八年级数学知识要点归纳

合集下载

八年级上册数学知识点大全归纳

八年级上册数学知识点大全归纳

八年级上册数学知识点大全归纳以下是八年级上册数学的主要知识点大全归纳:
1. 分数:
- 分数的定义和性质
- 分数的化简与比较大小
- 分数的四则运算:加减乘除
2. 小数:
- 小数与分数的转换
- 小数的加减乘除运算
3. 比例与比例方程:
- 比例的定义和性质
- 比例的四则运算:比例的乘法、除法
- 比例的应用:比例尺、相似图形等
- 解比例方程
4. 百分数与百分比:
- 百分数的定义和性质
- 百分数的四则运算:加减乘除
- 百分数的应用:利息、折扣、增长率等
5. 代数式与方程式:
- 代数式的定义和性质
- 代数式的运算:加减乘除
- 简单方程的解法:正整数解、代数解、图解法等
6. 平面几何:
- 角的概念和性质:直角、钝角、锐角、平角等
- 三角形的分类和性质:等边三角形、等腰三角形、直角三角形等 - 四边形的分类和性质:矩形、平行四边形、菱形等
- 圆的定义、性质和计算:弧长、面积、圆周率等
7. 数据与统计:
- 数据的收集和整理:频数表、条形图、折线图等
- 中心趋势的度量:平均数、中位数、众数等
- 变化趋势的度量:范围、极差等
- 理解抽样及其应用:简单随机抽样、系统抽样等
8. 数字运算和问题解决:
- 含有算术运算的实际问题
- 含有算术运算的综合性问题
- 推理与证明
以上是八年级上册数学的主要知识点大全归纳,希望对你有帮助!。

八年级数学内容知识点归纳

八年级数学内容知识点归纳

八年级数学内容知识点归纳一、有理数有理数是指整数和分数的集合,包括正数、负数和零。

1. 整数的概念和性质2. 有理数的概念和性质3. 有理数的比较大小4. 有理数的加减运算5. 有理数的乘除运算6. 有理数的混合运算二、代数式与方程式代数式是由数、字母、运算符号和括号组成的表达式,方程式是指等式两边的代数式。

1. 代数式的概念和性质2. 代数式的化简与合并3. 代数式的因式分解4. 一元一次方程式的概念和解法5. 一元一次方程式的应用6. 一元二次方程式的概念和解法三、几何与三角形几何是研究空间中图形、大小、位置关系及其变化的学科,三角形是平面上的一种图形。

1. 平面几何和空间几何的概念2. 基本图形的性质与应用3. 直线的性质与应用4. 角的概念和性质5. 三角形的分类和性质6. 三角形的计算和应用四、函数与图像函数是变量之间的一种关系,图像是表示函数关系的一种方式。

1. 函数的概念和性质2. 函数的表示和作图3. 函数的性质及应用4. 直线的斜率和截距5. 二元一次方程组的图像和解法6. 解析几何与向量的应用五、概率与统计概率是研究随机事件发生的可能性,统计是研究数据的收集、分析和解释的学科。

1. 概率的概念和计算2. 概率的应用和实际问题3. 统计的概念和数据的分析4. 统计图的应用和解释5. 样本与总体的概念和比较6. 推断统计和假设检验以上八年级数学知识点的归纳,可以帮助学生复习和总结,同时也为老师备课提供了参考。

