2019年小学六年级数学上册知识点归纳

合集下载

数学六年级上册一到六单元知识点总结

数学六年级上册一到六单元知识点总结

数学六年级上册一到六单元知识点总结以下是数学六年级上册1-6单元的知识点总结:第一单元:分数乘法1. 分数乘法的意义:表示求几个相同分数的和的简便运算。

2. 分数乘法的计算法则:分数乘整数,分母不变,分子乘整数,能约分的先约分;分数乘分数,用分子乘分子作分子,分母乘分母作分母,能约分的先约分。

3. 乘积是1的两个数互为倒数。

4. 分数乘法的意义、计算法则、倒数的知识点与整数乘法的意义、计算法则、倒数的知识点相同。

第二单元:分数除法1. 分数除法的意义:表示求一个数的几分之几是多少。

2. 分数除法的计算法则:除以一个数(0除外),等于乘上这个数的倒数。

3. 当被除数小于除数时,商小于1;当被除数等于除数时,商等于1;当被除数大于除数时,商大于1。

4. 有两个数相除,可以先把“两个数相除商是几”转化为“两个数的几分之几相除是几”,再根据分数除法的意义转化为乘法算式进行计算。

5. 分数除法中的有关公式:被除数÷除数=被除数×除数的倒数。

第三单元:分数四则混合运算1. 分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同。

2. 一个算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先做第一级运算,后做第二级运算;如果有括号,要先算括号里面的,再算括号外面的。

3. 一个算式里,如果有加、减、乘、除四则运算,要首先进行乘、除运算,然后进行加、减运算;如果有括号,要先算括号里面的,再算括号外面的。

4. 分数四则混合运算中的解题关键在于确定运算的顺序。

第四单元:百分数1. 百分数的意义:表示一个数是另一个数的百分之几的数叫做百分数。

百分数也叫百分比或百分率。

2. 百分数与分数的意义不同。

百分数只表示两个数的倍比关系,不能带单位名称;分数既可以表示具体的数量,又可以表示两个数的倍比关系,可以带单位名称。

3. 百分数的读法:读百分数时,先读“百分之”,再读百分号前面的数字。

小学数学六年级上册知识点归纳

小学数学六年级上册知识点归纳

小学数学六年级上册知识点归纳小学数学六年级上册的知识点涉及到了整数、小数、分数、几何图形、图形的认识和运算等内容。

下面将对这些知识点进行详细的归纳和总结。

一、整数1. 整数的概念:正整数、零和负整数。

2. 正整数的加减法:同号相加减,异号相减并取两数符号。

3. 整数的乘法:积的符号规律,负数相乘为正数。

4. 整数的除法:除法的定义和性质,被除数等于除数乘以商加余数。

5. 整数的混合运算:根据运算优先级进行混合运算。

二、小数1. 小数的基本概念:小数点的含义和位置。

2. 小数的读法和写法:常见的小数形式。

3. 小数的比较大小:小数的大小比较方法。

4. 小数的加减运算:按数位对齐进行计算,保留相同的小数位数。

5. 小数的乘法和除法:小数的乘法和除法规则。

三、分数1. 分数的基本概念:分数的定义和含义。

2. 分数的表示方法:分子、分母和横线的含义。

3. 分数的化简与扩展:分子分母的最大公约数和最小公倍数。

4. 分数的比较大小:通分后比较大小。

5. 分数的加减运算:通分后按照分数的运算规则进行计算。

四、几何图形1. 点、线、段、角的概念:常见几何图形要素的含义。

2. 矩形、正方形和长方形:这些图形的性质和计算。

3. 平行四边形和三角形:这些图形的性质和计算。

4. 直线、射线和线段的比较:直线无限延伸,射线有一个端点,线段有两个端点。

5. 直角和直角三角形:直角的定义,直角三角形的性质。

五、图形的认识和运算1. 图形的放大和缩小:根据比例关系进行放大和缩小。

2. 图形的平移和镜像:图形进行平移和镜像的方法。

3. 图形的旋转:图形按照一定规则进行旋转。

4. 图形的面积计算:各种图形的面积计算公式。

5. 周长的计算:计算封闭图形的周长。

通过对小学数学六年级上册的知识点归纳和总结,我们可以更好地掌握这些知识,提高数学学习的效果。

希望同学们能够认真学习,勤于练习,取得更好的成绩。

(完整版)六年级数学上册重点知识归纳

(完整版)六年级数学上册重点知识归纳

六年级数学上册重点知识归纳第一单元:位置1、确定第几列、第几行的一般规则:竖排叫做列,横排叫做行;确定第几列一般是从左往右数,确定第几行一般是从前往后数。

2、用数对表示位置时,一般先表示第几列,再表示第几行。

如数对(3,2)中的“3”表示第三列,“2”表示第二行。

3、物体平移前后顶点的位置变化:(1)图形向左或向右平移,改变了顶点所在的列,没有改变顶点所在的行,数对中的第一个数变了,第二个数没有变;(2)图形向上或下平移,改变了顶点所在的行,没有改变顶点所在的列,数对中的第一个数没有变,第二个数变了。

