立体几何证明定理归纳

合集下载

高中数学立体几何证明定理及性质总结

高中数学立体几何证明定理及性质总结

高中数学立体几何证明定理及性质总结高中数学立体几何是数学的一个重要分支,主要研究与三维空间中的几何形体相关的性质和定理。

在学习过程中,我们会遇到许多重要的定理和性质,下面是对其中一些重要的定理和性质进行总结的文章,以便于我们更好地掌握该知识点。

一、三角形的五种中线定理:1.三角形的三条中线交于一点,并且该点离三角形三个顶点的距离相等,这个点称为三角形的重心。

2.三角形的三条中线外接圆半径为内接圆半径的两倍。

3.三角形的三条中线构成的小三角形,其面积之和等于三角形面积的三分之一4. 中线长与边长的关系:三角形三边长分别为a、b、c,则三角形的三条中线长分别为m_a = 0.5*sqrt(2*b^2+2*c^2-a^2),m_b =0.5*sqrt(2*a^2+2*c^2-b^2),m_c = 0.5*sqrt(2*a^2+2*b^2-c^2)。

5.中线垂直性质:三角形的三条中线互相垂直,且互相平分。

二、三角形的四种高定理:1.三角形的三条高交于一点,并且该点到三角形三个顶点的距离相等,这个点称为三角形的垂心。

2.高线长与边长的关系:三角形三边长分别为a、b、c,则三角形的三条高线长分别为h_a=2*S/a,h_b=2*S/b,h_c=2*S/c,其中S为三角形的面积。

3.垂心到顶点距离的关系:设山脚底角为A,垂足为D,有AH/HD=BH/HE=CH/HF=2,其中H为垂心,E,F为垂足。

4.垂心角的关系:设山脚底角为A,垂足为D,有∠BHC=2∠A,∠BHC=2∠A,∠CHB=2∠A。

三、三角形的欧拉定理:设O为三角形的外心,G为重心,H为垂心,则有OG=1/3GH。

四、圆的性质:1.垂径定理:直径AB垂直于弧CD,则弦CD的中点E与弦AB的中点F,以及圆心O在一条直线上,且OE=OF=1/2CD。

2.正接定理:一个直角三角形的斜边上的圆的直径与该斜边上的直角边成正切关系。

3.切线定理:从一个点外切于圆的切线恒垂直于该点至圆心的半径。

立体几何所有的定理大总结(绝对全)

立体几何所有的定理大总结(绝对全)

⽴体⼏何所有的定理⼤总结(绝对全)(⼆)异⾯直线所成⾓1.定义:不同在任何⼀个平⾯内的两条直线或既不平⾏也不相交的两条直线叫异⾯直线。

2.画法:借助辅助平⾯。

1.定义:对于异⾯直线a 和b ,在空间任取⼀点P ,过P 分别作a 和b 的平⾏线1a 和1b ,我们把1a 和1b 所成的锐⾓或者叫做异⾯直线a 和b 所成的⾓。

2.范围:(0°,90°】(★空间两条直线所成⾓范围:【0°,90°】)(三)线⾯⾓1.定义:当直线l 与平⾯α相交且不垂直时,叫做直线l 与平⾯α斜交,直线l 叫做平⾯α的斜线。

设直线l 与平⾯α斜交与点M ,过l 上任意点A ,做平⾯α的垂线,垂⾜为O ,把点O 叫做点A 在平⾯α上的射影,直线OM 叫做直线l 在平⾯α上的射影。

1.定义:把直线l 与其在平⾯α上的射影所成的锐⾓叫做直线l 和平⾯α所成的⾓。

2.范围【0°,90°】(★斜线与平⾯所成⾓范围:【0°,90°】)(三)⼆⾯⾓1.定义:(1)半平⾯:平⾯内的⼀条直线把这个平⾯分成两个部分,其中每⼀个部分叫做半平⾯。