学生们应该更加熟练掌握这些知识点,充分理解和应用这些基础数学知识,以便更好地学习和应对高中数学课程的学习。

八年级数学知识点总结归纳

八年级数学知识点总结归纳

一、有理数1.有理数的概念:有理数是整数和分数的统称,包括正有理数、负有理数和0。

2.有理数的比较:大小关系的判断方法,可以通过绝对值的大小关系判断。

3.有理数的运算:加法、减法、乘法和除法等运算的规则。

4.有理数的乘方运算:有理数的乘方运算的规则,如正数的乘方、0的乘方和负数的乘方。

5.有理数的近似数:有理数的近似数,可以用有限小数和长除法的方法求得。

二、方程与不等式1. 一元一次方程:具有形式“ax+b=c”的方程,通过加减消元和乘除消元的方法求解。

2. 一元一次不等式:具有形式“ax+b>c”或“ax+b<c”的不等式,求解方法与一元一次方程类似。

3.一元一次方程组:包含两个或多个一元一次方程的方程组,通过联立和消元的方法求解。

4.一元一次不等式组:包含两个或多个一元一次不等式的方程组,求解方法与一元一次方程组类似。

5.图像与方程:通过方程求解图像的方法,包括平移、伸缩和翻转等操作。

三、几何1.点、线、面、角的概念:点是几何最基本的概念,线是点的集合,面是线的集合,角是由两条射线共享一个端点的图形。

2.平行线与垂直线:平行线指在同一平面上永不相交的线,垂直线指形成直角的线。

3.三角形:三边的求周长和面积的方法,以及内角和外角的性质。

4.直角三角形和勾股定理:直角三角形的特性和勾股定理的运用。

5.面积与体积:常见几何图形的面积和体积的计算方法,包括矩形、平行四边形、梯形、圆和圆柱等。

四、代数1.代数式:由数、字母和运算符号组成的式子,可以进行加减乘除和求值等运算。

2.因式分解:将代数式进行因数分解的方法,包括公因式提出法和分组分解法等。

3.分式与分式方程:分式的运算和分式方程的解法,包括约分、通分、加减乘除以及分式方程的转化求解等。

4.平方根与立方根:平方根与立方根的性质和计算方法。

5.二次根式:二次根式的性质和简化运算。

五、概率与统计1.概率的计算:通过计算事件的可能性和样本空间的大小得出概率。

八年级数学知识点归纳总结

八年级数学知识点归纳总结

八年级数学知识点归纳总结一、数与式整数与有理数定义:整数包括正整数、零、负整数;有理数包括整数和分数。

运算:加、减、乘、除四则运算,注意运算的优先级和括号的使用。

例子:计算(-3) + 5 - (-2) × 4 = -3 + 5 + 8 = 10。

实数与数轴定义:实数包括有理数和无理数,数轴上的每一个点都对应一个实数。

性质:实数具有顺序性、稠密性、完备性。

例子:在数轴上标出√2 和-π的位置。

代数式与整式定义:代数式是由数、字母通过有限次加、减、乘、除(除数不为0)和乘方运算所得的式子;整式是代数式中不含除法运算或分母不含字母的式子。

运算:合并同类项、乘法分配律等。

例子:化简代数式3x^2 - 2x + 5 + x^2 - 3x = 4x^2 - 5x + 5。

分式定义:一般地,如果A、B表示两个整式,且B中含有字母,那么式子A/B 就叫做分式。

基本性质:分式的基本性质是分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

运算:分式的加、减、乘、除运算。

例子:计算分式(x + 1) / (x - 2) 与(x - 3) / (x + 1) 的乘积。

二、方程与不等式一元一次方程定义:只含有一个未知数,并且未知数的次数是1的等式。

解法:通过移项、合并同类项、系数化为1等步骤求解。

例子:解方程3x + 5 = 20。

二元一次方程组定义:含有两个未知数,并且含有未知数的项的次数都是1的方程组。

解法:消元法(代入法或加减法)。

例子:解方程组{ x + y = 5, 2x - y = 7 }。

一元一次不等式与不等式组定义:用不等号连接的式子叫不等式;含有一个未知数,并且未知数的次数是1的不等式叫一元一次不等式;由几个一元一次不等式组成的不等式组叫一元一次不等式组。

解法:与一元一次方程类似,但注意解集的确定。

例子:解不等式2x - 3 > 5,并找出其解集。

三、函数函数的概念与性质定义:对于数集A中的每一个数x,按照某种确定的对应关系f,数集B中都有唯一确定的数y与之对应,则这样的对应f叫做从A到B的一个函数。

八年级数学知识点归纳

八年级数学知识点归纳

八年级数学知识点归纳八年级数学是初中数学学习的重要阶段,知识点的难度和广度都有所增加。

以下是对八年级数学主要知识点的归纳:一、三角形(一)三角形的相关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。

3、三角形的内角和:三角形的内角和为 180°。

(二)三角形的分类1、按角分类:锐角三角形、直角三角形、钝角三角形。

2、按边分类:不等边三角形、等腰三角形(等边三角形是特殊的等腰三角形)。

(三)三角形的重要线段1、三角形的中线:连接三角形的一个顶点和它所对边的中点的线段叫做三角形的中线。

三角形的三条中线交于一点,这点称为三角形的重心。

2、三角形的高线:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线。

3、三角形的角平分线:三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。

三角形的三条角平分线交于一点,这点称为三角形的内心。

(四)全等三角形1、全等三角形的概念:能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质:全等三角形的对应边相等,对应角相等。

3、全等三角形的判定:SSS(边边边):三边对应相等的两个三角形全等。

SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。

ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。

AAS(角角边):两角和其中一角的对边对应相等的两个三角形全等。

HL(斜边、直角边):斜边和一条直角边对应相等的两个直角三角形全等。

二、勾股定理(一)勾股定理如果直角三角形的两直角边长分别为 a,b,斜边长为 c,那么 a²+b²= c²。

(二)勾股定理的逆定理如果三角形的三边长 a,b,c 满足 a²+ b²= c²,那么这个三角形是直角三角形。

初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)

初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除八年级上册知识点总结第十一章全等三角形复习一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

(2)全等三角形的周长相等、面积相等。

(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:个角的平分线。

1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。

三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”(5)截长补短法证三角形全等。

第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

八年级知识点总结归纳数学

八年级知识点总结归纳数学

八年级知识点总结归纳数学数学是一门让许多学生头疼的学科,但同时也是一门重要而精彩的学科。

在八年级的数学课程中,学生们学习和掌握了各种各样的数学知识和技巧。

本文将对八年级数学的知识点进行总结和归纳,帮助学生们更好地理解和掌握这些内容。

一、代数运算1.负数的加减乘除八年级数学中,学生们开始学习负数的加减乘除运算。

他们需要掌握负数与自然数、整数的运算规则,并能够灵活应用到各种实际问题中。

2.整式的加减乘除在八年级数学中,学生们学习了多项式的加减乘除运算。

他们需要掌握整式之间的加减运算规则,并能够应用到多项式的化简、因式分解以及方程的求解等问题中。

3.代数式的化简代数式的化简是八年级数学中的重要内容。

学生们需要掌握因式分解、提公因式等化简技巧,以便能够简化复杂的代数式和方程,从而更好地进行运算和解题。

二、几何与图形1.平面图形八年级数学中,学生们学习了平面图形的性质和运算。

他们需要掌握正方形、矩形、平行四边形等各种平面图形的性质,能够计算它们的周长、面积等基本属性。

2.空间图形在八年级数学中,学生们开始学习空间图形的性质与计算。

他们需要掌握长方体、正方体以及各种棱锥、棱柱等图形的性质,并能够计算它们的体积、表面积等基本属性。

3.相似与全等相似与全等是八年级数学中的重要内容。

学生们需要学习相似与全等的定义与判定方法,并能够应用到图形的比例计算、三角形的全等判定等问题中。

三、函数与方程1.函数的概念与表示在八年级数学中,学生们开始学习函数的概念与表示方法。

他们需要理解函数的定义、自变量和因变量的关系,并能够通过图像、表格等方式表示函数的变化规律。

2.一次函数一次函数是八年级数学中的重要内容。

学生们需要掌握一次函数的定义与性质,能够绘制一次函数的图像,并进行一次函数的求解与应用。

3.二次函数在八年级数学中,学生们开始学习二次函数的概念与性质。

他们需要理解二次函数的图像特征,掌握二次函数的顶点、零点、对称轴等关键概念,并能够进行二次函数的解答和应用。

八年级数学重点知识点(全)