第二单元:分数乘法1、分数乘整数的计算方法:分母不变,分子与整数相乘的积作分子。

2、分数乘分数,应该分子乘分子,分母乘分母。

注意:能约分的可以先约分再乘。

注意:一个大于0的数乘大于1的数,积大于这个数。

一个大于0的数乘小于1的数,积小于这个数。

3、分数混合运算的顺序和整数的混合运算顺序相同。

(1)在没有括号的算式里,同级运算从左往右进行计算;(2)在没有括号的算式里,既有乘除又有加减,要先算乘除后算加减;(3)有括号的要先算小括号里面的,后算中括号里面的,最后算括号外面的数。

4、整数乘法的交换律、结合律和分配律,对于分数乘法也适用。

(1)乘法交换律:a×b=b×a(2)乘法结合律:(a×b)×c=a×(b×c)(3)乘法分配律:(a+b)×c=a×c+b×c5、解决求一个数的几分之几是多少的问题,用乘法计算。

6、乘积是1的两个数互为倒数。

求分数的倒数是交换分子、分母的位置;求整数的倒数是把整数看作分子是1的分数,再交换分子和分母和位置。

注意:1的倒数是1,0没有倒数。

7、真分数的倒数一定都大于1;假分数的倒数一定都小于或等于1。

第三单元:分数除法1、分数除法的意义与整数除法的意义相同,是已知两个数的积与其中一个因数,求另一个因数的运算。

六年级上册数学知识点归纳总结

六年级上册数学知识点归纳总结

六年级上册数学知识点归纳总结
一、数据处理:
1、统计概念:定义、实例、事物及描述数据的属性;
2、数据表格:使用列标及行标表示数据,并用表格表示统计数据;
3、频率分布:分析、填写、求出频率分布直方图、条形图及饼图;
4、计算指标:计算众数、中位数、四分位数、平均数及方差;
二、概率论:
1、概念和性质:定义、例题及性质;
2、条件概率的计算:计算独立概率及伴随概率;
3、随机变量:定义、基本概念及性质;
4、期望概念:定义、计算及性质;
三、代数:
1、一元一次方程:求解、实例、求根及性质;
2、二元一次方程:解法、图象、判定及解型;
3、二元二次方程:解法、图象、判定及解型;
4、平面直角坐标系:理解、应用及求解;
5、多项式:定义、种类及求系数;
6、函数:概念、关系、求值;
四、几何:
1、基本概念:定义、实例、定理及性质;
2、平面图形:特征、组成、计算及关系;
3、直线:定义、特征及点位关系;
4、三视图:概念、实例及绘制;
5、投影原理:正、透视及绘图;
6、立体图形:概念、特征、表示法及计算;
7、几何运算:子式、距离、角度及锐角定理;。

六年级数学上册知识点总结

六年级数学上册知识点总结

六年级数学上册知识点总结六年级数学上册主要涵盖了数与代数、空间与图形、数据与概率三个大的知识点。

其中,数与代数包括整数运算、小数运算、分数运算、百分数运算、数的比较和数的表达等内容;空间与图形包括几何图形的认识、图形的性质和图形的变换等内容;数据与概率包括数据的收集整理和数据的呈现、概率与统计等内容。

