,…,6.解由于要计算系列的积分值,我们先推导In 的⼀个递推公式.由1110555n n n n x x I I dx x --++=+?111n xdx n-==,可得下⾯两个递推算法.算法1:115n n I I n-=-,n=1,2, (6)算法2:1115n n I I n -??=-,n=6,5, (1)直接计算可得0ln 6ln 5I =-.如果我们⽤4位数字计算,得I 0的近似值为0I *=0.1823.记n n n E I I *=-,I n *为In 的近似值.对算法1,有15n n E E -=-=…=()5n-E 0.按以上初始值I0的取法有|E 0|?0.5×410-,事实上|E 0|≈0.22×410-.这样,我们得到|E 6|=65|E 0|≈0.34.这个数已经⼤⼤超过了I 6的⼤⼩,所以6I *连⼀位有效数字也没有了,误差掩盖了真值.对算法2,有E k-n =15n ??-E k ,|E 0|=615??|E 6|.如果我们能够给出I 6的⼀个近似值,则可由算法2计算I n (n=5,4,…,0)的近似值.并且,即使E 6较⼤,得到的近似值的误差将较⼩.由于()()11011616551kkk xxI d d x x k k =<<=++??,因此,可取Ik 的⼀个近似值为()()11126151k I k k *=+?? ? ?++??. 对k=6有6I *=0.0262.按0I *=0.1823和6I *=0.0262,分别按算法1和算法2计算,计算结果如表1-1,其中()1n I 为算法1的计算值, ()2n I 为算法2的计算值.易知,对于任何⾃然数n,都有0表1-1n()1nI()2nInI (4位)0 0.1823 0.1823 0.18231 0.0885 0.0884 0.08842 0.0575 0.0580 0.05803 0.0458 0.0431 0.04314 0.0210 0.0344 0.03435 0.0950 0.0281 0.02856-0.3083 0.0262 0.0243当然,数值不稳定的⽅法⼀般在实际计算中不能采⽤.数值不稳定的现象属于误差危害现象.下⾯讨论误差危害现象的其他表现及如何避免问题.1.3.2 避免有效数字的损失在数值计算中,参加运算的数有时数量级相差很⼤,⽽计算机位数有限,如不注意,“⼩数”的作⽤可能消失,即出现“⼤数”吃“⼩数”的现象. 例1.8 ⽤3位⼗进制数字计算x =101+δ1+δ2+…+δ100,其中0.1?δi ?0.4,i =1,2, (100)解在计算机内计算时,要写成浮点数形式,且要对阶.如果是101与δ1相加,对阶时,101=0.101×103,δ1=0.000×103.因此,如果我们⾃左⾄右逐个相加,则所有的δi 都会被舍掉,得x ≈101.但若把所有的δi 先加起来,再与101相加,就有111=101+100×0.1?x ?101+100×0.4=141.可见,计算的次序会产⽣很⼤的影响.这是因为⽤计算机计算时,在运算中要“对阶”,对阶引起了⼤数吃⼩数的现象.⼤数吃⼩数在有些情况下是允许的,但有些情况下则会造成谬误.在数值计算中,两个相近数相减会使有效数字严重损失.例1.9 求实系数⼆次⽅程20ax bx c ++=的根,其中b 2-4ac>0,ab ≠0. 解考虑两种算法. 算法1:1,22x a=算法2:(12b sign b x a--=, 21c x ax =,其中sign 表⽰取数的符号,即()1,0,0,0,1,0.b sign b b b >??==??-对算法1,若ac b 42>>,则是不稳定的,否则是稳定的.这是因为在算法1中分⼦会有相近数相减的情形,会造成有效数字的严重损失,从⽽结果的误差很⼤.算法2不存在这个问题,在任何情况下都是稳定的.因此称算法1是条件稳定的,算法2是⽆条件稳定的.例如,对于⽅程262.10 1.0000x x ++=,⽤4位有效数字计算,结果如下:算法1:x 1=-62.08, x 2=-0.02000. 算法2:x 1=-62.08, x 2=-0.01611.准确解是x 1=-62.083892…,x 2=-0.016107237….这⾥,ac b 42>>,所以算法1不稳定,舍⼊误差对x 2的影响⼤.在进⾏数值计算时,如果遇到两相近数相减的情形,可通过变换计算公式来避免或减少有效数字的损失.例如,如果|x |≈0,有变换公式1cos sin sin 1cos x x xx-=+.如果x 1≈x 2,有变换公式1122lg lg lgx x x x -=.如果x 〉〉1,有变换公式.此外,⽤绝对值很⼩的数作除数时,舍⼊误差会很⼤,可能对计算结果带来严重影响.因此,要避免除数绝对值远远⼩于被除数绝对值的除法运算.如果⽆法改变算法,则采⽤增加有效位数进⾏计算,或在计算上采⽤双精度运算,但这要增加机器计算时间和多占内存单元.1.3.3 减少运算次数在数值计算中,要注意简化计算步骤,减少运算次数,这也是数值分析中所要研究的重要内容.同样⼀个计算问题,如果能减少运算次数,不但可节省计算机的计算时间,还能减少误差的积累.下⾯举例说明简化计算公式的重要性.例1.10 给定x ,计算多项式()110nn n n n P x a x a xa --=+++的值.如果我们先求ak x k ,需要进⾏k 次乘法,再相加,则总共需要()12n n +次乘法和n次加法才能得到⼀个多项式的值.如果我们将多项式写成下⾯的形式()(){}1210n n n n P x x x x a x a a a a --??=+++++?? ,则只需n 次乘法和n 次加法即可得到⼀个多项式的值,这就是著名的秦九韶算法,可描述为1,,1,2,,0,n n k k k u a u u x a k n n +=??=+=--?最后有()0n u P x =.例1.11 计算ln2的值. 解如果利⽤级数()()11ln 11nn n xx n∞+=+=-∑计算ln2,若要精确到误差的绝对值⼩于10-5,要计算10万项求和,计算量很⼤,并且舍⼊误差的积累也⼗分严重.如果改⽤级数()35211ln 213!5!21!n xx x xx x n +??+=+++++ ? ?-+??来计算ln2,取x =1,则只要计算前9项,截断误差便⼩于10-10.1.4 向量和矩阵的范数为了对矩阵计算进⾏数值分析,我们需要对向量和矩阵的“⼤⼩”引进某种度量.在解析⼏何中,向量的⼤⼩和两个向量之差的⼤⼩是⽤“长度”和“距离”的概念来度量的.在实数域中,数的⼤⼩和两个数之间的距离是通过绝对值来度量的.范数是绝对值概念的⾃然推⼴.1.4.1 向量的范数定义1.5 如果向量x ∈n R 的某个实值函数f(x )=‖x ‖满⾜ (1) 正定性:x ?0,且x =0当且仅当x =0;(2) 齐次性:对任意实数α,都有αx =|α|x ; (3) 三⾓不等式:对任意x ,y ∈R n ,都有+x y ?x +y ,则称x 为n R 上的⼀个向量范数.