线性代数第二章矩阵试题及答案

合集下载

同济五版线性代数习题答案第二章矩阵及其运算.doc

同济五版线性代数习题答案第二章矩阵及其运算.doc

解(X] x 2x 3)第二章 矩阵及其运算(参考答案)(习题二心76)p 54 1.计算下列乘积:<4 3 r<7、⑴ 1 -2 3 2q7<b<4 3 r ['4x7 + 3x24-1x1、15、 解1 -23 2 — lx7 + (—2)x2 + 3xl — 6 q 70 /、5x74-7x2 + 0x1 \ z <49;3⑵(1,2,3) 2 .,3、解(1 2 3) 2 =(lx3 + 2x2 + 3xl) = (10).J;<2-1(5)3],易,工3)a \2<2‘2x(-1)2x2、 "-2 4、解1 (T 2)=1x(-1)1x2 -1 2X /<3x(-1) 3x2)厂3⑶ 1 (-1,2).31 1 \'1 3 1、"2 1 4 0、 0 -1 2(6 -7 8、 J T 3 4,1 -3 1_〔20 -5 —6,.4 0 一240 解\-2J。

a \2>i = -3Z] + z 2'力=2Z|+Z3y 3=-z 2-k3z 3=(%/] + a ]2x 2 + a ]3x 3 a l2x } + a^x 2 + a 13x 3 a u x } + a-,3x 2 + 6t 33x 3) x =a u x[ + a 22x^ + %3工;+ 2a l2x }x 2 + 2a l3x }x 3 + 2a 23x 2x 3。

2 1 0、<10 3 10 10 10 12-1(6).0 0 2 10 0-23^0 0 0 3, ^0 0 0 —3,<12 10、 Q 0 31<1 2 5 20 10 10 12-10 12-4解0 0 2 1 0 0-23 0 0-43^0 0 0 3, 、0 0 0 一3/,0 0 0 -9;q i i)'1 2 3、fl 1 1解 3AB — 2A=3 i i -i-1 -2 4 -2 1 1 -1 J t •>、05 1,J -1 b5 8、<1 1 qr-2 13 22、 0 -5 6 -2 1 1 -i -2 -17 20<29 0;<1-1<429 -2>求从Z], Z2, Z 3到X p X 2, W 的线性变换.<1 11、< 1 2 3、乌2.设A = 1 1-1 ,B =-1 -2 4<1 "I<o 5 L求 3 AB —2 A 及NB.<1 1 1) '1 2 3、<0 5 8、 A 『B = 1 1 -1 -1 -2 40 -5 6J -1 •> p 0 5 1)<2 9 o >P 54 3.已知两个线性变换而=2一+为< 邑=一2乂+3),2+2为 石=4名+力+5为/、< 2 0 1) 3、< 2 0 1) '-3 1 oy J-2 3 2-2 3 2 2 0 i<4 1 5>*4 \ 1 5, /-1 3^ 由己/ 、22k Z 3>所以有2、 3>8> AB 主 BA(2) (A + B)22、 "2 2、 r 8 14 5, 2 51429 / \ /\ <3 8、 %8、 / + + <4<8 12\‘10 16、J5 27,<2 (A + B)(A —B)=2V05人。

线性代数第二章矩阵练习题(有答案)

线性代数第二章矩阵练习题(有答案)

第二章一、选择题 1、计算13230102-⎡⎤⎡⎤+⎢⎥⎢⎥⎣⎦⎣⎦的值为(C ) A.-5 B.6 C.3003⎡⎤⎢⎥⎣⎦ D.2902-⎡⎤⎢⎥⎣⎦2、设,A B 都是n 阶可逆矩阵,且AB BA =,则下列结论中不正确的是(D ) A. 11AB B A --= B. 11A B BA --= C. 1111A B B A ----= D.11B A A B --=3、初等矩阵(A )A. 都是可逆阵B.所对应的行列式值等于1C. 相乘仍是初等阵D.相加仍是初等阵 4、已知,A B 均为n 阶矩阵,满足0AB =,若()2r A n =-,则(C ) A. ()2r B = B.()2r B < C. ()2r B ≤ D.()1r B ≥二、判断题1、若,,A B C 都是n 阶矩阵,则()k k k k ABC A B C =. (×)2、若,A B 是n 阶反对称方阵,则kA 与A B +仍是反对称方阵.(√)3、矩阵324113A ⎡⎤=⎢⎥⎣⎦与矩阵2213B ⎡⎤=⎢⎥⎣⎦可进行乘法运算. (√) 4、若n 阶方阵A 经若干次初等变换后变成B ,则A B =. (×)三、填空题1、已知[]456A =,123B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求AB 得_________。

(32)2、已知12n a a A a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦(0,1,2,,ia i n ≠= ),则1A -=3、设A 为n 阶方阵,2A =,求TA A的值为_________。

4、设A 为33⨯矩阵,3A =-,把A 按列分块为()123A A A A =,求出132,4,A A A 的值为__________。

四、计算题1、计算()101112300121024--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦.解 原式()1292(38)4-⎡⎤⎢⎥==-⎢⎥-⎢⎥⎣⎦.2、求矩阵100120135A -⎡⎤⎢⎥=-⎢⎥-⎢⎥⎣⎦的逆矩阵. 解求出10A =-,11201035A ==,1210515A -=-=-,1311113A --==--, 2100035A =-=,2210515A -==--,2310313A -==-,12111n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1212n +3100020A ==,3210010A -=-=-,3310212A -==--故*11001102213110105A A A -⎡⎤⎢⎥-⎢⎥⎢⎥==-⎢⎥⎢⎥-⎢⎥⎣⎦.五、证明题设n 阶方阵A 满足3()0A I +=,求证A 可逆,且求1A -.证 由3()0A I +=得32330A A A I +++=,于是2(33)A A A I I ⎡⎤-++=⎣⎦. 令233B A A I =---,则AB =I ,故A 可逆,且1233A A A I -=---.。

第二章-线性代数(第四版)习题答案

第二章-线性代数(第四版)习题答案
y1 2 2 1 2 1 −1 x1 −7 −4 3 2 9 y1
y2 = 3 3 y2
5 3
x2 = 6 3 x3
−7 y2 . y3 −4

y1 = −7x1 − 4x2 + 9x3 , y2 = 6x1 + 3x2 − 7x3 , y = 3x + 2x − 4x . 3 1 2 3
由数学归纳法知: Ak =
8 .设 A = 0
解: 方法一. 首先计算
1 = 0 0 λ λ3 0 λn 猜测: An = 0 0 nλn−1 λn 0
同理得 y2 = 6x1 + 3x2 − 7x3 , y3 = 3x1 + 2x2 − 4x3 .
2 . 已知两个线性变换 x1 = 2y1 + y3 , x2 = −2y1 + 3y2 + 2y3 , x = 4y + y + 5y , 3 1 2 3 y1 = −3z1 + z2 , y 2 = 2 z1 + z3 , y = −z + 3z , 3 2 3
1 0 (6) 0 0
1 3 (1) AB = BA 吗?
5. 设A=
1
2
,B=
1 1
0 2
, 问:
(2) (A + B )2 = A2 + 2AB + B 2 吗? (3) (A + B )(A − B ) = A2 − B 2 吗?
解: (1) 因为
AB = 3 4 4 6 , BA = 1 2 3 8 ,

线性代数矩阵练习题参考答案

线性代数矩阵练习题参考答案

《线性代数》第二章练习题参考答案8、设矩阵A满足A2+A-4E=O,则(A-E)-1=(A+2E) 一、填空题1、设A=⎛ 12 ⎫⎛3-2⎫⎛⎝-13⎪⎪⎭,B= ⎝21⎪⎪⎭,则 3A+2B =⎛ 92⎫⎝111⎪⎭; AB =⎛ 70⎫⎝35⎪⎭;BT= 3⎝-2⎛19-3⎫2、设矩阵A=⎛ -15⎫⎪,8⎪⎝13⎭B=⎛ 31⎫则⎛-614⎫-1 -8⎝-20⎪,⎭3A-B= ⎝59⎪,⎭AB= 11⎪⎪。

⎝88⎪⎭3、设A为三阶矩阵,且A=2,则2A*-A-1=2724、设矩阵A为3阶方阵,且|A|=5,则|A*|=__25____,|2A|=____40_ ⎛⎛3、设A= 120⎫340⎪⎪,B=⎛ 23-1⎫T86⎫ 1810⎪⎝-121⎪⎭⎝-240⎪⎪⎭,则AB=⎪⎝310⎪⎭⎛11⎫4、设A=1 225⎪⎪,且r(A)=2,则t= 4 ⎝11t⎪⎭⎛ 1233⎫5、若A=3-12⎪06-24⎪⎪则r(A)=_2____ ⎝0000⎪⎭6、设矩阵A=⎛ 1-1 ⎫⎛⎝23⎪⎪⎭,B=A2-3A+2E,则B-1= 01⎫ 2⎪⎝-1-1⎪⎭7、设A是方阵,已知A2-2A-2E=O,则(A+E)-1=3E-A2⎫1⎪⎭ 2⎛102⎫9、设A是4⨯3矩阵且r(A)=2,B= 020⎪⎪,则r(AB)=⎝-103⎪⎭⎛10、设A= 100⎫ 220⎪⎪,则(A*)-1=1⎛100⎫A=1 220⎪⎪⎝345⎪⎭A10 ⎝345⎪⎭⎛⎛ 100⎫11、设A= 300⎫ 140⎪⎪,则(A-2E)-1=-11⎪⎝003⎪⎭220⎪⎪(用分块矩阵求逆矩阵) ⎝001⎪⎭⎛⎛ 520⎫1-20⎫0-2500⎪12、设A= 2100⎪⎪001-2⎪,则A-1=0012⎪⎪ 33⎪⎝0011⎪⎪⎭⎪⎝00-11⎪33⎪⎭13、已知A为四阶方阵,且A=12,则3281⎛⎫⎛2n⎫14、设A= 2⎫3⎪⎛22,A2= 32⎪⎪⎛2-1n⎪⎪,An= 3⎪,A-1= 3-1⎝4⎪⎭⎝42⎪⎭⎝4n⎪⎭⎝⎛ 100⎫⎪⎛00⎛15、若A= 230则A*= 18⎫ -1260⎪=1⎪,A-1 1800⎫⎪,-1260⎪⎝456⎪⎭⎝-2-53⎪⎭18⎝-2-53⎪⎪⎭二、单项选择题⎫⎪⎪4-1⎪⎭1、若A2=A,则下列一定正确的是 ( D ) (A) A=O (B) A=I (C) A=O或A=I (D)以上可能均不成立2、设A,B为n阶矩阵,下列命题正确的是( C )(A)(A+B)=A+2AB+B;(B)(A+B)(A-B)=A-B; 21(A)a;(B);(C)an-1;(D)an。

