气孔(器)
植物学名词解释
流动镶嵌模型:认为球形膜蛋白分子以各种镶嵌形式与脂双分子层相结合, 有的附在内外表面, 有的全部或部分嵌入膜中, 有的贯穿膜的全层, 这些大多是功能蛋白。
胞间连丝:植物细胞壁中小的开口,相邻细胞的细胞膜伸入孔中,彼此相连,两个细胞的滑面形内质网也彼此相连,构成胞间连丝。
单位膜:包围在细胞外面的膜,在电子显微镜下观察,细胞膜可分为三层,内外两层为致密层,中间为一层不太致密的层。
称单位膜类囊体: 类囊体在叶绿体基质中,是单层膜围成的扁平小囊,也称为囊状结构薄膜。
细胞骨架:狭义细胞骨架(cytoskeleton)概念是指真核细胞中的蛋白纤维网络结构。
它所组成的结构体系称为“细胞骨架系统”,与细胞内的遗传系统生物膜系统并称“细胞内的三大系统”。
单纹孔:细胞壁上来加厚的部分,呈圆孔形或扁圆形,纹孔对的中间由初生壁和中层所形成的纹孔膜隔开。
具缘纹孔:纹孔边缘的次生壁向细胞腔内呈架拱状隆起,形成一个扁圆的纹孔腔,纹孔腔有一圆形或扁圆形的纹孔口,同时在纹孔膜(即纹孔所在的初生壁)中央也加厚形成纹孔塞。
后含物:细胞在生活过程中产生的各种无生命的物质,统称为细胞后含物纺锤体:大量微管纵向排列组成的中间宽两极小的细胞器,形状象纺锤,因而得名纺锤丝: 光学显微镜下所见到的有丝分裂期组成纺锤体的丝状结构之总称。
细胞周期:通常将通过细胞分裂产生的新细胞的生长开始到下一次细胞分裂形成子细胞结束为止所经历的过程称为细胞周期。
细胞分化:在个体发育中,由一个或一种细胞增殖产生的后代,在形态结构和生理功能上发生稳定性的差异的过程称为细胞分化。
传递细胞:植物体内特化的薄壁组织细胞。
其细胞壁向内突起,壁上有丰富的胞间连丝穿过,细胞内有较多的线粒体。
复合组织:有两种以上的组织在一起共同执行一定的生理功能为复合组织。
组织系统:指有关的若干组织的集团。
高等植物组织系统的分类方式有三种:(1)以维管束为重点的方式:分为表皮系统、维管系统和基本组织系统三个系统。
气孔器名词解释
气孔器名词解释气孔器是指一种用于调节液体或气体流动的装置,通常用于水处理、空气过滤、气体分离等领域。
本文将介绍气孔器的种类、原理、应用以及未来发展趋势。
一、气孔器的种类气孔器按照其结构和功能可分为以下几类:1. 气泡孔板:由许多小孔组成,液体从小孔流过时会产生气泡,从而增加液体与气体的接触面积,达到气体分离的效果。
2. 膜式气孔器:由一层或多层薄膜组成,液体通过薄膜时会产生气体通道,从而实现气体分离。
3. 纤维式气孔器:由许多纤维组成,液体从纤维间流过时会产生气体通道,从而实现气体分离。
4. 螺旋式气孔器:由螺旋形的通道组成,液体通过通道时会产生旋涡,从而提高气体分离的效果。
5. 超声波气孔器:利用超声波的作用,将气体从液体中分离出来。
二、气孔器的原理气孔器的原理是通过调节液体或气体的流动,实现气体分离的效果。
具体原理如下:1. 气泡孔板:液体从小孔流过时会产生气泡,气泡会随着液体的流动而上升,从而分离出气体。
2. 膜式气孔器:液体通过薄膜时会产生气体通道,气体会从通道中分离出来。
3. 纤维式气孔器:液体从纤维间流过时会产生气体通道,气体会从通道中分离出来。
4. 螺旋式气孔器:液体通过通道时会产生旋涡,气体会随着旋涡的流动而分离出来。
5. 超声波气孔器:利用超声波的作用,将气体从液体中分离出来。
三、气孔器的应用气孔器在许多领域都有广泛的应用,以下是几个典型的应用领域: 1. 水处理:气泡孔板和膜式气孔器广泛应用于水处理领域,用于去除水中的气体和杂质,提高水的质量。
2. 空气过滤:气泡孔板和纤维式气孔器广泛应用于空气过滤领域,用于去除空气中的微粒和杂质。
3. 气体分离:膜式气孔器和超声波气孔器广泛应用于气体分离领域,用于分离出不同的气体。
4. 医疗器械:气孔器在医疗器械中也有广泛的应用,如呼吸机、输液器等。
四、气孔器的未来发展趋势随着科技的不断发展,气孔器也在不断地改进和创新。
未来气孔器的发展趋势主要有以下几个方向:1. 高效性:未来的气孔器将更加高效,能够更好地实现气体分离的效果。
第五章 叶2
碳3植物叶的侧脉
小麦
2层维管束鞘, 外层薄壁的, 内层厚壁鞘状 的。
垂穗草
C4 植物特点:
禾谷类植物中的四碳植物( C4植物)如玉米、高 梁和甘蔗等,其叶片的维管束鞘细胞只有一层, 体积较大,内含丰富的细胞器和较大的叶绿体, 虽然其基粒片层不发达,但积累淀粉的能力超过 一般叶肉细胞的叶绿体。
长细胞
刺毛;
栓细胞 硅细胞
气孔
泡状细胞
(2)泡状细胞(运动细胞) :
上表皮中,分布有数列具有薄垂周壁的大 型细胞,其长轴与叶脉平行,称为泡状细 胞。 与叶片的卷曲和开张有关。
泡状细胞
(3)气孔器:
气孔器的保卫细胞为哑铃形,副卫细胞近 似菱形。 (4)表皮毛
有各种形状。许多植物叶表皮中的硅细胞 向外突出成为刚毛。使表皮坚硬,增强抗 倒伏能力和抗病虫害的能力。
角质膜
复表皮
栅栏组织
海绵组织
夹竹桃叶横切面的一部分
叶脉
栅栏组织
气孔
气孔窝
夹竹桃叶横切面的一部分
表皮毛
二、水生植物叶片的结构特点
水生植物可以直接从周围获得水分和溶解 于水中的物质,但却不易得到充足的光照 和良好的通气。因此,在长期适应水生环 境的过程中,水生植物的体内形成了特珠 的结构,其叶片形态结构的变化最为明显。
Hale Waihona Puke 旱生植物的栅栏组织发达,层次多,甚至上下两 面均有分布,海绵组织和胞间隙不发达,从而增 加了光合组织的比例,有利于在叶面积缩小的情 况下来提高光合效能。此外,旱生植物的叶脉较 密集,输导组织发达,以适应在干旱的大气中得 到较充足的水分,维持光合作用的进行。 贮藏水分是叶片旱生结构的另一特征。有些旱生 植物的叶肥厚多汁,叶中有贮藏水分和粘液的组 织,如剑麻、龙舌兰和芦荟。有的旱生植物的叶, 为了更好地贮藏水分,叶片中有大型的贮水细胞, 如花生。
细胞结构名称 特点 功能
微丝肌动蛋白组成的细丝极性结构,细胞内微丝处于动态平衡,肌动蛋白常与微丝马达蛋白(肌球蛋白)结合,肌球蛋白具有A TP酶活性,能水解ATP,将化学能直接转换为机械能,引起运动.1.维持细胞形状2.参与胞质流动、细胞器运动3.顶端生长4.胞质分裂、染色体移动5.物质运输以及与膜有关的一些重要生命活动如内吞作用和外排作用等(胞质环流)细胞伸长扩大主要由微丝调控中间纤维角状蛋白、连接蛋白、波状蛋白等,?细胞与能量生命活动以物质代谢为基础,以能量代谢为动力。
细胞生命活动能够直接利用的能量是ATP中的化学能。
氧化还原反应——细胞内的能量流C6H12O6+6O2 → 6CO2+6H2O +能量CO2+H2O +能量→(CH2O)+ O2ATP为机械运动、跨膜运输、化学反应提供能量。
酶是活细胞产生的具有催化作用的有机物,其中绝大多数酶是蛋白质,少数酶是RNA.酶的特性:专一性、高效性、作用条件温和。
组织名称定义特点分生组织顶端分生组织随植物胚的发育和植物体的形态建成,在其纵轴两端各保留一团胚性细胞,这就是顶端分生组织。
代谢旺盛,细胞体积小,近等直径形,排列紧密,无细胞间隙,细胞壁薄,细胞质浓厚,无明显液泡,质体分化处于前质体阶段,缺乏储藏物、结晶和次生物质。
侧生分生组织位于裸子植物和双子叶植物营养器官纵轴侧面的分生组织。
居间分生组织有顶端分生组织衍生、遗留下来,在局部区域穿插于成熟组织之间的分生组织为居间分生组织。
成熟组织薄壁组同化组织 1.分布广,比例大,执行与营养有关的生理功能2.细胞含有生活的原生质体,含有多种细胞器,液泡发达。
3.细胞排列疏松,胞间隙明显,细胞壁薄(初生储藏组织通气组织导管筛管运输水分、无机盐运输同化产物位于木质部位于韧皮部成熟导管分子是死细胞成熟筛管分子是无核,具生活原生质体的活细胞具木质化的次生壁细胞只有初生壁外分泌结构分布与植物外表,将分泌物分泌到体外。