在n R 中,记()12,,,Tn x x x =x ,实际计算中最常⽤的向量范数有: (1) 向量的∞范数1max i i nx ∞≤≤=x;(2) 向量的1范数11nii x ==∑x;(3) 向量的2范数12221in x i ==??∑x.容易验证,向量的∞范数和1范数满⾜定义1.5中的条件.对于2范数,满⾜定义1.5中的条件(1)和(2)是显然的,对于条件(3),利⽤向量内积的Cauchy-Schwarz 不等式可以验证.更⼀般地,有如下向量的p 范数1pipn px i ==??∑x,其中p ∈ [1,+∞).容易验证1ppn∞∞≤≤xxx,由此可得如下定理.定理1.2 lim pp ∞→∞=xx.下⾯,我们利⽤向量范数的连续性来说明向量范数的重要特征.定理1.3 设给定A ∈R n ×n ,x =(x 1,x 2,…,x n )T ∈R n ,则对R n 上每⼀种向量范数,‖A x ‖都是x 1,x 2,…,x n 的n 元连续函数.证设a j 为A 的列向量,将A 写成A =(a 1,a 2,…,a n ). 则由三⾓不等式,对h =(h 1,h 2,…,h n )T ∈R n,有|‖A (x +h )‖-‖A x ‖|?‖A h ‖=‖1ni i h =∑a i ‖1ni i h =∑‖a i ‖M max|h i |,其中M=1ni =∑‖a i ‖.所以,对任意的ε>0,当max|h i |<Mε时,有|‖A (x +h )‖-‖A x ‖|<ε, 这就证明了‖A x ‖的连续性.推论1.1 ‖x ‖是x 的各分量的连续函数. 向量范数的⼀个重要特征是具有等价性.定理 1.4 R n 上的所有向量范数是彼此等价的,即对R n 上的任意两种向量范数‖x ‖s和‖x ‖t ,存在常数c 1,c 2>0,使得对任意x ,有c 1‖x ‖s ?‖x ‖t ?c 2‖x ‖s .证只要就‖x ‖s =‖x ‖∞证明上式成⽴即可,即证明存在常数c 1,c 2>0,对⼀切x ∈R n且x ≠0,有c 1‖x ‖∞?‖x ‖t ?c 2‖x ‖∞.记R n 上的有界闭集D={x :x =(x 1,x 2,…,x n )T ,‖x ‖∞=1}.由定理1.3的推论知,‖x ‖t 是D 上的n 元连续函数,所以在D 上有最⼤值c 2和最⼩值c 1,且x ∈D 时有x ≠0,故有c 2?c 1>0.现考虑x ∈R n ,且x ≠0,则有∞x x ∈D,所以有c 1?‖∞x x ‖t ?c 2, ?x ∈R n ,x ≠0.从⽽对x ≠0有c 1‖x ‖∞?‖x ‖t ?c 2‖x ‖∞.⽽x =0时上式⾃然成⽴,定理得证.由于向量范数之间具有等价性,对于范数的极限性质,我们只需对⼀种范数进⾏讨论,其余范数也都具有相似的结论.⽐如,我们可以⽅便地讨论向量序列的收敛性.定义1.6 设向量序列x (k)=()()()()12,,,Tk k k nx x x ∈R n ,k=1,2,…,若存在x *=()12 ,,,Tn x x x ***∈R n ,使得()lim k iik x x *→∞=, i =1,2,…,n,则称序列{x (k)}收敛于x *,记为()lim k ik *→∞=x x.按定义有)()lim lim 0k k k k **→∞→∞∞=?-=xx xx.⼜因为()()()12k k k c c ***∞∞-≤-≤-xxxxxx,所以有()()lim lim 0k k k k **→∞→∞=?-=xx xx.因此,若向量序列在⼀种范数下收敛,则在其他范数下也收敛.不必强调是在哪种范数意义下收敛.1.4.2矩阵的范数定义1.7 如果矩阵A ∈R n ×n 的某个实值函数f(A )=‖A ‖满⾜ (1) 正定性:‖A ‖?0,且‖A ‖=0当且仅当A =0;(2) 齐次性:对任意实数α,都有‖αA ‖=|α|‖A ‖;(3) 三⾓不等式:对任意A ,B ∈R n ×n ,都有‖A +B ‖?‖A ‖+‖B ‖; (4) 相容性:对任意A ,B ∈R n ×n ,都有‖A B ‖?‖A ‖‖B ‖;则称‖A ‖为Rn ×n上的⼀个矩阵范数.可以验证,对()ij n na ?=A ,12211Fn n a ij i j ?? ?=∑∑ ?==??A是⼀种矩阵范数,称之为Froben i us 范数,简称F 范数.由于矩阵与向量常常同时参与讨论与计算,矩阵范数与向量范数之间需要有⼀种联系. 定义1.8 对于给定的R n 上的⼀种向量范数‖x ‖和R n ×n 上的⼀种矩阵范数‖A ‖,如果满⾜‖A x ‖?‖A ‖‖x ‖,则称矩阵范数‖A ‖与向量范数‖x ‖相容.上⾯的定义1.7是矩阵范数的⼀般定义,下⾯我们通过已给的向量范数来定义与之相容的矩阵范数.定义 1.9 设x ∈R n ,A ∈R n ×n ,对给出的⼀种向量范数v x ,相应地定义⼀个矩阵的⾮负函数m axvvx v≠=A x Ax.称之为由向量范数导出的矩阵范数,也称为算⼦范数或从属范数.由定义可得vvv≤A xAx,1max vvv==xAAx.算⼦范数满⾜矩阵范数⼀般定义中的条件(1)和(2)是显然的,现验证满⾜条件(3)和(4).对任意的A ,B ∈R n ×n ,有()1maxvvv =+=+xA B x11max max v vvvvvxx==≤+=+Ax BxAB1max vvv==xABABx1max vvvvvv=≤=xABxA.因此,算⼦范数满⾜矩阵范数⼀般定义中的条件(3)和(4).由常⽤的向量范数,可以导出与其相容的矩阵算⼦范数.定理1.5 设A ∈R n ×n ,记()ij n na ?=A ,则(1)11max nij i nj a ∞≤≤==∑A,称之为矩阵A 的⾏范数;(2) 111m ax nij j ni a ≤≤==∑A ,称之为矩阵A 的列范数;(3)2=A称之为矩阵A 的2范数或谱范数,其中,()max TλA A 表⽰T A A的最⼤特征值.证这⾥只对(1)和(3)给出证明,(2)的证明同理可得. 先证明(1):设x =(x 1,x 2,…,x n )T ≠0,不妨设A ≠0,则有1111max max nnij j ij i ni nj j xa x xa ∞∞≤≤≤≤===≤∑∑A .111max max nij xi nj a ∞∞∞=≤≤===∑AAx.设矩阵A 的第p ⾏元素的绝对值之和达到最⼤,即111max nnpj ij i nj j a a ≤≤===∑∑.取向量()12,,,Tn ξξξ= ξ,其中1,0,1,0.a pj j apjξ≥??=?-显然,‖ξ‖∞=1,⽽且1111m ax m axnn∞∞=≤≤===≥==∑∑xAA xA ξ.于是(1)得证.再证明(3):显然,A TA 是对称半正定矩阵,它的全部特征值均⾮负,设为120n λλλ≥≥≥≥ .由实对称矩阵的性质,各特征值对应的特征向量必正交.设对应的标准正交特征向量为12,,,nu u u ,即T i i i λ=A Au u (i =1,2,…,n),(u i ,u j )=δi j (i ,j=1,2,…,n).对向量x ∈R n ,‖x ‖2=1,可由R n 的⼀组基u i (i =1,2,…,n)线性表⽰,即有1niii c ==∑x u ,22211nii c===∑x11nnT Ti ii i i cc λλλ====≤=∑∑A xx A A x .