《线性代数》第二章矩阵及其运算精选习题及解答

《线性代数》第二章矩阵及其运算精选习题及解答

第二章 矩阵及其运算2.1 目的要求1.理解矩阵的概念;2.了解单位矩阵, 对角矩阵, 三角矩阵, 对称矩阵以及它们的基本性质; 3.掌握矩阵的线性运算, 乘法, 转置及其运算规则;4.理解逆矩阵的概念; 掌握可逆矩阵的性质; 会用伴随矩阵求矩阵的逆; 5.了解分块矩阵的概念, 了解分块矩阵的运算法则.2.2重要公式和结论1.对于任意方阵A , 总有 E A =A A =AA **,如果0≠A , 即A 为可逆矩阵, 则有 *1A AA1=−或1*A A A −=; 2.数乘以方阵的关系 , TTk k A A =)(111)(−−=A A kk , A A n k k =, A A 11=−;3.矩阵乘法的关系T T T A B (AB)=, , 111A B (AB)−−−=BA AB =;,()22T TA)(A =()2112A )(A−−=,22A A =;4.若A 、均为可逆矩阵, 则; ; B 10B A 0−⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=−−0AB 011⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−−111B 00A B 00A ⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−−−−11111B 0CB A A B 0C A ;; ⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−−−−11111B CA B 0A BC 0A 5.已知A 为一个n 阶可逆矩阵, 则有)2(≥n 1n *AA −=;6.已知A 为一个阶矩阵,则n A A nk k =,1−=n nk k A A *,()1)1(*−−=n n n kk AA ;7.已知A 为一个n 阶可逆矩阵, 则有)3(≥n A AA 2**)(−=n .2.3典型例题例2.1计算:(1) (2) .⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛n n b b a a M L 11)(()n n b b a a L M 11⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛解 (1) =;⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛n n b b a a M L 11)(∑==+n k k k n n b a b a b a 111L (2) . ()⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛n n n n n n n n b a b a b a b a b a b a b a b a b a b b a a L M M M L L L M 21222121211111例2.2 设 为三阶矩阵, 且已知)(j i a =A a =A , *A 为A 的伴随矩阵又⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=333231232221131211na na na ma ma ma la la la B , 求 *BA 解 由于 CA B =⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=333231232221131211333231232221131211000000a a a a a a a a a n m l na na na ma ma ma la la la 其中, ,故⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=n m l 000000C ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛====an am al a 000000C E A C CAA BA **.例2.3 设, , 求的关系, 使⎟⎟⎠⎞⎜⎜⎝⎛=3421A ⎟⎟⎠⎞⎜⎜⎝⎛=y x 21B y x 与A 与是可交换的. B 解 要使A , 可交换, 即B BA AB =又⎟⎟⎠⎞⎜⎜⎝⎛++++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=y x y x y x 3464214213421AB ⎟⎟⎠⎞⎜⎜⎝⎛++++=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=y y x x y x 3442324342121BA 故的充要条件是 , 得到 BA AB =⎪⎪⎩⎪⎪⎨⎧+=++=++=++=+yy y x x y x x 343442643221441−=y x .例2.4 设n ×=1)21,0,,0,21(L C , , ,计算C C E A T −=C 2C E B T +=AB .解: C)C C)(E C (E AB TT +−=C CC 2C C C C 2C E T T T T −−+= )C (CC 2C C C E TTT−+=C C 212C C E T T ××−+=E = 故 E AB =.例2.5 设. , 求⎟⎟⎠⎞⎜⎜⎝⎛=5423A 1−A解 由于075423≠==A , 故A 是可逆的,又, 故⎟⎟⎠⎞⎜⎜⎝⎛−−=⎟⎟⎠⎞⎜⎜⎝⎛=342522122111*A A A A A ⎟⎟⎠⎞⎜⎜⎝⎛−−==−3425711*1A A A . 例2.6 设阶矩阵n A 的伴随矩阵为*A , 是常数, 试证 k ()*A A 1*−=n k k . 证明 把看作一个整体, 根据A k E A AA *=, 有 ()E A A A )()(*k k k =,由于A 是可逆的,则也是可逆的,故)(A k ()*11111*1)()(A A A A A A A A −−−−−==×==n n n k k kk k k k . 证毕例2.7 设, ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=2111021100210001A *A 为A 的伴随矩阵, 求. **)(A 解 由于 082111021100210001≠==A , 故A 是可逆的, *A 是可逆;根据E A AA *=, 有 E A )(A A ****=,方程左右两边同时左乘以A ,得 E A A )(A AA ****=, 即 A A A)(A ***1=, 又 1n *A A −=, A 是4阶矩阵,故 10001200()6411201112−⎛⎞⎜⎟⎜⎟===⎜⎟⎜⎟⎜⎟⎝⎠n 22**A AA AA . 例2.8 设A , 是n 阶方阵, 若B AB E −可逆, 试证 BA E −也可逆 .证明 由于A AB)AB)(E B(E E BA E 1−−−−=−A AB)BAB)(E (B E 1−−−−=A AB)BA)B(E (E E 1−−−−=移项得到E A AB)BA)B(E (E BA)(E 1=−−+−−即E A)AB)B(E BA)(E (E 1=−−−−根据可逆矩阵的定义, BA E −可逆, 并且.证毕A AB)B(E E BA)(E 11−−−+=−例2.9 设, 求.⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛−=00010000200010L L MM M MLL n n n A 1−nA 解 对矩阵分块, , 其中 n A ⎟⎟⎠⎞⎜⎜⎝⎛=0CB 0A n )(n =C , , ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=100020001n L M M M L L B 故1(1n=−C , ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=−)1(10002100011n L M M M LLB, 根据分块矩阵的逆矩阵公式⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛=−−−−0B C 00C B 0A 1111n⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎝⎛−=0)1(100021000011000n n LM M M M L L L . 例2.10 设阶方阵 , , 求, 使n ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=100001010A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=021102341B X B AX =. 解 由于01100001010≠−==A , 故A 是可逆的; 并且 ;⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=−1000010101A 方程左右两边同时左乘以1−A 得到⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛==−021341102021102341100001010B A X 1.例2.11 设,求, 使⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=134030201A X X A E AX 2+=+.解 对方程移项得 E A X AX 2−=−, 根据矩阵乘法分配律得E A E)X (A 2−=−由于 016034020200≠−==−E A , 故E A −可逆.方程左右两边同时左乘以, 得(1−−E A )()()E)(A E A E)(A E A E)(A X 121+−−=−−=−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=+=234040202E)(A例2.12 设, 求. 其中E BA)B X(E TT1=−−X , ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=1000110001100011A ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=2000120031204312B 解 根据乘法转置公式得 TTT(AB)A B =T T 1T T1A)(B A)]B [B(E BA)B (E −=−=−−−又 011234012300120001)(≠==−TA B , 故可逆, 对方程 右乘以[, 得到 . T )(A B −E A)X(B T=−]1)(−−T A B []⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=−=−12100121001200011T A)(B X例2.13 设A 的伴随矩阵, 求, 使. ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=8030010100100001*A B 3E BA ABA 11+=−−解 根据, 得到 3E BA ABA 11+=−−()3E BA E A 1=−−故 皆是可逆的, 并且A E,A −()()()1111A E A A E AB −−−−−=−=33[]1111)A (E E))(A (A −−−−−=−=33又由1n *AA −=, 8*=A , , 故 4=n 2=A ,1*1*11)A E ()A (E )A (E B −−−−⎥⎦⎤⎢⎣⎡−=−=−=22132133 11*1*60300101001000016)2(6)2(213−−−⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−=−=⎥⎦⎤⎢⎣⎡−=A E A E B . ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=1030060600600006例2.14 设阶矩阵n A 的伴随矩阵为*A , 试证(1) 若0=A , 则0*=A ; (2) 1*−=n AA ; (3) 1)1(*)(−−=n n n kk AA .证明 (1 ) 根据0=A 得到0A =与0A ≠两种情况,① 当0A =时, 则, 显然0A *=0*=A ;② 当0A ≠时, 利用反证法, 不妨反设0*≠A ,则可逆, 即存在*A 1*−A , 又由于E A AA *=,0=A ,得到0)(A 0)(A A A 1*1*=⋅==−−, 这与矛盾.假设0A ≠0*≠A 不成立.故综合①②得到若0=A , 则0*=A .(2 ) 分0=A 和0≠A 两种情况,① 当0=A 时, 由(1)得到0*=A , 显然有1*−=n AA .② 当0≠A 时, 则A 可逆, 由E A AA *=引入行列式得到n*A A A =, 从而1n *AA −=.(3 ) 根据(2 )中1n *AA −=得到1)1(11*)()()(−−−−===n n n n n n k k k k AA A A .例2.15 设A , 均为阶方阵, B n 2=A , 3−=B , 求1*B)(A −2.解1*n1*1*1*B A B A B)(A B)(A −−−−⎟⎠⎞⎜⎝⎛===212122, 又根据E BB1=−, 得到1=−1B B , 即BB 11=−, 以及1−=n A A *,所以6131)2(212121−=⎟⎠⎞⎜⎝⎛−××⎟⎠⎞⎜⎝⎛=⎟⎠⎞⎜⎝⎛=−−−n n1*n1*B A B)(A例2.16 设5阶矩阵A , 且2=A , 求A A −. 解 由于2=A , ()()6423225−=×−=−=−=−A A AA A 5.例2.17 设A , 均为3阶矩阵, B 2=A , 21=B , 求()*AB . 解()()122122=⎟⎠⎞⎜⎝⎛====−−1313*****ABA B A B AB . 例2.18 设阶矩阵n A , 有E A m=, 若A 中每个元素用其对应的代数余子式代替, 得到矩阵, 求.ij a ij A B mB 解 依题意, 得 , (其中T *)(A B =*A 为A 的伴随矩阵),由E A m=, 得到1=m A ,即A 是可逆的,故 1ΤΤ1Τ1Τ*)(ΑΑ)(ΑΑ)ΑΑ()(ΑΒ−−−====,又由, 得111A B (AB)−−−=T T T A B (AB)=()()222112)(,)(T T A A A A ==−−,所以 ()()11)()(−−=T m mTA A , 故()()E A A AB===−−11)()(Tm T m mm.例2.19 设⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−=21232321A , 且E A 6=, 求11A 解 由 E A 6=, 得E A12=, 即E AA 11=, 故⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−=−212323211A A 11. 例2.20 设, )5,4,3,2,1(=A ⎟⎠⎞⎜⎝⎛=51,41,31,21,1B , 又B A X T =, 求n X 解 由X XX XnL =B)(A B)B)(A(A T TTL =()()()B BA BA BA A T T T T L =又因为,故 5=T BA ⎟⎠⎞⎜⎝⎛⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛==−−514131211543215511n n n B A X T ⎟⎟⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎜⎜⎝⎛=−145352555413424534312335242321251413121151n . 例2.21 设, 满足⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=100000001B ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=112012001P PB AP =,求A , 9A .解.由于01112012001≠−=−=P , 故是可逆的,且,P ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=−1140120011P 由题意, , ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−==−1140120011000000011120120011PBPA ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=116002001又 A PBP P PB PBP PBPA 119119====−−−−L ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=116002001.例2.22 设, 求⎟⎟⎠⎞⎜⎜⎝⎛=101λA nA . 解 由于 ,⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==1021101101λλλAA A 2⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==10311011021λλλA A A 23不妨假设结论,下用归纳法证明. 当⎟⎟⎠⎞⎜⎜⎝⎛=101λn nA 2=k 时,显然成立, 不妨设时也成立, 即, 则当1−=n k ⎟⎟⎠⎞⎜⎜⎝⎛−=−10)1(11λn n An k =时⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−==−10110110)1(1λλλn n A A A 1n n ,故结论成立, 即. ⎟⎟⎠⎞⎜⎜⎝⎛=101λn nA2.4 独立作业2.4.1 基础练习1.设阶矩阵, 且n )(ij a =A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=n λλO 1D )(j i j i ≠≠λλ则=AD (A )()ij i a λ ; (B )()j ij a λ; (C )()ij i a 1+λ ; (D )以上都不对. 2.设A 、均为阶矩阵,下列命题正确的是 B n(A )0B 0A 0AB ==⇒=或; (B )0B 0A 0AB ≠≠⇔≠且; (C )00==⇒=B A 0AB 或; (D )00≠≠⇔≠B A 0AB 且. 3.设阶矩阵满足, 则有 n E ABC =(A ) (B )E ACB =E CBA = (C )E BAC = (D )E BCA =4.设,则⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=120001430A =A k(A ) (B ) (C )311k −311k k 11− (D ) k 115.下列命题正确的是 (A )若A 是阶方阵,且n 0A ≠,则A 可逆; (B )若A 、是阶可逆方阵,则B n B A +也可逆; (C )若A 是不可逆方阵,则必有0A =; (D )若A 是阶方阵,则n A 可逆⇔TA 可逆.6.已知,,则⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=210413121A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=121312410B ()T AB 7.设,,则⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛=0111,300121A A ⎟⎟⎠⎞⎜⎜⎝⎛=21A 00A A =−1A8.已知,则 ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=300041003A =−−1)(2E A9.设矩阵满足,其中B 9E 3B A AB 2−=−E 为三阶单位矩阵,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=400020101A , 则 =B10.已知,满足⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=200012021B A B AB =−,则=A 11.设,,求矩阵,使⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=311201A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=041012B X B X A =+23成立.12.设,计算⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=141021001A ()()()2181644A A E A E A E +−−−−T .13.设,,求矩阵⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=1000210032101321B ⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=1000210002101021C A , 使成立.T T 1C B)A C(2E =−−14.设矩阵,,,⎟⎟⎠⎞⎜⎜⎝⎛=3152P ⎟⎟⎠⎞⎜⎜⎝⎛−=1001B ⎟⎟⎠⎞⎜⎜⎝⎛−−=2153Q PBQ A =, 试计算QP 和nA .15.设(k 为正整数),(1)试证 ;0A k =1k 1A A E A)(E −−+++=−L (2)求. 1)4(−−E)(A 2.4.2提高练习1.设A 为阶矩阵,且有n A A 2=,则结论正确的是________________ (A)(B) 0A =E A = (C) 若A 不可逆,则0A = (D) 若A 可逆,则E A 2=2.已知,,且⎟⎟⎠⎞⎜⎜⎝⎛=22211211a a a a A ⎟⎟⎠⎞⎜⎜⎝⎛=y a x a 2111B 1,1==B A ,则=+B A (A) 2; (B) 3; (C) 4; (D) 5.3.设 ,是两个阶方阵,则)(ij a =A )(ij b =B n AB 的第行是 i (A ) 的各行的线性组合,组合系数是B A 的第行各元素; i (B ) A 的各行的线性组合,组合系数是的第行各元素; B i (C ) 的各列的线性组合,组合系数是B A 的第行各元素; i (D ) 的各行的线性组合,组合系数是B A 的第列各元素. i 4.设A 、、C 为可逆矩阵,则B ()=−1T ACB(A ) ; (B ) ;()1−−−C A B11T 11T A C B −−(C ) ( D ) ()1T 11B CA −−−()11T1A C B−−−.5.设A 为阶矩阵,为其伴随矩阵,则n *A =*A k (A ) A n k (B) nk A (C)1−n n k A(D)nn kA1−6.设三阶矩阵A 的行列式3=A ,则=−−*123A A7.设阶矩阵n A 的行列式5=A ,则()=−1*5A8.已知 则⎟⎟⎠⎞⎜⎜⎝⎛−=θθθθcos sin sin cos A =−1A 9.设阶矩阵n A 、、C ,且B E CA BC AB ===,则 =++222C B A10.设A 、是四阶矩阵,且B 2=A ,21=B ,则()=*AB11.设三阶矩阵A 、Β满足关系式,BA 6A BA A 1+=−⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛=710004100031A ,求 B 12.设 B A B A AX AXB 22+−+=,求.其中,X⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=100110111A ,⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=200020102B 13.设A 、均为阶方阵,若B n AB B A =+,求()1−−E A .14.设, ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=211021001A *A 为A 的伴随矩阵, 求.1*)(−A第二章 参考答案与提示2.4.1 基础练习1.( B ) 提示 AD 表示A 的第i 行与D 的第列j 相乘得到()j ij a λ. 2.(C )提示 0000==⇒=⇒=⇒=B A B A A 0AB 或B . 3.(D )提示 A 、、C 可逆,等式左乘以B 1−A ,右乘以A . 4.(A )提示 3311k k k −==A A .5.(D )提示 由于A 可逆⇔00≠⇔≠T A A ⇔TA 可逆.6., ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=15419102935121312410210413121AB ()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−=1541910293511995103425TAB . 7.⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛=−−−110100000310000112111A 00A A.8.,()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=−1000210012E A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=−−1000212100121E A . 9. , ,E B A AB 293−=−E A B AB 293−=−)333E E)(A (A E)B (A +−=−由于021*********≠=−−=−E A ,故E)A 3(−是可逆的,.⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛=+=7000501043E)(A B 10.A B AB =− , ,B E)A(B =−04100002020≠=−=−E B ,E B −是可逆的,⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−=⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=−=−200012102111000021021020********E)B(B A .11.()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−=−=91461121321A B X .12.()()()21T A A E A E A E +−−−−81644()()()A E A)E (A E A E 1T−−−−=−4444()()A E A E T−−=44()24A E −=324182==.13.左乘以C ,,由于 E B)A C (T=−20110002100321043212≠==−B C ,故 是可逆的,(. B C −2()()⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−=−=−=−−−1210012100120001222C 1T T1B)C (B)C (B)A 14.,即、互为逆矩阵, ⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−=100131522153QP P Q ()()()()BQ QP QP B QP PB PBQ A nn L ==Q PB n =,由于,故.)(-L ,2,1,122===k k kBB E B⎪⎩⎪⎨⎧⎟⎟⎠⎞⎜⎜⎝⎛−−==为奇数为偶数n n 1162011A E A n 15.(1)由于()1k AA E A)(E −+++−L )A A (A )AA (E n 21k +++−+++=−L LE A E n =−=, 故 ,1k 1A A E A)(E −−+++=−L (2)()111A)(E A))(E (E))(A (−−−−−=−−=−4144()1k A A E −+++−=L 41. 2.4.2提高练习 1.(D )提示:,若0E)A(A A A2=−⇔=A 可逆,则E A =,E A 2=.2.(C )提示:,⎟⎟⎠⎞⎜⎜⎝⎛++=+y a ax a a 2221121122B A 422221112221121122211211=⎟⎟⎠⎞⎜⎜⎝⎛+=++=+y a x a a a a a y a a x a a B A . 3.(A )提示:乘积AB 的第行是i A 的第行与的列的乘积. i B n ,,1L 4.(D )提示:()()()()()()1−−−−−−−===A C B AC B B AC ACB1T 111T 1T 1T .5.(C )提示:1**−==n nn k k k AA A .6.()()()9313133232333111*1−=×−=−=−=−=−−−−−AA A A A A A .7.()n n n n211*1*1*5151151)(515−−−−==⎟⎠⎞⎜⎝⎛==A AA A. 8.⎟⎟⎠⎞⎜⎜⎝⎛−==−θθθθcos sin sin cos 1*1A A A . 9.由于E CA BC AB ===,故 ,2A A(BC)A ABCA E ===2B B(CA)B BCAB E ===,,2C C(AB)C CABC E ===所以 .E CB A 2223=++10.()()11=====−3341*)B A (AB ABABAB AB AB .11.由于,,右乘以得BA A BA A 1+=−6A E)BA (A 16=−−1−A E E)B (A16=−−又可逆.故A)(E −16−−−=E)(A B1⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛=6100031000216. 12.方程整理得B E)A)(B A(X =−−由于0≠A ,0≠−E B ,故A 、E B −是可逆的,且⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=−1001102111A ,()⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=−−1000101011E B 所以11E)B(B A A X −−−=− ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−=200220522100010101200020102100110211故 . ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=300330613X 13.由于AB B A =+B AB A −=⇒()B E A A −=⇒(但是B 不一定可逆,不能同时右乘以1−B)()()B E A E E A −=+−⇒()()E E B E A =−−⇒,故 ()E)(B E A 1−=−−.14.由于0421102101≠==A , 故A 是可逆的, *A 是可逆的; 根据E A AA *=, 有 E )(A A **=−1方程左右两边同时左乘以A 得,AE )(A AA **=−1即 A A )(A *11=−, 故 ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛==−2110210014111A A )(A *.。