蜜腺、腺毛、盐腺等石细胞,纤维分类成束、成环、成群或单个分布于其他组织间尚在伸长经常摆动的部位存在部位次生壁,常木质化初生壁增厚的壁活细胞,具潜在分裂能力角隅加厚不均匀加厚厚角组织死细胞细胞均匀加厚增厚方式厚壁组织土壤温度根系对矿物质的吸收矿质元素种类大量元素C、H、O、N、P、S、K、Ca、Mg微量元素Fe、Mn、Zn、B、Cu、钼、Ni、Cl生理作用 1.细胞的结构物质2.调节酶的活动与生命活动3.电化学作用吸收部位主要在根尖根毛区吸收过程离子交换吸收特点(1)对矿质元素和水分的相对吸收.(2)选择吸收.(3)单盐毒害和离子拮抗作用影响条件1温度,2通气状况,3介质酸碱度,4离子间的相互作用叶的发生发育方式:外生源叶原基:茎尖生长锥周缘区细胞分裂形成的突起,向长、宽、厚方向生长,早期为扁平形,尚未有叶片、叶柄和托叶的分化。
普通生物学名词解释与问答题
名词解释与问答题名词解释与问答题(参考答案)一、名词解释1、伴胞伴胞是附生在筛管分子旁边的一个两端尖削的薄壁细胞。
伴胞与筛管分子起源于同一个细胞彼此间有发达的胞间连丝沟通,伴胞的细胞核调控筛管分子的生命活动。
2、保卫细胞构成气孔器的两个细胞即保卫细胞,保卫细胞是含有叶绿体的生活细胞。
保卫细胞之间的缝隙就是气孔,气孔是植物体内外气体交换和水分蒸发的通道。
3、变态器官某些植物体的营养器官,在形态结构和生理机能上较其一般状况发生了显着改变的,称之为变态器官。
4、不完全消化道只有口而没有肛门的消化道,叫不完全消化道。
口具有进食和排便的双重功能。
5、大肠大肠是消化道的一部分,位于肠的末端,上接小肠后通肛门。
哺乳动物的大肠由盲肠、结肠和直肠三部分组成,具有分泌粘液吸收水分、无机盐和部分维生素的功能。
盲肠在不同类群的动物变异较大,单胃草食动物的盲肠发达,其内有大量的共生微生物,有分解纤维素的功能。
6、导管由一系列纵向连接的长柱形细胞组成,每个细胞叫导管分子。
成熟的导管分子原生质解体消失,四周的细胞壁木质化不均匀加厚,是死细胞。
分子间的横壁在细胞成熟过程中溶解,因而成为一条连续贯通的管道。
7、非特异性免疫机体生来就有天然的防御能力,对多种病原生物都有一定的防御作用,没有特殊的针对性。
所以,称作非特异性免疫。
非特异性免疫的第一道防线是皮肤和粘膜,第二道防线是体液中的吞噬细胞、溶菌酶等杀菌物质。
8、辐射对称动物体的低等对称形式,过中轴对动物体进行纵切,有无数个切面都可以将动物体分成互为镜像的两部分,这种对称形式即为辐射对称。
例如水螅、水母的身体即为辐射对称。
9、复眼昆虫的视觉器官包括单眼和复眼,复眼由许多单眼组成,有色觉功能可形成彩色的镶嵌图象,对昆虫识别植物花的种类具有重要意义。
10、刚毛环节动物门,寡毛纲动物的运动器官,动物可通过肌肉运动,使刚毛附着和固定在基底物质上,支持身体运动。
11、根尖植物根最前端4~6mm的部位为根尖,它是根生命活动最活跃的地方。
(整理)普通生物学复习思考题
一、名词解释1、传递细胞传递细胞植物体内特化的薄壁组织细胞,其细胞壁向内突起,壁上有丰富的胞间连丝穿过,细胞内有较多的线粒体。
2、叶迹是从茎内维管束分枝处经皮层到叶柄基部的这一段维管束,叫叶迹,不一定在相应的节伸出。
3、叶痕叶脱落后,茎上留下着生叶柄的痕迹。
在叶痕内,折断的维管束也留下痕迹,称维管束痕。
4、心材在生活的树木中已不含生活细胞的中心部分,其贮藏物质(如淀粉)已不存在或转化为心材物质;通常色深;无输导树液与贮藏营养物质的功能;其主要对整株植物起到支持作用。
5、凯氏带存在于根初生结构内皮层细胞的上下横壁和左右径向壁上的一种木质化和栓质化的带状加厚,由于它的存在使得水分和无机盐只有经过内皮层的原生质体才能进入维管柱。
6、外始式根的初生木质部在发育过程中,是由外向心逐渐分化成熟的,外方先成熟的部分为原生木质部,内方后成熟的为后生木质部,这种分化方式称为外始式。
7、内起源植物的侧根通常起源于母根的中柱鞘,发生于根的内部组织,这种起源方式称为内起源。
8、边材树木次生木质部的外围活层,功能为将水及矿物质输送到树冠。
含有生活细胞和贮藏物质(如淀粉等)。
9、胚胚由受精卵(合子)发育而成的新一代植物体的雏型(即原始体)。
是种子的最重要的组成部分。
10、上胚轴与下胚轴胚轴是种子植物胚的组成部分之一,为子叶着生点与胚根之间的轴体。
种子萌发后,由子叶到第1片真叶之间的部分,称为“上胚轴”;子叶与根之间的一部分,称为“下胚轴”。
11、侵填体侵填体:侵填体是由于邻接导管的薄壁细胞通过导管壁上未增厚的部分,连同其内含物如鞣质、树脂等物质侵入到导管腔内而形成的。
侵填体的产主使导管液流透性降低,但对病菌侵害起一定防腐作用。
具有侵填体的木材是较耐水湿的。
12、气孔器气孔与两个保卫细胞合称气孔器。
气孔器能调节气体的出入和水分蒸腾。
13、维管束维管束是维管植物(蕨类植物、裸子植物和被子植物)的叶和幼茎等器官中,由初生木质部和初生韧皮部共同组成的束状结构。
花的组成部分
物。
花冠在花萼之内,花冠通常可分裂成片状,称为花瓣。花瓣一般比萼片大,在形态学中认为花瓣也是一种叶性器官。花萼和花冠合称花被。花瓣的表皮层上,也可有气孔和表皮毛。花瓣的大小和形状有很大变化。有的很大,有的则相当细小,甚至退化成鳞片、刺毛或各种腺体。花冠除了具保护作用之外,花瓣的颜色和香味,对于吸引动物传粉起着重要作用。花冠之所以有各种鲜艳的颜色,是由于细胞中含有有色体和细胞液中的色素,并受细胞内、外各种因素变化的影响。有些风媒花的花被很不明显,或呈绿色或近乎无色。
花萼在花的最外面,对花的其他部分起保护作用。可分成几个萼片,在形状和构造上十分近似叶子或苞片。绿色的萼片中含有叶绿体,表皮层上具气孔(器)和表皮毛,但很少象叶子那样分化出栅栏组织和海绵组织。在形态学上,把花萼视为一种变形的叶子。萼片一般成轮状排列,但有些原始科,例如毛茛科为螺旋排列。它们也可成花瓣状,或与退化的花瓣结合在一起。萼片极度退化时,成为细齿、鳞片、刺毛或成小突起。受精后,花萼脱落或宿存,宿存的花萼对果实的发育有重要的保护作用。
花的组成部分
花的组成部分:花一般由花梗、花托、花被(包括花萼、花冠)、雄蕊群、雌蕊群几个部分组成。
花托花与茎连接的部分,由节与节间组成,节上着生花的能育与不育的附属物。这些节往往由于节间的缩短和受抑制而紧密地拥挤在一起,导致花托显著变形,因此,在形状、大小和结构上都很不象茎。花托上所着生的不育部分(苞片、萼片、花瓣)可螺旋地或轮生地紧密排列在一起。轮生排列时,上下轮之间,常成交替的排列。有的植物的同一类器官,例如花瓣,可形成两轮或多轮(重瓣花),如重瓣的碧桃花。
气孔名词解释
气孔名词解释
气孔是植物表皮细胞中一种特殊的细胞结构,也被称为气孔器或气孔装置。
气孔处于植物叶片、茎皮和绿色的植物茎皮上,通常呈圆形或卵圆形,由两个成对的气孔细胞组成。
每个气孔细胞两侧相对称,中间紧挨着的孔口是气孔。
气孔的主要功能是控制植物的气体交换和水分调节。
气孔可以调节植物的蒸腾作用,通过开闭控制植物体内外气氛的交换,维持植物正常的生理活动。
在气孔开放时,植物吸收二氧化碳进行光合作用产生能量,同时也释放出氧气。
而在气孔关闭时,可防止水分过度蒸发,保护植物免受干旱和极端温度的影响。
气孔的开闭是由气孔细胞的膨压和萎缩来实现的。
当气孔细胞膨压时,两个气孔细胞分别向外膨胀,中间的气孔张开,形成气孔。
而当气孔细胞萎缩时,气孔口闭合,阻止气体和水分的交换。
气孔的开合受多种因素的影响,如温度、光照强度和湿度等。
环境中的二氧化碳含量越高,植物的气孔就越小,蒸腾作用减少。
