高等数学必背公式大全教学提纲
高等数学学习提纲
《高等数学》学习提纲第一章函数、极限与连续第一节函数1、函数的定义;2、函数的两要素;3、分段函数;4、函数的几种特性;5、基本初等函数;6、复合函数;7、初等函数。
第二节数学模型方法简述1、数学模型的含义;2、数学模型的建立过程;3、数学模型的建立。
第三节极限1、数列的极限;2、函数的极限;3、左极限与右极限;4、无穷小量;5、无穷大量。
第四节极限运算1、极限运算法则;2、两个重要极限;3、无穷小的比较。
第五节函数的连续性1、函数的连续性的定义;2、初等函数的连续性;3、闭区间上连续函数的性质。
第二章导数与微分第一节导数的观念1、速度与切线问题;2、导数的定义;3、左右导数;4、导数的几何意义;5、函数的可导性与连续性的关系。
第二节函数的和、差、积、商的求导法则第三节复合函数的求导法则第四节反函数的求导法则与初等函数的导数1、反函数的导数;2、初等函数的导数。
第五节高阶导数第六节隐函数的导数和由参数方程所确定的函数的导数1、隐函数的导数;2、由参数方程所确定的函数的导数。
第七节微分及其应用1、微分的概念;2、微分的几何意义;3、微分的运算法则;4、微分在近似计算中的应用。
第三章一元函数微分学的应用第一节柯西中值定理与罗比塔法则1、柯西中值定理;2、罗比塔法则。
第二节拉格郎日中值定理及函数的单调性1、拉格郎日中值定理;2、两个重要推论;3、函数的单调性。
第三节函数的极值与最值1、函数的极值;2、函数的最值。
第四节曲率1、曲率的概念;2、曲率的计算。
第五节函数图形的凹向与拐点1、曲线的凹向及其判别法;2、拐点及其求法;3、曲线的渐近线;4、函数作图的一般步骤。
第四章不定积分第一节不定积分的概念及性质1、原函数概念;2、不定积分的概念;3、基本积分公式;4、不定积分的性质。
第二节换元积分法1、第一换元积分法;2、第二换元积分法。
第三节分步积分法第四节简单有理函数的积分第五章定积分第一节定积分的概念1、定积分的产生;2、定积分的概念;3、定积分的几何意义;4、定积分的性质。
高等数学公式大全
高等数学宝典(上篇)——公式大全(含微分方程、复变函数)一. 初等数学1. 三角函数 (1) 相互联系,1cos sin 22=+x x ,sec 1tan 22x x =+ .csc 1cot 22x x =+ ,1csc sin =⋅x x ,1sec cos =⋅x x .1cot tan =⋅x x ,tan cos sin x x x = .cot sin cos x xx= 奇变偶不变, 符号看象限:⎩⎨⎧±±=±±±=±=+,3 ,1 ,0 )(,4 ,2 ,0 )()2(n cof n f nf αααπ其中“±”号由角)2(απ+n 所处的象限确定. (2) 和角公式,sin cos cos sin )sin(βαβαβα±=±,sin sin cos cos )cos(βαβαβα∓=±tan tan 1tan tan )tan(βαβαβα∓±=±(3) 积化和差)],sin()[sin(21cos sin βαβαβα−++= )],cos()[cos(21cos cos βαβαβα−++=)].cos()[cos(21sin sin βαβαβα−−+−=(4) 和差化积2cos2sin2sin sin βαβαβα−+=+ 2sin2cos2sin sin βαβαβα−+=−,2cos 2cos 2cos cos βαβαβα−+=+ .2sin 2sin 2cos cos βαβαβα−+−=−(5) 降幂公式22cos 1sin 2αα−=.22cos 1cos 2αα+= (6) 半角公式, ,1cos sin tansin 1cos αααα−==+, 1cos sin cot sin 1cos αααα+==−.2. 复数(1) 代数表示 z = a +b i(2) 三角表示 z = r (cos θ +i sin θ), 其中r = |a + b i| = , a = r cos θ, b = r sin θ. (3) 指数表示 a + b i = re i θ (欧拉公式: e i θ = cos θ +i sin θ ).3. 一些常见的曲线(1) 圆222a y x =+的参数方程为⎩⎨⎧==,sin ,cos θθa y a x极坐标方程为ρ = a (θ∈[0, 2π) );(2) 圆222)(a a y x =−+的参数方程为⎩⎨⎧+==,sin ,cos t a a y t a x (t ∈[0, 2π) ) 极坐标方程为ρ = 2a sin θ (θ∈[0, π) ) ;(3)圆222)(a y a x =+−的参数方程为⎩⎨⎧=+=,sin ,cos t a y t a a x (t ∈[0, 2π) )极坐标方程为ρ = 2a cos θ )]2,2((ππθ−∈ ;(4) 圆222)(a y a x =++的参数方程为⎩⎨⎧=+−=,sin ,cos t a y t a a x (t ∈[0, 2π) ) 极坐标方程为ρ = -2a cos θ ))23,2[(ππθ∈;(5) 圆222)(a a y x =++的参数方程为⎩⎨⎧+−==,sin ,cos t a a y t a x (t ∈[0, 2π) ) 极坐标方程为ρ = -2a sin θ (θ∈[π, 2π) );(6) 椭圆12222=+b y a x 的参数方程为⎩⎨⎧==,sin ,cos t b y t a x (t ∈[0, 2π) );(7) 空间螺线⎪⎩⎪⎨⎧===,,sin ,cos bt z t a y t a x (t;(8) 笛卡儿叶线x 3+y 3=3axy的参数方程为⎪⎪⎩⎪⎪⎨⎧+=+=3231313t at y t at x ;(9) 星形线x 2/3+y 2/3=a 2/3的参数方程为⎪⎩⎪⎨⎧==θθ33sin cos a y a x ; (10) 摆线(圆滚线) 22)1arcsin(y ay aya x −−−=的参数方程为⎩⎨⎧−=−=)cos 1()sin (t a y tt ax;(11) 心形线)(2222x y x a y x −+=+的极坐标方程为ρ = a (1-cos θ);(12) 心形线)(2222x y x a y x ++=+的极坐标方程为ρ = a (1+cos θ);(13) 双纽线(x 2+y 2)2=a 2(x 2-y 2)的极坐标方程为ρ2 = a 2cos2θ ;(14) 双纽线(x 2+y 2)2=2a 2xy的极坐标方程为ρ2 = a 2sin2θ ;(15) 阿基米德螺线xya y x arctan 22=+的极坐标方程为ρ = a θ(16) 不经过原点的直线ax + by + c = 0 (a 2 + b 2 ≠ 0)⇒ a ρcos θ + b ρsin θ + c = 0⇒.sin cos θθρb a c+=例如: x = a (a > 0) ⇒2,2(cos ππθθρ−∈=ax = a (a <0) ⇒23,2(cos ππθθρ∈=a y = a (a >0) ⇒);,0(sin πθθρ∈=ay = a (a <0) ⇒);2,(sin ππθθρ∈=ay = x − a (a > 0) ⇒43,4(sin cos ππθθθρ−∈+=a 二. 极限1. |q |<1, nn q ∞→lim = 0. 2. n n n ∞→lim =1.3. 设数列{a n }与{b n }都收敛, a a n n =∞→lim , b b n n =∞→lim , 则n n n n n n n b a b a ∞→∞→∞→±=±lim lim )(lim = a ±b ; )lim )(lim ()(lim n n n n n n n b a b a ∞→∞→∞→== ab ;n n n n n n n b a b a ∞→∞→∞→=lim lim lim =b a (b ≠0). 4. 