另⼀⽅⾯,取ξ=u 1,显然有‖ξ‖2=1,211112T T Tλλ===A ξξA A ξu u .因此,2221m ax ===xAA x得证.由定理1.5可见,计算⼀个矩阵的⾏范数和列范数是⽐较容易的,⽽矩阵的2范数计算却不⽅便,但由于它有许多好的性质,所以在理论上还是有⽤的.例1.12 设矩阵1234-??=解 {}m ax 3,77∞==A,{}1m ax 4,66==A ,10141420T-??=-A A ()21014det 3041420Tλλλλλ--==-+-I A A ,求得115λ=+215λ=-因此25.46=≈A.定义1.10 设A ∈R n ×n 的特征值为λi (i =1,2,…,n),称()1max i i nρλ≤≤=A为A 的谱半径.谱半径在⼏何上可解释为以原点为圆⼼,能包含A 的全部特征值的圆的半径中最⼩者.例1.13 计算例1.12中矩阵的谱半径.解由A 的特征⽅程()2=--=-I A得12λ=,22λ=所以() 5.372ρ=≈A .定理1.6 设A ∈R n ×n ,则有()ρ≤A A .证设A x =λx ,x ≠0,且|λ|=ρ(A ),必存在向量y ,使x y T 不是零矩阵.于是()TTTTA ρλ==≤A xyxyxyA xy,即得ρ(A )?‖A ‖.例1.14 设矩阵A 与矩阵B 是对称的,求证ρ(A +B )?ρ(A )+ρ(B ).证因T =A A ,于是有()()()222max max 2A A AA ,即‖A ‖2=ρ(A ).同理‖B ‖2=ρ(B ).由于A +B =(A +B )T,因此()()()222ρρρ+=+≤+=+A B A BABA B .定理1.7 如果‖B ‖<1,则I ±B 为⾮奇异矩阵,且()111-±≤-I B B,这⾥的矩阵范数是指矩阵的算⼦范数.证若I ±B 奇异,则存在向量x ≠0,使(I ±B )x =0,故有ρ(B )?1,这与‖B ‖<1⽭盾,所以I ±B ⾮奇异.由于()()11--±=± I B I B I B ,于是得()()11--±≤+±I B I BI B .上的任意两种矩阵范数都是等价的,即对Rn ×n上的任意两种矩阵范数sA和t A ,存在常数c 1,c 2>0,使得12stsc c ≤≤AAA.由矩阵范数的等价性,我们可以⽤矩阵的范数描述矩阵序列的极限性质.定义1.11 设矩阵序列()()()kk n nijn na ??=∈A R,k=1,2,…,若存在()n nij n na **=∈A R,使得()lim k ijijk a a *→∞()lim k k *→∞=AA.可以验证()()lim lim 0k k k k **→∞→∞=?-=AA AA.评注本章介绍了数值计算的研究对象、误差及相关概念、数值计算的稳定性及构造算法的基本原则.考虑到矩阵计算的数值分析,本章还介绍了向量范数和矩阵范数的基本概念和常⽤定理.误差分析问题是数值分析中重要⽽困难的问题.误差的基本概念和误差分析的若⼲原则,对学习本课程是很有必要的.但是,作为⼯程或科学计算的实际问题则要复杂得多,往往要根据不同问题分门别类地进⾏分析.例如,由于舍⼊误差有随机性,有⼈应⽤概率的观点研究误差规律.在⼯程计算中,常⽤⼏种不同办法(包括实验⽅法)进⾏⽐较,以确定计算结果的可靠性.20世纪60年代以来,发展了两种估计误差的理论:⼀种是J.H.W i lk i nson 等⼈针对计算机浮点算法提出了⼀套预先估计的研究误差的⽅法,使矩阵运算的舍⼊误差研究获得了新发展;另⼀种是R .E.Moore 等⼈应⽤区间分析理论估计误差,开创了研究误差的新⽅法. 关于范数⽅⾯,所述内容是为以下各章服务的⼀些初步概念和常⽤的定理,对本书够⽤就可以了.例如只讨论了R n ×n 的范数,⽽没有顾及R n ×m .⼜例如介绍了R n 和R n ×n 上范数的等价性,此性质对有限维空间都是成⽴的,⽽对于C[a,b]则没有这个性质,这些都是赋范线性空间有关的问题,详细讨论这些问题是泛函分析的内容.习题 11.1 已知e=2.71828…,问下列近似值A x 有⼏位有效数字,相对误差界是多少? (1) x =e, A x =2.7; (2) x =e, A x =2.718; (3) x =e100, A x =0.027; (4) x =e100, A x =0.02718. 1.2 设原始数据的下列近似值每位都是有效数字:1x *=1.1021, 2x *=0.031, 3x *=56.430. 试计算(1) 1x *+2x *+3x *;(2),并估计它们的相对误差界.1.3 设x 的相对误差界为δ,求n x 的相对误差界.1.4 设x >0,x 的相对误差界为δ,求ln2的绝对误差界.1.5 为了使计算球体体积时的相对误差不超过1%,问测量半径R 时的允许相对误差界是多少?1.6 三⾓函数值取4位有效数字,怎样计算1-cos2°才能保证精度? 1.7 设0Y =28,按递推公式nY=1n Y --…,计算.若取27.982(5位有效数字),试问计算Y 100将有多⼤误差?1.8 求解⽅程25610x x ++=,使其根⾄少具有4位有效数字(≈27.982).1.9 正⽅形的边长⼤约为100 cm ,应怎样测量才能使其⾯积的误差不超过21cm ? 1.10 序列{yn}满⾜递推关系1101n n y y -=-,n=1,2,….若y 0 1.41(3位有效数字),计算到y 10时的误差有多⼤?这个计算过程稳定吗?1.11 对积分11n x n I x edx -=,n=0,1,…,验证101I e-=-,11n n I nI -=-.若取e -1≈0.3679,按递推公式11n n I nI -=-,⽤4位有效数字计算I 0,I 1,…,I 9,并证明这种算法是不稳定的.1.12 反双曲正弦函数为()(ln f x x =+.如何计算f(x )才能避免有效数字的损(1) sin x -siny ; (2) arctan x -arctany ;(3)2; (4)212xe-.1.14 已知三⾓形⾯积1sin 2s ab C=,其中C 为弧度,0π,且测量a,b,C 的误差分别为Δa,Δb,ΔC ,证明⾯积的误差Δs 满⾜s a b C s ab C≤++ .1.15 设P ∈R n ×n 且⾮奇异,⼜设‖x ‖为R n 上的⼀种向量范数,定义p=xP x.试证明‖x‖P 是R n 上的⼀种向量范数.1.16 设A ∈R n ×n 为对称正定矩阵,定义()12,A=xA x x .试证明‖x‖A 为R n 上的⼀种向量范数.1.17 设矩阵0.60.50.10.3??=2F≤≤AA,并说明‖A ‖F 与‖x‖2相容.1.19 设P ∈Rn ×n且⾮奇异,⼜设‖x‖为R n上的⼀种向量范数,定义范数‖x‖P =‖P x ‖.证明对应于‖x‖P 的算⼦范数1 p-=APAP.1.20 设A 为⾮奇异矩阵,求证:11m iny ∞-≠∞∞=A y yA.。