而当环境干燥时,植物会主动关闭气孔,以减少水分流失。
气孔的结构也决定了它们与周围环境的关系。
气孔细胞通常被称为特化的表皮细胞,它们在细胞壁上有许多凸起的细胞壁襞,使得气孔更加有弹性,便于开闭。
而细胞襞上还有许多细微的开放,称为乳头状突起,可以进一步增加气孔的表面积,提高气体交换效率。
总之,气孔是植物维持生命活动的重要结构之一,通过调节气
孔的开合,植物能够适应环境变化,保持水分平衡和光合作用的正常进行。
在现代农业和园艺中,人们对气孔的调节机制进行研究,以提高作物的抗旱性和光合效率,增加产量和品质。
植物生物学名词解释
角果:有两个心皮的雌蕊发育形成。侧膜胎座心皮边缘子房内生出一隔膜 称假隔膜,将子房分成2室,成熟果实沿2条腹缝线裂开,两片心皮 脱落,种子附在假隔膜上。
菌褶:菌褶是菌盖下面呈放射状排列,产生子实层的薄片,由子实层、子 实层基和菌髓3部分构成。菌褶的两面均为子实层,只要由无隔担 子、侧丝和囊状体组成。
Y
运动细胞:也称泡状细胞,位于禾本科植物叶的上皮的两个维管束之间, 纵向排列成行,有大液泡,不含或少含叶绿素的薄壁细胞,可能 参与叶片的伸长和卷缩。
异形胞:部分丝状蓝藻中由普通营养细胞在一定条件下分化形成的。与营养 细胞主要区别:壁厚,尤其与营养细胞在相邻的两端更厚,细胞 质中的颗粒物质溶解,呈均质状态;原来的类囊体膜阶梯,又重 新成膜;颜色呈淡黄绿色或呈透明状。内含固氮酶,可以固定大 气中的氮。(注:异形胞之间为藻殖段)
Z
质体:植物独有的一种细胞器,具有双层膜结构,成熟质体有合成和积累 同化产物的功能。根据所含色素不同分为白色体、叶绿体、有色 体。质体间的相互转化:
据《植物学》(陆时万版):
光
叶绿体
光
前质体 有色体 光 白色体(黑暗黄化)
暗
据《植物生物学》(周云龙版):
光
叶绿体
白色体(成熟后光照不转变为叶绿体) ( 原质体 有色体
I J
菌根:根与土壤中真菌形成的共生体,分外生菌根(菌丝不进入根细 胞)、内生菌根(菌丝可进入表皮和皮层细胞)、内外兼生菌根。 三者都为共生。
假果:指子房以外的其他结构参与了果实的形成。 【真果:仅有子房发 育成的果实】
胶质鞘:绝大多数蓝藻细胞壁外均具有的或厚或薄的一种结构。
植物生理学 填空题
1. 气孔不仅是(CO2)交换通道,也是(水气)交换通道。
气孔器由(保卫细胞)和(副卫细胞)组成。
2. 植物感染病菌后,由于组织的叶绿素被破坏,叶绿素含量减少,光合作用强度(降低)3. 植物自交不亲和性按其花粉表型可分为两类:一类是(孢子体自交不亲和型),另一类是(配子体自交不亲和型)。
4. 柱头分泌物是柱头角质层外面的一层液膜,其主要功能是(粘附花粉)和(促进花粉的萌发)。
5. 大豆子叶以贮藏( 蛋白质 )和脂肪为主,而碗豆以贮藏( 淀粉 )为主。
6. 所谓气调法贮藏粮食,是将粮仓中空气抽出,充入( 氮气 ),达到( 抑制 )呼吸,安全贮藏的目的。
7. 当细胞质内NADPH+H+浓度低时,会( 增强 )葡萄糖-6-磷酸脱氢酶活性;反之,当NADPH+H+浓度高时,会( 抑制 )葡萄糖-6-磷酸脱氢酶活性,从而调节HMP途径的运行速度。
8. 表示呼吸强度时,时间单位常用小时,而待测植物材料单位常采用( 鲜重 )、( 干重 )、( 细胞 )和( 毫克氮 )表示。
9. 所有的GA在化学结构上都有相同的骨架,即( 赤霉烷 )。
10. 往植物体上喷酒IAA的效果不如NAA,这是因为在植物体内存在( 吲哚乙酸氧化酶 )的缘故。
11. 植物个体、器官或细胞在形态学两端各自具有固定的生理特性的现象叫做( 极性 )。
12. 植物生理学是从( 分子 )、( 细胞 )、( 个体 )和( 群体 )四个水平上去研究植物生命活动规律的。
13. 20世纪70年代从十字花科花粉中提取一种新的激素,称为( 芸苔素 ),其有效成分为一类甾类内酯。
14. 测定水势的一般原理是:当植物组织水势与其环境的水势相等时,在组织和环境间( 不发生 )水分的迁移,这样可以利用( 环境 )水势来反映组织水势。
15. 水分过多对植物的不利影响称为( 涝害 );植物对水分过多的适应能力称( 抗涝性 )。
16. 压力流动学说认为,有机物质在筛管中的流动形式是( 集体流动(集流) )。
名词解释62358
第一章流动镶嵌模型:认为球形膜蛋白分子以各种镶嵌形式与脂双分子层相结合, 有的附在内外表面, 有的全部或部分嵌入膜中, 有的贯穿膜的全层, 这些大多是功能蛋白。
胞间连丝:植物细胞壁中小的开口,相邻细胞的细胞膜伸入孔中,彼此相连,两个细胞的滑面形内质网也彼此相连,构成胞间连丝。
单位膜:包围在细胞外面的膜,在电子显微镜下观察,细胞膜可分为三层,内外两层为致密层,中间为一层不太致密的层。
称单位膜类囊体:类囊体在叶绿体基质中,是单层膜围成的扁平小囊,也称为囊状结构薄膜。
细胞骨架:狭义细胞骨架(cytoskeleton)概念是指真核细胞中的蛋白纤维网络结构。
它所组成的结构体系称为“细胞骨架系统”,与细胞内的遗传系统生物膜系统并称“细胞内的三大系统”。
单纹孔:细胞壁上来加厚的部分,呈圆孔形或扁圆形,纹孔对的中间由初生壁和中层所形成的纹孔膜隔开。
具缘纹孔:纹孔边缘的次生壁向细胞腔内呈架拱状隆起,形成一个扁圆的纹孔腔,纹孔腔有一圆形或扁圆形的纹孔口,同时在纹孔膜(即纹孔所在的初生壁)中央也加厚形成纹孔塞。
后含物:细胞在生活过程中产生的各种无生命的物质,统称为细胞后含物纺锤体:大量微管纵向排列组成的中间宽两极小的细胞器,形状象纺锤,因而得名纺锤丝: 光学显微镜下所见到的有丝分裂期组成纺锤体的丝状结构之总称。
细胞周期:通常将通过细胞分裂产生的新细胞的生长开始到下一次细胞分裂形成子细胞结束为止所经历的过程称为细胞周期。
细胞分化:在个体发育中,由一个或一种细胞增殖产生的后代,在形态结构和生理功能上发生稳定性的差异的过程称为细胞分化。
传递细胞:植物体内特化的薄壁组织细胞。
其细胞壁向内突起,壁上有丰富的胞间连丝穿过,细胞内有较多的线粒体。
复合组织:有两种以上的组织在一起共同执行一定的生理功能为复合组织。
组织系统:指有关的若干组织的集团。
高等植物组织系统的分类方式有三种:(1)以维管束为重点的方式:分为表皮系统、维管系统和基本组织系统三个系统第二章长枝和短枝:找不到单轴分枝:从幼苗形成开始,主茎的顶芽不断向上生长,形成直立而明显的主干,主茎上的腋芽形成侧枝,侧枝再形成各级分枝,但它们的生长均不超过主茎,主茎的顶芽活动始终占优势,这种分枝方式称为单轴分枝,又称总状分枝。
名词解释(一)
植物学名词解释(一)绪论1.繁殖:繁殖是生命的基本特征之一。
植物生长发育到一定时期, 由旧个体产生新个体, 以延续种族, 这种生物孽生后代的现象叫做繁殖。
(繁殖方式有三类: 营养繁殖、无性生殖和有性生殖。
但是, 也有人把营养繁殖和无性生殖广义地称为无性生殖, 因此, 认为繁殖只分无性生殖和有性生殖两大类)。
2.颈卵器植物:在进行有性生殖时, 产生颈卵器的植物, 例如苔藓、蕨类及绝大部分裸子植物。
3.隐花植物:孢子植物如藻类、菌物、苔藓、蕨类等生活史中不开花、不结果, 称隐花植物。
4.自然分类法:按植物界自然的亲缘关系和演化关系划分和排列各分类群的分类方法, 目的是形成自然分类系统。
5.双名法:细胞与组织1.细胞器:细胞中具有一定结构和功能的亚细胞结构,如细胞核、质体、线粒体、内质网、高尔基体等。
2.初生纹孔场:初生壁上的稀薄区域。
3.质体:一类与碳水化合物的合成与贮藏密切相关的细胞器,是植物细胞特有的结构。
4.细胞质基质:在电镜下看不出特殊结构的细胞质部分。
5.纹孔:细胞壁上凹入腔室的地方,该处初生壁不被次生壁所覆盖。