设x n =m m ll n b n b b n a n a a ++++++ 1010, 其中a l ≠0, b m ≠0, l ≤m , 则∞→n lim x n =⎩⎨⎧<=m l m l a m l 0. 5. ∞→n lim (p 1+22p+…+n p n ) =2)1(−p p , 其中p >1. 6. ()nn n 11lim +∞→= e. 7. 设)(lim 0x f x x →=A , )(lim 0x g x x →=B . 则)(lim )(lim )()([lim 0x g x f x g x f x x x x x x →→→±=±= A ±B;)](lim )][(lim [)]()([lim 0x g x f x g x f n n x x ∞→∞→→== AB ; )(lim )(lim )()(lim 000x g x f x g x f x x x x x x →→→==B A(B ≠0).8. 设y = f (u )与u = g (x )的复合函数f [g (x )]在x 0的某去心邻域)(0x N内有定义.若)(lim 0x g x x →=u 0, )(lim 0u f u u →=A , 且∀x ∈)(0x N, 有g (x )≠u 0, 其中x 0, u 0为有限值.则复合函数f [g (x )]当x →x 0时也有极限, 且)]([lim 0x g f x x →=)(lim 0u f u u →=A .9. x x x sin lim 0→=1. xx x ⎟⎠⎞⎜⎝⎛+∞→11lim = e.10. 常用的等价无穷小:sin x ~tan x ~arcsin x ~arctan x ~ x (x →0); (1- cos x )~221x (x →0) ln(1+x )~x (x →0) (e x -1)~x (x →0) (n x +1-1)~nx (x →0); [α)1(x +-1]~αx (x →0). 三. 导数与微分1. 导数定义: 0000000)()(lim )()(lim lim)(0x x x f x f x x f x x f x yx f x x x x −−=∆−∆+=∆∆=′→→∆→∆.2. 函数四则运算的求导法则).()(])()([x v x u x v x u ′±′=′± ).()()()(])()([x v x u x v x u x v x u ′+′=′⋅.)()()()()()()(2x v x v x u x v x u x v x u ′−′=⎥⎦⎤⎢⎣⎡/3. 反函数的求导法则设定义在区间I 上的严格单调连续函数x = f ( y )在点y 处可导, 且0)(≠′y f , 则其反函数y = f -1(x )在对应的点x 处可导, 且)(1)()(1y f x f′=′−即yx x y d d 1d d =. 4. 复合函数的求导法则设函数)(x u ϕ=在点x 处可导, 函数y = f (u )在对应的点)(x u ϕ=处可导, 则复合函数))((x f y ϕ=在点x 处可导, 且),()(d d x u f xyϕ′′=即x u u y x y d d d d d d ⋅=. 5. 设函数y = f (x )由参数方程⎩⎨⎧==)()(t y t x ψϕ确定. ),(t x ϕ= )(t y ψ=在区间],[βα上可导, 函数)(t x ϕ= 具有连续的严格单调的反函数),(1x t −=ϕ且,0)(≠′t ϕ则)).(()(1x t y −==ϕψψ函数y = f (x )的导函数由参数方程⎪⎩⎪⎨⎧′′=′=)()()(t x t y y t x ϕ确定.6. 基本求导公式(1) (x α)′ = αx α−1. (2)(a x )′ = a x ln a . (3) (e x )′ = e x . (4) (log a x )′ =1ln x a . (5) (ln x )′ =1x. (6) (sin x )′ = cos x . (7) (cos x )′ = −sin x . (8) (tan x )′ = sec 2x . (9)(cot x )′ = −csc 2x . (10) (sec x )′ = sec x ⋅tan x . (11) (csc x )′ = −csc x ⋅cot x . (12) (arcsin x )′=(arccos x )′ =(14) (arctan x )′ =211x +. (15) (arccot x )′ = −211x +. 7. 一些简单函数的高阶导数(n , k 为正整数) (1)⎪⎩⎪⎨⎧>=<+−−⋅=−,0,!,)1()1()()(n k n k n n k x k n n n x k n k n(2) ,)1()1()1()()(k n k k n x k n n n x −−−−++⋅−= (3) ,)1()1(])1[()(k k x k x −+−−⋅=+ααααα (4) ),(ln )()(a a a k x k x = 特别的, ,)()(x k x e e =(5) ,)!1()1()(ln 1)(kk k x k x −−=− (6) )1()!1()1()]1[ln(1)(k k k x k x +−−=+−(7)),2sin()(sin )(πk x x k += (8) 2cos()(cos )(πk x x k +=(9) ()()()0()nn k n k k n k uv C u v −==∑ ()(1)(2)()()()(1)(1)(1)2!!n n n n k k n n n n n n k u v nu v u v u v uv k −−−−−−+′′′=++++++8. 微分四则运算法则: ,d d )(d v u v u ±=± ,d d )(d v u u v uv += ).0(d d d 2≠−=⎟⎠⎞⎜⎝⎛v v vu u v v u 9. 微分复合运算法则(一阶微分形式不变性)设函数y = f [g(x )]由可微函数y = f (u )与u = g (x )复合而成, 则有,d )(d u u f y ′= ,d )(d x x g u ′= 另一方面, d y =().d )(d )()(d )]([u u f x x g u f x x g f ′=′′=′10. 拉格朗日中值定理:设函数f (x )满足下列条件: (1) f (x )∈C [a , b ], (2) f (x )在(a , b )内可导. 则至少存在一点ξ∈(a , b ), 使得f (b ) − f (a ) = f ′(ξ)(b −a ). 11. 柯西中值定理:设函数f (x ), g (x )满足下列条件:(1) f , g ∈C [a , b ], (2) f , g 在(a , b )内可导, (3) g ′(x )≠0 ∀x ∈(a , b ).则至少存在一点ξ∈(a , b ), 使得)()()()()()(ξξg f a g b g a f b f ′′=−−13. 洛必达法则设函数f (x )在区间(x 0, x 0+δ)(δ>0)内满足下列条件: (1) ,0)(lim )(lim 0==++→→x g x f x x x x (2) f , g 在(x 0, x 0+δ)内可导, 且,0)(≠′x g (3) A x g x f x x =′′+→)()(lim 0(A 为有限数或∞). 则.)()(lim )()(lim 00A x g x f x g x f x x x x =′′=++→→ 设函数f (x )在区间(x 0, x 0+δ)(δ>0)内满足下列条件: (1) ,)(lim )(lim 0∞==++→→x g x f x x x x (2) f , g 在(x 0, x 0+δ)内可导, 且,0)(≠′x g (3)A x g x f x x =′′+→)()(lim 0(A 为有限数或∞). 则.)()(lim )()(lim 00A x g x f x g x f x x x x =′′=++→→ 不可用洛必达法则的情形.