《线性代数》第二章参考答案+详解

《线性代数》第二章参考答案+详解
k ( k 1) 2
k 0
k 2 1 0 k k 1 0 1 0 0 k
k 1 0 0
( k 1) k 1
k 1 0
k 1 ( k 1 ) k 1 k 1
所以(AB)2A22ABB2 (3) (AB)(AB)A2B2 吗? 解: (AB)(AB)A2B2
2 A B 0 0 5 2 0 5 0 2 1 6 9 2 因为 A B 2
2 ( A B)( A B) 2
2 0 1 0

3 8 1 0 2 8 A2 B2 4 11 3 4 1 7
故(AB)(AB)A2B2
5 举反列说明下列命题是错误的 (1) 若 A20 则 A0
0 解: 取 A 0 1 则 A20 但 A0 0
(2)
2 1 设 a 1 ,b 2 ,A abT , 3 4
T
求 A100 .
2 解: b a 1 2 4 1 8 . 3

A100 (abT )100 a (bT a )( bT a )bT a (bT a )bT 2 99 a (b a ) b 1 8 1 2 4 3 4 8 2 99 8 1 2 4 . 3 6 12
2 2 a11x12 a22 x2 a33 x3 2a12 x1x2 2a13 x1x3 2a23 x2 x3
1 1 1 1 2 3 2 设 A 1 1 1 B 1 2 4 求 3AB2A 及 ATB 1 1 1 0 5 1 1 1 1 1 2 3 1 1 1 解: 3AB 2 A 31 1 1 1 2 4 21 1 1 1 1 1 0 5 1 1 1 1 0 5 8 1 1 1 2 13 22 3 0 5 6 21 1 1 2 17 20 2 9 0 1 1 1 4 29 2 1 1 1 1 2 3 0 5 8 A B 1 1 1 1 2 4 0 5 6 1 1 1 0 5 1 2 9 0

线性代数第二章练习题

线性代数第二章练习题

第二章 矩 阵一、选择题 1.设矩阵4203a b a b d c +-æöæö=ç÷ç÷èøèø,则( C )(A)3,1,1,3a b c d ==-== (B)1,3,1,3a b c d =-=== (C)3,1,0,3a b c d ==-== (D)1,3,0,3a b c d =-=== 2.设矩阵()1,2A =,1234B æö=ç÷èø,123456C æö=ç÷èø,则下列矩阵运算中有意义的是(B)(A)ACB (B)ABC (C)BAC (D)CBA 3.设A 、B 均为n 阶矩阵,下列命题正确的是 C (A)0B 0A 0AB ==Þ=或 (B)0B 0A 0AB ¹¹Û¹且 (C)00==Þ=B A 0AB 或 (D)00¹¹Û¹B A 0AB 且 4.设A 、B 均为n 阶矩阵,满足22A B =,则必有( D ) (A)A B = (B)A B =- (C)A B = (D)22A B=5.设A 为n 阶矩阵,且有A A 2=,则结论正确的是________D________ (A) 0A = (B)E A =(C) 若A 不可逆,则0A = (D) 若A 可逆,则E A 2= 6.设B A ,都是n 阶对称矩阵,下列结论不正确的结论是( A ) (A)AB 为对称矩阵 (B)设B A ,可逆,则11--+B A 为对称矩阵(C)B A +为对称矩阵 (D)kA 为对称矩阵7.设A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是( B ) (A)T A A + (B)T A A - (C)T AA(D)T A A8.设A 为3阶方阵,且2A =,则12A -=( D ) (A)-4 (B)-1 (C)1 (D)49.设A 为n 阶矩阵,*A 为其伴随矩阵,则=*A k C (A) A n k (B) nk A(C)1-n nkA(D)nn kA1-10.设B A ,都是n 阶可逆矩阵,则÷÷øöççèæ--1002B A T等于( A ) (A)12)2(--B A n(B)1)2(--B A n (C)B A T2- (D)12--B A11.设n 阶方阵C B A ,,满足关系式E ABC =,其中E 为n 阶单位阵,则必有( D )。

矩阵试题及答案

矩阵试题及答案

矩阵试题及答案一、选择题(每题4分,共20分)1. 矩阵的秩是指:A. 矩阵中非零元素的个数B. 矩阵中最大的线性无关行(列)向量组的个数C. 矩阵的行数D. 矩阵的列数答案:B2. 若矩阵A与矩阵B相等,则下列说法正确的是:A. A和B的行列式相等B. A和B的迹相等C. A和B的行列式和迹都相等D. A和B的行列式和迹都不相等答案:C3. 矩阵的转置是指:A. 将矩阵的行变成列B. 将矩阵的列变成行C. 将矩阵的行和列互换D. 将矩阵的元素取相反数答案:C4. 对于任意矩阵A,下列说法正确的是:A. A的行列式等于A的转置的行列式B. A的行列式等于A的逆矩阵的行列式C. A的行列式等于A的逆矩阵的转置的行列式D. 以上说法都不正确答案:A5. 若矩阵A是可逆矩阵,则下列说法正确的是:A. A的行列式不为0B. A的行列式为1C. A的行列式为-1D. A的行列式可以是任意非零值答案:A二、填空题(每题5分,共20分)1. 若矩阵A的行列式为-2,则矩阵A的逆矩阵的行列式为____。

答案:1/22. 设矩阵A为2x2矩阵,且A的行列式为3,则矩阵A的转置的行列式为____。

答案:33. 若矩阵A的秩为2,则矩阵A的行向量组的____。

答案:线性无关4. 设矩阵A为3x3矩阵,且A的行列式为0,则矩阵A是____。

答案:奇异矩阵三、解答题(每题10分,共30分)1. 已知矩阵A=\[\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix}\],求矩阵A的行列式。

答案:\(\begin{vmatrix}1 & 2\\3 & 4\end{vmatrix} = (1)(4) - (2)(3) = 4 - 6 = -2\)2. 设矩阵B=\[\begin{bmatrix}2 & 0\\0 & 2\end{bmatrix}\],求矩阵B的逆矩阵。

线性代数第二章矩阵(答案).docx

线性代数第二章矩阵(答案).docx

线性代数练习题第二章矩阵系专业班姓名学号第一节矩阵及其运算一.选择题1.有矩阵A3 2,B23, C 3 3,下列运算正确的是[B]( A) AC( B) ABC( C) AB- BC( D) AC+BC2.设C (1, 0 ,0 ,1),A E C T C , B E 2C T C ,则AB[ B ] 22( A)E C T C( B)E(C)E( D)03.设 A 为任意 n 阶矩阵,下列为反对称矩阵的是[ B]( A)A A T(B)A A T( C)AA T( D)A T A二、填空题:1642011651.282342112412124321141387 2.设A 2 1 2 1, B 2 1 2 1,则 2A 3B2525 123401012165 4317353.1232657014913121400126784.13413120561402三、计算题:111设 A111,4111123B124,求 3AB2A 及 A T B0511111231113AB 2 A 3 111124 2 1111110511110582223 0562222902222132221720 ;4292111123058由 A对称,A T A,则 A TB AB11112405 6 .111051290线性代数练习题第二章矩阵系专业班姓名学号第二节逆矩阵一.选择题1.设A是 n 阶矩阵A的伴随矩阵,则[B]( A)AA A 1( B)An 1( C)( A)n A( D)( A )0 A2.设 A,B 都是 n 阶可逆矩阵,则[C]( A) A+B 是 n 阶可逆矩阵( B)A+B 是 n 阶不可逆矩阵( C)AB 是 n 阶可逆矩阵( D)| A+B| = | A|+| B|3.设 A 是 n 阶方阵,λ为实数,下列各式成立的是( A)A A(B)A A(C)A n A(D)A [ C] n A4.设 A, B, C 是 n 阶矩阵,且ABC = E ,则必有[ B]( A) CBA = E(B)BCA = E(C)BAC = E(D)ACB = E5.设 n 阶矩阵 A,B, C,满足 ABAC = E,则[ A]( A ) A T B T A T C T E (B ) A 2 B 2 A 2 C 2E(C ) BA 2CE ( D ) CA 2 B E二、填空题:1121A ,其中 B21.已知 ABB,则 A2 11122.设2 54 6,则 X =2 13 1 X21 0433.设 A , B 均是 n 阶矩阵, A2 , B3 ,则 2 A B14n64.设矩阵 A 满足 A 2A4E0 ,则 ( A E) 11 ( A 2E)2三、计算与证明题:1. 设方阵 A 满足 A 2A 2E 0 ,证明 A 及 A2E 都可逆,并求 A 1和 ( A 2E ) 1A 2A 2 E 0A( A E ) 2 E A(A2 E ) EA 可逆,且 A 1AE ;2A 2 A 2E 0A( A 2E) 3A 2E 0A( A 2E) 3( A 2E) 4E 0( A 3E )( A 2E) 4E ( A3E)( A 2E)E4A可逆,且 (A 2E)1A 3E41 2 12. 设 A3 4 2 ,求 A 的逆矩阵 A 1541解:设 A(a ij )3 ,则A 114 2 4,A 12( 1)1232 13, A 13( 1)133432,4 15154A21( 1)1221 2, A 22 ( 1)2211 6, A 23 ( 1)2312 14,41 5154A 31( 1) 13210, A 32 ( 1) 3211 1, A 33( 1) 3312 2,4232344 2 0 从而 A *1361 .32 142又由1 212c 11 00 2 1A3 4c 23 212254 1 c 3c1514 614 6A * 21 0则 A 113 31A27216 10 3 33. 设 A1 1 0 且满足 ABA2B ,求 B12 3AB A2B( A 2E) B A2 3 3 0 3 3 11 0 B 1 1 012 11 232 3 3 0 3 311 0 1 1 0 1 1 0 1 1 0 r 1r 22 3 3 03 3 12 11 2 31 2 1 1 2 31 1 0 1 1 0 1 1 01 1 0 r 22r 10 1 3 2 5 3 r 3 r 2 0 13 25 3 r 3 r 11 13 32 2 211 0 11 0110 1 10 r 3 ( 1) 0 1 3 2 5 3 r 23r 3 0 1 01 2 32 0 0 1 1 1 00 011 11 0 0 0 3 3 r 1 r2 0 1 01 2 30 0 111 00 3 3 则 B ( A 2E) 1 A1 2 31 1线性代数练习题第二章矩 阵系专业 班姓名学号第三节(一)矩阵的初等变换一、把下列矩阵化为行最简形矩阵:1 1 3 4 3 r2 3r 1 1 134 3r 2 4 1 1 3 4 3 3 3 5 4 1 0 0 4 8 8 0 0 1 2 222 3 2 0 r 3 2r 1 00 366 r 33 0 0 1 2 233 4 2 1r43r 1 0 0 5 10 10r45 012 211 34 3 11 023 r 3 r 2 0 0 1 2 2 00 1 2 2 r 4r 2 00 0 0 0 r 1 3r20 0 0 0二、把下列矩阵化为标准形:2 3 1 3 7 1 2 0 2 4 r 2 2r 1 1 2 0 2 4 1 2 0 2 4 23 1 3 7 0 1 1 1 132 83 0 r 1 r232 83 0 r 33r18 8 9 12 13 74 313 74 3 r 4 r 1 05 767122 4 122 4 r3 8r 2 0 1 1 1 1 01 1 1 1 r 45r 2 00 0 1 4 r 3 r40 2 1 20 212 00 0 14r 3 r 4 1 20 0 4120 040 1 1 0 31r 3 01 0 0 2r 2 r 4 r 20 0 2 0 20 0 2 0 2 r 1 2r 420 00 140 141 0 0 0 0 r 21 0 0 0 0 1 0 0 0 0 01 0 0 20 1 0 0 2 0 1 0 0 0r 12r20 2 0 2 1r 3 0 0 1 0 1c52c 2c34c40 1 0 00 00 14 20 0 0 140 0 0 1 0三、用矩阵的初等变换,求矩阵的逆矩阵3 2 0 1 0 2 2 1A2 3 211 213 2 0 1 1 0 0 0 1 2 3 2 0 0 1 0 0 2 2 1 0 1 0 0 0 2 2 1 0 1 0 01 2 3 2 0 0 1 r 1 r 32 0 1 1 0 0 0 03 012 1 0 0 0 1 012 1 0 0 0 11 2 3 2 0 0 1 0 1 2 3 2 0 0 1 0 02 2 1 0 1 0 0 01 2 1 0 0 0 1 r 33r14 95 1 0 3 0 r 2 r44 95 1 0 3 0 01210 00 12210 10 01 2 3 2 0 0 1 0 1 2 3 2 0 0 1 0 r 3 4r 2 0 12 1 0 0 0 1 012 1 0 0 0 1 r 42r 2 0 01 1 1 0 3 4 r 42r30 01 1 1 0 3 40 0210 10 2 0 00 12 1 6 10123 0 42 11 20120 0 1 1 2 2 r 12r4012 0 2 16 11 r 1 3r 3 0 1 00 01 0 1 r2 r 4 0 0 1 0 1 1 36 r 2 2r 3 0 0 1 0 1 1 36 r 3 r 40 00 1 2 1 6100 12 16101 0 0 0 1 1 24 r 1 2r 2 0 10 0 0 1 0 1 0 01 0 1 1 360 00 12 1 6101 12 4 A10 1 0 1 1 1 3 62 1 6 101 1 1 1 0 1 四、已知0 2 2 X 1 1 0 ,求 X110 1 41 1 1 1 0 11 1 1 10 11 1 1 1 0 1 0 22 1 1 0 r3 r 1 0 2 2 11 0 r 3r 2 0 2 2 1 1 0uuuuuruuuuur11 01 40 2 1 1 1 30 03 0 231 1 0 12 21 111 0 13r 22r3 0 20 1r 310 2 2 1 1 0 123r r30 012 1 uuuuuuur20 1 0 1331 1 01221 01 5 33 26r 210 1 0111 r 1 r2 0 1 0 111226uuuuur26uuuuur220 0 1 010 0 1 013 31 5 32 6故 X1 1 12 62 13线性代数练习题第二章矩 阵系专业班姓名学号第三节(二)矩 阵 的 秩一.选择题1.设 A , B 都是 n 阶非零矩阵,且 AB = 0,则 A 和 B 的秩[ D]( A )必有一个等于零 ( B )都等于 n(C )一个小于 n ,一个等于 n( D )都不等于 n2.设 mn 矩阵 A 的秩为 s ,则[ C]( A ) A 的所有 s( B )A 的所有 s阶子式不为零- 1 阶子式不为零( C )A 的所有 s +1 阶子式为零(D )对 A 施行初等行变换变成E s0 0112133.欲使矩阵2s126的秩为2,则s,t满足[ C ] 455t12( A)s = 3 或t = 4(B)s= 2 或t = 4( C)s = 3 且t = 4(D)s = 2 且t = 44.设A是m n 矩阵,B是 n m 矩阵,则( A)当m n 时,必有行列式| AB |0( B)当( C)当n m 时,必有行列式| AB |0( D)当[ B ] m n 时,必有行列式| AB |0n m 时,必有行列式| AB |0a11a12a13a21a22a230105.设Aa21a22a23, Ba11a12a13, P1100,a31a32a33a31a11a32a12a33a13001100P2010,则必有 B[ C ] 101( A)AP1P2(B)AP2P1( C)P1P2A( D)P2P1A二.填空题:31021.设A1 1 2 1 ,则 R( A)213441212.已知A 23a2应满足a=-1 或 3 1a的秩为 2,则 a22a21三、计算题:218371.设A230753258,求 R( A) 。