6.显微结构和亚显微结构:光学显微镜下呈现的细胞结构称为显微结构,而电子显微镜下看到的更为精细的结构称为亚显微结构。
7.具缘纹孔:在松柏类次生木质部的管胞中, 由次生壁向细胞腔内隆起, 形成纹孔缘, 中央有一个小的开口, 这种形成纹孔缘的纹孔, 称为具缘纹孔。
8.糊粉层:禾谷类植物籽粒的糊粉粒, 集中于胚乳的最外一层或几层的细胞中, 称为糊粉层。
糊粉层的细胞含有大量的蛋白质, 少含或不含淀粉。
9.初生细胞壁:细胞生长过程中或细胞停止生长前由原生质体分泌形成的细胞壁层。
10.原生质和原生质体:原生质:是细胞内具有生命的物质,为无色粘液状的,具有胶体结构的,化学成分极为复杂的物质,在生活细胞中提供生命过程的基础化合物;原生质体:指单个细胞中,除细胞壁以外所包含的各部分,包括细胞核、细胞质等。
植物学形态解剖学名词
植物学(上)名词术语中英文对照植物学(Botany)植物形态学(Plant morphology)植物解剖学(plant anatomy)原生质体(protoplast)细胞壁(cell wall)显微结构(microscopic structure)亚显微结构(submicroscopic structure)超微结构(ultramicroscopic structure)质体(Plastid)叶绿体(chloroplast)类囊体(thylakoid)基粒(granum)基粒间膜(基质片层,fret)基质(stroma或matrix)有色体(或称杂色体,chromoplast)白色体(leucoplast)造油体(elaioplast)前质体(proplastid)液泡(vacuole)液泡膜(tonoplast)细胞液(cell sap)纹孔(pit)胞间连丝(plasmodesmata)后含物(ergastic substance)淀粉粒(starch grain)淀粉体(amylop1ast)脐点(hilum)拟晶体(crystalloid)糊粉粒(aleuronegrain)糊粉层(aleurone layer)胞质分裂(Cytokinesis)成膜体(phragmoplast)细胞板(cellplate)微管周期(microtubule cycle)细胞分化(cell differentiation)反分化(或脱分化dedifferentiation)组织(tissue)分生组织(meristematic tissue或meristem)顶端分生组织(apical meristem)侧生分生组织(lateral meristem)居间分生组织(intercalarymeristem)形成层(cambium)木栓形成层(cork cambium或phellogen)原分生组织(promeri-stem)初生分生组织(primary meristem)次生分生组织(secondary meristem)保护组织(protective tissue)薄壁组织(parenchyma)机械组织(mechanical tissue)输导组织(conducting tissue)分泌结构(secretory structure)表皮(epidermis)周皮(periderm)气孔(stoma)皮孔(lenticel)保卫细胞(guard cell)吸收组织(absorptive tissue)根毛(root hair)木栓(phellem或cork)栓内层(phelloderm)同化组织(assimilating tissue)储藏组织(storage tissue)储水组织(aqueous tissue)通气组织(aerenchyma)传递细胞(transfer cell)厚角组织(collenchyma)厚壁组织(sclerencnyma)石细胞(sclereid或stone cell)纤维(fiber)木质部(xylem)韧皮部(phloem)管胞(tracheid)导管分子(vesselelement或vesselmember)穿孔(perforation)导管(vessel)筛管分子(sieve-tube element或sieve-tube member)筛管(sieve tube)筛孔(sieve pore)筛孔(sieve pore)筛板(sieve plate)原生质联络索(connecting strand)胼胝质(callose)筛域(sive area)伴胞(companioncell)胼胝体(callus)筛胞(sieve cell)腺表皮(glandular epidermis)腺毛(glandular hair)蜜腺(nectary)排水器(hydathode)吐水(guttation)水孔(waterPore)通水组织(epithem)分泌细胞(secretorycell)分泌腔(secretorycavity)分泌道(secretorycanal)乳汁管(laticifer)无节乳汁管(nonar-ticulatelaticifer)有节乳汁管(arti-culatelaticifer)组织系统(tissue system)皮组织系统(dermal tissue system)维管组织系统(vascular tissue system)基本组织系统(fundamental tissue system或ground tissue system)皮系统(dermal system)维管系统(vascular system)基本系统(fundamental system或ground system)种子(seed)胚(embryo)胚乳(endosperm)种皮(seed coat,testa)外胚乳(perisperm)胚根(radicle)胚芽(plumule)胚轴(hypocotyl)子叶(cotyledon)种脐(hilum)种阜(caruncle)种脊(raphe)有胚乳种子(albuminousseed)无胚乳种子(exalbuminous seed)胚芽鞘(coleoptile)胚根鞘(coleorhi- za)盾片(scutellum)外胚叶(epiblast)种子萌发(seed germination)子叶出土的幼苗(epigaeous seedling)子叶留土的幼苗(hypogaeous seedling)器官(organ)营养器官(vegetative organ)根(root)根系(root system)主根(main root)直根(tap root)初生根(primaryroot)侧根(lateral root)次生根(secondaryroot)不定根(adventitiousroot)定根(normal root)种子根(seminal root)直根系(taprootsystem)须根系(fibrousrootsystem)原始细胞(initialcell)不活动中心(或称静止中心,quiescentcentre)根尖(roottip)根冠(root cap)分生区(meristematiczone)伸长区(elongationzone)成熟区(maturationzone)维管柱(vascular cylinder)皮层(cortex)切向分裂(弦向分裂,tangentialdivision)平周分裂(periclinalkivision)径向分裂(radialdivision)横向分裂(transversedivision)垂周分裂(anticlinaldivision)根毛区(roothairzone)初生生长(primary growth)初生组织(primary tissue)初生结构(primary