(1) 21lim 1++→x x x , (2) xx x x sin lim +∞→, (3) x x xx x e e e e −−+∞→+−lim .事实上, 21lim 1++→x x x =32, xx x x sin lim +∞→=sin 1(lim x xx +∞→=1, x x x x x e e e e −−+∞→+−lim =x x x e e 2211lim −−+∞→+−=1. 14. 带皮亚诺余项的泰勒公式设函数f (x )在x 0处n 阶可导, 则f (x )=k nk k x x k x f )!)(000)(−∑=+ o((x -x 0)n ). 15. 几个初等函数的麦克劳林公式(1) e x =1+x +21x 2+61x 3+…+!1n x n+ o(x n ).(2) sin x = x -!31x 3+!51x 5-…+(-1)n )!12(1+n x 2n +1 + o(x 2n +1). (3) cos x = 1-!21x 2+!41x 4-…+(-1)n )!2(1n x 2n + o(x 2n ).(4) ln(1+x ) = x -21x 2+31x 3-…+(-1)n -1n 1x n + o(x n ).(5) α)1(x +=n x n n x x !)1()1(!2)1(12+−−++−++αααααα + o(x n ).(6) sin 2x =22cos 1x −=()⎥⎦⎤⎢⎣⎡+−+−+−−n nn x n x x x 2242)2(o )!2()2()1(!4)2(!2)2(12121=)(o !)!12(!2)1(3221142n n n n x x n n x x +−−++−−+ .(7) cos 2x =1- sin 2x = 1-)(o !)!12(!2)1(322142n n n nx x n n x x +−−+−+− .16. 带拉格朗日余项的泰勒公式设函数)(],[)(n b a C x f ∈, 且)1(),()(+∈n b a C x f , 则],[,0b a x x ∈∀, 有 f (x )=knk k x x k x f )!)(000)(−∑=+10)1()()!1()(++−+n n x x n f ξ, 其中ξ介于x 与x 0之间. 17. 几个初等函数的带拉格朗日余项的麦克劳林公式(1) e x=1+x +21x 2+61x 3+…+!1n x n+1)!1(++n x x n e θ (x ∈R , 0<θ<1).(2) sin x = x -!31x 3+!51x 5-…+(-1)n -1)!12(1−n x 2n -1 +12)!12(cos )1(++−n n x n x θ (x ∈R , 0<θ<1). (3) cos x = 1-!21x 2+!41x 4-…+(-1)n )!2(1n x 2n +221)!22(cos )1(+++−n n x n x θ (x ∈R , 0<θ<1). (4) ln(1+x ) = x -21x 2+31x 3-…+(-1)n -1n 1x n+)1(1)1)(1()1(++++−n n n x n x θ (x ∈R , 0<θ<1). (5) α)1(x +=n x n n x x !)1()1(!2)1(12+−−++−++αααααα +11)1)!1()()1(+−−++−−n n x x n n αθααα (x ∈R , 0<θ<1). 18. 曲率(1) 设曲线C 在直角坐标系中的方程为y = y (x )且y (x )具有二阶导数. 则K =232])(1[y y ′+′′.(2) 设曲线C 的参数方程为⎩⎨⎧==)()(t y y t x x , 则K =2322])()[(t t t t t t y x y x y x ′+′′′′−′′′. 四. 一元积分1. 定积分的性质(1) 若f , g 在[a , b ]上可积, k 1, k 2∈R , 则∫+bax x g k x f k )]d ()([21.)d (d )(21∫∫+=babax x g k x x f k(2) 若f 在某区间I 上可积, 则f 在I 的任一子区间上可积, 且∀a , b , c ∈I ,∫bax x f d )(.)d (d )(∫∫+=bcc ax x f x x f(3) 若f , g 在[a , b ]上可积, 且∀x ∈[a , b ], f (x )≤g (x ), 则∫bax x f d )(≤.d )(∫bax x g(4) 若f 在[a , b ]上可积, 且∀x ∈[a , b ], f (x )≥0, 则∫bax x f d )(≥0.(5) 若f 在[a , b ]上可积, 则∫bax x f d )(≤.d )(∫bax x f(6) 若f 在[a , b ]上可积, 且∀x ∈[a , b ], m ≤f (x )≤M , 则m (b -a )≤∫bax x f d )(≤M (b -a ).(7) 若f ∈C [a , b ], 则至少存在一点ξ∈[a , b ]使∫bax x f d )(= f (ξ)(b -a ).2. 变上限积分所定义的函数的性质设f (x )∈C[a , b ], 则函数∫=Φxat t f x d )()(在区间[a , x ]上可导, 且Φ′(x )= f (x ).3. 微积分学基本公式若f (x )∈C[a , b ], F (x )为f (x )在区间[a , b ]上的一个原函数, 则∫bax x f d )(= F (b )-F (a ).4. 不定积分的性质(1) ),(]d )([x f x x f =′∫,d )(]d )([d x x f x x f =∫,)(d )(C x f x x f +=′∫ .)()(d C x f x f +=∫(2) 设f (x ), g (x )有原函数, k 1, k 2∈R , 则.d )(d )(d )]()([2121∫∫∫+=+x x g k x x f k x x g k x f k5. 基本积分表(1) d k x kx C =+∫ (k 是常数). (2) 1d 1x x x C ααα+=++∫ (α ≠−1)(3) 1d ln ||x x C x =+∫. (4) 21d arctan 1x x C x =++∫.(5)arcsin x x C =+. (6) cos d sin x x x C =+∫. (7) sin d cos x x x C =−+∫. (8) 221d sec d tan cos x x x x C x==+∫∫. (9) 221d csc d cot sin x x x x C x==−+∫∫. (10) sec tan d sec x x x x C =+∫. (11) csc cot d csc x x x x C =−+∫. (12) d x xe x e C =+∫.(13) d ln xxa a x C a=+∫. (14) sh d ch x x x C =+∫. (15)ch d sh x x x C =+∫. (16) tan d ln |cos |x x x C =−+∫.(17) cot d ln |sin |x x x C =+∫ (18) sec d ln |sec tan |x x x x C =++∫.(19)csc d ln |csc cot |x x x x C =−+∫ (20)2211d arctan xx C a x a a=++∫. (21) 2211d ln 2x a x C x a a x a −=+−+∫. (22) 2211d ln 2a x x C a x a a x −=+−−∫.(23)C +∫. (24) ln(x x C =++∫.(25) 2ln ||2a x x C =±+∫.(26) 2arcsin 2a x x C a =+∫. (27) /20sin d n n I x x π=∫=/20cos d nx x π∫=21n n I n−−.6. 换元积分法(1) 第一类换元积分法: 设函数u =ϕ (x )可微, F (u )为f (u )的一个原函数. 