八年级数学重点知识点(全)

文档初二数学知识点因式分解1. 因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法是相反的两个转化.2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”. 3.公因式的确定:系数的最大公约数·相同因式的最低次幂.注意公式:a+b=b+a ; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3. 4.因式分解的公式:(1)平方差公式: a 2-b 2=(a+ b )(a- b );(2)完全平方公式: a 2+2ab+b 2=(a+b)2, a 2-2ab+b 2=(a-b)2. 5.因式分解的注意事项:(1)选择因式分解方法的一般次序是:一 提取、二 公式、三 分组、四 十字; (2)使用因式分解公式时要特别注意公式中的字母都具有整体性; (3)因式分解的最后结果要求分解到每一个因式都不能分解为止; (4)因式分解的最后结果要求每一个因式的首项符号为正; (5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式.6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子看作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项.7.完全平方式:能化为(m+n )2的多项式叫完全平方式;对于二次三项式x 2+px+q , 有“ x 2+px+q 是完全平方式 ⇔ q 2p 2=⎪⎭⎫⎝⎛”.分式1.分式:一般地,用A 、B 表示两个整式,A ÷B 就可以表示为B A 的形式,如果B 中含有字母,式子BA 叫文档做分式.2.有理式:整式与分式统称有理式;即 ⎩⎨⎧分式整式有理式.3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义. 4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变; (2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即 分母分子分母分子分母分子分母分子-=-=-=---(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单.5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解.6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式. 7.分式的乘除法法则:,bdacd c b a =⋅bcadc d b a d c b a =⋅=÷. 8.分式的乘方:为正整数)(n .b a b a n n n=⎪⎭⎫⎝⎛.9.负整指数计算法则: (1)公式: a 0=1(a ≠0), a -n=na 1(a ≠0); (2)正整指数的运算法则都可用于负整指数计算;(3)公式:nna b b a ⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛-,n m m n a b b a =--;(4)公式: (-1)-2=1, (-1)-3=-1.10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母.文档11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂. 12.同分母与异分母的分式加减法法则: ;c b a c b c a ±=±bdbcad bd bc bd ad d c b a ±=±=±. 13.含有字母系数的一元一次方程:在方程ax+b=0(a ≠0)中,x 是未知数,a 和b 是用字母表示的已知数,对x 来说,字母a 是x 的系数,叫做字母系数,字母b 是常数项,我们称它为含有字母系数的一元一次方程.注意:在字母方程中,一般用a 、b 、c 等表示已知数,用x 、y 、z 等表示未知数.14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就是解含有字母系数的方程.特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0.15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程是整式方程.16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根.17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根是增根,这时原方程无解;若值不为零,求出的根是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能是原方程的增根.18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序. 数的开方1.平方根的定义:若x 2=a,那么x 叫a 的平方根,(即a 的平方根是x );注意:(1)a 叫x 的平方数,(2)已知x 求a 叫乘方,已知a 求x 叫开方,乘方与开方互为逆运算. 2.平方根的性质:(1)正数的平方根是一对相反数; (2)0的平方根还是0; (3)负数没有平方根.文档3.平方根的表示方法:a 的平方根表示为a 和a -.注意:a 可以看作是一个数,也可以认为是一个数开二次方的运算.4.算术平方根:正数a 的正的平方根叫a 的算术平方根,表示为a .注意:0的算术平方根还是0. 5.三个重要非负数: a 2≥0 ,|a|≥0 ,a ≥0 .注意:非负数之和为0,说明它们都是0. 6.两个重要公式: (1)()a a 2=; (a ≥0)(2) ⎩⎨⎧<-≥==)0a (a )0a (a a a 2 .7.立方根的定义:若x 3=a,那么x 叫a 的立方根,(即a 的立方根是x ).注意:(1)a 叫x 的立方数;(2)a 的立方根表示为3a ;即把a 开三次方. 8.立方根的性质:(1)正数的立方根是一个正数; (2)0的立方根还是0; (3)负数的立方根是一个负数. 9.立方根的特性:33a a -=-.10.无理数:无限不循环小数叫做无理数.注意:π和开方开不尽的数是无理数. 11.实数:有理数和无理数统称实数.12.实数的分类:(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数与无限循环小负有理数正有理数有理数实数0(2)⎪⎩⎪⎨⎧负实数正实数实数0 . 13.数轴的性质:数轴上的点与实数一一对应.14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示.注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:414.12= 732.13= 236.25=.三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)文档文档文档文档几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,文档实用标准文案文档而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段. 3.如图,三角形中,有一个重要的面积等式,即:若CD ⊥AB ,BE ⊥CA ,则CD ·AB=BE ·CA. 4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.7.如图,双垂图形中,有两个重要的性质,即: (1) AC ·CB=CD ·AB ; (2)∠1=∠B ,∠2=∠A . 8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边. 10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明. 12.符合“AAA ”“SSA ”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS ”、“ASA ”、“AAS ”、“SSS ”、“HL ”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. ※18.几何重要图形和辅助线: (1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加;ABCEDA BCD 12实用标准文案文档② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角; ④ 作辅助线必须符合几何基本作图.(2)已知角平分线.(若BD 是角平分线)(3)已知三角形中线(若AD 是BC 的中线)(4) 已知等腰三角形ABC 中,AB=AC(5)其它文档。