structure)根被(velamen)外皮层(exodermis)内皮层(endoder-mis)凯氏带(Casparian strip)通道细胞(passage cell)中柱鞘(pericycle)髓(pith)初生木质部(primary xylem)初生韧皮部(primary phloem)外始式(exarch)原生木质部(protoxylem)后生木质部(metaxylem)木质部脊(xylem ridge)二原型(diarch)三原型(triarch)四原型(tetrarch)五原型(pentarch)六原型(hexarch)多原型(polyarch)原生韧皮部(protophloem)后生韧皮部(meta-phloem)根原基(root primordium)内起源(endogenousorigin)形成层环(cambium ring)木射线(xylemray)韧皮射线(phloemray)维管射线(vascularray)木栓形成层(phellogen或cork cambium)栓内层(phelloderm)木栓(phellem或cork)周皮(periderm)共生(symbiosis)根瘤(root nodule)菌根(mycorrhiza)外生菌根(ectotrophic mycorrhiza)内生菌根(endotrophic mycorrhiza)内外生菌根(ectendotrophicmycorrhiza)茎(stem)节(node)节间(internode)枝或枝条(shoot)叶痕(leafscar)维管束痕(bundle scar,简称束痕)芽鳞痕(bud scalescar)芽(bud)枝芽(branch bud)叶芽(leafbud)花芽(floralbud)叶原基(leaf primordium)腋芽原基(axillary bud primordium)侧枝原基(lateral branch primordium)枝原基(branchprimordium)芽轴(bud axis)定芽(normalbud)不定芽(adventitiousbud)顶芽(terminal bud)腋芽(axillary bud)侧芽(lateral bud)副芽(accessory bud)叶柄下芽(subpetiolar bud)裸芽(naked bud)被芽(protected bud)鳞片(scale)芽鳞(bud scale)鳞芽(scaly bud)混合芽(mixed bud)活动芽(active bud)休眠芽(dormant bud)潜伏芽(latent bud)直立茎(erect stem)缠绕茎(twining stem)攀援茎(climbing stem)匍匐茎(creeping stem)纤匍枝(runner)单轴分枝(monopodial branching)合轴分枝(sympodial branching)假二叉分枝(falsedichotomous branching)二叉分枝(dichotomousbranching)分蘖(tiller)原表皮(protoderm)基本分生组织(ground meristem)原形成层(procambium)生长点(growing point)生长锥(growing tip)茎端(stem apex)根端(root apex)枝端或苗端(shoot apex)茎尖(stemtip)根尖(root tip)组织原学说(histogen theory)表皮原(dermatogen)皮层原(periblem)中柱原(plerome)原套-原体学说(tunica-corpus theory)原套(tunica)原体(corpus)细胞学分区概念(concept of cytologicalzonation)叶原座(leaf buttress)初生组织(primary tissue)初生结构(primary structure)通气组织(aerenchyma)淀粉鞘(starch sheath)无限维管束(open bundle)有限维管束(closed bundle)外韧维管束(collateral bundle)双韧维管束(bicollateral bundle)周韧维管束(amphicribral bundle)周木维管束(amphivasal bundle)同心维管束(concentric bundle)中柱(stele)原生中柱(protostele)管状中柱(siphonostele)中央柱(centralcylinder)维管柱(vascularcylinder)内始式(endarch)环髓带(perimedullaryzone)髓腔(pith cavity)髓射线(pith ray)初生射线(primary ray)树脂道(resin canal)维管束鞘(bundle sheath)下皮(hypodermis)初生加厚分生组织(primary thickening meristem)束中形成层(fascicularcambium)。
最新药用植物学教案――第二章 植
第二章植物的组织单细胞的低等生物,在一个细胞中可行使各种不同功能,无组织的分化。
高等植物为了适应环境变异,逐渐由单cell到多细胞个体,导致细胞分工。
产生了组织——器官。
植物界的大类群组织:来源相同,形态结构相似,机能相同而又紧密联系的细胞群。
中药材组织构造、细胞形状及内含物特征,是鉴定一种常用和可靠的方法,称为显微鉴定。
第一节植物组织的类型一、分生组织分生组织:植物体内凡能持续保持细胞分裂的机能,不断产生新细胞的细胞群。
存在位于植物生长的部位,使植物生长。
1、按来源的性质分类1)原分生组织:来源于种子的胚,位于根茎的最先端,是由没有任何分化的、最幼嫩的,终生保持分裂能力的胚性细胞组成。
2)初生分生组织:来源于原分生组织衍生出来的细胞所组成。
一方面仍保持分裂能力,但次于原分生组织,一方面开始分化。
可看作是原分生组织到分化完成的成熟组织之间过渡形式。
3)次生分生组织:由已成熟的薄壁组织(如表皮、皮层、髓射线等)经过生理上和结构上的变化,重新恢复分生能力,转变过程中,原生质变浓,液泡缩小。
如木栓形成层,根的形成层,茎的束间形成层及单子叶植物茎内特殊的增粗活动环。
2、按位置分类1)顶端分生组织:位于根、茎顶端,细胞能长期保持旺盛的分裂机能,进行长度和高度生长。
2)侧生分组织:种子植物(除单子叶)根、茎内的侧方周围部分,形成环状。
包括形成层和木栓形成层,使根、茎增粗,并使增粗破坏的表皮形成新的保护组织木栓层,并不断更新。
3)居间分生组织:存在于茎的节间基部,叶的基部,总花柄的顶端,子房柄处,是顶端分生组织细胞遗留下来的或已分化的薄壁组织重新恢复分生能力,只保持一段时间,以后即转成成熟组织使植物进行居间生长。
分布于裸子植物、蕨类、单子叶植物(禾本科);双子叶植物(豆科)二、薄壁组织(基本组织)分布:是植物体的主要组成部分,分布广、体积大,如根、茎的皮层,髓部,叶肉细胞,花的各部分,果实的果肉,种子的胚乳全部或主要由薄壁组织构成。
植物形态解剖学试题复习题-1
植物形态解剖学试题(1)一、名词解释(1.5*6分共9分)气孔器边材无融合生殖完全叶后含物胞间连丝二、是非判断(对的打"√",错的打"×",并将正确的答案写在后面。
1*10分)1.植物细胞的壁都具有中层、初生壁、次生壁三层结构。
( ) 2.细胞是组成植物体结构和功能的唯一单位。
( )3.表皮和木栓层都是保护组织,故结构相同。
( )4.植物在双受精后都可以产生有胚乳的种子。
( ) 5.甜菜和萝卜一样都是根的变态。
( ) 6.花、果实、种子都属于生殖器官,而花粉母细胞小孢子成熟花粉粒中的精子都属于生殖细胞。