下面将对这些知识点进行总结。

一、数与代数1. 整数运算六年级上册主要学习整数的加法、减法、乘法、除法以及运算性质和运算法则。

需要注意的是,整数运算中的符号规则和运算顺序,还有绝对值的求法和运算规律。

2. 小数运算六年级数学上册将小数运算落实到数的四则运算中,主要学习小数的加法、减法、乘法和除法。

此外,还会接触到小数与整数之间的运算和关系。

3. 分数运算分数运算是六年级上册数学中的重要知识点,主要学习分数的加法、减法、乘法和除法。

此外,还需要掌握分数的化简和比较大小。

4. 百分数运算百分数是表示数和比例的常见形式,六年级上册会介绍百分数的基本概念和表示法,并学习百分数的转化、运算以及与分数和小数的关系。

5. 数的比较在数与代数部分,还会学习数的比较大小,比如使用大于、小于、等于等符号进行数字的比较,并掌握不等式的性质和解不等式的方法。

6. 数的表达数的表达主要指的是将一些实际问题中的信息用数表示出来,并能够根据数的表达来解决实际问题。

这部分内容主要锻炼学生的应用能力和问题解决能力。

二、空间与图形1. 几何图形的认识六年级上册将介绍和学习一些几何图形的基本概念和性质,如点、线、线段、射线、角、三角形、四边形等。

2. 图形的性质在认识几何图形的基础上,还需要学习图形的性质,包括几何图形的边数、顶点数、对称性、直线对称和中心对称等。

3. 图形的变换图形的变换是六年级上册数学的重要内容,包括平移、旋转、翻转和对称等。

学生需要学习图形变换的定义、性质以及变换规则,并能够灵活运用图形变换进行解题。

三、数据与概率1. 数据的收集整理数据的收集整理是指学生需要学习如何收集和整理数据,包括用表格、图表和图像等形式记录数据,并通过统计和分析数据来解决实际问题。

六年级数学上册重点知识归纳

六年级数学上册重点知识归纳

六年级数学上册重点知识归纳第一章:整数整数是由自然数、0和负整数组成的集合。

在六年级数学上册中,我们学习了整数的四则运算、比较大小、相反数和绝对值等重要概念。

1. 整数的四则运算:- 加法:将两个整数相加,结果仍然是一个整数。

- 减法:从一个整数中减去另一个整数,结果仍然是一个整数。

- 乘法:将两个整数相乘,结果仍然是一个整数。

- 除法:将一个整数除以另一个整数,结果可以是一个整数,也可以是一个带余数的分数。

2. 整数的比较大小:- 当两个整数相比较时,我们可以利用它们在数轴上的位置关系进行判断。

较大的整数在数轴上的位置更靠右。

- 当整数的绝对值相等时,正整数大于负整数。

- 当整数的绝对值不同且符号相同时,绝对值较大的整数较大。

3. 相反数和绝对值:- 相反数:一个整数的相反数与它的绝对值相等,但符号相反。

- 绝对值:一个整数的绝对值是它到0的距离,即去掉符号后的值。

第二章:分数分数是指由整数和非零整数分母的有理数。

在数学上,我们学习了分数的基本概念、分数的四则运算以及分数的大小比较。

1. 分数的基本概念:- 分子:分数的上部分,表示被分成的份数。

- 分母:分数的下部分,表示每份的大小。

- 真分数:分子小于分母的分数。

- 假分数:分子大于等于分母的分数。

- 显分数:分数的分子除以分母得到的带余数。

2. 分数的四则运算:- 加法:将两个分数相加,分母不变,分子相加。

- 减法:将一个分数减去另一个分数,分母不变,分子相减。

- 乘法:将两个分数相乘,分子相乘,分母相乘。

- 除法:将一个分数除以另一个分数,分子相乘,分母相乘取倒数。

3. 分数的大小比较:- 当两个分数的分母相等时,我们可以比较它们的分子大小。

- 当两个分数的分母不等时,我们需要将它们通分后再比较。

第三章:小数小数是指用十进制表示的有理数。

在六年级数学上册中,我们学习了小数的读法、写法、大小比较以及小数的四则运算。

1. 小数的读法和写法:- 小数点:小数点用于分隔整数部分和小数部分。

2019年 苏教版六年级数学上册 知识点归纳总结

2019年  苏教版六年级数学上册  知识点归纳总结

12019苏教版六年级数学上册知识点总结第一单元 长方体和正方体长方体和正方体的特征:长方体和正方体的表面积:概念:长方体或正方体6个面的总面积,叫做它们的表面积 计算公式:长方体的棱长总和=(长+宽+高)×4长方体表面积=(长×宽+长×高+宽×高)×2或=)2S a b a c b c ⨯+⨯+⨯⨯表( 正方体的棱长总和=棱长×12正方体表面积=棱长×棱长×6或2=66S a a a ⨯⨯=表注:不足6个面的实际问题根据具体情况计算,例如鱼缸、无盖纸盒等等。

体积(容积)单位进率换算:1立方米=1000立方分米 1立方分米=1000立方厘米3311000m dm = 3311000dm cm =1升=1000毫升 1立方分米=1升 1立方厘米=1毫升 1L=1000m L 31dm =1L 31cm =1m L 长方体和正方体的体积(容积):概念:物体所占空间的大小叫做它们的体积(容器所能容纳其它物体的体积叫做它的容积)。