线性代数习题册(第二章矩阵及其运算参考答案)

线性代数习题册(第二章矩阵及其运算参考答案)

⇔ αTα = 1
单元 6 逆矩阵、分块矩阵
一、判断题(正确的打√,错误的打×)
1. 可逆矩阵一定是方阵.
(√)
2. 若 A 、 B 为同阶可逆方阵,则 AB 可逆.
(√)
3. 设 A, B 均为可逆矩阵,则 AB 也可逆且 ( AB)−1 = A−1B−1 .
(X)
4. 若 A 可逆,则 AT 也可逆.
分析: |
r1 A|

r2
− | B |,所以
A
+
B
= 0 。
20.

A
=
a11 a21
a12 a22
a13 a23

B
=
a21 a11
a22 a12
a23 a13
0 1 0

P1
=
1
0
0
a31 a32 a33
a31 + a11 a32 + a12 a33 + a13
0 0 1
( A) kA∗
(B) k n−1 A∗
(C ) k n A∗
( D) k −1 A∗
分析:题中对可逆矩阵也要成立,所以不妨设 A 可逆时进行分析。
( ) = (kA)∗ | kA | (= kA)−1 k n | A | ⋅ 1 A−1 = k n−1 | A | A−1 = k n−1 A* k
a31 + a11 a32 + a12 a33 + a13
r1

r2
a21 a11
a31 + a11
a22 a12 a32 + a12
a23
a13

线性代数习题 第二章 (附详解)

线性代数习题 第二章 (附详解)

线性代数习题 第二章 (附详解)第二章 矩阵及其运算【编号】ZSWD2023B0061 1 已知线性变换3213321232113235322y y y x y y y x y y y x 求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换解: 由已知221321323513122y y y x x x故3211221323513122x x x y y y321423736947y y y 321332123211423736947x x x y x x x y x x x y2 已知两个线性变换32133212311542322y y y x y y y x y y x 323312211323z z y z z y z z y求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换 解: 由已知221321514232102y y y x x x321310102013514232102z z z321161109412316z z z所以有 3213321232111610941236z z z x z z z x z z z x3 设 111111111A150421321B 求3AB 2A 及A TB解:1111111112150421321111111111323A AB2294201722213211111111120926508503092650850150421321111111111B A T4 计算下列乘积(1)127075321134解:127075321134 102775132)2(7111237449635(2)123)321(解:123)321( (1 3 2 2 3 1) (10)(3))21(312解: )21(31223)1(321)1(122)1(2632142(4)20413121013143110412 解:20413121013143110412 6520876(5)321332313232212131211321)(x x x a a a a a a a a a x x x 解:321332313232212131211321)(x x x a a a a a a a a a x x x(a 11x 1 a 12x 2 a 13x 3 a 12x 1 a 22x 2 a 23x 3 a 13x 1 a 23x 2 a 33x 3)321x x x322331132112233322222111222x x a x x a x x a x a x a x a5 设3121A2101B 问(1)AB BA 吗? 解: AB BA 因为6443AB8321BA 所以AB BA(2)(A B)2A 22AB B 2吗? 解: (A B)2A 22AB B 2因为5222B A52225222)(2B A2914148但 43011288611483222B AB A27151610 所以(A B)2A 22AB B 2(3)(A B)(A B) A 2B 2吗?解: (A B)(A B) A 2B 2因为5222B A1020B A906010205222))((B A B A而718243011148322B A 故(A B)(A B) A 2B 26 举反列说明下列命题是错误的 (1)若A 20 则A 0解: 取0010A 则A 20 但A 0 (2)若A 2A 则A 0或A E 解: 取0011A 则A 2A 但A 0且A E (3)若AX AY 且A 0 则X Y 解: 取0001A 1111X1011Y则AX AY 且A 0 但X Y7 设101 A 求A 2A 3A k解:12011011012 A1301101120123 A A A101 k A k8 设001001A 求Ak解: 首先观察0010010010012A2220020123232323003033 A A A43423434004064 A A A545345450050105A A AkA k k kk k k k k k k 0002)1(121用数学归纳法证明 当k 2时 显然成立 假设k 时成立,则k 1时,0010010002)1(1211k k k k k k k k k k k k A A A11111100)1(02)1()1(k k k k k k k k k k 由数学归纳法原理知k k k k k k k k k k k A 0002)1(1219 设A B 为n 阶矩阵,且A 为对称矩阵,证明B TAB 也是对称矩阵 证明: 因为A TA 所以(B TAB)TB T(B TA)TB T A TB B TAB从而B TAB 是对称矩阵10 设A B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA 证明: 充分性 因为A TA B TB 且AB BA 所以(AB)T(BA)TA TB TAB即AB 是对称矩阵必要性 因为A TA B TB 且(AB)TAB 所以AB (AB)TB T A TBA11 求下列矩阵的逆矩阵 (1)5221 解:5221A |A| 1 故A 1存在 因为1225*22122111A A A A A故 *||11A A A1225(2)cos sin sin cos 解cos sin sin cos A |A| 1 0 故A 1存在 因为cos sin sin cos *22122111A A A A A所以 *||11A A Acos sin sin cos(3)145243121解145243121A |A| 2 0 故A 1存在 因为214321613024*332313322212312111A A A AA A A A A A所以 *||11A A A1716213213012(4)n a a a 0021(a 1a 2a n0)解 n a a a A 0021由对角矩阵的性质知n a a a A 1001121112 解下列矩阵方程 (1)12643152X解:126431521X1264215380232(2)234311*********X 解: 1111012112234311X0332321012343113132538122(3)101311022141X解: 11110210132141X2101101311421212101036612104111 (4)021102341010100001100001010X解: 11010100001021102341100001010X01010000102110234110000101020143101213 利用逆矩阵解下列线性方程组(1) 3532522132321321321x x x x x x x x x解: 方程组可表示为321153522321321x x x故0013211535223211321x x x从而有 001321x x x(2) 05231322321321321x x x x x x x x x解: 方程组可表示为012523312111321x x x故3050125233121111321x x x 故有 305321x x x14 设A kO (k 为正整数) 证明(E A) 1E A A 2A k 1证明: 因为A kO 所以E A kE 又因为E A k(E A)(E A A 2A k 1)所以 (E A)(E A A 2A k 1) E由定理2推论知(E A)可逆 且 (E A) 1E A A 2A k 1证明 一方面 有E (E A) 1(E A)另一方面 由A kO 有E (E A) (A A 2) A 2A k 1(A k 1A k)(E A A 2 Ak 1)(E A)故 (E A) 1(E A) (E A A 2A k 1)(E A)两端同时右乘(E A) 1就有 (E A) 1(E A) E A A 2A k 115 设方阵A 满足A 2A 2E O 证明A 及A 2E 都可逆 并求A 1及(A 2E) 1证明: 由A 2A 2E O 得A 2A 2E 即A(A E) 2E或 E E A A)(21 由定理2推论知A 可逆 且)(211E A A 由A 2A 2E O 得A 2A 6E 4E 即(A 2E)(A 3E) 4E或 E A E E A)3(41)2( 由定理2推论知(A 2E)可逆 且)3(41)2(1A E E A证明 由A 2A 2E O 得A 2A 2E 两端同时取行列式得 |A 2A| 2即 |A||A E| 2 故 |A| 0所以A 可逆 而A 2E A 2|A 2E| |A 2| |A|20 故A 2E 也可逆由 A 2A 2E O A(A E) 2EA 1A(A E) 2A 1E )(211E A A又由 A 2A 2E O (A 2E)A 3(A 2E) 4E (A 2E)(A 3E) 4 E所以 (A 2E) 1(A 2E)(A 3E) 4(A 2 E) 1)3(41)2(1A E E A16 设A 为3阶矩阵 21||A 求|(2A) 15A*| 解: 因为*||11A A A所以 |||521||*5)2(|111 A A A A A |2521|11 A A | 2A 1| ( 2)3|A 1| 8|A| 18 2 1617 设矩阵A 可逆 证明其伴随阵A*也可逆 且(A*) 1(A 1)*证明: 由*||11A A A得A* |A|A 1所以当A 可逆时 有|A*| |A|n|A 1| |A|n 10 从而A*也可逆因为A* |A|A 1所以(A*) 1|A| 1A又*)(||)*(||1111A A A A A 所以 (A*) 1|A| 1A |A| 1|A|(A 1)* (A 1)*18 设n 阶矩阵A 的伴随矩阵为A* 证明 (1)若|A| 0 则|A*| 0 (2)|A*| |A|n 1证明:(1)用反证法证明 假设|A*| 0 则有A*(A*) 1E 由此得A A A*(A*) 1|A|E(A*) 1O所以A* O 这与|A*| 0矛盾,故当|A| 0时 有|A*| 0(2)由于*||11A A A则AA* |A|E 取行列式得到 |A||A*| |A|n若|A| 0 则|A*| |A|n 1若|A| 0 由(1)知|A*| 0 此时命题也成立 因此|A*| |A|n 119 设321011330A AB A 2B 求B解: 由AB A 2E 可得(A 2E)B A 故321011330121011332)2(11A E A B01132133020 设101020101A 且AB E A 2B 求B解: 由AB E A 2B 得(A E)B A 2E即 (A E)B (A E)(A E)因为01001010100|| E A 所以(A E)可逆 从而201030102E A B21 设A diag(1 2 1) A*BA 2BA 8E 求B 解: 由A*BA 2BA 8E 得 (A* 2E)BA 8E B 8(A* 2E) 1A 18[A(A* 2E)] 18(AA* 2A)18(|A|E 2A) 18( 2E 2A) 14(E A)14[diag(2 1 2)] 1)21 ,1 21(diag 4 2diag(1 2 1)22 已知矩阵A 的伴随阵8030010100100001*A 且ABA 1BA 13E 求B解: 由|A*| |A|38 得|A| 2由ABA 1BA 13E 得AB B 3AB 3(A E) 1A 3[A(E A 1)] 1A11*)2(6*)21(3A E A E103006060060000660300101001000016123 设P 1AP 其中1141P2001 求A 11解: 由P 1AP 得A P P 1所以A 11A=P 11P 1. |P| 31141*P 1141311P而11111120 012001故31313431200111411111A6846832732273124 设AP P 其中111201111P511求 (A) A 8(5E 6A A 2) 解: ( ) 8(5E 6 2)diag(1 1 58)[diag(5 5 5) diag( 6 6 30) diag(1 1 25)] diag(1 1 58)diag(12 0 0) 12diag(1 0 0) (A) P ( )P 1*)(||1P P P1213032220000000011112011112111111111425 设矩阵A、B 及A B 都可逆 证明A 1B 1也可逆 并求其逆阵证明: 因为A 1(A B)B 1B 1A 1A 1B 1而A 1(A B)B 1是三个可逆矩阵的乘积 所以A 1(A B)B 1可逆 即A 1B 1可逆(A 1B 1) 1[A 1(A B)B 1] 1B(A B) 1A26 计算30003200121013013000120010100121 解: 设10211A30122A 12131B30322B则 2121B O B E A O E A222111B A O B B A A而4225303212131021211B B A90343032301222B A 所以 2121B O B E A O E A 222111B A O B B A A9000340042102521即30003200121013013000120010100121900034004210252127 取1001D C B A 验证|||||||| D C B A D C B A解:4100120021010*********0021010010110100101D C B A 而01111|||||||| D C B A 故|||||||| D C B A D C B A28 设22023443O O A 求|A 8|及A 4解: 令 34431A22022A则21A O O A A故 8218 A O O A A8281A O O A 1682818281810|||||||||| A A A A A464444241422025005O O A O O A A29 设n 阶矩阵A 及s 阶矩阵B 都可逆 求 (1)1O B A O解: 设43211C C C C O B A O 则O B A O 4321C C C Cs n E O O E BC BC AC AC 2143 由此得 s n E BC O BC O AC E AC 2143 121413B C O C O C A C所以O A B O O B A O 111(2)1B C O A解: 设43211D D D D B C O A 则s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321由此得 s n E BD CD O BD CD O AD E AD 423121 14113211B D CA B D O D A D所以11111B CA B O A BC O A30 求下列矩阵的逆阵(1)2500380000120025 解: 设1225A2538B 则5221122511A8532253811B于是850032000052002125003800001200251111B A B A(2)4121031200210001 解: 设 2101A 4103B2112C 则1111114121031200210001B CA B O A BC O A411212458103161210021210001。