( )7.顶端优势强的植物,必然是单轴分枝类型。
( )8.禾本科植物的分枝,接近于地面的或地表稍下部分称为分蘖。
( )旱生植物的叶片结构特点是朝着降低蒸腾和贮水两方面发展。
()三、填空(0.5*32分共16分)1.叶的主要生理功能是______和______。
2.根的维管形成层发生在______和_____两部分,形成后向内分裂的细胞分化为______,向外分裂的细胞分化成______。
3.植物细胞中参与能量转换的两个细胞器是______和______,前者是______有机物____能量,后者是______有机物______能量。
4.心材的导管失去输导能力的一个原因是由于管腔内形成了______;衰老的筛管失去输导能力是由于筛板上积累了大量的_______。
5.根据______可判断树龄,根据_______可判断枝条的年龄。
6.无限维管束包括_______、_______、_______三部分。
7.二细胞型花粉粒成熟时含有两个细胞,即_______和______。
四、选择(1*5分共5分)1.南瓜茎中的维管束属于_______。
A.外韧维管束B.双韧维管束C.周韧维管束D.周木维管束2.根尖分生区的细胞分裂方式常为_______。
A.有丝分裂B. 减数分裂C.无丝分裂D.细胞自由形成3.边材不同于心材之处为边材_______。
气孔器的昼夜开合规律
气孔器的昼夜开合规律
气孔器是植物表皮上的微小孔口,通过它们植物能够进行气体交换和水分调节。
气孔器的昼夜开合规律是指在白天和黑夜气孔的开合状态变化。
这种开合规律是植物生理行为的一部分,对植物的光合作用和水分利用具有重要影响。
在白天,植物通过气孔器将二氧化碳吸入叶片进行光合作用。
当阳光照射到叶
片上时,植物体内激素和光合产物的浓度发生变化,导致气孔开放。
通过敞开气孔,植物能够吸收二氧化碳,同时释放氧气和通过蒸腾带走多余的水分。
这种开放状态有助于光合作用的进行,提供能量供给和养分合成。
而在黑夜,光照较弱或者不存在。
植物无法进行光合作用,因此没有足够的需
求吸收二氧化碳。
此时,植物通过收缩气孔减少水分的蒸发。
收缩气孔也有助于防止水分在黑夜过度蒸发,从而保护植物避免水分丧失过快。
这种昼夜开合规律的主要驱动力是植物体内的生理调控机制。
光敏物质和激素
的水平变化是影响气孔开合的重要因素。
例如,叶绿素是光敏物质,它能够感知到光线的存在,并通过信号转导网络调节气孔的运动。
同时,植物体内的激素如植物生长素和脱落酸等也参与到气孔开合的过程中。
总结而言,气孔器的昼夜开合规律是植物为了适应不同环境条件下的生存需要
而发展的生理行为。
通过昼夜开合的变化,植物能够有效地进行气体交换和水分调节,这对于植物的生长发育和适应性是至关重要的。
气孔的构造及类型在生理上的意义
气孔的构造及类型在生理上的意义第l5卷第6期九江师专(自然科学版)1997年lJ气孔的弓卜构造及类型在生理上的意义群摘要:结构与功能相统一.气孔的构造及类型不仅有鉴别价值,而且在许多情况下,还是天然分类上亲缘关系的指示者,并与植物的生理活动密切相关.关键词:气孔耋兰.堡墨丝气孔理一播t』l叶表皮的研究,目前愈来愈引起人们的注意,国内外许多学者都发现叶表皮远远不能用保护组织来理解,而应把它看成一个复合组织.从形态学角度来看,表皮细胞并不是均匀一致的,在它们中间.除普通基本表皮细胞外还有多种类型的毛,气孔保卫细咆和其他类型的特f{二细咆,功能各异,每种植物都有一定的特征,这些特征的应用解决了分类学,生态学,生理学,进f{二论及生药学上等的许多闻题.本文仅戟叶表皮结构中气孔的保卫细咆与气孔生理作一些介绍与探讨.1气孔个体发育气孔是从原表皮层细咆发生的.保卫细咆的母细咆通常比由原表皮层细咆不均等分裂产生的两个细咆要小(B0nnett,t961).母细胞分裂形成的两个细咆分化成保卫细胞(guardcells).最初,这些细胞很小且无特殊形状,但在发育的时鼷.它们随之长大,并变成有特殊形状的细胞.在两个保卫细咆之间的中屡解【奉形成孔口之前,保卫细胞膨胀并多变成透镜形.孔口的形成由酶促作用开始,淀粉水解产生的渗透压使两个保卫细咆分开.成熟的保卫细咆相对于普通单层表皮细咆要下陷或升高,下陷或升高是在保卫细胞成熟时引起的.在多层表皮的情况下,例如Anabasis和拨拨屑(Haloxylon)的种.其保卫细咆的母细胞在原表皮层们然是单层的发育阶段分化的.在进一步发育过程中,周围的原表皮甚细胞经过几次平周分裂,导致多层表皮的升起,高出保卫细胞.气孔的发育在叶生长时期持续较长的时间.在许多植物中,还能分出副卫细胞(accryc~lls或subsidi.sry),在形态学上这些细咆与典型的表皮细咆不同,它们是由与表皮细咆相邻的两个或多个细胞组成.在我国目前有两种看法:一种是叶表皮气孔周围的一些和表皮基本细胞形状不同的细胞.这些细咆在个体发育39上是和气孔的保卫细胞同源,干口基本细咆无共同起源的.而那些和叶表皮基本细咆形状相同的并不是副卫细咆.另一种是指的气孔周围的细胞,不沧其形状和来源是否和基本细咆不同,均称为副卫细咆.副卫细咆显然与功能有关.气孔连同副卫细咆一起构成气L器(stomataIapparams)或气L复合体(stomatalcx)mplex).在气L类型的划分上往往以气L器为基本单位.2气孔类型目前,对于”气孔”这一术语的解释很不统一,这对于进一步研究其形态及构造是不利的.因此,本文对于”气孔”这一术语定义为:”表皮上两个保卫细胞及其中闻的开口”即构成气孔(stolTl~),其开口称为气L缝.气L下面叶肉内的大细胞间隙则称为L 下室(suhst0matacham—bets).根据卫细胞和副卫细咆之间个体发育上的关系,气孔可分为三类:中生气L(mesoge—n0uss0Dn1ata)——这种气孔中的副卫细咆与保卫细咆有共同起源;周生气L(Perigenousstorn—ata)——这种气L的副卫细咆从与气L母细胞相邻的原表皮细咆发生;中周生气L(mesoperigenousst.n1ata)——包围气孔的细咆是双起源的,一个有时是多个副卫细咆与保卫细咆有共同起源,另一个或另一些则不然(Pant1965).根据保卫细咆的形状,壁的加厚情况气孔叉可以分为以下各种类型: 1,肾状等厚壁型:两个肾形细胞对称排列,细咆壁周围均匀加厚,气L 缝纺锤形.为大多数双子叶植物所具有.(图一一1)2,球状等厚壁型:两个肾形细JlRg~称排列.使气孔器呈圆形,细咆壁均匀加厚.气L缝圆形.为许多双子叶植物和单子叶值物所持有.如德国鸢尾Irisgermanica.(图一一2)3,哑铃型:两个相等的肾形细咆的中心部分纵壁强烈加厚,气L缝直线形.为大多数禾本科值物所特有.如玉米Zeamays.(图一一3)4,流苏型:两个相同大小的肾形细咆在两极部分有毛管状突起,气孔缝纺锤形.为某些化石桧柏科所特有.(图一一4)5,尖帽型:两个相同大小的肾形细胞在两极部分有帽状加厚,气孔缝纺锤形.为大戟羁Euphorbia毛地黄属Digitalis及菊科如金盏花Calendulaoflrieinale所具有.(图——5)6,扁担型:两个相同大小的肾形细咆在两极有角状突起,连接成扁担状,气L 缝纺锤形.见于某些化石诠柏科植物.(图——.6)7,卷发型:在气孔细咆的表面观上可见毛发状加厚,气孔缝纺锤形.如棕榈科的Oraniaphilipnensis.(图一一7)8,耳垂型:两个大小相同的肾形气L细咆对称排列,在两极部分各有向内悬垂的耳状加厚部分,气L缝纺锤形.如棕榈科的Witiniasp.(图一一8)9,锯齿型:两个同样大小的肾形气孔细咆对诈分布,内壁有齿状突起,气孔缝纺锤形.如棕榈科的桄部Arengasaecarifera.