则∫′x x x f d )()]([ϕϕ∫=u u f d )(C u F +=)(.)]([C x F +=ϕ(2) 常见的凑微分法①)(d 1d b ax ax +=(a , b 为常数且a ≠0) ②)(d )1(1d 1b ax an x x n n++=+(a , b 为常数且a ≠0, n ≠-1)③),(ln d 1x x x= ④),(d d xx e x e = ⑤),(cos d d sin x x x −= ⑥),(tan d d sec 2x x x = ⑦),(arctan d d 112x x x =+ ⑧∫+x x a 122∫+++++=x x a x a x x a x d )(222222∫++++=)(d 12222x a x x a x , ⑨∫−x a x d 122∫−−+−+=x a x a x x a x x d )(222222∫−+−+=)(d 12222a x x a x x ,⑩∫−+x x x d 112=∫−x x 112∫−+x x x d 12∫−−−=)1(d 1121arcsin 22x x x .(3) 第二类换元积分法: 设函数f (x ) 连续, 函数x = ϕ (u )有连续的导数, ϕ '(u )≠0, 且∫′u u u f d )()]([ϕϕ.)(C u F +=则∫x x f d )(∫′=u u u f d )()]([ϕϕC u F +=)(.)]([1C x F +=−ϕ (4) 常见的第二类换元法①令u b ax n =+(a , b 为常数且a ≠0) ②令nd cx bax ++= t (其中ac ≠0, b , d 不同时为零) ③令,1u x =④令u = tan 2x , 则sin x =221u u +, cos x =2211u u −+, d x =22d 1uu +.⑤令x = a sin t , = a cos x , d x = a cos t d t , 其中a > 0, t ∈ [0, π/2].⑥令x = a sec t , a tan x , d x = a sec t tan t d t , 其中a > 0, t ∈ (0, π/2).⑦令x = a tan t , a sec x , d x = a sec 2x d t , 其中a > 0, t ∈ (0, π/2).7. 分部积分法(1) 不定积分的分部积分法∫u (x )d v (x ) = u (x )v (x ) - ∫v (x )d u (x )(2) 分部积分法中u (x ), v (x )的常见选取方法① P (x )sin x d x = -P (x )d(cos x ), P (x )cos x d x = P (x )d(sin x ). ② P (x )e x d x = P (x )d(e x ).③ P (x ) ln x d x = ln x d(∫P (x )d x ).④ e ax cos(bx )d x =a 1cos(bx )d(e ax ) =b 1e ax d(sin(bx )), e ax sin(bx )d x =a 1sin(bx )d(e ax ) =b1−e ax d(cos(bx )).(3) 定积分的分部积分法∫′bax x v x u d )()(∫=bax v x u )(d )(.)(d )()()(∫−=babax u x v x v x u8. 平面曲线的弧长(1) 在直角坐标系中: y = f (x ), x ∈[a , b ], 其中,C )()1(],[b a x f ∈取d s =,)d ()d (22y x +则∆s -d s = o(∆x ) (∆x →0), 于是.d )(12∫′+=bax y s(2) 参数方程⎩⎨⎧==)()(t y t x ψϕ t ∈[α, β], 其中,C )(),()1(],[βαψϕ∈t td s =22)d ()d (y x+,t =于是.d )]([])([22∫′+′=βαψϕt t t s(3) 极坐标系中: ρ = ρ (θ), θ∈[α, β], 则⎩⎨⎧==θθρθθρsin )(cos )(y x , .d )]([)(22∫′+=βαθθρθρs 9. 空间曲线的弧长设空间曲线L 的参数方程为()()()x x t y y t z z t =⎧⎪=⎨⎪=⎩ t ∈[α, β], 其中(1)[,](),(),()C ,x t y t z t αβ∈则d s,t = 于是L的长度为.s t βα=∫10. 平面图形的面积(1) 直角坐标系中① y = f (x ) 与 y = g (x )以及x = a , x = b 所围成的图形的面积(其中f (x )≥ g (x )).d )]()([∫−=bax x g x f A② x = ϕ(y ) 与 x = ψ(y )以及y = c , y = d 所围成的图形的面积(其中ψ(y )≥ ϕ(y )).d )]()([∫−=dcy y y A ϕψ(2) 极坐标系中ρ = a θ, θ∈[α, β], ,d )(21d 2θθρ=A .d )(212∫=βαθθρA 11. 空间立体的体积(1) 平行截面面积A (x )已知的立体(a ≤ x ≤ b ): d V = A (x )d x , .d )(∫=bax x A V(2) 旋转体的体积① y = f (x ) (x ∈[a , b ])绕x 轴旋转一周(其中f (x )≥0), A (x ) = π f 2(x ), 故.d )(2∫=b a x x f V π② x = g (y ) (y ∈[c , d ])绕y 轴旋转一周(其中g (y )≥0), A (y ) = πg 2(y ), 故.d )(2∫=dcy y g V π五. 微分方程1. 一阶可分离变量的微分方程:),()(d d y g x f xy=其中f (x ), g (y )连续. )()(d d y g x f x y =x x f y g y d )()(d =⇒∫∫=⇒x x f y g yd )()(d .)()(C x F y G +=⇒ (其中g (y )≠0, )(1)(y g y G =′ F ′ (x ) = f (x ), C 为任意常数) 2. 一阶线性微分方程: ),()(d d x q y x p xy=+其中p (x ), q (x )连续.(1) 对于,0)(d d =+y x p x y分离变量得:,d )(d x x p yy −= ∫=−x x p Ce y d )(( C 为任意常数). (2) 对于),()(d d x q y x p xy=+ ∫=−x x p e x C y d )()(得].d )([d )(d )(C x e x q e y x x p x x p +∫∫=∫− 3. 可经变量代换化为已知类型的几类一阶微分方程 (1) 齐次方程:),,(d d y x f xy= 其中f (tx , ty ) = f (x , y ), .0≠∀t①将原方程化为),(d d x yx y ϕ= ②令x y u =得,ux y = 从而d d d d x u x u x y +=代入原方程并整理得,)(d d u u xux −=ϕ③分离变量, 得,d )(d xxu u u =−ϕ ④两边积分,⑤以xy代替u . (2) 伯努里方程: ,)()(d d αy x q y x p x y=+其中.1,0≠α①两边同除以αy 得),()(d d 1x q y x p xy y =+−−αα②令,1α−=y z 则,d d )1(d d x y y xz αα−−= 原方程化为),()1()()1(d d x q z x p x z αα−=−+ ③解上述关于z 的一阶线性非齐次微分方程,④ 以α−1y 代替z .4. 