线性代数第二章答案

线性代数第二章答案

第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142.(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA . 因为⎪⎭⎫⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2. 因为⎪⎭⎫⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2. 因为⎪⎭⎫⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的:(也可参考书上的答案) (1)若A 2=0, 则A =0; 解 取⎪⎭⎫⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y . 7. 设⎪⎭⎫⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k kk k k k λλλλλλ02)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. (也可提取公因式,变成书上的答案)9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵: (1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A |=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以*||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 .12. 解下列矩阵方程: (1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛12643152X ;解⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X ;解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解11110210132141--⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1. 证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2,即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E ⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*. 证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有 |A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-= =2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1. |P |=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. (最后一行的-9也可除以-1变成9,从而变成书上的答案)27. 取⎪⎭⎫⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解4100120021010*********0021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则⎪⎭⎫ ⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A .30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025;解 设⎪⎭⎫⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=411212458103161210021210001.第五章 相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)⎪⎪⎭⎫⎝⎛=931421111) , ,(321a a a ;解 根据施密特正交化方法,⎪⎪⎭⎫ ⎝⎛==11111a b , ⎪⎪⎭⎫ ⎝⎛-=-=101],[],[1112122b b b a b a b ,⎪⎪⎭⎫ ⎝⎛-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .(2)⎪⎪⎪⎭⎫ ⎝⎛---=011101110111) , ,(321a a a .解 根据施密特正交化方法,⎪⎪⎪⎭⎫ ⎝⎛-==110111a b ,⎪⎪⎪⎭⎫ ⎝⎛-=-=123131],[],[1112122b b b a b a b ,⎪⎪⎪⎭⎫ ⎝⎛-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b . 2. 下列矩阵是不是正交阵:(1)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---121312112131211;解 此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------979494949198949891.解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵.4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T ,(AB )T (AB )=B T A T AB =B -1A -1AB =E ,故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)⎪⎪⎭⎫ ⎝⎛----201335212;解 3)1(201335212||+-=-------=-λλλλλE A ,故A 的特征值为λ=-1(三重). 对于特征值λ=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=+000110101101325213~E A ,得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.(2)⎪⎪⎭⎫⎝⎛633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A ,故A 的特征值为λ1=0, λ2=-1, λ3=9. 对于特征值λ1=0, 由⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=000110321633312321~A ,得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+000100322733322322~E A ,得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量. 对于特征值λ3=9, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-00021101113333823289~E A , 得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.(3)⎪⎪⎪⎭⎫⎝⎛0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考) 解 22)1()1(01010010100||+-=----=-λλλλλλλE A , 故A 的特征值为λ1=λ2=-1, λ3=λ4=1. 对于特征值λ1=λ2=-1, 由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=+00000000011010011001011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量.对于特征值λ3=λ4=1, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛----=-00000000011010011001011001101001~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T , p 4=(0, 1, 1, 0)T , 向量p 3和p 4是对应于特征值λ3=λ4=1的线性无关特征值向量.6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明 因为|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.7. 设n 阶矩阵A 、B 满足R (A )+R (B )<n , 证明A 与B 有公共的特征值, 有公共的特征向量.证明 设R (A )=r , R (B )=t , 则r +t <n .若a 1, a 2, ⋅⋅⋅, a n -r 是齐次方程组A x =0的基础解系, 显然它们是A 的对应于特征值λ=0的线性无关的特征向量.类似地, 设b 1, b 2, ⋅⋅⋅, b n -t 是齐次方程组B x =0的基础解系, 则它们是B 的对应于特征值λ=0的线性无关的特征向量.由于(n -r )+(n -t )=n +(n -r -t )>n , 故a 1, a 2, ⋅⋅⋅, a n -r , b 1, b 2, ⋅⋅⋅, b n -t 必线性相关. 于是有不全为0的数k 1, k 2, ⋅⋅⋅, k n -r , l 1, l 2, ⋅⋅⋅, l n -t , 使k 1a 1+k 2a 2+ ⋅⋅⋅ +k n -r a n -r +l 1b 1+l 2b 2+ ⋅⋅⋅ +l n -r b n -r =0.记 γ=k 1a 1+k 2a 2+ ⋅⋅⋅ +k n -r a n -r =-(l 1b 1+l 2b 2+ ⋅⋅⋅ +l n -r b n -r ), 则k 1, k 2, ⋅⋅⋅, k n -r 不全为0, 否则l 1, l 2, ⋅⋅⋅, l n -t 不全为0, 而l 1b 1+l 2b 2+ ⋅⋅⋅ +l n -r b n -r =0,与b 1, b 2, ⋅⋅⋅, b n -t 线性无关相矛盾.因此, γ≠0, γ是A 的也是B 的关于λ=0的特征向量, 所以A 与B 有公共的特征值, 有公共的特征向量.8. 设A 2-3A +2E =O , 证明A 的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.(需要说明)因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A的特征值.10.设λ≠0是m阶矩阵A m⨯n B n⨯m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.11.已知3阶矩阵A的特征值为1, 2, 3,求|A3-5A2+7A|.解令ϕ(λ)=λ3-5λ2+7λ,则ϕ(1)=3,ϕ(2)=2,ϕ(3)=3是ϕ(A)的特征值,故|A3-5A2+7A|=|ϕ(A)|=ϕ(1)⋅ϕ(2)⋅ϕ(3)=3⨯2⨯3=18.12.已知3阶矩阵A的特征值为1, 2,-3,求|A*+3A+2E|.解因为|A|=1⨯2⨯(-3)=-6≠0,所以A可逆,故A*=|A|A-1=-6A-1,A*+3A+2E=-6A-1+3A+2E.令ϕ(λ)=-6λ-1+3λ+2,则ϕ(1)=-1,ϕ(2)=5,ϕ(-3)=-5是ϕ(A)的特征值,故|A*+3A+2E|=|-6A-1+3A+2E|=|ϕ(A)|=ϕ(1)⋅ϕ(2)⋅ϕ(-3)=-1⨯5⨯(-5)=25.13.设A、B都是n阶矩阵,且A可逆,证明AB与BA相似.证明 取P =A , 则P -1ABP =A -1ABA =BA ,即AB 与BA 相似.14. 设矩阵⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化, 求x .解 由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T 是矩阵⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值; 解 设λ是特征向量p 所对应的特征值, 则(A -λE )p =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解 由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量. 因此A 不能相似对角化.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)⎪⎪⎭⎫⎝⎛----020212022;解 将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4. 对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----x x x , 得特征向量(1, 2, 2)T , 单位化得T)32 ,32 ,31(1=p .对于λ2=1, 解方程(A -E )x =0, 即0120202021321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-----x x x ,得特征向量(2, 1, -2)T , 单位化得T )32 ,31 ,32(2-=p .对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------x x x , 得特征向量(2, -2, 1)T , 单位化得T )31 ,32 ,32(3-=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4).(2)⎪⎪⎭⎫ ⎝⎛----542452222. (和书后答案不同,以书后答案为准,解题步骤可以参考)解 将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----000442442221321x x x , 得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------000542452228321x x x , 得特征向量(-1, -2, 2)T , 单位化得T )2 ,2 ,1(313--=p .于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10).17. 设矩阵⎪⎪⎭⎫⎝⎛------=12422421x A 与⎪⎪⎭⎫ ⎝⎛-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.解 已知相似矩阵有相同的特征值, 显然λ=5, λ=-4, λ=y 是Λ的特征值, 故它们也是A 的特征值. 因为λ=-4是A 的特征值, 所以0)4(9524242425|4|=-=---+---=+x x E A ,解之得x =4.已知相似矩阵的行列式相同, 因为100124242421||-=-------=A , y y2045||-=-=Λ,所以-20y =-100, y =5.对于λ=5, 解方程(A -5E )x =0, 得两个线性无关的特征向量(1, 0, -1)T , (1, -2, 0)T . 将它们正交化、单位化得T )1 ,0 ,1(211-=p , T )1 ,4 ,1(2312-=p .对于λ=-4, 解方程(A +4E )x =0, 得特征向量(2, 1, 2)T , 单位化得T )2 ,1 ,2(313=p .于是有正交矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=23132212343102313221P , 使P -1AP =Λ. 18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T ,p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A .解 令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1. 因为⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛=--11011101101111111011P ,所以⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=Λ=-1101110111000200020111111101P P A ⎪⎪⎪⎭⎫⎝⎛------=244354332. 19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解 设⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2, 即 ⎪⎩⎪⎨⎧=++=++=++222222122653542321x x x x x x x x x , ---① ⎪⎩⎪⎨⎧=-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=. 令x 6=0, 得311-=x , x 2=0, 323=x , 314=x , 325=x .因此⎪⎪⎭⎫ ⎝⎛-=022********A . 20. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .解 设⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A .因为λ1=6对应的特征向量为p 1=(1, 1, 1)T , 所以有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛1116111A , 即⎪⎩⎪⎨⎧=++=++=++666653542321x x x x x x x x x ---①. λ2=λ3=3是A 的二重特征值, 根据实对称矩阵的性质定理知R (A -3E )=1. 利用①可推出⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-331113333653542653542321~x x x x x x x x x x x x x x x E A .因为R (A -3E )=1, 所以x 2=x 4-3=x 5且x 3=x 5=x 6-3, 解之得x 2=x 3=x 5=1, x 1=x 4=x 6=4.因此⎪⎪⎭⎫⎝⎛=411141114A .21. 设a =(a 1, a 2, ⋅⋅⋅, a n )T , a 1≠0, A =aa T .(1)证明λ=0是A 的n -1重特征值;证明 设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则有 A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax , 于是可得λ2=λa T a , 从而λ=0或λ=a T a .设λ1, λ2, ⋅ ⋅ ⋅, λn 是A 的所有特征值, 因为A =aa T 的主对角线性上的元素为a 12, a 22, ⋅ ⋅ ⋅, a n 2, 所以a 12+a 22+ ⋅ ⋅ ⋅ +a n 2=a T a =λ1+λ2+ ⋅ ⋅ ⋅ +λn ,这说明在λ1, λ2, ⋅ ⋅ ⋅, λn 中有且只有一个等于a T a , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解 设λ1=a T a , λ2= ⋅ ⋅ ⋅ =λn =0.因为A a =aa T a =(a T a )a =λ1a , 所以p 1=a 是对应于λ1=a T a 的特征向量.对于λ2= ⋅ ⋅ ⋅ =λn =0, 解方程A x =0, 即aa T x =0. 因为a ≠0, 所以a T x =0, 即a 1x 1+a 2x 2+ ⋅ ⋅ ⋅ +a n x n =0, 其线性无关解为p 2=(-a 2, a 1, 0, ⋅⋅⋅, 0)T , p 3=(-a 3, 0, a 1, ⋅⋅⋅, 0)T ,⋅ ⋅ ⋅,p n =(-a n , 0, 0, ⋅⋅⋅, a 1)T . 因此n 个线性无关特征向量构成的矩阵为⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-=⋅⋅⋅112212100), , ,(a a a aa a a nn n p p p . 22. 设⎪⎪⎭⎫⎝⎛-=340430241A , 求A 100. 解 由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ,A =P ΛP -1, A 100=P Λ100P -1. 因为Λ100=diag(1, 5100, 5100),⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-=--1202105055112021012111P ,所以⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=12021050555112021012151100100100A ⎪⎪⎭⎫⎝⎛-=1001001005000501501.23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1).(1)求关系式⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11中的矩阵A ;解 由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n , 可用矩阵表示为⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++n n n n y x q p q p y x 1111,因此⎪⎭⎫⎝⎛--=q p q p A 11.(2)设目前农村人口与城镇人口相等, 即⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛5.05.000y x , 求⎪⎭⎫ ⎝⎛n n y x .解 由⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11可知⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛00y x A y x n n n . 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r , 解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T . 令⎪⎭⎫⎝⎛-==11) ,(21p q P p p , 则 P -1AP =diag(1, r )=Λ, A =P ΛP -1, A n =P Λn P -1. 于是11100111-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=p q r p q A n n⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=q p r p q q p n 11001111 ⎪⎭⎫ ⎝⎛+--++=n n n n qr p pr p qr q pr q q p 1, ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--++=⎪⎭⎫ ⎝⎛5.05.01n n n n n n qr p pr p qr q pr q q p y x ⎪⎭⎫ ⎝⎛-+-++=n n r p q p r q p q q p )(2)(2)(21.24. (1)设⎪⎭⎫ ⎝⎛--=3223A , 求ϕ(A )=A 10-5A 9; 解 由)5)(1(3223||--=----=-λλλλλE A ,得A 的特征值为λ1=1, λ2=5.对于λ1=1, 解方程(A -E )x =0, 得单位特征向量T )1 ,1(21. 对于λ1=5, 解方程(A -5E )x =0, 得单位特征向量T )1 ,1(21-.于是有正交矩阵⎪⎭⎫ ⎝⎛-=111121P , 使得P -1AP =diag(1, 5)=Λ,从而A =P ΛP -1, A k =P Λk P -1. 因此 ϕ(A )=P ϕ(Λ)P -1=P (Λ10-5Λ9)P -1 =P [diag(1, 510)-5diag(1, 59)]P -1 =P diag(-4, 0)P -1⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=1111210004111121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛----=111122222. (2)设⎪⎪⎭⎫⎝⎛=122221212A , 求ϕ(A )=A 10-6A 9+5A 8.解 求得正交矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=20223123161P , 使得P -1AP =diag(-1, 1, 5)=Λ, A =P ΛP -1. 于是 ϕ(A )=P ϕ(Λ)P -1=P (Λ10-6Λ9+5Λ8)P -1 =P [Λ8(Λ-E )(Λ-5E )]P -1=P diag(1, 1, 58)diag(-2, 0, 4)diag(-6, -4, 0)P -1 =P diag(12, 0, 0)P -1⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=222033211001220223123161⎪⎪⎭⎫⎝⎛----=4222112112.25. 用矩阵记号表示下列二次型: (1) f =x 2+4xy +4y 2+2xz +z 2+4yz ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=z y x z y x f 121242121) , ,(.(2) f =x 2+y 2-7z 2-2xy -4xz -4yz ; 解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-------=z y x z y x f 722211211) , ,(.(3) f =x 12+x 22+x 32+x 42-2x 1x 2+4x 1x 3-2x 1x 4+6x 2x 3-4x 2x 4.解⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛------=432143211021013223111211) , , ,(x x x x x x x x f . 26. 写出下列二次型的矩阵: (1)x x x ⎪⎭⎫ ⎝⎛=1312)(T f ;解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=1222A . (2)x x x ⎪⎪⎭⎫⎝⎛=987654321)(Tf .解 二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛=975753531A .27. 求一个正交变换将下列二次型化成标准形: (1) f =2x 12+3x 22+3x 33+4x 2x 3;解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=320230002A . 由)1)(5)(2(320230002λλλλλλλ---=---=-E A ,得A 的特征值为λ1=2, λ2=5, λ3=1. 当λ1=2时, 解方程(A -2E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-0001002101202100002~E A ,得特征向量(1, 0, 0)T . 取p 1=(1, 0, 0)T . 当λ2=5时, 解方程(A -5E )x =0, 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-0001100012202200035~E A ,得特征向量(0, 1, 1)T . 取T )21 ,21,0(2=p .当λ3=1时, 解方程(A -E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-000110001220220001~E A ,得特征向量(0, -1, 1)T . 取T )21 ,21 ,0(3-=p .于是有正交矩阵T =(p 1, p 2, p 3)和正交变换x =T y , 使f =2y 12+5y 22+y 32.(2) f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4.解 二次型矩阵为⎪⎪⎪⎭⎫⎝⎛----=1101111001111011A . 由2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为λ1=-1, λ2=3, λ3=λ4=1.当λ1=-1时, 可得单位特征向量T )21 ,21 ,21 ,21(1--=p .当λ2=3时, 可得单位特征向量T )21 ,21 ,21 ,21(2--=p . 当λ3=λ4=1时, 可得线性无关的单位特征向量T )0 ,21 ,0 ,21(3=p , T )21 ,0 ,21 ,0(4=p .于是有正交矩阵T =( p 1, p 2, p 3, p 4)和正交变换x =T y , 使f =-y 12+3y 22+y 32+y 42.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解 二次型的矩阵为⎪⎪⎭⎫⎝⎛----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2,λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p .对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21,0(3=p . 于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛w v u z y x 21322312132231031234,使原二次方程变为标准方程2u 2+11v 2=1.29. 明: 二次型f =x T A x 在||x ||=1时的最大值为矩阵A 的最大特征值. 证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT -1=diag(λ1, λ2, ⋅ ⋅ ⋅, λn )=Λ成立, 其中λ1, λ2, ⋅ ⋅ ⋅, λn 为A 的特征值, 不妨设λ1最大. 作正交变换y =T x , 即x =T T y , 注意到T -1=T T , 有 f =x T A x =y T TAT T y =y T Λy =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2. 因为y =T x 正交变换, 所以当||x ||=1时, 有||y ||=||x ||=1, 即y 12+y 22+ ⋅ ⋅ ⋅ +y n 2=1.因此f =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2≤λ1,又当y 1=1, y 2=y 3=⋅ ⋅ ⋅=y n =0时f =λ1, 所以f max =λ1.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵. (1) f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3; 解 f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3 =(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32 =(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==-+=323223211222x x y x y x x x y , 即⎪⎪⎩⎪⎪⎨⎧+-==+-=323223211221225y y x y x y y y x , 二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--=12002102251C .(2) f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3; 解 f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3 =(x 1+x 3)2+x 32+2x 2x 3; =(x 1+x 3)2-x 22+(x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==+=32322311x x y x y x x y , 即⎪⎩⎪⎨⎧+-==-+=323223211y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫⎝⎛--=110010111C .(3) f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 解 f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.3223222212421)21(2x x x x x x -+++= 232322212)2(21)21(2x x x x x +-++=. 令 ⎪⎪⎩⎪⎪⎨⎧=-=+=333222112)2(21)21(2x y x x y x x y , 即⎪⎪⎩⎪⎪⎨⎧=+=--=33322321121222212121y x y y x y y y x , 二次型化为规范形f =y 12+y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=10022011121C . 31. 设f =x 12+x 22+5x 32+2ax 1x 2-2x 1x 3+4x 2x 3为正定二次型, 求a .解 二次型的矩阵为⎪⎪⎭⎫⎝⎛--=5212111a a A , 其主子式为 a 11=1, 2111a a a -=, )45(5212111+-=--a a a a . 因为f 为正主二次型, 所以必有1-a 2>0且-a (5a +4)>0, 解之得054<<-a .32. 判别下列二次型的正定性:(1) f =-2x 12-6x 22-4x 32+2x 1x 2+2x 1x 3;。