(3)⼆⾯⾓的棱:这⼀条直线叫做⼆⾯⾓的棱。

(4)⼆⾯⾓的⾯:这两个半平⾯叫做⼆⾯⾓的⾯。

(5)⼆⾯⾓的平⾯⾓:以⼆⾯⾓的棱上任意⼀点为端点,在两个⾯内分别作垂直于棱的两条射线,这两条射线所成的⾓叫做⼆⾯⾓的平⾯⾓。

(6)直⼆⾯⾓:平⾯⾓是直⾓的⼆⾯⾓叫做直⼆⾯⾓。

1.定义:从⼀条直线出发的两个半平⾯所组成的图形叫做⼆⾯⾓。

2.表⽰:如下图,可记作α-AB-β或P-AB-Q3.范围为【0°,180°】(五)六种距离1.点到点的距离:两点之间的线段PQ 的长。

2.点到线的距离:过P 点作1PP ⊥l ,交l 于1P ,线段1PP 的长。

3.点到⾯的距离:过P 点作1PP ⊥α,交α于1P ,线段1PP 的长。

常考定理总结(八大定理)

常考定理总结(八大定理)

lmβααba立体几何的八大定理一、线面平行的判定定理:线线平行⇒线面平行文字语言:如果平面外.的一条直线与平面内.的一条直线平行,则这条直线与平面平行. 符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α关键点:在平面内找一条与平面外的直线平行的线...................... 二、线面平行的性质定理:线面平行⇒线线平行文字语言:如果一条直线和一个平面平行,经过..这条直线的平面和这个平面相交..,那么这条直线就和交线..平行. 符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m关键点:需要借助一个经过已知直线的平面,接着找交线。

.......................... 三、面面平行的判定定理:线面平行⇒ 面面平行文字语言:如果一个平面内.有两.条相交..直线都平行..于另一个平面..,那么这两个平面平行. 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 关键点:在要证明面面平行的其中一个面内找两条相交直线和另一面线面平行。

................................... 四、面面平行的性质定理: 面面平行⇒线线平行、面面平行⇒线面平行 文字语言:如果两个平行平面同时..和第三..个.平面相交..,那么所得的两条交线..平行. 符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭关键点:找第三个平面与已知平面都相.................交,则交线平行.......文字语言:如果两个平面平行,那么其中一个平面内的任意..一条直线平行于另一个平面.符号语言://,//a a αβαβ⊂⇒ 关键:只要是其中一个平面内的直线就行..................nmAαaBA l βαaβα五、线面垂直的判定定理:线线垂直⇒线面垂直文字语言:如果一条直线和一个平面内.的两.条相交..直线垂直..,那么这条直线垂直于这个平面. 符号语言:,a ma n a m n A m n ααα⊥⎫⎪⊥⎪⇒⊥⎬⋂=⎪⎪⊂⊂⎭关键点:在平面内找两条相交直线与所要证的直线垂直........................ 六、线面垂直的性质定理:线面垂直⇒线线垂直文字语言:若一条直线垂直于一个平面,则这条直线垂直平面内的任意..一条直线. 符号语言:l l a a αα⊥⎫⇒⊥⎬⊂⎭关键点:往往线面垂直中的线线垂直需要用这个定理推出......................... 七、平面与平面垂直的判定定理:线面垂直⇒面面垂直文字语言:如果一个平面经过..另一个平面的一条垂线,则这两个平面互相垂直. (如果一条直线垂直于一个平面,并且有另一个平面经过这条直线,那么这两个平面垂直)符号表示:a a ααββ⊥⎫⇒⊥⎬⊂⎭关键..点:在需要证明的两个平面中找线面垂直..................八、平面与平面垂直的性质定理:面面垂直⇒线面垂直文字语言:如果两个平面互相垂直,那么在一个平面内垂直..于它们的交线..的直线垂直于另一个平面.符号语言:l AB AB AB lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭关键点:先找交线,再在其中一个面内找与交线垂直的线。

高中立体几何八大定理

高中立体几何八大定理

线面位置关系的八大定理之南宫帮珍创作一、直线与平面平行的判定定理:文字语言:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行 图形语言: 符号语言:作用:线线平行⇒线面平行二、直线与平面平行的性质定理:文字语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

图形语言:符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m 作用:线面平行⇒线线平行 三、平面与平面平行的判定定理文字语言:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. 图形语言: 符号语言:作用:线线平行⇒ 面面平行 四、平面与平面平行的性质定理: 文字语言:如果两个平行平面同时和第三个平αbalmβα面相交,那么所得的两条交线平行图形语言:符号语言:////a a bbαβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭作用: 面面平行⇒线线平行五、直线与平面垂直的判定定理:文字语言:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面图形语言:符号语言:作用:线线垂直⇒线面垂直六、直线与平面垂直的性质定理:文字语言:若两条直线垂直于同一个平面,则这两条直线平行图形语言:符号语言:作用:线面垂直⇒线线平行七、平面与平面垂直的判定定理:文字语言:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。