初中八年级数学知识点整理

初中八年级数学知识点整理

初中八年级数学知识点整理初中数学八年级是数学学科中重要的学科年份之一,学生们在这个年龄段学习了很多基础知识。

在这个年份里,学生们学习了代数、初步的几何、相似三角形、圆、统计学和概率等方面的内容。

接下来,将对这些重点进行详细的整理。

代数•基本常识:加、减、乘、除、倒数、幂、有理数。

•一元一次方程和一元一次不等式。

•解方程组(二元一次、三元一次)。

•因式分解(公因数、提公因式、分组因式、三项分解、差平方、求和差)。

•分数及其四则运算(分数的基本概念、约分、通分、加减乘除、整数、负数、混合数的四则运算)。

•整式的加减、乘法。

•简单的平方根和立方根。

•线性函数及图像。

几何•几何基本概念及命题证明(点、线、面、角、线段、尺规作图)。

•相似三角形的判定及其性质(比例、平移、旋转)。

•直角三角形及其定理(勾股定理、余弦定理、正弦定理)。

•圆的相关的知识(圆的定义、圆的性质、圆的周长、圆的面积计算)。

•平面向量(平面向量的基本概念、向量的加法、数乘、内积、几何应用)。

•三视图(常用体的三视图的表示方法)。

统计与概率•数据的类型与分类(离散数据、连续数据)。

•数据调查、整理、分析与表示(频数、频率、下、中、上四分位数、极差、平均数、众数、标准差)。

•概率的基本概念(等可能条件下的概率、多事件概率的计算)。

总结初中八年级数学知识点总结包括了代数、几何、统计学和概率等方面的知识点。

这些知识点涵盖了初中阶段数学学科的基础,也是未来学习更高层次数学的基础。

熟练掌握这些知识点对学生未来的数学学习和应用大有帮助。

八年级数学的知识点归纳

八年级数学的知识点归纳

八年级数学的知识点归纳一、代数运算1.四则运算及其应用2.平方差公式、完全平方公式和立方差公式的运用3.含有一元二次方程的方程组的解法4.代数式的化简及其应用5.分式的加减乘除及其应用6.分式方程的解法7.立方根、分式幂的计算及其应用二、几何图形1.基本概念:点、线、面、角、相似2.识别常见的几何图形:平面图形(三角形、四边形、五边形、六边形、圆)和立体图形(长方体、正方体、棱柱、棱锥、棱台、球体)3.整体图形的拆分和组合4.图形的相似性质和应用5.三角形的性质和分类6.四边形的性质和分类7.圆的周长和面积的计算及其应用三、函数1.基本概念:函数的自变量、因变量、定义域、值域2.图像的概念和绘制方法3.函数的分类:奇偶性、周期性、单调性、有界性、增减性4.函数的运算:求和、求差、求积、求商、复合函数5.一次函数、二次函数、指数函数、对数函数、三角函数的图像和性质6.函数的应用:函数方程的求解、函数的最大值和最小值四、统计与概率1.数据的搜集、整理和处理2.统计图表(频数分布表、频数分布直方图、频数多边形、累计频数分布表、累计频数分布图、箱线图)3.数据的分析:平均数、中位数、众数、四分位数、极差、方差、标准差4.概率的概念和计算:事件、样本空间、基本事件、复合事件、互斥事件、独立事件5.概率的应用:概率分布、期望值、贝叶斯公式五、解几何问题1.解决几何问题的基本方法:总结题、列方程、解方程、简化化复杂问题2.通过证明解决几何问题:证明几何定理、运用相似性质、合理分割几何图形3.通过图像的移动解决几何问题:利用平移、旋转、翻转等图像的变换求解几何问题六、辅助工具1.计算器的使用方法:常用函数的输入、计算结果的读取、计算方式的选择2.坐标系的使用和应用:平面直角坐标系的构建和应用、坐标变换、圆的方程等3.公式表的应用:数学、物理、化学等领域常用公式的总结和应用以上是八年级数学知识点的归纳,希望对大家有所帮助。