可降阶的高阶微分方程 (1) )()(x f yn =型(2) 不显含未知函数y 的方程:).,(y x f y ′=′′令,z y =′ 则).,(d d z x f xz= 若解之得),,(1C x z ϕ= 则.d ),(21∫+=C x C x y ϕ (3) 不显含自变量x 的方程: ).,(y y f y ′=′′改取y 为自变量, 令),(y z y z =′= 则.d d d d d d d d yz z x y y z x z y ⋅=⋅==′′ 于是原方程化为).,(d d z y f y zz= 这是关于z (y )的一阶微分方程, 若解之得: ),,(1C y z ϕ= 即),,(d d 1C y x y ϕ= 则.),(d 21∫+=C C y yx ϕ5. 设a 1(x ), a 2(x ) f (x ) ∈ C I , 则∀x ∈I 及任给的初始条件y (x 0) = y 0, y ′(x 0) = y 1, 初值问题⎩⎨⎧=′==+′+′′,)(,)(),()()(100021y x y y x y x f y x a y x a y 存在定义于区间I 上的唯一解y = y (x ).6. 设y 1(x ), y 2(x )是线性齐次方程y ″ + a 1(x )y ′ + a 2(x ) y = 0的两个解, 1212()()()()()y x y x W x y x y x =′′, 则(1) y 1(x ), y 2(x )在区间I 上线性相关 ⇔ ∃x 0∈I 使它们的Wronski 行列式W (x 0) = 0.(2) y 1(x ), y 2(x )在区间I 上线性无关⇔∀x ∈I , 它们的Wronski 行列式W (x ) ≠ 0. 7. 线性齐次方程y ″ + a 1(x )y ′ + a 2(x ) y = 0必存在两个线性无关的解.8. 设y 1(x ), y 2(x )是线性齐次方程y ″ + a 1(x )y ′ + a 2(x ) y = 0的两个线性无关的解, 则该线性齐次方程的解集S 是y 1(x ), y 2(x )生成的一个二维线性空间{}112212|,.y c y c y c c =+为任意常数9. 设y *(x )是二阶线性非齐次方程y ″ + a 1(x )y ′ + a 2(x ) y = f (x ) ①的一个特解, y 1(x ), y 2(x )是对应的齐次方程 y ″ + a 1(x )y ′ + a 2(x ) y = 0 ②的两个线性无关的解, 则y = c 1y 1(x ) + c 2y 2(x ) + y *(x )为非齐次方程①的通解. 10. 设)(*x y i 是方程y ″ + a 1(x )y ′ + a 2(x ) y = f i (x ) (i = 1, 2, …, n )的特解,则)()(**1x y x y n ++ 是方程y ″ + a 1(x )y ′ + a 2(x ) y = f 1(x ) + … + f n (x )的特解. 11. 二阶线性常系数齐次方程的解法(1) 特征方程ar 2+br +c = 0有两个相异实根r 1, r 2, 则通解.2121xr xr e c e c y += (2) 特征方程有两个相等实根r 1 = r 2 = r , 则通解.)(21rx e x c c y +=(3) 特征方程有一对共轭复根r = α ± i β, 则通解).sin cos (21x c x c e y xββα+= 12. 二阶线性常系数非齐次方程的解法(1) 待定系数法求ay ″+by ′+cy = f (x ) (a ≠0, b , c 为常数)的特解.① f (x ) = P n (x )e α x .若α不是ar 2+br +c = 0的根, 则令y * = (b 0x n +b 1x n -1 +…+ b n -1x + b n )e α x . 若α是ar 2+br +c =0的单根, 则令y * = x (b 0x n +b 1x n -1 +…+ b n -1x + b n )e α x . 若α是ar 2+br +c =0的重根, 则令y * = x 2(b 0x n +b 1x n -1 +…+ b n -1x + b n )e α x . 再代入原方程, 通过比较系数确定b 0, b 1, …, b n . ② f (x ) = P n (x )e α x cos βx 或f (x ) = P n (x )e α x sin βx .先求ay ″+by ′+cy = P n (x )e α x [cos βx + isin βx ] = P n (x )e (α+i β)x 的特解Y *.则原方程的特解互取为⎪⎩⎪⎨⎧===xe x P xf Y xe x P xf Y y xn xn ββααsin )()( *,Im cos )()( *,Re * (2) 常数变易法13. n 阶Euler 方程: a 0x n y (n ) + a 1x n -1y (n -1) +…+ a n -1xy ′ + a n y = f (x ) (其中a 0, a 1, …, a n 为常数). 14. 二阶Euler 方程的解法.令x = e t, 则ax 2y ′′ + bxy ′ + cy = f (x )化为).(d d )(d d 22te f cy ty a b t y a =+−+这是一个线性常系数微分方程, 求出其通解后将t 换为ln x 即得原方程的解.六. 多元函数微分学1. 偏导数定义00(,)x y zx ∂∂ = z x (x 0, y 0) = f x (x 0, y 0) = x y x f y x x f x ∆−∆+→∆),(),(lim 00000.00(,)x y zy ∂∂ = z y (x 0, y 0) = f y (x 0, y 0) = y y x f y y x f y ∆−∆+→∆),(),(lim 00000.),,()(2222y x f xfx z x z x xx =∂∂=∂∂=∂∂∂∂ ),,()(22y x f y x f y x z x z y xy =∂∂∂=∂∂∂=∂∂∂∂),,()(22y x f x y fx y z y z x yx =∂∂∂=∂∂∂=∂∂∂∂ ),,()(2222y x f y f y z y z y yy =∂∂=∂∂=∂∂∂∂2. 可微的必要条件:若函数f (x , y )在点M 0(x 0, y 0)处可微, 则 ① f (x , y )在点M 0(x 0, y 0)处连续;② f (x , y )在点M 0(x 0, y 0)处存在偏导数, 且.d ),(d ),(d 0000),(00y y x f x y x f z y x y x+=3. 全微分的运算法则d[f (x , y ) ± g (x , y )] = d f (x , y ) ± d g (x , y );d[f (x , y )g (x , y )] = g (x , y )d f (x , y ) + f (x , y )d g (x , y );),(),(d ),(),(d ),(),(),(d2y x g y x g y x f y x f y x g y x g y x f −= (g (x , y ) ≠ 0). 4. 方向导数(1) z = f (x , y )在点M 0(x 0, y 0)处沿着向量l 的方向导数00(,)x y z ∂∂lty x f t y t x f t ),()cos ,cos (lim00000−++→βα,其中向量l 的方向余弦为cos α, cos β.(2) 若函数f (x , y )在点M 0(x 0, y 0)处可微, 则f (x , y )在点M 0(x 0, y 0)处沿任一方向l 的方向导数都存在,且有.cos ),(cos ),(0000),(00βαy x f y x f zy x y x +=∂∂l5. 梯度grad f (x 0, y 0)j.),(i ),(0000y x f y x f y x +=6. 