(图~9)l(),半月型:气孔器只由一个保卫细胞组成,另一面为基本细咆,气L缝纺锤形.如猪笼草Nepenfhesalhomarginata.(图二一1)11,结节型:气孔细咆的外壁有许多向外的疣状突起.气孔缝纺锤形.如Penaeamyr一1toides.(闰二一2)I2,窗框型:气孔的副卫细胞盖在气孔的上面,并戍方框状,在框中可见窄的气孔缝.如丝兰Yrtccagloriosa.(图二一3)13,珠贝型气孔细咆的表面有波纹状加厚,形拟珠贝,气孔缝纺锤形.如木贼Fquesemmarvense.(图二一4)14,枕头型:气L的副卫细咆腔盖在气孔的上面,壁较宽,气孔缝纺锤形.如铃兰Conva1.1ariacaucasica.(图二一5)15,船型:气孔细咆内壁多少等厚,气L缝纺锤形.如Berbeirisvulgaris.(图二—6)16,唇状哑铃型:气L细咆腔只在两极部分存在,细咆内壁强烈加厚,气孔缝纺锤形,如Berberlsiberica.(图二一7)17,方框型:方形的气L缝有许多细纹.如Zamyasp.(图二—8)18,双气L型:两个或更多个气孔结合在一起.如许多双子叶植物.(图二—9)一般一种植物中只有一种气孔类型,但也不尽然,在某些植物中如Berberisiberica的一些品种,则可能有两种气孔类型(H?A?阿涅里1976).圜一气孔类型(一)固圈二气孔类型(二)三气孔保l细胞结构与功能相统一.气孔保卫细胞的结构特征与气孔运动及生理密切相关.保卫细咆中有叶绿体,一般表皮细胞不含叶绿体.与叶肉细咆的叶绿体相比,保卫细胞叶绿体体积较小,数目较少,片层结构发育不良,但根据Thomson和De.Fottrnett(1970)的研究,在保卫细咆的叶绿体中所发生的光合作用的总量足以维持这些细胞的功能,虽然缺少内部的片层结构和叶绿索(Ru~ter和Willmer,1979),但仍发现有淀粉粒存在,表现的规律是日间减少,夜间再度增加.保卫细咆内的叶绿体.根据其数目的大小差异,可分为以下四种类型: l,大粒型气孔细咆内有3—4个大型叶绿体.如Loniccranitlda.(图三一1)2,群粒型:气孔细咆内有多数各种形状的叶绿体成群分布.如Agapanthosumbelafus.(图三一2)3冲粒型:气孔细咆内有多数多角形或类圆型中等大小的叶绿体.如:Galtonjamnd.jean.q.(图三一3)4,小粒型:气孔细胞内有多数小形的叶绿体.如Leonticesmirnow.(图三一4)固固④图三气孔叶绿体类型保卫细咆壁的比学组成与同种植物中普通基本表皮细胞相同.它们常覆盖以角质层,角质层一般在朝向口的壁是连续的.角质屡达到孔下室相接的细胞中在许多维管隐花植物,裸子植物和某些被子植物中,保卫细胞有木质比的细咆壁加厚.由于细胞壁的不均匀加厚和牯凋性,保卫细8面过在形态上发生变化来增加体积,这种变化睫气孔张开.在多数情况下.最薄的壁是靠近副卫细胞的壁,称为唇壁或脊壁(back或dorsalwal1). 保卫细胞里还岔有大量的线粒体,内质同分子,高尔基体和各种大小的液泡.在经电子显段镜研究过的大多数植物的成熟的气孔中,没有观察到保卫细咆和副卫细咆之间有完整的胞问连丝连接在菜豆的成熟气孔中Willmer和Sexton(1979)报道过,发育不全的,不完整的细咆间连丝也偶尔存在于两者的保卫细胞和副卫细咆的共同壁上,质膜显示大量内陷.保卫细咆的抖=积比表皮普通细咆的体积要小得多.这表明僳卫细咆只要有较少量的可溶性物质形成或转入就可使其水势明显降低而促进乓吸水,弓1起含水量,膨压及体lf只的变汜,使气孔开口增加或减小.Humble和Rehkc(197I)在蚕豆研究中发现,气L 张开时.保卫细咆的2平均障为4.8,.l【J升/气孔器,气孔关I;ttn?为2.6<l0’升/气孔器4气孔生理气孔的存在与分布是叶表皮层结构的主要特征之一,气孔可以在叶子的两面,或只在一面.双子叶植物的叶子.气孔大多是散生的,而单于叶值物和松柏类的叶子,气孔多成行排列,与叶的长轴平行.气孔的数目变化很大,同一叶的不同部分和同一埴物的不同叶上都有很大的不同,并且受环境条件的彩响.水生植物的气孔常拱起,旱生植物的气孔常内陷,夹竹桃叶上的气L还常形成一种特殊的构造——气孔窝.用生长在不同光照下的鸢尾属(Iris)叶子进行试验表明,随着光强度的减少,气孔密度增加(Pazourek,1970).气孔是植物阵水分散失的主要通道.一个成长的植物通过气孔蒸腾,其失水量可迭8O一90%.值物通过气孔的开与关即气孔运动来嘲节情物体内水分的进出,主动适应外界环境的变化及植物体生命活动对水分的需要.除乐本科,莎草科和某些其他科的植物外大部分植物的保卫细胞都是肾形的,由于保卫细胞膨压的变化,使其间开口的大小增加或减少.在靠近气孔口的一边胞壁较厚,其余部分则较薄当保卫细咆吸水,其含水量增加的同时,膨压增加,细胞体积增大,向外膨胀,壁薄的部分易于伸长.将孔口的厚壁拉开,气孔即张开;当保卫细胞失水时,膨压降低,体积缩小,细胞收缩,气孔即关闭.禾本科渣物如稻麦等的保卫细胞呈哑铃形.中央部分壁较厚,两端较薄,细胞腔狭窄.当保卫细胞吸水膨胀时,两端壁薄的部分膨大而使气孔张开;保卫细咆失水时,体积缩小,两端壁薄的部分收缩,气孔即关闭.气孔虽然仅占叶面积的1%左右,但效率却相当高.象小麦,在进行旺盛的光合作用时,每平方米叶片每小时能吸收o&.25毫升左右,相当于80升空气中C(】2的含缝(c|植物可达1x卜150升).假设植物合成1克葡萄糖,需暇收1.47克的a)!和释放1.I)7克的氧,鄢幺,这就要经过气悼交换4000多升空气才能完成.由此可见,气孔在植物生命活动过程中起着重要作用.所以,很多学者对气孔开闭规律和机理进行了广泛的研究.我们知道保卫细胞内含有叶绿{奉,这是其他叶表皮细胞所不具有的,也就意味着在光下保卫细日电能进行光合作用.光台产物的形成就可引起细胞内水势的变化,从而产生嘭压运动.光合作用的主要产物淀粉是日阃减少,晚闻增加的.淀粉的日减夜增是淀粉与糖转化的结果,因而气孔的运动表现为白天或在光下气孔张开,晚间或在黑暗处气孔关闭,这就是经典的”淀粉——糖”变比学说.实际上.气孔的运动与调节运较此复杂.总之.对叶表皮结构的进一步认识与研究,尤其是气孔,不仅在植物形态分类上,而且在生理意义上都有重要的指导意义.参考文献【L]潘瑞炽量愚得合编植物生理学上册高等教育出版社1979.【2]李正理张新英合编植物解剖学高等教育出版社1983.【3](以色列)A?FAIlN着,吴树明刘建汉译植物解剖学南开大学出版社1990【4】索尔菇伯里和(?罗斯着,北京太学生物系等译.植物生理学科学出版社1979.【5]刘相华江利群1986植物学通讯1986(1)l5_-17【6]张建新J986植物生理学通讯1986(4)12一l7.。
气孔的结构和功能
气孔的结构和功能
气孔是指两个特化的保卫细胞合围而成的胞间隙.气孔和保卫细胞总称气孔器.广义的气孔概念是指气孔器.
气孔广泛分布在植物的茎,叶,花果的表皮上,以叶片表皮上数量最多.气孔既是植物体与外界进行气体交换的门户,又是水分蒸腾的通道.根外施肥和喷洒农药时,均由气孔进入.
对不同植物来说,气孔的构造和生理功能基本一致,但
是它在单位面积中的数目多少及叶片不同部位的分布特点
却各有不同.有的植物的上,下表皮均有气孔,如小麦,玉米,向日葵等;有些植物的气孔只分布在上表皮,如浮水植物睡莲,浮萍等;有些植物的气孔则仅分布于下表皮,如榕树,百
合等;沉水植物如眼子菜,金鱼藻等,叶片上一般不具有气孔.
气孔的分布依植物的种类而异,气孔数目较多的植物,
气体交换及蒸腾作用均较快.生长于较为干旱地区的植物,
如夹竹桃等,气孔分布于下表皮,且深陷于叶肉中,其气体交换及蒸腾作用都比较慢,可适应干旱缺水的环境.