计算公式:长方体体积公式=长×宽×高 或 V a b h =⨯⨯ 正方体体积公式=棱长×棱长×棱长 或 3V a a a a =⨯⨯=长方体和正方体的体积=底面积×高 或 ×V S h =底 正方体棱上分割表面涂色:三面涂色有8个, 两面涂色有(n-2)×12个 一面涂色有(n-2)2×6个 没有涂色有(n-2)3个第二单元 分数乘法分数与整数相乘及实际问题:1.分数与整数相乘:用整数与分数的分子相乘的积作为分子,分数的分母作为分母,最后约分成最简分数。

或者先将整数与分数的分母进行约分,再应用前面计算法则。

注:【任何整数都可以看作为分母是1的分数】2.求一个数的几分之几是多少,可以用乘法计算。

3.解题时可以根据表示几分之几的条件,确定单位1的量,想单位1的几分之几是哪个数量,找出数量关系式,再根据数量关系式列式解答。

六年级上册数学知识点总结

六年级上册数学知识点总结

六上数学知识点总结一、数的认识1.1 整数1.理解整数的概念,掌握整数的分类:自然数、整数、负整数。

2.掌握整数的性质:加法、减法、乘法、除法。

3.掌握整数的运算规律:结合律、交换律、分配律。

1.2 小数1.理解小数的概念,掌握小数的构成:整数部分、小数点、小数部分。

2.掌握小数的性质:小数的末尾添上“0”或去掉“0”小数的大小不变。

3.掌握小数的运算规律:加法、减法、乘法、除法。

1.3 分数1.理解分数的概念,掌握分数的构成:分子、分母、分数线。

2.掌握分数的性质:分数的基本性质、分数与除法的关系。

3.掌握分数的运算规律:加法、减法、乘法、除法。

二、数的运算2.1 加减法1.理解加减法的概念,掌握加减法的运算规律。

2.掌握加减法的运算顺序:同级运算从左到右,有括号的先算括号里面的。

2.2 乘除法1.理解乘除法的概念,掌握乘除法的运算规律。

2.掌握乘除法的运算顺序:两级运算先算乘除,同级运算从左到右,有括号的先算括号里面的。

2.3 混合运算1.理解混合运算的概念,掌握混合运算的运算顺序。

2.能够正确计算混合运算,注意运算符号和括号的使用。

三、几何初步3.1 平面图形的认识1.理解平面图形的概念,掌握常见平面图形的特征:三角形、四边形、五边形、六边形。

2.掌握平面图形的分类:三角形、四边形、五边形、六边形。

3.2 平面图形的面积1.理解平面图形面积的概念,掌握平面图形面积的计算方法。

2.掌握三角形的面积计算公式:底×高÷2。

3.掌握四边形的面积计算公式:底×高。

3.3 立体图形的认识1.理解立体图形的概念,掌握常见立体图形的特征:正方体、长方体、圆柱、圆锥。

2.掌握立体图形的分类:正方体、长方体、圆柱、圆锥。

3.4 立体图形的体积1.理解立体图形体积的概念,掌握立体图形体积的计算方法。

2.掌握正方体体积计算公式:棱长×棱长×棱长。

3.掌握长方体体积计算公式:长×宽×高。

数学六年级上册知识点大全

数学六年级上册知识点大全

数学六年级上册知识点大全一、整数整数的概念:正整数、负整数、零整数的加减法:同号相加减、异号相加减绝对值的概念和性质:非负数的绝对值是其本身,负数的绝对值是其相反数数轴及其运用:用数轴表示整数的大小关系和加减运算二、小数小数的概念:小数点及其后面的数值小数的读法和写法:百分数与小数的关系小数的大小比较:位置定理和数线图的运用小数的加减运算:按位对齐,逐位相加减小数与整数的加减乘除:转化为分数进行运算小数的乘法:结合律和转化为整数的乘法小数的除法:借助乘法计算和精确除法十分位、百分位和千分位的概念三、分数分数的概念:分子、分母、真分数和假分数分数的读法和写法:整数转化为分数,分数转化为整数或小数分数的比较:相等,大小关系分数的加减法:通分,按位相加减分数的乘除法:分数乘法与分数除法的运算法则分数与整数的加减乘除:转化为分数进行运算分数的化简与扩展:约分和通分分数的混合运算:加减乘除的综合运用四、几何图形点、直线和线段的概念平面和封闭曲线的概念多边形的概念:三角形、四边形、五边形等平行线和垂直线的判定方法直角、钝角和锐角的概念正方形、长方形和正三角形的性质圆的概念:圆心、半径和直径圆的周长和面积计算公式体积和表面积的概念:长方体、正方体和正方柱体五、数据与统计数据的收集和整理:表格和图表的制作数据的描述和分析:最大值、最小值、中位数和平均数折线图和条形图的绘制和分析频数和频率的概念:频率分布表和直方图六、算术的综合运用多步运算的应用:综合运用加减乘除应用题的解决方法:读懂题目,分析问题,设变量,列算式“解方程”概念与应用:解决实际问题中的方程运用以上就是数学六年级上册的知识点大全。