复合函数微分法(1) 设函数u = ϕ(x ), v = ψ(x )在点x 处可导, 而z = f (u , v )在对应的点(u , v )处可微,则复合函数z = f (ϕ(x ), ψ(x ))在点处可导, 且x vv z x u u z x z d d d d d d ∂∂+∂∂=d d grad {,}.d d u v z x x=⋅ (2) 设函数u = ϕ(x , y ), v = ψ(x , y )在点(x , y )处可偏导, 而z = f (u , v )在对应的点(u , v )处可微,则复合函数z = f (ϕ(x , y ), ψ(x , y ))在点(x , y )处存在偏导数, 且xvv z x u u z x z ∂∂∂∂+∂∂∂∂=∂∂},,{grad x v x u z ∂∂∂∂⋅= y v v z y u u z y z ∂∂∂∂+∂∂∂∂=∂∂},,{grad yv y u z ∂∂∂∂⋅= 7. 隐函数微分法(1) 设二元函数F (x , y )满足下列条件:①F x (x , y ), F y (x , y )在点(x 0, y 0)的某邻域内连续. ②F (x 0, y 0) = 0, ③F y (x 0, y 0) ≠ 0.则存在点x 0的一个邻域N (x 0, δ )以及在N (x 0, δ )内定义的唯一的函数y = y (x )满足: (i) y 0 = y (x 0), F (x , y (x )) ≡ 0, ∀x ∈N (x 0, δ ).(ii) 在N (x 0, δ )中, 函数y = y (x )有连续的导数, 且yxF F y −=′ (2) 设n +1元函数F (x 1, x 2, …, x n , y )满足下列条件:①),,,,(21y x x x F n x i (i = 1, 2, …, n ), F y (x 1, x 2, …, x n , y )在点M 0的某邻域内连续. ②F (M 0, y 0) = 0, ③F y (M 0, y 0) ≠ 0.则存在点M 0的一个邻域N (M 0, δ )以及在N (M 0, δ )内定义的唯一的一个n 元函数 y = y (x 1, x 2, …, x n )满足: (i) y 0 = y (M 0),且F (x 1, x 2, …, x n , y (x 1, x 2, …, x n )) ≡ 0, ∀( x 1, x 2, …, x n )∈N (M 0, δ ). (ii) y = y (x 1, x 2, …, x n )在N (M 0, δ )中有一阶连续偏导数, 且y x iF F x yi −=∂∂(i = 1, 2, …, n ).(3) 设三元函数F (x , y , z ), G (x , y , z )满足下列条件:①F x , F y , F z , G x , G y , G z 在点M 0(x 0, y 0, z 0)的某邻域内连续.②F (x 0, y 0, z 0) = 0, G (x 0, y 0, z 0) = 0, ③.00≠M zy z y G G F F则存在点x 0的一个邻域N (x 0, δ )以及在N (x 0, δ )内定义的唯一的一组函数⎩⎨⎧==)()(x z z x y y 满足:(i) y 0 = y (x 0), z 0 = z (x 0), 且⎩⎨⎧≡≡0))(),(,(0))(),(,(x z x y x F x z x y x F ∀x ∈N (x 0, δ ).(ii) y = y (x ), z = z (x )在N (x 0, δ )中均有连续的导数,且,),(),(),(),(d d z y G F x z G F x y ∂∂∂∂=,),(),(),(),(d d z y G F y x G F x z ∂∂∂∂=其中,),(),(x z x z G G F F x z G F =∂∂,),(),(zy zy G G F F z y G F =∂∂.),(),(yx yx G G F F y x G F =∂∂8. 切线方程与法平面方程(1) 设曲线Γ的参数方程为(),(),(),x x t y y t z z t =⎧⎪=⎨⎪=⎩ M 0, M 的坐标分别为(x (t 0), y (t 0), z (t 0)), 则切线方程为)()()(000000t z z z t y y y t x x x ′−=′−=′− 故切向量为a = {x ′(t 0), y ′(t 0), z ′(t 0)}, 法平面的方程为x ′(t 0)(x -x 0) + y ′(t 0) (y -y 0) + z ′(t 0)(z -z 0) = 0. (2) 设曲线Γ的方程为⎩⎨⎧==),(),(x z z x y y 则点))(),(,(0000x z x y x M 处的切线方程为)()()()(100000x z x z z x y x y y x x ′−=′−=− 法平面方程为:(x -x 0) + y ′(x 0) (y -y (x 0)) + z ′(t 0)(z -z (x 0)) = 0.(3) 设曲线Γ的方程为⎩⎨⎧==,0),,(,0),,(z y x G z y x F 它确定⎩⎨⎧==),(),(x z z x y y 则点M 0处的切线方程为:00),(),(),(),(),(),(000M M M y x G F z z x z G F y y z y G F x x ∂∂−=∂∂−=∂∂−法平面方程为:.0)(),(),()(),(),()(),(),(000000=−∂∂+−∂∂+−∂∂z z y x G F y y x z G F x x z y G F M M M9. 切平面方程与法线方程(1) Σ: F (x , y , z ) = 0在点M 0(x 0, y 0, z 0)处的切平面方程为,0))(())(())((000000=−+−+−z z M F y y M F x x M F z y x法线方程为)()()(000000M F z z M F y y M F x x z y x −=−=−(2) Σ: z = f (x , y )在点M 0(x 0, y 0, z 0)处的切平面方程为,0)())(,())(,(0000000=−−−+−z z y y y x f x x y x f y x法线方程为1),(),(0000000−−=−=−z z y x f y y y x f x x y x10. 多元函数的Taylor 公式设二元函数f (x , y )在点M 0(x 0, y 0)的某邻域N (M 0)内有n +1阶连续偏导数. 则 ∀M (x 0+∆x , y 0+∆y )∈N (M 0), 有),(00y y x x f ∆+∆+),()(),(0000y x f y y x x y x f ∂∂⋅∆+∂∂⋅∆+= +∂∂⋅∆+∂∂⋅∆+),((!21002y x f yy x x),()(!100y x f y y xx n n ∂∂⋅∆+∂∂⋅∆+),()()!1(1001y y x x f y y x x n n ∆+∆+∂∂⋅∆+∂∂⋅∆+++θθ 其中0<θ <1.上式称为二元函数f (x , y )在点M 0处带有Lagrange 型余项的n 阶Taylor 公式. 特殊情形 (1) 中值公式),(00y y x x f ∆+∆+y y y x x f x y y x x f y x f y x ∆∆+∆++∆∆+∆++=),(),(),(000000θθθθ其中0<θ <1.(2) 一阶Taylor 公式),(00y y x x f ∆+∆+),((),(0000y x f y y xx y x f ∂∂⋅∆+∂∂⋅∆+=),()(21002y y x x f yy x x ∆+∆+∂∂⋅∆+∂∂⋅∆+θθ0],[),(00M y x f f y x y x f ⎥⎦⎤⎢⎣⎡∆∆+=⎥⎦⎤⎢⎣⎡∆∆∆∆+y x M H y x f )(],[21*其中M *(x 0+θ∆x , y 0+θ∆y ), 0<θ <1, H f (M )为f 在点M (x , y )处的Hessian 矩阵.