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
植物表皮上两个特化的细胞──保卫细胞和由其围绕形成的开口(孔)的总称。气孔是植物体与外界交换气体的主要门户。有些植物气孔的周围还有一个或几个和一般表皮细胞形状不同的副卫细胞。副卫细胞常常有一定的排列方式。
气孔存在于所在维管植物地上部分的器官中,在叶子上最多。有些苔藓植物也有气孔,如葫芦藓。大多数双子叶植物的保卫细胞为肾形,而单子叶植物多为哑铃形。
气孔开闭的生理生态意义 陆生植物的主要矛盾之一,是在吸收CO2同时,不可避免地散失大量水分。由于植物经常面临水分胁迫,使气孔对环境的响应,倾向于以最小的蒸腾来换取最大的光合作用。气孔昼开夜闭,使叶片白天能进行光合作用,夜间却不蒸腾失水。黎明时气孔很快开启,可使植物在高湿度、低蒸腾情况下固定CO2。之后,随光照增强,气孔开张度加大,可容许更快的CO2交换以利用较多的辐射能。中午的烈日、高温常使植物缺水加剧,气孔趋向关闭。虽暂时妨碍光合作用,但可使植物免受永久性伤害。待水分亏缺缓解后,气孔还可开张。某些沙漠植物的气孔只在凌晨短时间中张开,同化少量CO2,在严酷的干旱中勉强生存。CAM植物的气孔夜开昼闭,将CO2的固定与还原在时间上分开,从而极大地提高了耐旱性和水分利用效率。气孔开闭对环境的不同响应,反映了植物应付生态环境的生存战略的差异。
气孔对环境因素的响应 光照、CO2浓度、水分胁迫和温度是影响气孔开闭的主要环境因素。多数植物的气孔早晨随光强增强而开张,黄昏时随光照减弱而关闭〔景天科酸代谢(CAM)植物相反〕。叶子中CO2含量减低时,气孔开张;反之关闭。光与CO2能分别影响气孔运动。例如低于光补偿点的弱光就能引起气孔开张,蓝光的作用远高于红光;用无CO2的空气吹过叶肉细胞间隙会使在暗中关闭的气孔张开,高浓度CO2使气孔在光下闭合等。但在昼夜节奏现象中,二者有交互作用。土壤缺水和大气干旱均能引起气孔关闭。气孔开张度有最适温度;温度过低或过高都不利于气孔开放。在自然环境下,气孔的开闭受多种环境因素的综合影响;也受内部因素如叶龄、发育阶段等的制约。
单子叶植物的气孔也可分为4种类型:①保卫细胞由4~6个副卫细胞包围,如天南星科、鸭跖草科、芭蕉科、美人蕉科和姜科等植物;②保卫细胞由4~6个副卫细胞包围,其中两个较小,略成圆形,并位于气孔两端,如棕榈科、露兜树科等植物;③气孔的两边各有一个副卫细胞,如雨久花科、泽泻目、莎草目、灯心草目和禾本科等植物;④气孔无任何副卫细胞包围,如百合目、薯蓣科、石蒜科、鸢尾目和兰目等植物。
气孔开张度和气孔导度的测定 气孔开张度和气孔导度有助于了解植物的气孔动态和蒸腾、光合的速率。其测定方法有:①气孔开张度测定。常用印迹法。将10%的醋酸纤维丙酮溶液涂于叶表面,形成薄膜后,取下在显微镜下观测。此法不适用于气孔孔隙结构异常的植物。②气孔导度测定。目前大部用扩散气孔计。原理是用小室罩住一定面积的叶表面,测定气相中水汽浓度增加速率(即蒸腾速率),再换算出气动导度(单位为cm·s-1),其倒数即气孔阻力(单位为s·cm-1)。常用的扩散气孔计有三种类型:不通风的瞬时式,通风的瞬时式,稳态式。第三种不必使用校正曲线,最为理想。便携式气孔计能极其迅速地在田间条件下使用,并同时测得蒸腾速率等多种有关数据。
气孔的类别 根据气孔与邻近细胞的位置关系,一般将双子叶植物的气孔分为4种类型:①无规则型,保卫细胞由几个细胞包围,这些细胞在形态和大小上与其他表皮细胞一样,毛茛科、葫芦科和玄参科等植物属此型;②不等细胞型,保卫细胞被3个大小不等的副卫细胞包围。如十字花科、茄属和景天属植物;③平列型,每个保卫细胞外侧有一个或几个副卫细胞,副卫细胞的长轴与保卫细胞的长轴平行,如茜草科、旋花科,落花生属、豇豆属、菜豆属等;④横列型,每个气孔被两个副卫细胞包围,两个副卫细胞的共同壁与气孔的长轴垂直。如石竹科。
气孔的数目与分布 在叶片单位面积中的数目多少以及分布状态,因种而异。有些植物叶片的上表皮和下表皮都有气孔,但下表皮较多;有些植物气孔只限于下表皮;少数浮在水面的叶子,例如睡莲,气孔仅见于上表皮;还有些植物气孔仅分布于叶的下表皮的局部区域,如夹竹桃。沉水植物的叶,一般没有气孔。气孔的分布与环境有关,许多叶片的下表皮气孔多或全部分布在下表皮上,是对干旱环境的适应。
根据气孔的个体发育,70年代以来,又有人将气孔分成3大类:①中源型,保卫细胞和副卫细胞,有共同起源,都由一个分生活动中心发育而来;②周源型,副卫细胞和保卫细胞没有共同来源;③中周型,至少有一个副卫细胞和保卫细胞有共同来源。
气孔的气体扩散 气孔数目虽多(每平方厘米叶表面上几千至几万),但孔径很小,即使充分开放时,孔口总面积也仅占叶面积的1~2%,而叶子的蒸腾失水速率可达自由水面蒸发速率的10~50%,表明单位气孔孔隙的水汽通量比单位水面的大几十倍。这是因为当小孔孔径与边界层(静止层)的厚度及相邻小孔之间的距离相比很小时,小孔的导度与自由水面之比,远大于其面积之比。
水分胁迫引起气孔关闭主要有3种情况:①植物蒸腾失水速率超过根系供水速率时,叶水势与膨压明显下降,后者接近于零,保卫细胞体积缩小,气孔关闭。②土壤干旱刺激植物根部和叶子中脱落酸(ABA)的合成,并导致叶子表皮层(包括保卫细胞)中的ABA含量增多。ABA妨碍保卫细胞和相邻细胞间的K+/H+交换,阻止保卫细胞中淀粉和苹果酸相互转化,并促使K+和苹果酸从保卫细胞漏失,从而引起保卫细胞收缩,气孔关闭。至于叶表皮层中增加的ABA是来自根部还是叶肉细胞,抑或是在保卫细胞中合成,则尚不肯定。受旱植物灌水后,气孔的再开放常明显迟于叶水势的回升。③在大气湿度明显下降时,不少植物的气孔会迅速关闭,尽管当时叶水势下降还不多。这是由于这类气孔的保卫细胞向气孔下腔一侧或与邻近细胞交接部位胞壁角质化程度低,蒸发旺盛(后者称为周边蒸腾),致使保卫细胞的水势下降甚于叶主体水势的下降,引起气孔关闭。
水蒸气从叶肉细胞表面蒸发后,在扩散向大气的途径中经历三段阻力:叶肉细胞间隙阻力( ri);气孔阻力( rs);叶表面边界层阻力( ra)。其总阻力为三者之和。在静止空气中, ra和rs的大小相近。在流动空气中, ra明显减小。蒸腾速率就与rs表现密切的相关。
水蒸气通过气孔的扩散速度比CO2十倍,因而水分向外扩散的推动力比CO2向内扩散的推动力大得多。②扩散阻力与分子量的平方根成正比。CO2和H2O的扩散阻力比为1.56,导度前者相应地低于后者。③CO2必须进入细胞液相,扩散速率较低。
保卫细胞中K+浓度的变化是调节气孔开闭的关键。清晨受光后,保卫细胞中K+浓度可升5~10倍,大到0.3~0.8摩尔/升,并形成从表皮细胞到保卫细胞上升的K+浓度梯度。因保卫细胞水势减低,引起水分流入,体积膨胀,膨压增大,气孔开张。天黑时,上述各过程逆转,保卫细胞中K+外运,浓度降到暗中的低水平,气孔闭合。保卫细胞昼开夜闭进程中K+浓度巨大变化的机理是:①照光使保卫细胞中的叶绿体通过光合磷酸化形成腺苷三磷酸(ATP)和还原辅酶Ⅱ(NADPH),为K+的逆浓度梯度运输提供能量。受蓝光激发的某些黄素,也能为此提供能量。②保卫细胞中存在整套与苹果酸代谢有关的酶系。照光使叶绿素中贮存的淀粉和糖向磷酸烯醇式丙酮酸(PEP)转化,PEP经羧化形成苹果酸。从苹果酸解离出来的H+,通过由ATP和NADPH驱动的位于质膜上的K+/H+交换泵和邻近细胞中的K+交换,驱使大量K+进入保卫细胞,使后者吸水膨胀,引起气孔开张。K+的电荷大部分由苹果酸的阴离子来平衡,一部分由于Cl-和其他阴离子来平衡。③照光后叶内部CO2浓度变低,也可能有利于气孔开张时K+的进入。④进入黑暗中后,驱动K+/H+交换泵的能量供应减弱,叶子中CO2浓度升高,保卫细胞中碳代谢方向逆转为由苹果酸合成淀粉。这些转变足以使保卫细胞中K+和水分外运,体积缩小,膨压减低,气孔关闭。
气孔开闭的机理 气孔开闭是一种感性运动。动力来自保卫细胞膨压的变化。双子叶植物气孔的保卫细胞,孔隙对侧的胞壁薄,弹性大。处在孔口边的胞壁厚。保卫细胞膨胀时向孔口一边弯曲,引起气孔开张。禾本科型气孔的保卫细胞,两端球型部分胞壁薄,中部胞壁坚厚。当膨压提高、体积增大时,其两端向外膨胀,并向对方挤压,迫使位于中部的气孔张开;膨压明显减小时,气孔趋向关闭。