八年级上下册数学知识点总结

八年级上下册数学知识点总结

数学知识点总结
一、上册知识点:
1.整数的加减法:正整数、负整数、零的概念,整数的加法和减法运算法则。

2.有理数:有理数的概念,有理数的分类(正有理数、负有理数、零),有理数的加法和减法运算法则。

3.乘方:乘方的概念,乘方的性质,乘方的运算法则。

4.乘法与除法:乘法的概念,乘法的性质,乘法的运算法则;除法的概念,除法的性质,除法的运算法则。

5.分数:分数的概念,分数的性质,分数的加减法运算法则。

6.代数式:代数式的概念,代数式的简化,代数式的加减法运算法则。

7.一元一次方程:一元一次方程的概念,一元一次方程的解法,一元一次方程的应用。

8.几何图形:点、线、面的概念,几何图形的基本性质,几何图形的分类。

9.角:角的概念,角的分类,角的性质,角的度量。

10.平行线:平行线的概念,平行线的性质,平行线的判定。

二、下册知识点:
1.直角三角形:直角三角形的概念,直角三角形的性质,直
角三角形的边角关系。

2.勾股定理:勾股定理的概念,勾股定理的应用。

3.多边形:多边形的概念,多边形的分类,多边形的性质。

4.圆:圆的概念,圆的性质,圆的度量。

5.圆柱和圆锥:圆柱和圆锥的概念,圆柱和圆锥的性质,圆柱和圆锥的计算。

6.比例与比例式:比例的概念,比例的性质,比例式的概念,比例式的计算。

7.百分数:百分数的概念,百分数的性质,百分数的计算。

8.数据的收集与整理:数据的收集方法,数据的整理方法,数据的分析与表示。

9.概率:概率的概念,概率的计算。

10.函数与图像:函数的概念,函数的性质,函数的图像。

八年级数学知识点总结归纳

八年级数学知识点总结归纳

八年级数学知识点总结归纳一、代数1. 代数表达式- 变量和常数- 单项式和多项式- 合并同类项- 因式分解2. 方程与不等式- 一元一次方程- 二元一次方程- 不等式及其解集- 线性方程组的解法(代入法、消元法)3. 函数- 函数的概念- 函数的表示方法(表格、图形、公式)- 函数的性质(定义域、值域、单调性、奇偶性)二、几何1. 平面几何- 点、线、面的基本性质- 角的概念(邻角、对角、平行线与角度的关系)- 三角形的性质(边角关系、内角和定理、海伦公式) - 四边形的性质(平行四边形、矩形、菱形、正方形)2. 圆的基本性质- 圆的定义- 圆的对称性- 弦、弧、切线的性质- 圆周角和圆心角的关系3. 几何变换- 平移变换- 旋转变换- 轴对称变换- 相似与全等三、数论1. 整数- 整数的性质- 质数与合数- 最大公约数和最小公倍数2. 分数与小数- 分数的基本性质- 分数的四则运算- 小数与分数的互化3. 比例与百分数- 比例的概念- 比例的性质- 百分数的应用四、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表(条形图、折线图、饼图)2. 概率- 概率的基本概念- 事件的概率计算- 随机事件的概率五、应用题1. 代数应用题- 利用方程解决实际问题- 利用函数关系解决实际问题2. 几何应用题- 利用几何知识解决实际问题- 利用圆的知识解决实际问题3. 综合应用题- 结合代数、几何、数论、统计与概率解决综合性问题六、解题技巧1. 审题与分析- 正确理解题目要求- 分析题目中的数量关系2. 计算技巧- 准确快速的计算方法- 利用代数技巧简化运算3. 检查与验证- 检查计算过程中的错误- 验证答案的正确性以上是对八年级数学知识点的总结归纳。

每个部分都包含了该年级学生应该掌握的核心概念和技能。

教师和学生可以根据这个总结来复习和巩固相关知识,提高解题能力。

八年级数学知识点归纳

八年级数学知识点归纳

八年级数学知识点归纳一、实数1. 有理数与无理数的定义- 有理数:可以表示为两个整数的比的数,如分数、整数。

- 无理数:不能表示为两个整数的比的数,如√2、π。

2. 实数的运算- 加法、减法、乘法、除法- 乘方、开方- 绝对值的计算- 实数的性质和比较大小3. 科学记数法- 表示非常大或非常小的数- a×10^n 的形式二、代数表达式1. 单项式- 系数、次数- 单项式的乘法和除法2. 多项式- 多项式的定义- 多项式的加法、减法、乘法- 多项式的因式分解- 多项式的次数和项3. 代数方程- 一元一次方程、一元二次方程- 方程的解法:直接开平方法、配方法、公式法、因式分解法三、几何1. 平面几何- 点、线、面的基本性质- 角的概念:邻角、对角、同位角- 三角形的分类和性质- 四边形的分类和性质- 圆的基本性质和定理2. 几何图形的计算- 面积计算:三角形、四边形、圆、扇形- 体积计算:长方体、立方体、圆柱、圆锥、球3. 几何变换- 平移、旋转、对称(轴对称、中心对称)- 坐标系中点的坐标变换四、函数1. 函数的概念- 函数的定义- 函数的表示方法:表格、图像、公式2. 线性函数- 线性函数的定义和图像- 斜率、截距的概念- 线性函数的方程3. 二次函数- 二次函数的定义和图像- 顶点、对称轴的概念- 二次函数的方程和性质五、概率与统计1. 概率- 随机事件的概率- 概率的计算- 条件概率和独立事件2. 统计- 数据的收集和整理- 描述性统计:平均数、中位数、众数、方差、标准差- 概率分布和统计图表六、数列1. 等差数列- 等差数列的定义- 通项公式和前n项和公式2. 等比数列- 等比数列的定义- 通项公式和前n项和公式以上是八年级数学的主要知识点归纳。

在实际教学和学习中,每个知识点都需要通过大量的练习题来巩固和深化理解。

教师和学生应根据具体的教学大纲和学习目标,合理安排教学进度和学习计划。

八年级数学知识点整理

八年级数学知识点整理

八年级数学知识点整理初二数学知识点归纳分式方程一、理解定义1、分式方程:含分式,并且分母中含未知数的方程——分式方程。

2、解分式方程的思路是:(1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。

(2)解这个整式方程。

(3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。

(4)写出原方程的根。

“一化二解三检验四总结”3、增根:分式方程的增根必须满足两个条件:(1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。

4、分式方程的解法:(1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程;(3)解整式方程;(4)验根;注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。

分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。

5、分式方程解实际问题步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。

初二上学期数学知识点轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。

这条直线叫做对称轴。

互相重合的点叫做对应点。

1、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。

这条直线叫做对称轴。

互相重合的点叫做对应点。

2、轴对称图形与轴对称的区别与联系:(1)区别。

轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。

(2)联系。

把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。

3、轴对称的性质:(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

八年级数学上下册知识点归纳

八年级数学上下册知识点归纳

八年级数学上下册知识点归纳一、八年级上册知识点(一)三角形1.三角形的性质-三角形三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。

-三角形内角和定理:三角形三个内角的和等于180°。

-三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。

2.全等三角形-全等三角形的性质:全等三角形的对应边相等,对应角相等。

-全等三角形的判定:SSS(边边边)、SAS(边角边)、ASA(角边角)、AAS(角角边)、HL(斜边、直角边)。

(二)轴对称1.轴对称图形的概念-如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

2.轴对称的性质-关于某条直线对称的两个图形是全等形。

-如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

-两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

3.线段的垂直平分线-性质:线段垂直平分线上的点与这条线段两个端点的距离相等。

-判定:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(三)整式的乘法与因式分解1.整式的乘法-同底数幂的乘法:a^m×a^n = a^(m + n)(m、n 都是正整数)。