计算方法

计算方法

计算方法第一章绪论1.1计算方法的任务与特点计算方法(又称数值计算方法,数值方法)定义:研究数学问题数值解法及其理论的一门学科1.2误差知识误差来源:模型误差、观测误差、截断误差、舍入误差绝对误差:|e(x*)|=|x-x*|相对误差:e r=e(x*)/x*x*=±10m(a1×10-1+a2×10-2+…+an×10-n)n为有效数字|x-x*|≤(1/2)×10m-n1.3选用算法时应遵循的原则要尽量简化计算步骤以减少运算次数、要防止大数“吃掉”小数、尽量避免相近的数相减、除法运算中应尽量避免除数的绝对值远远小于被除数的绝对值选用数值稳定性好的公式,以控制舍入误差的传播第二章方程的近似解法方程f(x)=a0+a1x+…+a m-1x m-1+a m的根的模小于u+1大于1/|1+v| (u=max{|a m-1|,…,|a1|,|a0|}v=1/|a0|max{1,||a m-1|,…,|a1|})2.1二分法解法步骤:第一步利用(b-a)/2n+1≤1/2×10-m解得n+1≥~得最小对分次数2.2迭代法解法步骤:第一步画图求的隔根区间第二步建立迭代公示并判别收敛性第三步令初始值计算2.3牛顿迭代法迭代公式:x n+1= x n -f(x n)/f’(x n)解法步骤:第一步列出迭代公式第二步判断收敛性3.1解线性方程组的直接法高斯消去法、列主元素消去法、总体选主元素消去法暂不介绍矩阵三角分解法Ly=b Ux=y以三行三列为例介绍u11=a11u12=a12u13=a13l21=a21/u11l31=a31/u11u22=a22-l21×u12u23=a23-l21×u13l32=(a32-l31u12)/u22u33=a33-l31×u13-l32×u233.2解线性方程组的迭代法简单迭代法(雅可比迭代法)x=Bx+g收敛性判断|E入-B T B|=0 max入<1赛德尔迭代法x(k+1)=B1x(k+1)+B2x(k)+g收敛性判断|E入-C T C|=0 max入<1 C=(E-B1)-1B2第五章插值法余项R n(x)=f(n+1)(~)∏(x-x i)5.1拉格朗日插值法l k(x)=[(x-x0)…(x-x k-1)(x-x k+1)…(x-x n)]/[(x k-x0)…(x k-x k-1)(x k-x k+1)…(x k-x n)] L n(x)=∑l k(x)y k第六章最小二乘法与曲线拟合A T Ax=A T b第七章数值积分与数值微分梯形公式∫f(x)dx=(b-a)/2[f(a)+f(b)]Rn=-(b-a)3/12f’’(m) (m∈(a,b))复化梯形公式Rn=-(b-a)h2/12f’’(m) (m∈(a,b))辛浦生公式∫f(x)dx=(b-a)/6[f(a)+f((a+b)/2)+f(b)]Rn=- (b-a)5/2880f’(4)(m) (m∈(a,b))Rn=- (b-a)h4/2880f’(4)(m) (m∈(a,b))柯特斯公式∫f(x)dx=(b-a)/90[7f(x0)+32f(x1)+12f(x2)+32f(x3)+7f(x4)]Rn=-8(b-a)/945((b-a)/4)7f(6)(m) (m∈(a,b))Rn=-2(b-a)(h/4)6/945((b-a)/4)7f(6)(m) (m∈(a,b))龙贝格求积公式S N=(4T2N-T N)/(4-1)C N=(42S2N-S N)/(42-1)R N=(43C2N-C N)/(43-1)T梯形S辛浦生C柯特斯第八章常微分方程初值问题的数值解法欧拉法y n+1=y n+hf(x n,y n)梯形法y n+1=y n+h/2[f(x n,y n)+f(x n+1,y n+1)]欧拉预估-校正公式y n(0)=y n+hf(x n,y n) y n+1=h/2[f(x n,y n)+f(x n+1,y n+1(0))]。

第一章 数值计算方法 绪论.ppt

第一章 数值计算方法 绪论.ppt

|
En
|

|
In

I
n
|

|
(1

nIn1 )

(1

nI
n1
)
|
n
|E n1|



n
!|
E0
|
初始的小扰动| E0 | 0.5108迅速积累,误差快速递增。
造成这种情况的是不稳定的算法 /* unstable algorithm */ 我们有责任改变。
公式二: In 1 n In1
I 10

0.03059200
I 12

1
12
I 11

0.63289600
I 13

1
13
I 12

7.2276480
I 14

1
14
I 13

94.959424
I 15

1
15
I 14

1423.3914
What happened
?!
考察第n步的误差 En
(科学出版社,2001年)
• 提问:数值计算方法是做什么用的?
研究对象:数值问题——有限个输入数据(问题的自
变量、原始数据)与有限个输出数据(待求解数据)之 间函数关系的一个明确无歧义的描述。
如一阶微分方程初值问题
dy

2x
dx
y(0) 1
求函数解析表达式 y y(x)
求函数y y(x)在某些点

能够控制误差


便于编程实现:逻辑复杂度要小

数值计算方法

数值计算方法

k4 hf (tn h, yn k3 ))
这里, f (x, y) y 2x ;h为步长。 y
现取h=0.05,其结果见下表:
xn
yn
y
xn
0
1.00000 1.00000 1.2
0.2
1.18322 1.18322 1.4
0.4
1.34164 1.34164 1.6
0.6
1.48324 1.48324 1.8
|,当C
1,
Cr 1时有
e( f ) e(x*)
er ( f ) er (x* )
这表明当C 1, Cr 1时,函数值的误差 是可以控制的,或是稳定的。
一般分别称C, Cr为f (x)在绝对意义下 和相对意义下的条件数。
当C 1称f (x)为良态; 当C 1称f (x)为病态。
例题
| e(x* ) || x* x | 1 10mn 2
则称x*为x的具有n位有效数的近似数。
绝对误差,相对误差,有效数是度量近似数 精度的常用三种。实际计算时最终结果均以 有效数给出。同时也就隐含了绝对误差和相 对误差界。
如 x 2, x* 1.4142, m 1, n 5
则x*的绝对误差界 1 104
n i 1
f xi*
n
( xi* xi )
i 1
f xi*
e( xi* )
因此绝对误差界为
e( f )
n i 1
f xi*
e( xi* )
同理相对误差为
er ( f )
n f(x*) i1 xi*
f
xi* (x*
)
er
( xi*
)
相对误差界
| er ( f ) |