线性代数(王定江)第2章答案

线性代数(王定江)第2章答案
习题二
1. 下列矩阵中, 哪些是对角矩阵、三角矩阵、数量矩阵、单位矩阵?
A
=
1 0
2 3
,
1
B
=
0 0
0 1 0
0 0 1
0
0 0
,
1
C
=
2 4
0 3 5
0
0 6
,
2
D
=
0 0
0 2 0
0
0 2
.
解: D 是对角矩阵, A, C 是三角矩阵, D 是数量矩阵.
2. 设
A
=
1 4
2y− x 2
1 0
21 1 0
2 1
=
1 0
4 1
=
1 0
2
× 1
2
;
1 0
2 3 1
=
1 0
41 1 0
2 1
=
1 0
6 1
=
1 0
2× 1
3 ;
1 0
2 k 1
=
1 0
2k 1
.
下面用数学归纳法证明. 当 k = 2 时, 结论成立. 假设 k = n 时结论成立, 那么当
1 2
2 1
3
4

2
−2 3
2 1
1 0
=
5 −4
−2 −1
1 4
;
(2) (2A − X ) + 2(B − X ) = O
X
=
2 (A + B) = 3
2 3
1
2
2 1
3
4
+
−2 3
2 1
1

线性代数第二章习题部分答案(

线性代数第二章习题部分答案(

第二章向量组的线性相关性§2-1 §2-2 维向量,线性相关与线性无关(一)一、填空题1. 设3 α1−α +2 α2+α =5 α3+α , 其中α1=(2,5,1,3)T,α2=(10,1,5,10)T, α3=(4,1,−1,1)T, 则α= (1,2,3,4)T .2. 设α1=(1,1,1)T, α2=(2,1,1)T,α3=(0,2,4)T,则线性组合α1−3α2+α3= (−5,0,2)T .3. 设矩阵A= ,设βi为矩阵A的第i个列向量,则2β1+β2−β3= (−2,8,−2)T .二、试确定下列向量组的线性相关性1. α1=(2,1,0)T, α2=(1,2,1)T, α3=(1,1,1)T解:设k1α1+k2α2+k3α3=0,则k1 210 +k2 121 +k3 111 = 000即2k1+k2+k3=0k1+2k2+k3=0k2+k3=0k1+2k2+k3=0−3k2−k3=0k2+k3=0 k1+2k2+k3=0k2+k3=0k3=0 k1=k2=k3=0,线性无关。

2. α1=(1,−1,2)T, α2=(0,0,0)T, α3=(1,4,3)T线性相关三、设有向量组α1=(1,1,0)T, α2=(1,3,−1)T, α3=(5,−3,t)T,问t取何值时该向量组线性相关。

解:设k1α1+k2α2+k3α3=0,则k1 110 +k2 13−1 +k3 5−3t =0即k1+k2+5k3=0k1+3k2−3k3=0−k2+tk3=0k1+k2+5k3=0k2−4k3=0−k2+tk3=0k1+k2+5k3=0k1+3k2−3k3=0(t−4)k3=0所以,t=4, 线性相关; t≠4, 线性无关四、设a1,a2线性无关,a1+b,a2+b线性相关,求向量b用a1,a2线性表示的表示式。

解:因为a1+b,a2+b线性相关,所以存在不全为零的k1,k2,使得k1(a1+b)+k2(a2+b)=0, 即(k1+k2)b=−k1a1−k2a2.又因为a1,a2线性无关,所以k1+k2≠0,于是,b=−k1k1+k2a1−k2k1+k2a2.五、已知向量组α1,α2,⋯,α2n,令β1=α1+α2,β2=α2+α3,⋯,β2n=α2n+α1,求证向量组β1,β2,⋯,β2n线性相关。

(完整版)线性代数第二章矩阵试题及答案

(完整版)线性代数第二章矩阵试题及答案

第二章矩阵一、知识点复习1、矩阵的定义由m⨯n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m⨯n型矩阵。

例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8 是一个4⨯5矩阵.一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素。

元素全为0的矩阵称为零矩阵,通常就记作0。

两个矩阵A和B相等(记作A=B),是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等。

2、n阶矩阵与几个特殊矩阵行数和列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵。

n阶矩阵的从左上角到右下角的对角线称为主对角线。

下面列出几类常用的n阶矩阵,它们都是考试大纲中要求掌握的.对角矩阵: 对角线外的的元素都为0的n阶矩阵.单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I).数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就是c E.上三角矩阵: 对角线下的的元素都为0的n阶矩阵.下三角矩阵: 对角线上的的元素都为0的n阶矩阵.对称矩阵: 满足A T=A矩阵,也就是对任何i,j,(i,j)位的元素和(j,i)位的元素总是相等的n阶矩阵.反对称矩阵:满足A T=-A矩阵.也就是对任何i,j,(i,j)位的元素和(j ,i)位的元素之和总等于0的n阶矩阵.反对称矩阵对角线上的元素一定都是0.) 正交矩阵:若AA T=A T A=E,则称矩阵A是正交矩阵。

(1)A是正交矩阵⇔A T=A-1 (2)A是正交矩阵⇔2A=1阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面。

②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增。

把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角。

每个矩阵都可以用初等行变换化为阶梯形矩阵,这种运算是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练。

大学线性代数第二章习题答案

大学线性代数第二章习题答案

第二章 矩阵及其运算第一节 矩阵 1.解.,251=x 212=x .2.解. ⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236zz z x z z z x z z z x 其系数矩阵为⎪⎪⎪⎭⎫ ⎝⎛----161109412316第二节 矩阵的运算一 填空题:1. ⎪⎪⎭⎫⎝⎛224210 2.3 , ⎪⎪⎪⎭⎫ ⎝⎛1312123323121 , 13-k ⎪⎪⎪⎭⎫ ⎝⎛1312123323121(k 为正整数)。