⎥⎥⎦⎤⎢⎢⎣⎡yy xy xy xx f f f f(3) Maclaurin 公式f (x , y ) = f (0, 0)∑=∂∂+∂∂⋅+nk k f y y x x k 1)0,0()(!1),(()!1(11y x f y y x x n n ∆∆∂∂⋅+∂∂⋅+++θθ, 其中0<θ <1.七. 数量函数积分1. 数量函数积分的定义 ∫Ω f (M )d Ω = 01lim()nkk d k f M→=∆Ω∑.2. 数量函数积分的性质(1) ∫Ω [a f (M ) + b g (M )]d Ω = a ∫Ω f (M )d Ω + b ∫Ω g (M )d Ω, 其中a , b 为常数.(2) ∫Ω f (M )d Ω = ∫Ω1 f (M )d Ω + ∫Ω2 f (M )d Ω, 其中Ω = Ω1∪Ω2, 且Ω1与Ω2无公共内点. (3) f (M ) ≤ g (M ) (∀M ∈Ω) ⇒ ∫Ω f (M )d Ω ≤ ∫Ω g (M )d Ω. (4) |∫Ω f (M ) d Ω| ≤ ∫Ω | f (M )|d Ω.(5) a ≤ f (M ) ≤ b (∀M ∈Ω) ⇒ aV ≤ ∫Ω f (M )d Ω ≤ bV , 其中V 为Ω的度量. (6) f (M ) ∈ C Ω ⇒ ∃M ∗∈Ω s.t. ∫Ω f (M )d Ω = f (M ∗)V , 其中V 为Ω的度量. 3. 直角坐标系下的二重积分的计算(1) D = {(x , y ) | a ≤ x ≤ b , ϕ1(x ) ≤ y ≤ ϕ2(x )}, 则∫∫D f (x , y )d σ =21()()d (,)d bx ax x f x y y ϕϕ∫∫.(2) D = {(x , y ) | c ≤ y ≤ d , ψ1(y ) ≤ x ≤ ψ2(y )}, 则∫∫D f (x , y )d σ =21()()d (,)d dy cy y f x y x ψψ∫∫.4. 二重积分换元法设函数f (x , y )在有界闭区域D 上连续, x = ϕ(u , v ) 和 y = ψ(u , v )有一阶连续偏导数, 且Jacobi 行列式J (u , v ) =(,)(,)x y u v ∂∂=u vu vϕϕψψ≠ 0,则 ∫∫D f (x , y )d x d y = ∫∫D f (ϕ(u , v ), ψ(u , v ))|J (u , v )|d u d v .5. 极坐标系下二重积分的计算令x = ρcos ϕ, y = ρsin ϕ, 则∫∫D f (x , y )d x d y = ∫∫D f (ρcos ϕ, ρsin ϕ)ρd ρd ϕ. (1) 极点O 在D 的外部D = {(ϕ, ρ) | α ≤ ϕ ≤ β, ρ1(ϕ) ≤ ρ ≤ ρ2(ϕ)}, 则∫∫D f (x , y )d x d y =21()()d (cos ,sin )d f βρϕαρϕϕρϕρϕρρ∫∫.(2) 极点O 在D 的边界曲线上D = {(ϕ, ρ) | α ≤ ϕ ≤ β, 0 ≤ ρ ≤ ρ(ϕ)}, 则∫∫D f (x , y )d x d y =()d (cos ,sin )d f βρϕαρϕρϕρϕρ∫∫.(3) 极点O 在D 的内部D = {(ϕ, ρ) | 0 ≤ ϕ ≤ 2π, 0 ≤ ρ ≤ ρ(ϕ)}, 则∫∫D f (x , y )d x d y =2()d (cos ,sin )d f πρϕϕρϕρρρϕ∫∫.6. 广义极坐标变换令x = a ρcos ϕ, y = b ρsin ϕ, 则∫∫D f (x , y )d x d y = ∫∫D f (a ρcos ϕ, b ρsin ϕ)ab ρd ρd ϕ. 7. 直角坐标系下三重积分的计算(1) Ω = {(x , y , z ) | (x , y ) ∈ D xy , z 1(x , y ) ≤ z ≤ z 2(x , y )}, 则∫∫∫Ω f (x , y , z )d v =21(,)(,)[(,,)d ]d d xyz x y z x y D f x y z z x y ∫∫∫. (2) Ω = {(x , y , z ) | (y , z ) ∈ D yz , x 1(y , z ) ≤ x ≤ x 2(y , z )}, 则∫∫∫Ω f (x , y , z )d v =21(,)(,)[(,,)d ]d d yzx y z x y z D f x y z x y z ∫∫∫.(3) Ω = {(x , y , z ) | (z , x ) ∈ D zx , y 1(z , x ) ≤ y ≤ y 2(z , x )}, 则∫∫∫Ω f (x , y , z )d v =21(,)(,)[(,,)d ]d d zxy z x y z x D f x y z y z x ∫∫∫.(4) Ω = {(x , y , z ) | (x , y ) ∈ D (z ), p ≤ z ≤ q }, 则∫∫∫Ω f (x , y , z )d v =()[(,,)d d ]d qpD z f x y z x y z ∫∫∫. (5) Ω = {(x , y , z ) | (y , z ) ∈ D (x ), a ≤ x ≤ b }, 则∫∫∫Ω f (x , y , z )d v =()[(,,)d d ]d ba D x f x y z y z x ∫∫∫. (6) Ω = {(x , y , z ) | (z , x ) ∈ D (y ), c ≤ y ≤ d }, 则∫∫∫Ω f (x , y , z )d v =()[(,,)d d ]d d cD y f x y z z x y ∫∫∫.8. 柱面坐标系下三重积分的计算令x = ρcos ϕ, y = ρsin ϕ, z = z , 则∫∫∫Ω f (x , y , z )d v = ∫∫∫Ω f (ρcos ϕ, ρsin ϕ, z )ρd ϕd ρd z . 9. 球面坐标系下三重积分的计算令x = r sin θcos ϕ, y = r sin θsin ϕ, z = r cos θ,则∫∫∫Ω f (x , y , z )d v = ∫∫∫Ω f (r sin θcos ϕ, r sin θsin ϕ, r cos θ)r 2sin θd r d θd ϕ. 10. 广义球坐标系下三重积分的计算令x = ar sin θcos ϕ, y = br sin θsin ϕ, z = cr cos θ,则∫∫∫Ω f (x , y , z )d v = ∫∫∫Ω f (ar sin θcos ϕ, br sin θsin ϕ, cr cos θ)abcr 2sin θd r d θd ϕ.11. 第一型曲线积分的计算(1) L : y = y (x ) ∈(1)[,]C,a b 则 ∫L f (x , y )d s=(,(baf x y x x ∫.(2) L : x = x (y ) ∈(1)[,]C ,c d 则 ∫L f (x , y )d s=((),dcf x y y y ∫.(3) L : x = x (t ), y = y (t ) ∈(1)[,]C ,αβ 则 ∫L f (x , y )d s=((),(f x t y t t βα∫.(4) L : ρ = ρ(ϕ) ∈(1)[,]C,αβ 则 ∫L f (x , y )d s=(()sin ,()cos f βαρϕϕρϕϕϕ∫.(5) L : x = x (t ), y = y (t ), z = z (t ) ∈(1)[,]C ,αβ 则∫L f (x , y , z )d s=((),(),(.f x t y t z t t βα∫12. 第一型曲面积分的计算(1) 设Σ: z = z (x , y )分片光滑, f 在Σ上连续, Σ在xOy 平面上的投影区域为D xy ,则∫∫Σ f (x , y , z )d A=(,,(,d xyD f x y z x y x y ∫∫.