数值计算方法课后习题答案

数值计算方法课后习题答案

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

数值计算方法-全套课件

数值计算方法-全套课件
——数值计算方法
数值计算方法
Numerical Method
数值计算方法
1
第一章 绪 论
课程简介
什么是数值计算方法? 为什么学习数值计算方法? 数值计算方法的主要内容
数值计算中的误差
误差的种类及其来源 绝对误差与相对误差 有效数字与误差 舍入误差与截断误差 误差的传播与估计 算法的数值稳定性
t
12
数值计算方法
课堂教学内 容
绪论 (1周) 非线性方程求根 (1周) 求解线性方程组的数值方法 (2周) 插值和曲线拟合 (1周) 数值微分和数值积分 (1周) 常微分方程数值解 (1周)
数值计算方法
19
教学安 排
理论
13:15~15:40
上机(助教负责)
四次 海洋大楼机房 刷校园卡
确定降落伞的最后速度
FU
加速度表示为速度的变化率
dv F dt m
如果净受力为正,物体加速运动; 如果为负,物体减速运动;如果为0, 物体速度不变。
假定向下的力为正,
FD mg
FU cv
c为比例系数,称为阻力系数(drag
coefficient(kg/s))。参数c说明了下降物
FD
体的特征,如形状或表面的粗糙程度。
4
数值计算方法
非计算机方 法
解析方法
简单问题 实际价值有限
图解法
结果准确? 三维及以下
手工方法
计算器 速度慢,很容易出现低级错误
5
数值计算方法
工程问题求解的三个 阶段
公式化
简洁表示 的基本定律

公式化
深入分析问题与 基本定律的关系
求解
用详细、通常也是复杂 的方法来求解问题

数值计算方法简介

数值计算方法简介

数值计算方法简介数值计算方法是一种用计算机处理数学问题的方法,它已经成为现代科学和工程中不可或缺的一部分。

目前,数值计算方法已经应用到了各个领域,比如工程学、物理学、经济学等等。

下面我们来简单介绍一些数值计算方法的基本概念和方法。

一.数值方法的分类数值计算方法可以分为以下两类:直接方法和迭代方法。

直接方法就是通过一定的公式或计算过程,直接求得问题的解。

而迭代方法则是通过不断地逼近解来求解问题。

迭代方法的精度一般会随着迭代次数的增加而增加,但同时也会增加计算的时间和计算的次数。

二.方程求解方法方程求解是数值计算方法中重要的一部分,它可以通过一定的计算方法来求解各种类型的方程,比如线性方程、非线性方程、微分方程等等。

其中,最常用的方程求解方法包括牛顿迭代法、二分法、割线法等等。

以求解非线性方程为例,牛顿迭代法是一种常用的方法。

假设要求解方程$f(x)=0$,我们可以首先给出一些初值$x_0$,然后通过不断使用牛顿迭代公式$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$,来逼近方程的解。

三.插值和拟合插值和拟合是数值计算中另一个重要的内容,其主要任务是通过已知的数据点来确定一个函数,从而使其在其他点上的值也可以被预测或计算。

其中,插值一般用于在已知数据点之间构建函数,而拟合则是用于对数据点进行近似。

最常用的插值方法包括拉格朗日插值和牛顿插值,其中拉格朗日插值函数为$L_n(x)=\sum_{i=0}^n y_i \frac{\prod_{j=0,j\neq i}^n (x-x_j)}{\prod_{j=0,j\neq i}^n (x_i-x_j)}$,其中$y_i$为已知数据点$(x_i,y_i)$的纵坐标值。

拟合方法中,最常用的是最小二乘法。

最小二乘法即是通过已知数据点,找到一条尽可能接近这些点的函数,也就是使这些点到函数的距离最小。

具体的做法是通过求解一个最小二乘问题,找到一个函数$f(x)$,使得$\sum_{i=1}^n (y_i-f(x_i))^2$最小。

第一章 数值计算方法 绪论

第一章  数值计算方法  绪论

er
e x
因为
e x
e x
er
e x
x x
x
e(x x)
(e )2
xx x ( x e )
( 1
e x
)2
e x
相对误差也可正可负
相对误差限——相对误差的绝对值的上界
r
/* relative accuracy */
e x
x x x
r
Def 1.3 (有效数字/*Significant Digits*/ )
0
e
记为
I
* 0
则初始误差
E0
I0
I
0
0.5 108
此公式精确成立
1
e
1 0
xn
e0
dx
In
1 e
1 x n e1 dx
0
1 e(n 1 )
In
1 n1
I 1
1
1
I 0
0.36787944
... ... ... ...
I 10
1
10
I 9
0.08812800
I 11
1 11
I 10
0.03059200
求函数y y(x)在某些点
xi
n i 1
的近似函数值
数学问题 数值问题
数值问题的来源:
实际 问题
建立数学模型
数值 求解 问题
设计高效、可 靠的数值方法
数值 问题
重点讨论
近似结果
输出
上机 计算
程序 设计
可 收敛性:方法的可行性
则数
靠 性
稳定性:初始数据等产生的误差对结果的影响
值分

计算方法第一章 绪论

计算方法第一章 绪论

知称道,实为Er际近(x)计似算值时x的通相常对取误差,由于精确值 一般x不*
x* x
Er (x)
作为近似值x的相对误差。
x
若能求出一个正数 ,使r 得
E,r (x则) 称r 为近似r
值x的相对误差限。它是无量纲的数,通常用百分
比表示。
2021/6/26
整理课件
15
例:甲用米尺测量10M长的物体,所产生的绝对 误差为2cm,乙用同一米尺测量1M长的物体,所产 生的绝对误差为1cm,他们谁的测量精度好?
用计算机解决科学计算问题的一般过程,可以概括为:
实际问题→数学模型→计算方法→ 程序设计→上机计算→结果分析
整理课件
由实际问题应用有关科学知识和数学理论建立
数学模型这一过程,通常作为应用数学的任务。 而根据数学模型提出求解的计算方法直到编出程 序上机算出结果,进而对计算结果进行分析,这 一过程则是计算数学的任务,也是数值计算方法 的研究对象。
第二,有可靠的理论分析,能任意逼近并达到精度要 求,对近似算法要保证方法的收敛性和数值稳定性,还要对 误差进行分析,这些都建立在相应数学理论基础上。
第三,要有好的计算复杂性(即时间复杂性和空间复杂 性);时间复杂性好是指节省时间,空间复杂性好是指节省 存储量,这也是建立算法要研究的问题,它关系到算法能否 在计算机上实现。
x x * 0.04 0.05 1 101 2
x 又 (0.3289) 1,故02该不等式又可写为
x x * 1 10 23 2
x 故 有3位有效数字,分别是 3,2,8。 x x 由于 中的数字9不是有效数字,故 不是有效数。
思考: 3.1415有几位有效数字?
2021/6/26