图形语言:符号暗示:aaααββ⊥⎫⇒⊥⎬⊂⎭aβααbanmAαa注:线面垂直⇒面面垂直八、平面与平面垂直的性质定理:文字语言:如果两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另一个平面图形语言:符号语言:lAB ABAB lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭作用:面面垂直⇒线面垂直BAlβα。

立体几何的八大定理

立体几何的八大定理

l ⊥b ab
=
O
a

b
⇒l⊥α
ab⊥ ⊥αα⇒a∥b
4. 平面与平面垂直的判定定理与性质定理
文字语言 一个平面过另 一个平面的垂 判定定理 线,则这两个平 面垂直
两个平面垂直, 则一个平面内 性质定理 垂直于交线的 直线与另一个 平面垂直
图形语言
符号语言
ll⊂ ⊥βα⇒α⊥β
αlαl⊂ ⊥⊥ ∩aβββ=a⇒
l⊥α
2
符号语言
∵a∥β,b∥β, a∩b=P,a⊂α,
b⊂α,∴α∥β
∵α∥β, α∩γ=a, β∩γ=b,
∴a∥b
1
3.直线与平面垂直的判定定理与性质定理
文字语言
图形语言
一条直线与一个 平面内的两条相 判定定理 交直线都垂直,则 该直线与此平面 垂直
垂直于同一个平 性质定理 面的两条符号语言
∵l∥a,a⊂α, l⊄α,∴l∥α
∵l∥α,l⊂β, α∩β=b, ∴l∥b
2. 平面与平面平行的判定定理和性质定理
文字语言
图形语言
一个平面内的两条相
交直线与另一个平面
判定定理 平行,则这两个平面
平行(简记为“线面
平行⇒面面平行”)
性质定理
如果两个平行平面同 时和第三个平面相 交,那么它们的交线 平行
立体几何的八大定理
1. 直线与平面平行的判定定理和性质定理
判定定理 性质定理
文字语言 平面外一条直线与 此平面内的一条直 线平行,则该直线与 此平面平行(线线平 行⇒线面平行) 一条直线与一个平 面平行,则过这条直 线的任一平面与此 平面的交线与该直 线平行(简记为“线 面平行⇒线线平 行”)
图形语言

(完整版)高中立体几何八大定理

(完整版)高中立体几何八大定理

线面位置关系的八大定理一、直线与平面平行的判定定理:文字语言:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行a 图形语言:符号语言:a ⊄α⎫⎪b ⊂α⎬⇒a //αa //b ⎪⎭αb作用:线线平行⇒线面平行二、直线与平面平行的性质定理:文字语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

图形语言:β⎫⎪符号语言:l ⊂β⎬⇒l //mα⋂β=m ⎪⎭作用:线面平行⇒线线平行三、平面与平面平行的判定定理l //αl m α文字语言:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.图形语言:符号语言:a ⊂αb ⊂αa I b =a ∥βb ∥β⎫⎪⎪⎪A ⎬⇒α//β⎪⎪⎪⎭作用:线线平行⇒面面平行四、平面与平面平行的性质定理:文字语言:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行图形语言:α//β⎫⎪符号语言:α⋂γ=a ⎬⇒a //bβ⋂γ=b ⎪⎭作用:面面平行⇒线线平行五、直线与平面垂直的判定定理:文字语言:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面图形语言:符号语言:aa ma nam n Am,n作用:线线垂直线面垂直六、直线与平面垂直的性质定理:文字语言:若两条直线垂直于同一个平面,则这两条直线平行图形语言:符号语言:Amnabaa//bb作用:线面垂直线线平行七、平面与平面垂直的判定定理:文字语言:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。

图形语言:a符号表示:aa注:线面垂直面面垂直八、平面与平面垂直的性质定理:文字语言:如果两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另一个平面图形语言:I l符号语言:ABABAB l作用:面面垂直线面垂直Al B。

高中立体几何八大定理

高中立体几何八大定理

高中立体几何八大定理
1、直线与平面平行的判定定理
如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行。