-幂的乘方:(a^m)^n = a^(mn)(m、n 都是正整数)。

-积的乘方:(ab)^n = a^n×b^n(n 是正整数)。

-单项式乘以单项式:系数相乘,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。

-单项式乘以多项式:m(a + b + c) = ma + mb + mc。

-多项式乘以多项式:(a + b)(m + n) = am + an + bm + bn。

2.乘法公式-平方差公式:(a + b)(a - b) = a^2 - b^2。

-完全平方公式:(a ± b)^2 = a^2 ± 2ab + b^2。

八年级数学知识点归纳(数据的分析)

八年级数学知识点归纳(数据的分析)

数据的分析知识点:数据的代表:平均数、众数、中位数、极差、方差知识点详解:1.解统计学的几个基本概念总体、个体、样本、样本容量是统计学中特有的规定,准确把握教材,明确所考查的对象是解决有关总体、个体、样本、样本容量问题的关键。

2.平均数当给出的一组数据,都在某一常数a上下波动时,一般选用简化平均数公式,其中a是取接近于这组数据平均数中比较“整”的数;•当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。

3.众数与中位数平均数、众数、中位数都是用来描述数据集中趋势的量。

平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适。

中位数与数据排列有关,个别数据的波动对中位数没影响;当一组数据中不少数据多次重复出现时,可用众数来描述。

4.极差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值。

5.方差与标准差用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是s2=[(x1-)2+(x2-)2+…+(x n-)2];方差是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。

一、选择题1.一组数据3,5,7,m,n的平均数是6,则m,n的平均数是()A.6B.7C. 7.5D. 152.小华的数学平时成绩为92分,期中成绩为90分,期末成绩为96分,若按3:3:4的比例计算总评成绩,则小华的数学总评成绩应为()A.92 B.93 C.96 D.92.73.关于一组数据的平均数、中位数、众数,下列说法中正确的是()A.平均数一定是这组数中的某个数B. 中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对4.某小组在一次测试中的成绩为:86,92,84,92,85,85,86,94,92,83,则这个小组本次测试成绩的中位数是()A.85 B.86 C.92 D.87.95.某人上山的平均速度为3km/h,沿原路下山的平均速度为5km/h,上山用1h,则此人上下山的平均速度为()A.4 km/hB. 3.75 km/hC. 3.5 km/hD.4.5 km/h6.在校冬季运动会上,有15名选手参加了200米预赛,取前八名进入决赛.已知参赛选手成绩各不相同,某选手要想知道自己是否进入决赛,只需要了解自己的成绩以及全部成绩的()A.平均数B.中位数C.众数D.以上都可以二、填空题:(每小题6分,共42分)7.将9个数据从小到大排列后,第个数是这组数据的中位数8.如果一组数据4,6,x,7的平均数是5,则x = .9.已知一组数据:5,3,6,5,8,6,4,11,则它的众数是,中位数是 . 10.一组数据12,16,11,17,13,x的中位数是14,则x = .11.某射击选手在10次射击时的成绩如下表:则这组数据的平均数是,中位数是,众数是 .12.某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,则这个小组的本次测试的平均成绩为 .13.为了了解某立交桥段在四月份过往车辆承载情况,连续记录了6天的车流量(单位:千辆/日):3.2,3.4,3,2.8,3.4,7,则这个月该桥过往车辆的总数大约为辆.数据的分析知识点:选用恰当的数据分析数据知识点详解:一:5个基本统计量(平均数、众数、中位数、极差、方差)的数学内涵:平均数:把一组数据的总和除以这组数据的个数所得的商。

初二数学知识点梳理归纳

初二数学知识点梳理归纳

初二数学知识点梳理归纳八年级上册数学知识点1、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合2、定理1关于某条直线对称的两个图形是全等形3、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线4、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上5、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称6、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^27、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形8、定理四边形的内角和等于360°9、四边形的外角和等于360°10、多边形内角和定理n边形的内角的和等于(n-2)×180°11、推论任意多边的外角和等于360°12、平行四边形性质定理1平行四边形的对角相等13、平行四边形性质定理2平行四边形的对边相等14、推论夹在两条平行线间的平行线段相等初二下册数学知识点归纳四边形1、平行四边形性质:对边相等;对角相等;对角线互相平分。

判定:两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形;一组对边平行而且相等的四边形是平行四边形。

推论:三角形的中位线平行第三边,并且等于第三边的一半。

2、特殊的平行四边形:矩形、菱形、正方形(1)矩形性质:矩形的四个角都是直角;矩形的对角线相等;矩形具有平行四边形的所有性质判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;推论:直角三角形斜边的中线等于斜边的一半。

(2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

八年级数学知识点整理归纳

八年级数学知识点整理归纳

第一章全等三角形一.知识框架二.知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质:全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。

通过直观的理解和比较发现全等三角形的奥妙之处。

在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

第二章轴对称一.知识框架二.知识概念1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质: (1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