第一章数值计算方法绪论

第一章数值计算方法绪论

er ( y )
e ( y ) f(x)f(x) x xx f ( x ) xx f(x) x

x f(x) f(x)

er (x)
相对误差条件数
注:关于多元函数 yf(x1,x2,...xn ,)可类似讨论, 理论工具:Taylor公式
2、向后误差分析法:把舍入误差的累积与导出 A 的已
数值计算方法
第0章 课程介绍
什么是数值计算方法? 数值计算方法特点 数值计算方法重要性 本课程主要内容 本课程要求
什么是数值计算方法?
实际 问题
建立数学模型
近似结果 输
上机

计算
设计高效、 可靠的数值 方法
程序 设计
什么是数值计算方法? 数值计算方法是一种研究并解决数学问题的数值
若 x 的每一位都是有效数字,则x 称是有效数。
特别地,经“四舍五入”得到的数均为有效数
5.定理:
将 x 近似值 x 表示为 x 0.a 1a2 ak an 10m,
若 x * 有k位有效数字,则
; | er
|
1 2a1
10(k1)
x 反之,若
er
1 , 10(k1) 则
注:(1)
近似数
x
1
,
x
2
四则运算得到的误差分别为
| e(x1 x2)| |e(x1)e(x2)|,
er ( x1 x2 )

e(x1) x1 x2

e(x2) x1 x2
,
(避免两近似数相减)
e
(
x x
1 2
)

x1e(x2) x2e(x1) x22

计算方法第一章绪论(32学时)-2014.2

计算方法第一章绪论(32学时)-2014.2

教材聂玉峰、王振海等《数值方法简明教程》,高等教育出版社,2011作业计算方法作业集(A、B)参考书¾封建湖,车刚明计算方法典型题分析解集(第三版)西北工业大学出版社,2001¾封建湖,聂玉峰,王振海数值分析导教导学导考(第二版)西北工业大学出版社,2006¾车刚明,聂玉峰,封建湖,欧阳洁数值分析典型题解析及自测试题(第二版)西北工业大学出版社,2003西北工业大学理学院欧阳洁2第一章绪论§1 引言§2 误差的度量与传播§3 选用算法时应遵循的原则西北工业大学理学院欧阳洁3§1 引言科学与工程领域中运用计算机求解问题的一般过程:1 实际问题的提出2 建立数学模型3 设计可靠、高效的数值方法4 程序设计5 上机实践计算结果6 数据处理及结果分析西北工业大学理学院欧阳洁4学习算法的意义科学计算(数值模拟)已经被公认为与理论分析、实验分析并列的科学研究三大基本手段之一。

计算方法课程的研究对象具有广泛的适用性,著名流行软件如Maple、Matlab、Mathematica 等已将其绝大多数内容设计成函数,简单调用之后便可以得到运行结果。

但由于实际问题的具体特征、复杂性, 以及算法自身的适用范围决定了应用中必须选择、设计适合于自己特定问题的算法,因而掌握数值方法的思想和内容至关重要。

西北工业大学理学院欧阳洁5鉴于实际问题的复杂性,通常将其具体地分解为一系列子问题进行研究,本课程主要涉及如下几个方面问题的求解算法:¾非线性方程求根¾线性代数方程组求解¾函数插值¾曲线拟合¾数值积分与数值微分¾常微分方程初值问题的数值解法¾矩阵特征值与特征向量计算西北工业大学理学院欧阳洁6§2 误差的度量与传播一误差的来源与分类模型误差:数学模型与实际问题的误差观测误差:观测结果与实际问题的误差截断误差:数学模型的理论解与数值计算问题的精确解之间的误差舍入误差:对超过某有限位数的数据进行舍入所产生的误差西北工业大学理学院欧阳洁75 使用数值稳定性好的公式一个算法,如果初始数据微小的误差仅使最终结果产生微小的误差,或在运算过程中舍入误差在一定条件下能够得到控制,则称该算法(数值)稳定,否则称其为(数值)不稳定.西北工业大学理学院欧阳洁26总结1.数值运算的误差估计2.绝对误差、相对误差与有效数字3.数值运算中应遵循的若干原则西北工业大学理学院欧阳洁30。

(完整版)数值计算方法教案

(完整版)数值计算方法教案

《计算方法》教案课程名称:计算方法适用专业:医学信息技术适用年级:二年级任课教师:***编写时间:2011年 8月新疆医科大学工程学院张利萍教案目录《计算方法》教学大纲 (4)一、课程的性质与任务 (4)二、课程的教学内容、基本要求及学时分配 (4)三、课程改革与特色 (5)四、推荐教材及参考书 (5)《计算方法》教学日历..................................... 错误!未定义书签。

第一章绪论 .. (6)第1讲绪论有效数字 (6)第2讲误差………………………………………………………………………………第二章线性方程组的直接法 (14)第3讲直接法、高斯消去法 (14)第4讲高斯列主元消去法 (22)第5讲平方根法、追赶法 (29)第三章插值法与最小二乘法 (31)第6讲机械求积、插值型求积公式 (32)第7讲牛顿柯特斯公式、复化求积公式 (37)第8讲高斯公式、数值微分 (42)第9讲第10讲第12讲第四章数值积分与数值微分 (48)第11讲欧拉公式、改进的欧拉公式 (48)第12讲龙格库塔方法、亚当姆斯方法 (52)第13讲收敛性与稳定性、方程组与高阶方程 (56)第14讲第15讲第五章微分常微分方程的差分方法 (59)第16讲迭代收敛性与迭代加速 (60)第17讲牛顿法、弦截法 (64)第18讲第19讲第20讲第六章线性方程组的迭代法 (67)第21讲迭代公式的建立 (68)第22讲第23讲第24讲向量范数、迭代收敛性 (71)第25讲《计算方法》教学大纲课程名称:计算方法/Computer Numerical Analysis B学时/学分:54/4先修课程:高等数学、线性代数、高级语言程序设计(如:Matlab语言)适用专业:计算机科学与技术、信息管理与信息系统开课学院(部)、系(教研室):医学工程技术学院、医学信息技术专业一、课程的性质与任务计算方法是一门专业必修课。