2、直线与平面平行的性质定理
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

3、平面与平面平行的判定定理
如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

4、平面与平面平行的性质定理
如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行。

5、直线与平面垂直的判定定理
如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。

6、直线与平面垂直的性质定理
若两条直线垂直于同一个平面,则这两条直线平行。

7、平面与平面垂直的判定定理
如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。

8、平面与平面垂直的性质定理
如果两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另一个平面。

(完整版)高中立体几何八大定理

(完整版)高中立体几何八大定理

线面地址关系的八大定理一、直线与平面平行的判判定理:文字语言:若是平面外的一条直线与平面内的一条直线平行,那么这条直线与平面平行a图形语言:符号语言:a bb a //a // b作用:线线平行线面平行二、直线与平面平行的性质定理:文字语言:若是一条直线和一个平面平行,经过这条直线的平面和这个平面订交,那么这条直线就和交线平行。

图形语言:l //l符号语言: l l // mm m作用:线面平行线线平行三、平面与平面平行的判判定理文字语言:若是一个平面内有两条订交直线都平行于另一个平面,那么这两个平面平行.图形语言:符号语言:aba Ib A//a∥b∥作用:线线平行面面平行四、平面与平面平行的性质定理:文字语言:若是两个平行平面同时和第三个平面订交, 那么所得的两条交线平行图形语言 ://符号语言 :a a // bb作用 :面面平行线线平行五、直线与平面垂直的判判定理:文字语言:若是一条直线和一个平面内的两条订交直线垂直,那么这条直线垂直于这个平面图形语言:符号语言:aa ma na m n Am, nAn m作用:线线垂直线面垂直六、直线与平面垂直的性质定理:文字语言:假设两条直线垂直于同一个平面,那么这两条直线平行图形语言:符号语言:aa //b b ab作用:线面垂直线线平行七、平面与平面垂直的判判定理:文字语言:若是一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

图形语言:a a符号表示:a注:线面垂直面面垂直八、平面与平面垂直的性质定理:文字语言:若是两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另一个平面图形语言:I l符号语言:ABABAB l Al B作用:面面垂直线面垂直。

高中立体几何八大定理

高中立体几何八大定理

1/2lmβααbanmA αa线面位置关系的八大定理(一)一、直线与平面平行的判定定理:文字语言:如果平面外的一条直线与平面内的一条直线平行,则这条直线与平面平行图形语言: 符号语言://a b a b αα⊄⎫⎪⊂⎬⎪⎭⇒//a α 作用:线线平行⇒线面平行二、直线与平面平行的性质定理:文字语言:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。

图形语言:符号语言://l l m αβαβ⎫⎪⊂⎬⎪⋂=⎭⇒//l m作用:线面平行⇒线线平行 三、平面与平面平行的判定定理文字语言:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行. 图形语言: 符号语言://a b a b A a b αααβββ⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭∥∥ 作用:线线平行⇒ 面面平行四、平面与平面平行的性质定理:文字语言:如果两个平行平面同时和第三个平面相交,那么所得的两条交线平行 图形语言:符号语言:////a a b b αβαγβγ⎫⎪⋂=⇒⎬⎪⋂=⎭作用: 面面平行⇒线线平行五、直线与平面垂直的判定定理:文字语言:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面 图形语言:2/2αbaBA l βαaβα符号语言:,a ma n a m n A m n ααα⊥⎫⎪⊥⎪⇒⊥⎬⋂=⎪⎪⊂⊂⎭作用:线线垂直⇒线面垂直 六、直线与平面垂直的性质定理:文字语言:若两条直线垂直于同一个平面,则这两条直线平行 图形语言: 符号语言://a a b b αα⊥⎫⇒⎬⊥⎭作用:线面垂直⇒线线平行七、平面与平面垂直的判定定理:文字语言:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。

图形语言:符号表示:a a ααββ⊥⎫⇒⊥⎬⊂⎭注:线面垂直⇒面面垂直八、平面与平面垂直的性质定理: 文字语言:如果两个平面互相垂直,那么在一个平面内垂直与它们的交线的直线垂直于另一个平面图形语言:符号语言:l AB AB AB lαβαββα⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭作用:面面垂直⇒线面垂直。

立体几何公理、定理推论汇总

立体几何公理、定理推论汇总

立体几何公理、定理推论汇总一、公理及其推论 公理1 如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。