通过学习这些知识,同学们可以对整数、小数、分数、几何图形、数据与统计以及算术的综合运用有更深入的理解,提高数学解题的能力。

希望同学们能够通过不断的练习和巩固,掌握这些知识,为接下来的学习打下坚实的基础。

加油!。

小学六年级上册数学知识点总结归纳(绝对经典)

小学六年级上册数学知识点总结归纳(绝对经典)

小学六年级上册数学知识点总结归纳第一单元位置1、行和列的意义:竖排叫做列,横排叫做行。

2、数对可以表示物体的位置,也可以确定物体的位置。

3、数对表示位置的方法:先表示列,再表示行。

用括号把代表列和行的数字或字母括起来,再用逗号隔开。

例如:(7,9)表示第七列第九行。

4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。

如:(2,4)和(2,7)都在第2列上。

5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。

如:(3,6)和(1,6)都在第6行上。

6、物体向左、右平移,行数不变,列数减去或加上平移的各数。

物体向上、下平移,列数不变,行数减去或加上平移的各数。

第二单元分数乘法(一)、分数乘法的意义。

1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

例如:512×6,表示:6个512相加是多少,还表示512的6倍是多少。

2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

例如:6×512,表示:6的512是多少。

2 7×512,表示:27的512是多少。

(二)、分数乘法的计算法则:1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(三)、分数大小的比较:1、一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

2、如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

(四)、解决实际问题。

1分数应用题一般解题步行骤。

(1)找出含有分率的关键句。

六年级上册数学知识点大全

六年级上册数学知识点大全

六年级上册数学知识点大全1500字六年级上册数学知识点大全:一、整数运算1.正整数和负整数的概念及表示方法;2.整数的比较与排序;3.整数的加法、减法、乘法和除法运算;4.整数的乘方运算;5.整数的混合运算。