5.等腰三角形的判定:等角对等边。

八年级上册数学知识点归纳

八年级上册数学知识点归纳

八年级上册数学知识点归纳一、有理数1. 有理数的定义2. 有理数的四则运算3. 有理数的乘方运算4. 有理数的相反数和绝对值5. 有理数的比较大小二、线段和角1. 线段的长度2. 角的度量3. 角的分类4. 角的平分线5. 相邻角、同位角、对顶角三、平行线与平面图形1. 平行线的判定条件2. 平行线的性质3. 平行线的平行截线定理4. 平行线的射影定理5. 平行线与平行四边形四、相交线与角1. 相交线的性质2. 垂线的性质3. 垂线的判定条件4. 垂直于同一条直线的两条平行线的性质5. 垂直于平面的直线的性质五、图形的相似1. 图形的相似比例2. 相似三角形的性质3. 相似三角形的判定条件4. 相似多边形的判定条件5. 相似多边形的性质六、圆与圆的切线1. 圆的定义和性质2. 切线的定义和性质3. 切线定理4. 切线的判定条件5. 弧长和扇形面积七、数据与统计1. 平均数、众数和中位数的计算2. 数据的图表表示3. 折线图和饼状图的制作4. 数据的处理和分析5. 概率与统计八、代数式的运算1. 代数式的加减乘除2. 代数式的化简3. 代数式的展开与因式分解4. 因式分解公式5. 二次根式的加减乘除九、方程与不等式1. 一元一次方程的基本概念2. 一步一元一次方程的解法3. 两步一元一次方程的解法4. 一元一次方程组的解法5. 不等式的基本概念及解法十、直角三角形1. 直角三角形的性质2. 正弦定理和余弦定理3. 解直角三角形的应用4. 解直角三角形的方法5. 平面向量运算及相关性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学知识要点归纳上册第一章 勾股定理1.勾股定理:直角三角形两直角边的平方和等于斜边的平方;即222a b c +=。

2.勾股定理的证明:用三个正方形的面积关系进行证明(两种方法)。

3.勾股定理逆定理:如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形。

满足222a b c +=的三个正整数称为勾股数。

第二章 实数1.平方根和算术平方根的概念及其性质:(1)概念:如果2x a =,那么x 是a的平方根,记作:a 的算术平方根。

(2)性质:①当a ≥0≥0;当a②2=a ;a =。

2.立方根的概念及其性质:(1)概念:若3a ,那么x 是a; (2a =;②3a ==3.实数的概念及其分类:(1)概念:实数是有理数和无理数的统称;(2)分类:按定义分为有理数可分为整数的分数;按性质分为正数、负数和零。

无理数就是无限不循环小数;小数可分为有限小数、无限循环小数和无限不循环小数;其中有限小数和无限循环小数称为分数。

4.与实数有关的概念: 在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。

每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。

因此,数轴正好可以被实数填满。

5 (a ≥0,b ≥0) a ≥0,b >0)。

第三章 1.平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

平移不改变图形大小和形状,改变了图形的位置;经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。

2.旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这点定点称为旋转中心,转动的角称为旋转角。

旋转不改变图形大小和形状,改变了图形的位置;经过旋转,图形点的每一个点都绕旋转中心沿相同方向转动了相同和角度;任意一对对应点与旋转中心的连线所成的角都是旋转角;对应点到旋转中心的距离相等。

3.作平移图与旋转图。

第四章 四边形性质的探索1.多边形的分类:=a b a b =2.平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:(1)平行四边形:两组对边分别平行的四边形叫做平行四边形。

平行四边形的对边平行且相等;对角相等,邻角互补;对角线互相平分。

两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

(2)菱形:一组邻边相等的平行四边形叫做菱形。

菱形的四条边都相等;对角线互相垂直平分,每一条对角线平分一组对角。

四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;一组邻边相等的平行四边形是菱形;对角线互相平分且垂直的四边形是菱形。

菱形的面积等于两条对角线乘积的一半(面积计算,即S 菱形=L 1*L 2/2)。

(3)矩形:有一个内角是直角的平行四边形叫做矩形。

矩形的对角线相等;四个角都是直角。

对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形。

直角三角形斜边上的中线等于斜边长的一半; 在直角三角形中30°所对的直角边是斜边的一半。

(4)正方形:一组邻边相等的矩形叫做正方形。

正方形具有平行四边形、菱形、矩形的一切性质。

(5)等腰梯形同一底上的两个内角相等,对角线相等。

同一底上的两个内角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形;对角互补的梯形是等腰梯形。

(6)三角形中位线:连接三角形相连两边重点的线段。

性质:平行且等于第三边的一半3.多边形的内角和公式:(n-2)*180°;多边形的外角和都等于360。

4.中心对称图形:在平面内,一个图形绕某个点旋转180,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。

第五章 位置的确定1.直角坐标系及坐标的相关知识。

2.点的坐标间的关系:如果点A 、B 横坐标相同,则AB ∥y 轴;如果点A 、B 纵坐标相同,则AB ∥x 轴。

3.将图形的纵坐标保持不变,横坐标变为原来的1-倍,所得到的图形与原图形关于y 轴对称;将图形的横坐标保持不变,纵坐标变为原来的1-倍,所得到的图形与原图形关于x 轴对称;将图形的横、纵坐标都变为原来的1-倍,所得到的图形与原图形关于原点成中心对称。

第六章 一次函数1.一次函数定义:若两个变量,x y 间的关系可以表示成y kx b =+(,k b 为常数,0k ≠)的形式,则称y 是x 的一次函数。

当0b =时称y 是x 的正比例函数。

正比例函数是特殊的一次函数。

2.作一次函数的图象:列表取点、描点、连线,标出对应的函数关系式。

3.正比例函数图象性质:经过()0,0;k >0时,经过一、三象限;k <0时,经过二、四象限。

4.一次函数图象性质:(1)当k >0时,y 随x 的增大而增大,图象呈上升趋势;当k <0时,y 随x 的增大而减小,图象呈下降趋势。

(2)直线y kx b =+与轴的交点为()0,b ,与x 轴的交点为 。

(3)在一次函数y kx b =+中:k >0,b >0时函数图象经过一、二、三象限;k >0,b <0时函数图象经过一、三、四象限;k <0,b >0时函数图象经过一、二、四象限;k <0,b <0时函数图象经过二、三、四象限。