符号语言:,,,A l B l A B l ααα∈∈∈∈⇒⊂作用: ① 用来验证直线在平面内;② 用来说明平面是无限延展的。

公理2 如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。

(那么它们有且只有一条通过这个公共点的公共直线)符号语言:P l P l αβαβ∈⇒=∈I I 且作用:① 用来证明两个平面是相交关系;② 用来证明多点共线,多线共点。

公理3 经过不在同一条直线上的三点,有且只有一个平面。

符号语言:,,,,A B C A B C ⇒不共线确定一个平面推论1 经过一条直线和这条直线外的一点,有且只有一个平面。

符号语言:A a A a a αα∉⇒∈⊂有且只有一个平面,使,推论2 经过两条相交直线,有且只有一个平面。

符号语言:a b P a b ααα⋂=⇒⊂⊂有且只有一个平面,使,推论3 经过两条平行直线,有且只有一个平面。

符号语言://a b a b ααα⇒⊂⊂有且只有一个平面,使,公理3及其推论的作用:用来证明多点共面,多线共面。

公理4 平行于同一条直线的两条直线平行(平行公理)。

符号语言://////a b a c c b ⎫⇒⎬⎭图形语言:作用:用来证明线线平行。

二、平行关系 公理4 平行于同一条直线的两条直线平行(平行公理)。

(1) 符号语言://////a b a c c b ⎫⇒⎬⎭ 图形语言:线面平行的判定定理 如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

(2)符号语言:////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭ 图形语言:线面平行的性质定理 如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

(3)符号语言:////a b a a b βαβα⎫⎪⊂⇒⎬⎪=⎭I图形语言:面面平行的判定定理 如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.(4)符号语言://(/,///),a b b b O a a ββαααβ⊂⊂=⎫⎪⇒⎬⎪⎭I 图形语言: 面面平行的判定 如果两个平面垂直于同一条直线,那么这两个平面平行。

立体几何基本定理与公式

立体几何基本定理与公式

立体几何基本定理与公式
立体几何基本定理与公式包括以下几个方面:
1. 欧拉定理:对于任何一个凸多面体,其顶点数、边数和面数满足顶点数+面数=边数+2。

2. 平面角和定理:一个凸多面体的每个面的角和等于360度。

3. 球面面积公式:一个球面的面积等于4πr^2,其中r为球的
半径。

4. 球体体积公式:一个球体的体积等于(4/3)πr^3,其中r为球
的半径。

5. 正方体体积公式:一个正方体的体积等于边长的立方。

6. 矩形体积公式:一个矩形的体积等于长度乘以宽度乘以高度。

7. 棱柱体积公式:一个棱柱的体积等于底面积乘以高度。

8. 棱锥体积公式:一个棱锥的体积等于底面积乘以高度的一半。

9. 圆锥体积公式:一个圆锥的体积等于底面积乘以高度的三分之一。

10. 圆柱体积公式:一个圆柱的体积等于底面积乘以高度。

立体几何证明定理归纳

立体几何证明定理归纳

立体几何证明定理归纳
公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]
立体几何证明定理归纳
(1)线线平行线面平行
定理内容:
图示:
符号语言:
(2)线面平行线线平行
定理内容:
图示:符号语言:
(3)线面平行面面平行
定理内容:
图示:符号语言:
(4)面面平行线面平行
定理内容:
图示:符号语言:
(5)面面平行线线平行
定理内容:
图示:符号语言:
(6)线线垂直线面垂直
定理内容:
图示:符号语言:
(7)线面垂直线线垂直
定理内容:
图示:符号语言:
(8)线面垂直面面垂直
定理内容:
图示:符号语言:
(9)面面垂直线面垂直
定理内容:
图示:符号语言:
(10)线面垂直线线平行
定理内容:
图示:符号语言:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何证明定理归纳
(1)线线平行线面平行
定理内容:
图示:
符号语言:
(2)线面平行线线平行
定理内容:
图示:符号语言:(3)线面平行面面平行
定理内容:
图示:符号语言:
(4)面面平行线面平行
定理内容:
图示:符号语言:
(5)面面平行线线平行
定理内容:
图示:符号语言:
(6)线线垂直线面垂直
定理内容:
图示:符号语言:
(7)线面垂直线线垂直
定理内容:
图示:符号语言:(8)线面垂直面面垂直
定理内容:
图示:符号语言:
(9)面面垂直线面垂直
定理内容:
图示:符号语言:
(10)线面垂直线线平行
定理内容:
图示:符号语言:。

相关文档
最新文档