二、分数运算1.分数的概念及表示方法;2.分数的比较与排序;3.分数的加法、减法、乘法和除法运算;4.分数的混合运算。

三、小数运算1.小数的概念及表示方法;2.小数的比较与排序;3.小数的加法、减法、乘法和除法运算;4.小数的混合运算。

四、不等关系及解不等式1.不等关系的概念及符号表示;2.解一元一次不等式;3.解包含绝对值的不等式。

五、算式的变形与等式的解1.算式的相等关系;2.算式的变形与等式的解。

六、数与代数式1.数、代数(变量)和代数式的概念;2.代数式的数值计算和变量计算;3.图形与代数式的关系。

七、几何图形1.平面图形的基本性质;2.平行线、垂直线、相交线的判定;3.平面图形的分类与分析;4.几何图形的投影。

八、图形的轴对称和中心对称1.轴对称图形的性质与判定;2.中心对称图形的性质与判定;3.两种对称关系的联系与区别。

九、运算律和运算法则1.加法和乘法的运算律;2.数的运算律;3.运算法则的应用。

十、数量关系1.相等关系的图象表示;2.比例关系的概念及图象表示;3.百分数的概念及图象表示。

十一、统计与概率1.统计图表的读取和制作;2.统计数据的分析和应用;3.概率的理解和计算;4.概率问题的应用分析。

以上就是六年级上册数学的全部知识点,掌握了这些知识点,学生就能够在数学学习中得心应手,顺利完成各种题目的解答和应用。

六年级上册数学重点知识归纳

六年级上册数学重点知识归纳

六年级上册数学重点知识归纳一、分数乘法。

1. 分数乘整数的意义与整数乘法的意义相同,都是求几个相同加数的和的简便运算。

2. 分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

能约分的先约分,再计算。

3. 分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

能约分的先约分,再计算。

二、位置与方向(二)1. 根据方向和距离确定物体的位置。

2. 描述简单的路线图。

三、分数除法。

1. 分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。

2. 分数除以整数(0 除外),等于分数乘这个整数的倒数。

3. 一个数除以分数,等于这个数乘分数的倒数。

四、比。

1. 两个数相除又叫做两个数的比。

2. 比的前项除以后项所得的商,叫做比值。

3. 比的基本性质:比的前项和后项同时乘或除以相同的数(0 除外),比值不变。

五、圆。

1. 圆的认识:圆心(O)、半径(r)、直径(d)。

2. 圆的周长:C = πd 或 C = 2πr。

3. 圆的面积:S = πr²。

六、百分数(一)1. 百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。

百分数也叫做百分率或百分比。

2. 百分数与小数、分数的互化。

3. 用百分数解决问题。

七、扇形统计图。

1. 特点:能清楚地反映出各部分数量与总数量之间的关系。

2. 绘制扇形统计图的步骤。

八、数学广角——数与形。

体会数与形的联系,寻找规律解决问题。

六年级数学上册全册知识点

六年级数学上册全册知识点

六年级数学上册全册知识点
六年级数学上册全册知识点包括但不限于:
1. 分数乘法:分数乘法的意义、计算法则、规律以及分数乘法解决问题。

2. 分数除法:分数除法的意义、计算法则、规律以及分数除法解决问题。

3. 比和比例:比的意义、计算以及比和除法、分数的区别;比例的概念、性质以及解比例等。

4. 圆:圆的概念、性质、圆周率、圆的面积和周长等。

5. 百分数:百分数的概念、性质、百分数与小数的互化、百分数的加减乘除等。

6. 扇形统计图:扇形统计图的概念、特点以及作图方法等。

7. 圆的面积:圆面积的概念、计算公式以及推导过程等。

8. 圆柱和圆锥:圆柱和圆锥的概念、性质以及表面积和体积的计算等。

9. 正比例和反比例:正比例和反比例的概念、性质以及应用等。

10. 位置与方向:位置与方向的概念、描述方法以及作图方法等。

11. 负数:负数的概念、表示方法以及大小比较等。

12. 综合与实践:包括探索乐园、生活数学和数学游戏等内容,旨在提高学生的数学应用能力和创新能力。

这些知识点是六年级数学上册的主要内容,需要学生掌握和应用。

在学习过程中,学生应该注重理解概念、掌握方法,多做练习题,提高自己的数学素养和能力。

六年级上册全知识点

六年级上册全知识点

六年级上册全知识点第一章:数与运算1. 十进制数十进制数是由0-9这10个数字组成的数,以10为基数。

这种数是我们日常生活中使用最广泛的数。

2. 加法和减法加法是指将两个或多个数相加,得到一个和;减法是指从一个数中减去另一个数,得到一个差。

3. 乘法和除法乘法是指将两个或多个数相乘,得到一个积;除法是指将一个数分成若干等份,得到一个商。

4. 分数分数由一个整数除以另一个整数得到,由分子和分母构成。

分子表示被分成的份数,分母表示每份的数量。

5. 小数小数是分数的一种特殊形式,分母为10的幂。

6. 乘方与开方乘方是指一个数自身乘以自身若干次,开方是指求一个数的平方根或立方根等。

第二章:图形与几何1. 点与线段点是一个位置,用小圆点表示;线段是由两个点确定的直线段,用A、B表示两个端点。

2. 直线、射线和线段直线是由无数个点无限延伸而成的;射线是由一个起点沿着一个方向延伸而成的;线段有两个端点,固定长度。

3. 角角由两条射线共同确定,两条射线的公共端点称为角的顶点。

4. 平行线和垂直线平行线是在同一平面内永不相交的直线;垂直线是与另一条线段或平面相交成直角的直线。

5. 三角形三角形是由三条线段组成的图形,包括直角三角形、等腰三角形和等边三角形等。

6. 四边形四边形是由四条线段组成的图形,包括矩形、正方形、平行四边形和菱形等。