3. ⎪⎪⎪⎭⎫⎝⎛0000000004.⎪⎪⎪⎭⎫ ⎝⎛10100010001 5. 0二选择题 :CCCCC B三计算:1.(1)⎪⎪⎪⎭⎫⎝⎛---632142(2)10 (3)322331132112233322222111222x x a x x a x x a x a x a x a +++++(4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+++++32155121232272i i i i ii i 2. ()()T T T A I A AA A I A A A T A A I +=+=+=⋅+=⋅+(1)00A A A I A I <⇒-+=+=.3.111101()()2()2000101n T n T n T n A αααααα----⎡⎤⎢⎥===⎢⎥⎢⎥-⎣⎦,则2(2)n n aE A a a -=-. 4.设2222223T T x x xy xz y xy y yz x y z z xz yzy ααααα⎡⎤⎡⎤⎢⎥⎢⎥=⇒=⇒=++=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦5.02()()()A E A B A B E A E A E B A E A E B E +≠--=⇒+-=+⇒-=112A EB B ⇒-⋅=⇒=. 6.()()⎪⎪⎪⎭⎫ ⎝⎛-=+-1154123600022B A B A7.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-012328317 8.-80第三节逆矩阵 一 填空题:1.⎪⎪⎪⎭⎫ ⎝⎛100000031212. ⎪⎪⎭⎫ ⎝⎛--24205100010 3. ⎪⎪⎪⎭⎫ ⎝⎛----611859131320001 4. ⎪⎪⎪⎭⎫ ⎝⎛000000213141 5.⎪⎪⎪⎭⎫ ⎝⎛=123B 6. 541-;7.100122()(2)2()0102100B E AB A B A E B E E A E -⎡⎤-⎢⎥=+⇒--=⇒-==⎢⎥⎢⎥⎣⎦8.21()(2)20B A E A E --⎡⎤=--=⎢⎥⎣⎦. 9.由21224()().22A E A EA A E O A E E A E -+++-=⇒-=⇒-=()()kA lE h A E +=10.由111021()102002AB B A A B B E -⎡⎤⎢⎥⎢⎥⎢⎥-=⇒=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 二.选择题:ACBBD三.计算题:1.(1) ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--3131002121001 (2) ⎪⎪⎪⎪⎭⎫ ⎝⎛-----17162132130122. 由BA A BA A +=-61得,B E B A +=-61, 所以 E B E A 6)(1=--从而 , 11)(6---=E A B ,⎪⎪⎪⎭⎫ ⎝⎛=-7000400031A ,所以⎪⎪⎪⎭⎫⎝⎛=--6321E A3.11010100001693471582100001010--⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=010100001693471582100001010⎪⎪⎪⎭⎫⎝⎛=963852741. 4. 因为)3,2,1(==i i A i i αα,所以⎪⎪⎪⎭⎫⎝⎛=300020001),,(),,(321321ααααααA ,因此 1321321),,(300020001),,(-⎪⎪⎪⎭⎫⎝⎛=ααααααA .又),,(321ααα⎪⎪⎪⎭⎫ ⎝⎛---=212122221,所以1321),,(-ααα⎪⎪⎪⎭⎫ ⎝⎛---=21212222191,故 =A ⎪⎪⎪⎭⎫ ⎝⎛---212122221⎪⎪⎪⎭⎫ ⎝⎛300020001⎪⎪⎪⎭⎫ ⎝⎛---21212222191⎪⎪⎪⎭⎫ ⎝⎛----=622250207315. 由23**0T T ij ij a A A A AA AA A E A A A =⇒=⇒==⇒=⇒=或1A =.又22211111212131311121301A a A a A a A a a a A =++=++≠⇒=.6. 1100200611AP PB A PBP -⎡⎤⎢⎥=⇒==⎢⎥⎢⎥--⎣⎦.5511A PB P PBP A --===. 7.1*11112(3)2233A A A A A A -----=-=-,所以 1*131228116(3)2()332727A A A A A ----=-=-=-⋅=-.或 *1*1***114(3)222333A A A A A A A A ---=-=⋅-=-,则311**3*446416(3)2()332727A A A A A ---=-=-=-⋅=-.8.E BA E BA A A E B A A B -=-=-=--**11||)(,即E E A B =-)(*,因而⎥⎥⎦⎤⎢⎢⎣⎡----=⎥⎥⎦⎤⎢⎢⎣⎡=-=--1030122211763452221)(11E A B *解 1*n A A-=.9.证 (1)由1124(2)(4)28A B B E A E B E E A E -=-⇒-⋅-=⇒-可逆,且 11(2)(4)8A EB E --=-(2)由(1)得102028(4)110002A E B E -⎛⎫⎪=+-=-- ⎪ ⎪-⎝⎭. 四、证明题:1.证:根据伴随矩阵的性质有E A AA =*又E A A =2,所以2A AA =*,再由于A 可逆,便有A A =*.2.证:假设A 可逆,即1-A 存在,以1-A 左乘0=AB 的两边得0=B ,这与B 是n 阶非零矩阵矛盾;类似的,若B 可逆,即1-B 存在,以1-B 右乘0=AB 的两边得0=A ,这与A 是n 阶非零矩阵矛盾,因此,A 和B 都是不可逆的. 第四节 矩阵分块法1. 00011000100000010010010001000010010000100010010010000100011000r ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,所以100010001001000100100010010001000-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦. 2. ⎪⎪⎪⎪⎪⎭⎫⎝⎛---31313231000000520021. 3.A ;4.若1A -易求得,由*1A A A -=最简便.显然111,A O C C A B OB ---⎡⎤==⎢⎥⎣⎦1**11*A B A OB A OC C C O A B B O A B ---⎡⎤⎡⎤⇒===⎢⎥⎢⎥⎣⎦⎣⎦. 5. (1) 1()T APQ O A b A ααα-⎛⎫=⎪-⎝⎭. (2) 由(1)得0211()P A TT P Q PQ A b A Q b A αααα=≠--⋅==-=-. 6. 23423422288()40A B A B αβγγγαβγγγ+=+=+=+=.7. 11100100112120(2)01221001001B O B O A I A I O O --⎡⎤⎡⎤⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥-==⇒-==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦⎢⎥⎣⎦. 8. (1)m m mnnnO A A O C B OOB =-从第n+1列开始每一列与前n 列逐列交换(1)mn m n A B =-(1)mn ab =-.自测题一.单项选择题:1.D 2.C 3.C 4.A5. B 二、填空题:1. 912.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-133 3.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---4332211 4.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=-11001200005200211A 5. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----O O 21313725 三.计算题1.由B X A =*得,AB X AA =*,即 AB X A = ,因为2-=A , 所以⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-=00021152031000221X ⎪⎪⎪⎭⎫⎝⎛----=020111.2、1) B E B A E A AB E B A B A A B AA ⇒=-⇒+=⇒+=-)|(|||)(1*可逆.2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-=--1111116166666)8(11A EB .3.111()[()]()()T T T T T T T A E C B C E A C C B C E A C B C C E ----=⇒-=⇒-=1()()()T T T A C B CC E A C B E -⇒-=⇒-=110001100[()]12100121T A C B -⎡⎤⎢⎥-⎢⎥⇒=-=⎢⎥-⎢⎥-⎣⎦. 4.-250;415. 由1113()3ABA BA E E A B E ---=+⇒-=.又3*82A A A ==⇒=,则**160000600()36(2)606010306A E B E B E A A -⎛⎫ ⎪⎪-=⇒=-= ⎪⎪ ⎪- ⎪⎝⎭四.证明题1.证 由**T T A A AA AA A E =⇒==.假设0T A AA O =⇒=.考虑T AA 的主对角线上的元素,令()T ij AA B b ==,则222121200ii i i in i i in b a a a a a a =+++=⇒==== ,即A 的第i 行的元素全为零,由i 的任意性,得A 的元素全为零,即A O =,矛盾. 2.由23202A E A A E A E A ---=⇒⋅=⇒可逆,且12A EA --=.。

线性代数第二章答案

线性代数第二章答案

第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换. 解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y求从z 1 z 2z 3到x 1 x 2x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B 求3AB 2A 及A TB解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321((132231)(10)(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876(5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x (a 11x 1a 12x 2a 13x 3 a 12x 1a 22x 2a 23x 3 a 13x 1a 23x 2a 33x 3)⎪⎪⎭⎫⎝⎛321x x x 322331132112233322222111222x x a x x a x x a x a x a x a +++++=5. 设⎪⎭⎫⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B 问:(1)AB BA 吗? 解 AB BA因为⎪⎭⎫ ⎝⎛=6443AB ⎪⎭⎫⎝⎛=8321BA 所以AB BA(2)(A B )2A 22AB B 2吗? 解 (A B )2A 22AB B 2因为⎪⎭⎫⎝⎛=+5222B A⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫⎝⎛=27151610所以(A B )2A 22AB B 2(3)(A B )(AB )A 2B 2吗?解 (A B )(A B )A 2B 2因为⎪⎭⎫⎝⎛=+5222B A ⎪⎭⎫⎝⎛=-1020B A⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A 故(A B )(A B )A 2B 26. 举反列说明下列命题是错误的:(也可参考书上的答案) (1)若A20 则A 0;解 取⎪⎭⎫ ⎝⎛=0010A 则A20 但A 0(2)若A2A , 则A 0或A E ;解 取⎪⎭⎫⎝⎛=0011A 则A2A , 但A 0且A E (3)若AX AY , 且A 0, 则X Y .解 取⎪⎭⎫⎝⎛=0001A ⎪⎭⎫ ⎝⎛-=1111X⎪⎭⎫⎝⎛=1011Y则AX AY , 且A 0, 但X Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2A 3A k解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A⎪⎭⎫ ⎝⎛=101λk A k8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求Ak.解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A⎝⎛=kA kk kk k k k k k k λλλλλλ02)1(121----⎪⎪⎪⎭⎫用数学归纳法证明: 当k 2时, 显然成立. 假设k 时成立,则k 1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121 (也可提取公因式,变成书上的答案)9. 设AB 为n 阶矩阵,且A 为对称矩阵,证明B TAB 也是对称矩阵.证明 因为A TA 所以(B TAB )TB T (B T A )T B T A T B B T AB从而B TAB 是对称矩阵.10. 设A B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA证明 充分性: 因为A TA B T B 且AB BA 所以(AB )T(BA )TA TB T AB即AB 是对称矩阵. 必要性: 因为ATA B T B 且(AB )T AB 所以AB (AB )TB T A T BA11. 求下列矩阵的逆矩阵: (1)⎪⎭⎫⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A |=1¹0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2¹0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A AA A A A A A ,所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a O 0021(a 1a 2× × ×a n¹0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A O 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211O .12. 解下列矩阵方程: (1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛12643152X ;解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X ;解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111 (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=20143101213. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x故有 ⎪⎩⎪⎨⎧===35321x x x14. 设AkO (k 为正整数), 证明(E A )1E A A 2A k1证明 因为A kO 所以E A k E 又因为E Ak(E A )(E A A 2A k 1)所以 (E A )(E A A 2 A k 1)E 由定理2推论知(E A )可逆且(E A )1E A A 2A k1证明 一方面 有E (E A )1(E A )另一方面 由AkO 有E (E A )(A A 2)A 2A k1(Ak 1A k )(EA A 2A k 1)(E A )故 (E A )1(E A )(E A A 2A k 1)(E A ) 两端同时右乘(E A )1就有(E A )1(E A )E A A 2A k115. 设方阵A 满足A 2A 2E O , 证明A 及A 2E 都可逆, 并求A 1及(A 2E )1.证明 由A 2A 2E O 得A2A 2E , 即A (A E )2E或 E E A A =-⋅)(21, 由定理2推论知A 可逆 且)(211E A A -=-由A2A 2E O 得 A2A 6E4E 即(A2E )(A 3E )4E或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A 2E )可逆 且)3(41)2(1A E E A -=+-证明 由A 2A 2E O 得A 2A 2E 两端同时取行列式得|A2A |2即 |A ||A E |2, 故 |A |0所以A 可逆, 而A 2E A 2|A 2E ||A 2||A |20 故A 2E 也可逆.由 A2A 2E O A (A E )2EA 1A (A E )2A 1E )(211E A A -=-又由 A2A 2E O (A 2E )A 3(A 2E )4E(A 2E )(A 3E )4 E所以 (A 2E )1(A 2E )(A3E )4(A 2 E )1)3(41)2(1A E E A -=+-16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A |-1=-8´2=-16.17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*. 证明 由*||11A A A =-, 得A *=|A |A-1, 所以当A 可逆时 有|A *|=|A |n|A -1|=|A |n -1¹0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)1|A |1A又*)(||)*(||1111---==A A A A A 所以(A *)1|A |1A |A |1|A |(A 1)*(A 1)*18. 设n 阶矩阵A 的伴随矩阵为A * 证明: (1)若|A |0, 则|A *|0; (2)|A *||A |n 1证明(1)用反证法证明. 假设|A *|0 则有A *(A *)1E 由此得A A A *(A *)1|A |E (A *)1O所以A *O 这与|A *|0矛盾,故当|A |0时 有|A *|0 (2)由于*||11A A A =-, 则AA *|A |E取行列式得到|A ||A *||A |n若|A |0 则|A *||A |n 1若|A |0 由(1)知|A *|0 此时命题也成立因此|A *||A |n 119. 设⎪⎪⎭⎫⎝⎛-=321011330A , ABA 2B 求B .解 由AB A 2E 可得(A 2E )B A 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=01132133020 设⎪⎪⎭⎫⎝⎛=101020101A 且AB EA 2B 求B解 由AB E A 2B 得 (A E )B A 2E即 (A E )B(AE )(A E )因为01001010100||≠-==-E A 所以(A E )可逆从而⎪⎪⎭⎫⎝⎛=+=201030102E A B21 设A diag(1 2 1) A *BA 2BA 8E 求B解 由A *BA 2BA 8E 得(A *2E )BA 8EB 8(A *2E )1A 18[A (A *2E )]18(AA *2A )1 8(|A |E 2A )18(2E2A )14(E A )14[diag(2 1 2)]1)21 ,1 ,21(diag 4-= 2diag(1 21)22已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A且ABA 1BA13E 求B解 由|A *||A |38 得|A |2由ABA1BA13E 得AB B 3AB 3(A E )1A 3[A (E A 1)]1A 11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060000660300101001000016123. 设P 1AP , 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A11.解 由P 1AP , 得A PP1所以A 11A =P11P 1.|P |3 ⎪⎭⎫⎝⎛-=1141*P ⎪⎭⎫⎝⎛--=-1141311P而 ⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=6846832732273124 设AP P其中⎪⎪⎭⎫⎝⎛--=111201111P ⎪⎪⎭⎫⎝⎛-=Λ511求(A )A 8(5E 6A A 2)解 ()8(5E 62)diag(1158)[diag(555)diag(6630)diag(1125)]diag(1158)diag(1200)12diag(100)(A )P ()P 1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=111111111425 设矩阵A 、B 及A B 都可逆 证明A 1B 1也可逆 并求其逆阵证明 因为 A 1(A B )B1B1A1A1B1而A 1(A B )B 1是三个可逆矩阵的乘积 所以A 1(A B )B 1可逆 即A1B 1可逆(A 1B 1)1[A 1(A B )B 1]1B (A B )1A26 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121解 设⎪⎭⎫ ⎝⎛=10211A ⎪⎭⎫ ⎝⎛=30122A ⎪⎭⎫ ⎝⎛-=12131B ⎪⎭⎫ ⎝⎛--=30322B则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A OE A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521 (最后一行的-9也可除以-1变成9,从而变成书上的答案) 27. 取⎪⎭⎫⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠解4100120021010*********0021010010110100101==--=--=D C B A而01111|||||||| ==D C B A故 |||||||| D C B A D C B A ≠28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A4解 令⎪⎭⎫ ⎝⎛-=34431A ⎪⎭⎫ ⎝⎛=22022A则 ⎪⎭⎫ ⎝⎛=21A O O A A故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A 1682818281810||||||||||===A A A A A⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O 则⎪⎭⎫⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143由此得 ⎪⎩⎪⎨⎧====sn E BC O BC O AC E AC 2143⎪⎩⎪⎨⎧====--121413B C O C O C A C所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫⎝⎛B C O A解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A30 求下列矩阵的逆阵(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025 解 设⎪⎭⎫ ⎝⎛=1225A ⎪⎭⎫ ⎝⎛=2538B 则⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A(2)⎪⎪⎪⎭⎫ ⎝⎛4121031200210001解 设⎪⎭⎫ ⎝⎛=2101A ⎪⎭⎫ ⎝⎛=4103B ⎪⎭⎫ ⎝⎛=2112C 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=411212458103161210021210001.。

线性代数第二章习题及解答

线性代数第二章习题及解答

解:令 X
−1
比较矩阵等式得
4
AX21 = E, AX22 = 0, BX12 + CX22 = E, BX11 + CX21 = 0, 于是 X21 = A−1 , X22 = 0 X12 = B −1 , X11 = −B −1 CA−1 15.A 的元素均为整数, 求证 A−1 的元素均为整数的充要条件是 |A| = ±1
那么 1 1 0 1 0 0 0 0
A=0 0 0 1 0 , 分别求 A−1 , B −1 1 1 0 1
和 C −1
(
解:A−1 = sin θ cos θ 1 2 2 B −1 = 1 1 −2 9 2 2 −2 1
cos θ
− sin θ
)
2
C
−1
0 = 0 0
1
−1 0 0
1 −1 1 0 2