(4)在两个一次函数中,当它们的k 值相等时,其图象平行;当它们的k 值不等时,其图象相交;当它们的k 值乘积为1-时,其图象垂直。

4.已经任意两点求一次函数的表达式、根据图象求一次函数表达式。

5.运用一次函数的图象解决实际问题。

第七章 二元一次方程组1.二元一次方程及二元一次方程组的定义。

2.解方程组的基本思路是消元,消元的基本方法是:①代入消元法;②加减消元法;③图,0b k ⎛⎫- ⎪⎝⎭象法。

34.解应用题时,按5.每个二元一次方程都可以看成一次函数,求二元一次方程组的解,可看成求两个一次函数图象的交点。

第八章数据的代表1.算术平均数与加权平均数的区别与联系:算术平均数是加权平均数的一种特殊情况,(它特殊在各项的权相等),当实际问题中,各项的权不相等时,计算平均数时就要采用加权平均数,当各项的权相等时,计算平均数就要采用算术平均数。

2.中位数和众数:中位数指的是n个数据按大小顺序(从大到小或从小到大)排列,处在最中间位置的一个数据(或最中间两个数据的平均数)。

众数指的是一组数据中出现次数最多的那个数据。

八年级下册数学各章知识要点第九章分式复习要点1、形如AB(A、B都是整式,且B中含有字母,B≠0)的式子叫做分式。

整式和分式统称有理式。

2、分母≠0时,分式有意义。

分母=0时,分式无意义。

3、分式的值为0,要同时满足两个条件:分子=0,而分母≠0。

4、分式基本性质:分式的分子、分母都乘以或除以同一个不为0的整式,分式的值不变。

5、分式、分子、分母的符号,任意改变其中两个的符号,分式的值不变。

6、分式四则运算1)分式加减的关键是通分,把异分母的分式,转化为同分母分式,再运算.2)分式乘除时先把分子分母都因式分解,然后再约去相同的因式。

3)分式的混合运算,注意运算顺序及符号的变化,4)分式运算的最后结果应化为最简分式或整式.7、分式方程1)分式化简与解分式方程不能混淆.分式化简是恒等变形,不能随意去分母.2)解分式方程的步骤:第一、化分式方程为整式方程;第二,解这个整式方程;第三,验根,通过检验去掉增根。

3)解有关应用题的步骤和列整式方程解应用题的步骤是一样的:设、列、解、验、答。

第18章函数及图象的复习要点1、规定了原点、正方向和单位长度的直线叫数轴。

数轴上的点与实数一一对应。

数轴上的点A、B的坐标为x1、x2, 则AB=。

2、具有公共原点且互相垂直的两条数轴就构成平面直角坐标系。

坐标平面内的点与有序实数对一一对应。

3、坐标轴上的点不属于任何象限。

x轴上的点纵坐标y=0;y轴上的点横坐标x=0。

第一象限内的点x>0,y>0;第二象限内的点x<0,y>0;第三象限内的点x<0,y<0;第四象限内的点x>0,y<0;由此可知,x轴上方的点,纵坐标y>0;x轴下方的点,纵坐标y<0;y轴左边的点,横坐标x<0;y轴右边的点,横坐标x>0.4、关于某坐标轴对称的点,这个轴的坐标不变,另一个轴的坐标互为相反数。

关于原点对称的点,纵、横坐标都互为相反数。

关于第一、三象限角平分线对称的点,横纵坐标交换位置;关于第二、四象限角平分线上对称的点,不但横纵坐标交换位置,而且还要变成相反数。

5、第一、三象限角平分线上的点,横纵坐标相等;第二、四象限角平分线上的点,横纵坐标互为相反数。

6、在一个变化过程中,存在两个变量x、y,对于x的每一个取值,y都有唯一的一个值与之对应,我们就说y是x的函数。

x是自变量,y是因变量。

函数的表示方法有:解析式法、图象法、列表法。

7、函数自变量的取值范围:①函数的解析式是整式时,自变量可取全体实数;②函数的解析式是分式时,自变量的取值应使分母≠0;③函数的解析式是二次根式时,自变量的取值应使被开方数≥0.④函数的解析式是负整指数和零指数时,底数≠0;⑤对于反映实际问题的函数关系,应使实际问题有意义.8、如果y=kx +b ( k、b是常数,k≠0),那么,y叫x的一次函数。

如果y=kx (k是常数,k 0),那么,y叫x的正比例函数。

9、点在函数的图象上的代数意义是:这一点的坐标满足函数的解析式。

两个函数有交点的代数意义是:两个函数的解析式组成的方程组的解就是交点的坐标。

10、一次函数y=kx+b的性质:(1)一次函数图象是过两点的一条直线,|k|的值越大,图象越靠近于y轴。

(2)当k>0时,图象过一、三象限,y随x的增大而增大;从左至右图象是上升的(左低右高);(3)当k<0时,图象过二、四象限,y随x的增大而减小。

从左至右图象是下降的(左高右低);(4)当b>0时,与y轴的交点(0,b)在正半轴;当b<0时,与y轴的交点(0,b)在负半轴。

当b=0时,一次函数就是正比例函数,图象是过原点的一条直线(5)几条直线互相平行时,k值相等而b不相等。

11、如果y=kx ( k是常数,k≠0),那么,y叫x的反比例函数。

12、反比例函数y=kx的性质:(1)反比例函数的图象是双曲线,图象无限的靠近于x、y轴。

(2)当k>0时,图象的两个分支位于一、三象限,在每个象限内,y随x的增大而减小,从左至右图象是下降的(左低右高);(3)当k<0时,图象的两个分支位于二、四象限,在每个象限内,y随x的增大而增大,从左至右图象是上升的(左高右低)。

相关文档
最新文档