第三章:分数的运算1. 分数的加减法分数的加法是指将两个分数相加,分母相同,分子相加;分数的减法是指将一个分数减去另一个分数,分母相同,分子相减。

2. 分数的乘法和除法分数的乘法是指将两个分数相乘,分子相乘,分母相乘;分数的除法是指将一个分数除以另一个分数,将除数的倒数乘以被除数。

3. 分数的化简和比较大小分数的化简是指将一个分数约分为最简形式;比较大小时可将分数转化为相同分母进行比较。

第四章:长方形和平行四边形1. 长方形的性质长方形有四个直角,对边相等,对角线相等,周长等于长和宽的两倍,面积等于长乘以宽。

小学六年级数学上册知识点归纳

小学六年级数学上册知识点归纳

小学六年级数学上册知识点归纳一、数的认识与运算1. 自然数:表示物体个数的数,如0、1、2、3等。

2. 整数:包括正整数、负整数和零,如-3、-2、-1、0、1、2等。

3. 分数:表示部分的数,如1/2、3/4、5/6等。

4. 小数:表示十分之几、百分之几的数,如0.1、0.25、0.5等。

5. 百分数:表示百分之几的数,如20%、50%、80%等。

6. 四则运算:加法、减法、乘法、除法。

7. 混合运算:将四则运算按照一定的顺序进行计算。

二、数的大小比较1. 比较整数的大小:从左到右依次比较每一位上的数字,直到找到不同的位或者比较完所有位。

2. 比较分数的大小:先比较分母,如果分母相同,再比较分子。

3. 比较小数的大小:先比较小数点后第一位,如果相同,再比较小数点后第二位,以此类推。

三、数的应用1. 长度:表示物体的长度,单位有厘米、米、千米等。

2. 重量:表示物体的重量,单位有克、千克、吨等。

3. 容量:表示物体的容积,单位有毫升、升、立方米等。

4. 时间:表示时间的长短,单位有秒、分钟、小时、天等。

5. 货币:表示货币的价值,单位有元、角、分等。

四、几何图形1. 点:没有大小和形状的物体。

2. 线:没有宽度和厚度的物体,可以无限延伸。

3. 面:由线段围成的封闭图形。

4. 三角形:由三条边组成的图形,有三个角和三个顶点。

5. 四边形:由四条边组成的图形,有四个角和四个顶点。

6. 圆形:由一条曲线围成的图形,所有点到圆心的距离相等。

7. 正方形:四边相等且四个角都是直角的四边形。

8. 长方形:对边相等且四个角都是直角的四边形。

9. 平行四边形:对边相等且相邻两边平行的四边形。

10. 梯形:有一对边平行的四边形。

11. 菱形:四条边相等且对角线互相垂直的四边形。

12. 矩形:四个角都是直角的平行四边形。

13. 圆环:由两个同心圆组成的图形。

14. 扇形:由圆心和圆上两点组成的图形。

15. 椭圆:由两个焦点和两条准线组成的图形。

2019苏教版六年级上册第四单元解决问题的策略知识点

2019苏教版六年级上册第四单元解决问题的策略知识点

六年级上册数学第四单元《解决问题的策略》知识点【知识梳理】1.用假设的策略解决问题时,通常是把一个量假设成用另一个量来表示,原则是假设以后的算式计算要比较简单。

2.用假设的策略解决问题时,通常分为()关系和()关系来思考;用()关系来解题时,一般()不发生改变,用()关系来解题时,一般()不发生改变。

【夯实基础】一、填空。

1.一头猪能换三只羊,一头牛能换六头猪,一头牛可以换()只羊。

2.张大爷家养了3头牛和20头猪,如果1头牛的质量相当于5头猪的质量,那么牛和猪的总质量相当于()头牛的质量,或者相当于()猪的质量。

3.3个苹果质量+5个梨子质量+9个桃子质量=5550克,3个苹果质量+5个梨子质量+12个桃子质量=6000克,1个桃子的质量是()克。

4.甲数和乙数的和是35,如果甲的4倍与乙的7倍和是179,那么甲数是(),乙数是()。

二、解决问题1.粮店有大米20袋,面粉50袋,共重2250千克,已知1袋大米的重量和2袋面粉的重量相等,那么一袋大米重多少千克?2.8块饼干等于1杯牛奶的钙含量。

小明吃12块饼干和1杯牛奶的钙含量是500毫克,每块饼干的钙含量和每杯牛奶的钙含量约是多少毫克?3.2个同样的大袋和3个同样的小袋子,共装68个球,每个小袋比大袋少装4个球,每个大袋和每个小袋各装多少个球?4.420双运动鞋,分别装在3只大箱和8只小箱,正好装满,如果一只大箱与两只小箱装的运动鞋一样多,每只大箱和每只小箱各装多少双运动鞋?5.梨花庄小学有3块面积相等的花圃和3块面积相等的苗圃,一共是480平方米。

每块花圃比每块苗圃大10平方米,每块花圃和每块苗圃的面积各是多少平方米?6.小刚买了4枝钢笔和2枝铅笔共52元,钢笔的单价是铅笔单价的6倍。

钢笔和铅笔的单价各是多少元?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。

三、乘法中比较大小时规律:一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

四、分数混合运算的运算顺序和整数的运算顺序相同。

五、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律:a × b = b × a乘法结合律:( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a×c + b×c六、分数乘法的解决问题(一)(已知单位“1”的量,求单位“1”的几分之几是多少(具体量)用乘法) 一个数的几分之几= 一个数×几分之几1、找单位“1”:在分数句中分数的前面; 或“占”、“是”、“比”的后面;2、看有没有多或少的问题;3、写数量关系式技巧:(1)“的” 相当于“×” “占”、“是”、“比”相当于“ = ”(2)分数前是“的”:单位“1”的量×分数=具体量(3)分数前是“多或少”的意思:单位“1”的量×(1-分数)=具体量;单位“1”的量×(1+分数)=具体量(已知具体量求单位“1”的量,用除法)(二)、倒数1、倒数的意义:乘积是1的两个数互为倒数。