计算方法_第一章_绪论

计算方法_第一章_绪论

第一章绪论1.1 "数值分析"研究对象与特点"数值分析"是计算数学的一个主要部分.而计算数学是数学科学的一个分支,它研究用计算机求解数学问题的数值计算方法及其软件实现.计算数学几乎与数学科学的一切分支有联系,它利用数学领域的成果发展了新的更有效的算法及其理论,反过来很多数学分支都需要探讨和研究适用于计算机的数值方法.因此,"数值分析"内容十分广泛.但本书作为"数值分析"基础,只介绍科学与工程计算中最常用的基本数值方法,包括线性方程组与非线性方程求根、插值与最小二乘拟合、数值积分与常微分方程数值解法等.这些都是计算数学中最基础的内容.近几十年来由于计算机的发展及其在各技术科学领域的应用推广与深化,新的计算性学科分支纷纷兴起,如计算力学、计算物理、计算化学、计算经济学等等,不论其背景与含义如何,要用计算机进行科学计算都必须建立相应的数学模型,并研究其适合于计算机编程的计算方法.因此,计算数学是各种计算性科学的联系纽带和共性基础,是一门兼有基础性、应用性和边缘性的数学学科.计算数学作为数学科学的一个分支,当然具有数学科学的抽象性与严密科学性的特点,但它又具有广泛的应用性和边缘性特点.现代科学发展依赖于理论研究、科学实验与科学计算三种主要手段,它们相辅相成,互相独立,可以互相补充又都不可缺少,作为三种科学研究手段之一的科学计算是一门工具性、方法性、边缘性的新学科,发展迅速,它的物质基础是计算机(包括其软硬件系统),其理论基础主要是计算数学.计算数学与计算工具发展密切相关,在计算机出现以前,数值计算方法只能计算规模小的问题,并且也没形成单独的学科,只有在计算机出现以后,数值计算才得以迅速发展并成为数学科学中一个独立学科--计算数学.当代计算能力的大幅度提高既来自计算机的进步,也来自计算方法的进步,计算机与计算方法的发展是相辅相成、互相促进的.计算方法的发展启发了新的计算机体系结构,而计算机的更新换代也对计算方法提出了新的标准和要求.例如为在计算机上求解大规模的计算问题、提高计算效率,诞生并发展了并行计算机.自计算机诞生以来,经典的计算方法业已经历了一个重新评价、筛选、改造和创新的过程,与此同时,涌现了许多新概念、新课题和能充分发挥计算机潜力、有更大解题能力的新方法,这就构成了现代意义下的计算数学.这也是数值分析的研究对象与特点.概括地说,数值分析是研究适合于在计算机上使用的实际可行、理论可靠、计算复杂性好的数值计算方法.具体说就是:第一,面向计算机,要根据计算机特点提供实际可行的算法,即算法只能由计算机可执行的加减乘除四则运算和各种逻辑运算组成.第二,要有可靠的理论分析,数值分析中的算法理论主要是连续系统的离散化及离散型方程数值求解.有关基本概念包括误差、稳定性、收敛性、计算量、存储量等,这些概念是刻画计算方法的可靠性、准确性、效率以及使用的方便性.第三,要有良好的复杂性及数值试验,计算复杂性是算法好坏的标志,它包括时间复杂性(指计算时间多少)和空间复杂性(指占用存储单元多少).对很多数值问题使用不同算法,其计算复杂性将会大不一样,例如对20阶的线性方程组若用代数中的Cramer法则作为算法求解,其乘除法运算次数需要,若用每秒运算1亿次的计算机计算也要30万年,这是无法实现的,而用"数值分析"中介绍的Gauss消去法求解,其乘除法运算次数只需3 060次,这说明选择算法的重要性.当然有很多数值方法不可能事先知道其计算量,故对所有数值方法除理论分析外,还必须通过数值试验检验其计算复杂性.本课程虽然只着重介绍数值方法及其理论,一般不涉及具体的算法设计及编程技巧,但作为基本要求仍希望读者能适当做一些计算机上的数值试验,它对加深算法的理解是很有好处的.讲解:(1)计算数学是研究用计算机求解数学问题的数值计算方法及其软件实现,"数值分析"是计算数学的主要部分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

123绪 论第一章主讲教师:刘春凤http://210.31.198.78/eol/jpk/course/welcome.jsp?courseId=12204话说科学计算误差的传播与改善误差与有效数字 1 3 4话说《数值计算方法》课程 25科学计算概述 科学计算的对象 科学计算的地位 科学计算的特点6计算数学:数值计算~数值分析~数值计算方法~数值逼近什么是科学计算?科学研究的第三种科学方法基于 物理模型研究计算方法设计并行算法研制 应用程序开展 模拟计算分析 计算结果利用计算机再现、预测 和发现客观世界运动规律和演化特性的全过程.科学计算话说科学计算7科学计算的对象求解各类数学问题的数值方法及其理论科学计算的对象:求解各类数学问题 的数值方法及其理论.科学研究中的实际问题工程计算中的实际问题数学模型加工+精炼加工+精炼话说科学计算8科学计算的地位话说科学计算科学计算经常也被称为计算机虚拟实验.纯数学数学自身理论计算数学理论与计算结合,着重研究数学问题的 数值方法及其理论.理论分析科学实验科学计算当代科学研究的三大支柱美国国家科学基金会主任布洛克指出:“科学与工程计算已经明显地发展为 与理论和实验相并列的第三种科学研究的方法。

正在科研实践中引起一场深刻的、 不可逆转的变革。

”9科学计算的特点科学计算不会对环境等产生大的影响,它能够承担真实实验不能完成的事,例如要研究海啸的破坏、 地震的破坏、核爆炸的破坏,人类不可能进行真实实验,但可以进行科学计算,进行计算机虚拟实验.特点 1:无损伤真实的实验,无论用多少种方法、多少种仪器,获得的系统演化的信息是非常有限的,难以做到 全过程、全时空诊断.而全过程、全时空的信息对于人们认识、理解与控制研究对象极为关键.研究人员就可以根据需要获得任何一个时刻、任何一个地点研究对象发展和演化的全部信息, 使得研究人员可以充分了解和细致认识研究对象的发展与演化.特点 2:全过程、全时空诊断特点 3:可重复科学计算可以用相对低成本的方式,短周期地、反复细致地进行,获得各种条件下研究对象的 全面、系统的信息.话说科学计算10学习科学计算的意义数学脑力劳动包括三个方面: 数值计算+公式推导+定理证明大学生具备科学计算能力,正是避免在脑力劳动的机械化革命中落后的战略措施我国在脑力劳动的机械化革命中曾经掉队, 以至造成现在的落后状态,在当前新的一场脑 力劳动的机械化革命中,我们不能重蹈覆辙。

数学机械化的带头人:吴文俊大学的学习内容主要包括:一、科学知识的学习;二、掌握知识的科学方法的学习。

学生的能力包括: (1)获取新知识的能力;(2)概括能力; (3)建模能力; (4)分析能力 (5)计算能力; (6)动手能力; (7)表达能力等。

随记卡话说科学计算11A=Table[Random[],{8},{8}]; MatrixForm[%] Det[A]学习科学计算的意义11121 21222 12 ... ... n n n n nn a a a a a a A a a a æöç÷ç÷ = ç÷ç÷èøL L L L L 12 12 12 11121 21222 12 (...)12 ... ... ... (1)... n nnnn n n nnr i i i i i ni i i i a a a a a a A a a a a a a ==- å L L L L L 计算 需要 次乘法运算A!(1) n n - !(1)m n n =- 每个加项计算n -1次乘法,一共 个加项.! n 方法1方法2(1)(21)(1) 6n n n M n -- =-+20,2489n M == 话说科学计算12历史沿革 课程地位 课程目标 课程的教学设计 课程的学习资源 课程的评价方式13周恩来领导十年科技规划,提出发展几个新技术, 包括计算技术(计算机,程序设计,计算数学) 半导体技术,自动化技术。