1 −1
1 −1 1 −1

2 1

1 1 1
1 = 1
9.解矩阵方程
3
1 2 −1 2
0 X = −1 0 ; 10.解矩阵方程A 0 1 −2 3 1 0 0
aa7a是实对称矩阵且注意到ax我们仅对矩阵ab进行行初等变换将10如法炮制恕不赘述其结果为11
第二章练习题解答
( 1. 设 A = , 计算: 2A, 3B, A + B, 2A − 3B 1 1 1 3 1 1 2. 设 A = 2 1 2 , B = 2 −1 0 , 求 AB − BA. 1 0 2 1 2 3 1 a11 a12 · · · a1n 2 a21 a22 · · · a2n 0 3. 计算 . . . . . . . . . .. . an1 an2 · · · ann 0 ( ) ( ) ( 2 3 1 0 2 4. 已知 A = P ΛQ, 其中 P = ,Λ = ,Q = 1 2 0 −1 −1 2 −1 ,B = 1 2 A8 , A9 , A2n , A2n+1 , (n 为正整数) 解:An = P ΛQP ΛQ · · · P ΛQ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章矩阵一、知识点复习1、矩阵的定义由m⨯n个数排列成的一个m行n列的表格,两边界以圆括号或方括号,就成为一个m⨯n型矩阵。

例如2 -1 0 1 11 1 1 0 22 5 4 -2 93 3 3 -1 8 就是一个4⨯5矩阵、一个矩阵中的数称为它的元素,位于第i行第j列的数称为(i,j)位元素。

元素全为0的矩阵称为零矩阵,通常就记作0。

两个矩阵A与B相等(记作A=B),就是指它的行数相等,列数也相等(即它们的类型相同),并且对应的元素都相等。

2、n阶矩阵与几个特殊矩阵行数与列数相等的矩阵称为方阵,行列数都为n的矩阵也常常叫做n阶矩阵。

n阶矩阵的从左上角到右下角的对角线称为主对角线。

下面列出几类常用的n阶矩阵,它们都就是考试大纲中要求掌握的、对角矩阵: 对角线外的的元素都为0的n阶矩阵、单位矩阵: 对角线上的的元素都为1的对角矩阵,记作E(或I)、数量矩阵: 对角线上的的元素都等于一个常数c的对角矩阵,它就就是c E、上三角矩阵: 对角线下的的元素都为0的n阶矩阵、下三角矩阵: 对角线上的的元素都为0的n阶矩阵、对称矩阵: 满足A T=A矩阵,也就就是对任何i,j,(i,j)位的元素与(j,i)位的元素总就是相等的n阶矩阵、反对称矩阵:满足A T=-A矩阵、也就就是对任何i,j,(i,j)位的元素与(j ,i)位的元素之与总等于0的n阶矩阵、反对称矩阵对角线上的元素一定都就是0、) 正交矩阵:若AA T=A T A=E,则称矩阵A就是正交矩阵。

(1)A就是正交矩阵⇔A T=A-1 (2)A就是正交矩阵⇔2A=1 阶梯形矩阵:一个矩阵称为阶梯形矩阵,如果满足:①如果它有零行,则都出现在下面。

②如果它有非零行,则每个非零行的第一个非0元素所在的列号自上而下严格单调递增。

把阶梯形矩阵的每个非零行的第一个非0元素所在的位置称为台角。

每个矩阵都可以用初等行变换化为阶梯形矩阵,这种运算就是在线性代数的各类计算题中频繁运用的基本运算,必须十分熟练。

请注意:一个矩阵用初等行变换化得的阶梯形矩阵并不就是唯一的,但就是其非零行数与台角位置就是确定的。

3、矩阵的线形运算(1)加(减)法:两个m⨯n的矩阵A与B可以相加(减),得到的与(差)仍就是m⨯n矩阵,记作A+B (A-B),运算法则为对应元素相加(减)、(2)数乘: 一个m⨯n的矩阵A与一个数c可以相乘,乘积仍为m⨯n的矩阵,记作c A,运算法则为A的每个元素乘c、这两种运算统称为线性运算,它们满足以下规律:①加法交换律:A+B=B+A、2加法结合律:(A+B)+C=A+(B+C)、③加乘分配律:c(A+B)=c A+c B、(c+d)A=c A+d A、④数乘结合律:c(d)A=(cd)A、⑤ c A=0⇔ c=0 或A=0、4、矩阵乘法的定义与性质(1)当矩阵A的列数与B的行数相等时,则A与B可以相乘,乘积记作AB、AB的行数与A相等,列数与B相等、 AB的(i,j)位元素等于A的第i个行向量与B的第j个列向量(维数相同)对应分量乘积之与、12即:n m n s s m C B A ⨯⨯⨯=矩阵的乘法在规则上与数的乘法有不同:① 矩阵乘法有条件、 ② 矩阵乘法无交换律、 即AB ≠BA ③ 矩阵乘法无消去律:即一般地由AB =0推不出A =0或B =0、由AB =AC 与A ≠0推不出B =C 、(无左消去律)由BA =CA 与A ≠0推不出B =C 、 (无右消去律)请注意不要犯一种常见的错误:把数的乘法的性质简单地搬用到矩阵乘法中来、矩阵乘法适合以下法则:① 加乘分配律 A (B +C )= AB +AC , (A +B )C =AC +BC 、② 数乘性质 (c A )B =c(AB )、 ③ 结合律 (AB )C = A (BC )(2)n 阶矩阵的方幂与多项式任何两个n 阶矩阵A 与B 都可以相乘,乘积AB 仍就是n 阶矩阵、并且有行列式性质: |AB |=|A ||B |、如果AB =BA ,则说A 与B 可交换、方幂 设k 就是正整数, n 阶矩阵A 的k 次方幂A k 即k 个A 的连乘积、规定A0=E 、显然A 的任何两个方幂都就是可交换的,并且方幂运算符合指数法则:① A k A h = A k+h 、② (A k )h = A kh 、但就是一般地(AB )k 与A k B k 不一定相等! n 阶矩阵的多项式:设f(x)=a m x m +a m-1x m-1+…+a 1x+a 0,对n 阶矩阵A 规定 f(A )=a m A m +a m-1A m-1+…+ a 1A +a 0E 、称为A 的一个多项式、请特别注意在常数项上加单位矩阵E 、乘法公式 一般地,由于交换性的障碍,小代数中的数的因式分解与乘法公式对于n 阶矩阵的不再成立、但就是如果公式中所出现的n 阶矩阵互相都就是互相可交换的,则乘法公式成立、例如当A 与B 可交换时,有:(A ±B )2=A 2±2AB +B 2; A 2-B 2=(A +B )(A -B )=(A +B )(A -B )、二项展开式成立: B AC B A -=∑=+1)(等等、前面两式成立还就是A 与B 可交换的充分必要条件、(3)乘积矩阵的列向量组与行向量组设A 就是m ⨯n 矩阵B 就是n ⨯s 矩阵,A 的列向量组为α1,α2,…,αn ,B 的列向量组为β1, β2,…,βs ,AB 的列向量组为γ1, γ2,…,γs ,则根据矩阵乘法的定义容易瞧出(也就是分块法则的特殊情形):① AB 的每个列向量为:γi =A βi ,i=1,2,…,s 、即A (β1, β2,…,βs )= (A β1,A β2,…,A βs )、② β=(b 1,b 2,…,b n )T,则A β= b 1α1+b 2α2+…+b n αn 、应用这两个性质可以得到:如果βi =(b 1i ,b 2i ,…,b ni )T,则γi =A βI =b 1i α1+b 2i α2+…+b ni αn 、即:乘积矩阵AB 的第i 个列向量γi 就是A 的列向量组α1, α2,…,αn 的线性组合,组合系数就就是B 的第i 个列向量βi 的各分量。

类似地, 乘积矩阵AB 的第i 个行向量就是B 的行向量组的线性组合,组合系数就就是A 的第i 个行向量的各分量。

以上规律在一般教材都没有强调,但只要对矩阵乘法稍加分析就不难得出、它们无论在理论上与计算中都就是很有用的、利用以上规律容易得到下面几个简单推论:3① 用对角矩阵Λ从左侧乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的各行向量, 用对角矩阵Λ从右侧乘一个矩阵,相当于用Λ的对角线上的各元素依次乘此矩阵的各列向量。

⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ⨯44332211432121a a a a A m nm m λλλλααααλλλO[][]44332211214321a a a aa a a a A m m λλλλλλλ=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=ΛO② 数量矩阵kE 乘一个矩阵相当于用k 乘此矩阵;单位矩阵乘一个矩阵仍等于该矩阵。

③ 两个同阶对角矩阵的相乘只用把对角线上的对应元素相乘。

④ 求对角矩阵的方幂只需把对角线上的每个元素作同次方幂。

5、矩阵的行列式A 为n 阶方阵,由A 的元素所构成的行列式称为A 的行列式,表示为|A |。

若A 的行列式|A|≠0,称A 为非奇异方阵,|A|=0,称A 为奇异方阵|AB|=|A||B| |cA|=C n |A|、6、矩阵的转置把一个m ⨯n 的矩阵A 行与列互换,得到的n ⨯m 的矩阵称为A 的转置,记作A T(或A ')。

有以下规律:①(A T )T = A 、 ②(A+B)T =A T +B T 、 ③(cA)T =cA T 、 ④(AB)T =B T A T 、 ⑤|A T |=|A|7、矩阵的等价定义:两个矩阵如果可以用初等变换互相转化,就称它们等价、 矩阵的等价的充分必要条件为它们类型相同,秩相等、命题:两个m*n 矩阵A 与 B 等价的充要条件就是存在m 阶满秩矩阵P 及n 阶满秩矩阵Q,使得A=PBQ 8、矩阵方程与可逆矩阵(伴随矩阵)(1) 矩阵方程矩阵不能规定除法,乘法的逆运算就是解下面两种基本形式的矩阵方程:(I) AX =B 、 (II) XA =B 、这里假定A 就是行列式不为0的n 阶矩阵,在此条件下,这两个方程的解都就是存在并且唯一的(否则解的情况比较复杂、)。

当B 只有一列时,(I)就就是一个线性方程组、由克莱姆法则知它有唯一解、 如果B 有s 列,设 B =(β1, β2,…,βs ),则 X 也应该有s 列,记X =(X 1,X 2,…,X s ),则有AX i =βi ,i=1,2,…,s,这就是s 个线性方程组,由克莱姆法则,它们都有唯一解,从而AX =B 有唯一解。

这些方程组系数矩阵都就是A ,可同时求解,即得(I)的解法:将A 与B 并列作矩阵(A |B ),对它作初等行变换,使得A 变为单位矩阵,此时B 变为解X (A |B )→(E |X )。

(II)的解法:对两边转置化为(I)的形式:A T X T =B T ,再用解(I)的方法求出X T ,转置得X 、:(A T |B T )→(E |X T )矩阵方程就是历年考题中常见的题型,但就是考试真题往往并不直接写成(I)或(II)的形式,要用恒等变形简化为以上基本形式再求解。

(2) 可逆矩阵的定义与意义定义:设A 就是n 阶矩阵,如果存在n 阶矩阵B ,使得AB =E , BA =E ,则称A 为可逆矩阵,此时B 就是唯一的,称为A 的逆矩阵,通常记作A -1。

如果A可逆,则A在乘法中有消去律:AB=0⇒B=0;AB=AC⇒B=C、(左消去律);BA=0⇒B=0;BA=CA⇒B=C、(右消去律)如果A可逆,则A在乘法中可移动(化为逆矩阵移到等号另一边):AB=C⇔B=A-1C,BA=C⇔B=CA-1由此得到基本矩阵方程的逆矩阵解法:(I) AX=B的解X=A-1B (II) XA=B的解X= BA-1、这种解法想法自然,好记忆,但就是计算量比初等变换法大(多了一次矩阵乘积运算)、(3) 矩阵可逆性的判别与性质定理n阶矩阵A可逆⇔|A|≠0、证明充分性:对AA-1=E两边取行列式,得|A||A-1|=1,从而|A|≠0、(并且|A-1|=|A|-1、)必要性:因为|A|≠0,矩阵方程AX=E与XA=E都有唯一解、设B,C分别就是它们的解,即AB=E, CA=E、事实上B=C(B=EB=CAB=CE=C),于就是从定义得到A可逆、推论如果A与B都就是n阶矩阵,则AB=E⇔BA=E、于就是只要AB=E(或BA=E)一式成立,则A与B都可逆并且互为逆矩阵、可逆矩阵有以下性质:如果A可逆,则① A-1也可逆,并且(A-1)-1=A、②A T也可逆,并且(A T)-1=(A-1)T、③当c≠0时, c A也可逆,并且(c A)-1=c-1A-1、④对任何正整数k, A k也可逆,并且(A k)-1=(A-1)k、(规定可逆矩阵A的负整数次方幂A-k=(A k)-1=(A-1)k、)⑤如果A与B都可逆,则AB也可逆,并且(AB)-1=B-1A-1、(请自己推广到多个可逆矩阵乘积的情形、)⑥初等矩阵都就是可逆矩阵,并且E(i,j)-1= E(i,j), E(i(c))-1=E(i(c-1)), E(i,j(c))-1= E(i,j(-c))、(4) 逆矩阵的计算与伴随矩阵①计算逆矩阵的初等变换法当A可逆时, A-1就是矩阵方程AX=E的解,于就是可用初等行变换或列变换求A-1:初等行变换:[]1||-→AEEA初等列变换:⎥⎦⎤⎢⎣⎡→⎥⎦⎤⎢⎣⎡-1AEEA这个方法称为求逆矩阵的初等变换法、它比下面介绍的伴随矩阵法简单得多、②伴随矩阵若A就是n阶矩阵,记A ij就是|A|的(i,j)位元素的代数余子式,规定A的伴随矩阵 A11 A21… A n1A*= A12 A22… A n2 =(A ij)T、K K K KA1n A2n… A mn请注意,规定n阶矩阵A的伴随矩阵并没有要求A可逆,但就是在A可逆时, A*与A-1有密切关系。

相关文档
最新文档