1的倒数是1; 0没有倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)。

2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。

(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

(3)、求带分数的倒数:把带分数化为假分数,再求倒数。

(4)、求小数的倒数:把小数化为分数,再求倒数。

3、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

第三单元:分数除法一、分数除法1、分数除法的意义:分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。

除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。

乘法:因数× 因数 = 积除法:积÷ 一个因数 = 另一个因数2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。

分数除法比较大小时规律:当除数大于1,商小于被除数;当除数小于1(不等于0),商大于被除数;当除数等于1,商等于被除数。

“[ ]”叫做中括号。

一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。

二、分数除法解决问题三、比和比的应用1、两个数相除又叫做两个数的比。

在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。

比的前项除以后项所得的商,叫做比值。

比的后项不能为0.例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)2、比可以表示两个相同量的关系,即倍数关系。

也可以表示两个不同量的比,得到一个新量。

例:路程÷速度=时间。

3、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

4、比和除法、分数的联系与区别:(区别)除法是一种运算,分数是一个数,比表示两个数的关系。

比的前项相当与除法中的被除数,分数中的分子;比的后项相当与除法中的除数,分数中的分母;比号相当于除法中的除号,分数中的分数线;比值相当于除法的商,分数的分数值。

注意:体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

(二)、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

2、比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

根据比的基本性质,把比化成最简整数比。

3.化简比:(2)用求比值的方法。

注意:最后结果要写成比的形式。

如:15∶10 = 15÷10 = 3/2 = 3∶25.按比例分配:把一个数量按照一定的比来进行分配。

这种方法通常叫做按比例分配。

第四单元圆的认识(一)1.圆中心的一点叫圆心,用O表示.一端在圆心,另一端在圆上的线段叫半径,用r表示.两端都在圆上,并过圆心的线段叫直径,用d表示.2.圆有无数条半径,有无数条直径.3.圆心决定圆的位置,半径决定圆的大小.4.把圆对折,再对折就能找到圆心.5.圆是轴对称图形,直径所在的直线是圆的对称轴.圆有无数条对称轴.6.在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2.7.圆一周的长度就是圆的周长.半圆的周长等于圆周长的一半加一条直径。

8.圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用字母π表示,计算时通常取3.14.C=πd或C=2πr.1π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7 6π=18.84 7π=21.98 8π=25.12 9π=28.26 10π=31.49.用S表示圆的面积, r表示圆的半径,那么S=S环=π10.周长相等时,圆的面积最大.面积相等时,圆的周长最小.第五单元:百分数一、百分数的意义和写法1、百分数的意义:表示一个数是另一个数的百分之几。

百分数是指的两个数的比,因此也叫百分率或百分比。

2、百分数和分数的主要联系与区别:联系:都可以表示两个量的倍比关系。

区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。

②、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。

二、百分数和分数、小数的互化(一)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。

2. 百分数化成小数:把小数点向左移动两位,同时去掉百分号。

(二)百分数的和分数的互化1、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分数。

2、分数化成百分数:① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。

②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

(三)常见的分数与小数、百分数之间的互化三、用百分数解决问题(一)一般应用题1、常见的百分率的计算方法:一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。

(一般出粉率在70、80%,出油率在30、40%。

)(二)、折扣:商品按原定价格的百分之几出售,叫做折扣。

通称“打折”。

几折就表示十分之几,也就是百分之几十。

例如八折=0.8=80﹪,六折五=0.65=65﹪2、成数:一成是十分之一,也就是10%。

三成五就是十分之三点五,也就是35%(三)、纳税1、纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

2、纳税的意义:税收是国家财政收入的主要来源之一。

国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。

缴纳的税款叫做应纳税额。

应纳税额与各种收入的比率叫做税率。

应纳税额 = 总收入× 税率(四)利息 1、存款分为活期、整存整取和零存整取等方法。

2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

3、存入银行的钱叫做本金。

取款时银行多支付的钱叫做利息。

利息与本金的比值叫做利率。

利息=本金×利率×时间注意:如要上利息税,则:税后利息=利息×(1-利息税率)国债和教育存款的利息不纳税第六单元:统计一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。

也就是各部分数量占总数的百分比。

二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。

2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。

3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。

三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。

(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。

)第七单元:数学广角一、“鸡兔同笼”问题的特点:题目中有两个或两个以上的未知数,要求根据总数量,求出各未知数的单量。

二、“鸡兔同笼”问题的解题方法1、列表猜测法2、假设法 (1) 假如都是兔 (2) 假如都是鸡 (3) 古人“抬脚法”:3、列方程法4、公式法:【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。

或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。

例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。

解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。

(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。

(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。

或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。

(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。

相关文档
最新文档