成立计算技术研究所,华罗庚任主任,下设计算机与计算数学。

计算所成立,半军事性质,与苏联合作在中科院计算研究所造出104机。

北大,吉大,复旦,南大相继成立计算数学专业。

李荣华,冯果忱 编写《微分方程数值解》 李岳生等编写 《数值逼近论》曹志浩等编写 《数值代数》和《矩阵计算与方程求根》 国内几所重点大学开设:《微分方程数值解》、《数值逼近论》、数值代数》19551977 1958 1984话说数 值 计算1956 数值计算的历史沿革14数值代数、最优化 反问题数值解 微分方程数值解计算 数学计算空气动力学 计算力学计算流体力学计算数学 应用计算物理 计算工具的三次革命: (1)计算尺 (2)计算器 (3)计算机2000年发达国家已完成三次革命随记卡话说数 值 计算数值计算的历史沿革15•冯 康 (1920—1993) • 有限元方法 • 辛几何算法中国近代数学能超越西方或与之并驾齐驱的 数学家有:陈省身:示性类 华罗庚:多复变函数 冯 康:有限元计算 丘成桐: 微分方程---丘成桐,中国数学发展之我见1998,3,11,中国科学报(丘成桐,哈佛大学教授,Fields 奖获得者)随记卡话 说数 值 计算数值计算的历史沿革16菲尔兹奖u 第一个获得菲尔兹奖的华人丘成桐;u 1982年获菲尔兹奖(1949); u 著名数学家陈省身弟子 ;u 22岁博士学位,28岁升为正教授;u 斯坦福大学终身教授;u 1976年,27岁的丘成桐解决了 微分几何的著名难题:卡拉比猜想,并把微分方程应用到微分几何中去,推动了微分几何和微分方程的发展。

• 石钟慈院士--非协调有限元方法 • 林 群院士---外推方法• 崔俊芝(工程院院士)-数值计算中国计算数学院士话 说数值 计算数值计算的历史沿革17研究对象 研究内容 研究期望话说数值计算方法实际问题数值分析的理论数学模型程序设计上机计算重点内容 计算数学也称 数值计算方法或 数值分析主要研究:求解各种数学问题的数值计算方法及其理论与软件实现.什么是数值计算方法?【注1 】理论上有解,而无求解公式或计算量过大难以用手工实现的数学问题。

1819对算法及其应用进行理论和数值分析责任1研究科学计算与工程计算相关的计算方法责任2责任3设计与研究用数值模拟方法代替实验(某些耗资巨大甚至是难于实现的实验)责任4研究应用软件和数值软件等计算力学 计算物理计算化学 计算生物交叉学科 话说数值 计算方法计算方法的责任20话说数值 计算方法插值 法CH2数值计算方法绪论CH1 函数逼近与曲线拟合CH3 数值积分与数值微分 CH4 线性方程组的直接法CH5线性方程组的迭代法 CH6 非线性方程(组)的数值解法 CH7 矩阵特征值问题计算CH8 常微分方程初值问题数值解法CH9课程研究内容21理论可靠, 精度可达, 算法收敛, 数值稳定, 误差可析。

计算复杂性 时间复杂性好 空间复杂性好面向计算机提供 可行有效 的算法.数值计算方法的特点要有数值实验 通过数值试验 证明行之有效.213422教学设计课程目标课程地位课程评价方式课程拓展资源 课程基础资源 话说课程公共基础必修课; 工科专业80%; 学时:36~60讲授数学知识, 培养数学素质, 掌握计算方法, 训练理性思维。

计算方法值多少? 计算方法 个好? 计算方法 用? 计算方法用 好?教学大 教学 历 教 教学课件 讲课素 资源讲 业 数学实验学科知识 测试理论知识: 60 实验课题: 20%应用课题: 20业提 :szjsff _2010@公 共 :heuuszjsff@ (密码:szjsff )课程 :http://210.31.198.78/eol/jpk/course/welcome.jsp?courseId=122023http://210.31.198.78/eol/jpk/course/welcome.jsp?courseId=122024通 :《数值计算方法》1 2 3 4 课程之 课程之理 课程之 课程之法 上 求 课程之 望52010“计算方法”有多少?“计算方法”哪个好?“计算方法”怎么用?“计算方法”用哪好?2526说多少 多少 上说好 好 数 大 头 讲数值计算方法 教与学“计算方法”知多少? “计算方法” 哪个好? “计算方法”怎么用? “计算方法” 用哪好?研究科学计算研究教学 科+专业+研究生 实 数学 模基地 的 资源 内学科27数值计算方法 教与学主要刘春凤. 应用数值分析. 工业 .2006 数值分析第5华用教 . 数值计算方法. 理工大学 .199华.《数值计算方法和算法》, 中国科学 大学 .2002数值计算方法 教与学主要Numerical Analysis: Mathematics of Scientific Computing(Third Edition)数值分析 ( 文 第3 )David Kincaid & Ward Cheney(机械工业 )Ø Numerical Analysis (Seventh Edition)数值分析 (第 )Richard L. Burden & J. Douglas Faires ( 教 )2829数值计算方法的课程考核应用课题 20%理论知识 60%实验课题 20%成 结å30误差的 有效数字 误差的分类 误差的传播31)( ____ *绝对误差限 误差限 e £ - = x x e 近似值____ *x )( _____ *绝对误差 误差 x x e - = îíì > < - = 弱近似值强近似值 0 0 * x x e ee e ± = + £ £ - ** * x x or x x x , ____真值 x 误差的概念误差的定义对误差32例如求解线性方程组ï ï ï î ï ï ï í ì= + + = + + = + + 60 475 1 4 1 31 12 134 1 3 1 216 11 3 1 2 1 32 13 2 1 3 2 1 x x x x x x x x x ï îï í ì = + + = + + = + + 78 . 0 20 . 0 25 . 0 33 . 0 1 . 1 25 . 0 33 . 0 50 . 0 8 . 133 . 0 50 . 0 3 2 1 3 2 1 3 2 1 x x x x x x x x x 如把方程组的系数舍入成两位有效数字它的解为x 1 =­6.222...x 2=38.25… x 3=­33.65... 其准确解为:x 1=x 2 =x 3 =1 误差无33近 数x * 关于 数x 的 对误差:*x x e - = 误差的概念近 数x * 关于 数x 的 对误差 :e£ - = * ) ( x x x e 工程上 数x 的 :ee + £ £ - * * x x x 数值的 对误差:)( *) )( ( ' ) ( ) ( ' )] ( [ x df x x x f x e x f x f e » - = = 对误差提醒注意相对误差*r e x x e x x- == *** r e x x e x x- == 【理论式】 【应用式】***r r e x x e x xe - ==£ 【相对误差限】34绝对误差与相对误差问题:150分满考139,100分满考90,两者的绝对误差分别为11 和10,优劣如何?前者相对误差: 1501390.073150 - » 100900.100100- = 后者相对误差: 相对误差 对误差 数与近 数的差 . 对误差 和相对误差 无 多 好.误差 计的 提供好的误差 误差 ,数 可靠35设 , 定g 的, 对t 的测 有0.1 的误差,证明当t 加时S 的 对误差 加,相对误差 少。

相关文档
最新文档