(2) 设Σ: y = y (z , x )分片光滑, f 在Σ上连续, Σ在zOx 平面上的投影区域为D zx ,则∫∫Σ f (x , y , z )d A=(,(,),d zxD f x y z x z z x ∫∫.(3) 设Σ: x = x (y , z )分片光滑, f 在Σ上连续, Σ在yOz 平面上的投影区域为D yz ,则∫∫Σ f (x , y , z )d A=((,),,d yzD f x y z y z y z ∫∫.13. 线密度为µ(x , y )的平面曲线段L 的质心坐标(x ,y )(,)d (,)d LLx x y s x x y s µµ=∫∫,(,)d (,)d LLy x y s y x y sµµ=∫∫.14. 面密度为µ(x , y )的平面薄片D 的质心坐标(x ,y )(,)d d (,)d d DDx y x y x x y x y x µµ=∫∫∫∫,(,)d d (,)d d DDx y x y y x y x yy µµ=∫∫∫∫. 15. 密度为µ(x , y , z )的空间立体Ω的质心坐标(x ,y ,z )(,,)d d d (,,)d d d x y z x y z x x y z x y x z µµΩΩ=∫∫∫∫∫∫,(,,)d d d (,,)d d d x y z x y z y x y z x y y z µµΩΩ=∫∫∫∫∫∫, (,,)d d d (,,)d d d x y z x y z z x y z x y z zµµΩΩ=∫∫∫∫∫∫.16. 线密度为µ(x , y )的平面曲线段L 对x 轴的转动惯量I x = ∫L y 2µd s , 对y 轴的转动惯量I y = ∫L x 2µd s . 17. 面密度为µ(x , y )的平面薄片D 对x 轴的转动惯量I x = ∫∫D y 2µd σ, 对y 轴的转动惯量I y = ∫∫D x 2µd σ. 18. 密度为µ(x , y , z )的空间立体Ω关于x 轴, y 轴, z 轴的转动惯量I x , I y , I z .I x = ∫∫∫Ω (y 2+ z 2)µd x d y d z , I y = ∫∫∫Ω (z 2+ x 2)µd x d y d z , I z = ∫∫∫Ω (x 2+ y 2)µd x d y d z .19. 线密度为µ(x , y )的平面曲线段 L 对位于L 外的点M 0(x 0, y 0)处的单位质点的引力F 的两个分量F x =03()(,)d L k x x x y s r µ−∫, F y =03()(,)d L k y y x y s rµ−∫, 其中k 为引力常数, r20. 面密度为µ(x , y , z )的曲面块Σ对Σ外的一点M 0(x 0, y 0, z 0)处单位质点的引力F 的三个分量F x =03()d k x x A r µΣ−∫∫, F y =03()d k y y A r µΣ−∫∫, F z =03()d k z z A rµΣ−∫∫,。
大学高等数学公式大全
大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。
2. 导数的运算法则:常数函数的导数为0。
幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。
指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。
对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。
三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。
3. 高阶导数:函数的导数可以继续求导,得到高阶导数。
例如,f''(x)表示二阶导数。
二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。
2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。
幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。
指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。
对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。
三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。
3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。
积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。
积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。
高等数学重要公式(必记)
高等数学重要公式(必记)一、导数公式:二、基本积分表:三、三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C ax a x a x dx x a C a x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:四、三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高等数学公式大全
高等数学公式大全一、方程1.一元一次方程一元一次方程是指由一个未知数及其平方项和一次项所组成的方程,它的标准形式为:ax + b = 0, 其解为: x = -b/a2.一元二次方程一元二次方程是指由一个未知数的二次项、一次项和常数项组成的方程,它的标准形式为:ax² + bx + c = 0,其解为:x1,2 = [-b ±√(b²-4ac)]/2a3.不定方程不定方程是指方程右端没有任何量,且没有可以代求解的未知数,它的标准形式为:ax + b = 0,其解为:任何实数x即为解4.幂指数方程幂指数方程是指指数函数方程经过变形后所得的方程,它的标准形式为:ax^m+bx^n=c,其解为:x=(c-b)/a5.二元一次方程二元一次方程是指有两个未知数,右端只有一次项的方程,它的标准形式为:ax + by = c,其解为:x = (c-b)/a, y = (c-a)/b6.二元二次方程二元二次方程是指有两个未知数,右端有两次项的方程,它的标准形式为:ax² + by² + cxy + dx + ey + f = 0,其解为: x=-ey/2c+【(ey/2c)² - (d+bx/c) 】^½ / (d+bx/c) 、 y=-dx/2c+【(dx/2c)² - (e+ax/c) 】^½ / (e+ax/c)二、椭圆方程1.一般形式一般形式是指将椭圆方程转化为一般形式来求解的方法,它的标准形式为:Ax²+By²+Cxy+Dx+Ey+F=0,其解为:X=-2CX0/(B-A)±b^½*[(CX0/(B-A))²-(2BX0²/B-A)];。
高等数学常用公式大全
高等数学常用公式大全1.微分学公式:- 导数的定义:若函数y=f(x)在点x0处可导,则其导数为f'(x0)=lim(x→x0)(f(x)-f(x0))/(x-x0)-基本导数公式:- (1) 常数函数的导数:d(C)/dx = 0,其中C为常数- (2) 幂函数的导数:d(x^n)/dx = n*x^(n-1),其中n为实数- (3) 指数函数的导数:d(e^x)/dx = e^x- (4) 对数函数的导数:d(ln(x))/dx = 1/x- (5) 三角函数的导数:d(sin(x))/dx = cos(x),d(cos(x))/dx = -sin(x),d(tan(x))/dx = sec^2(x),d(cot(x))/dx = -csc^2(x),d(sec(x))/dx = sec(x)*tan(x),d(csc(x))/dx = -csc(x)* cot(x)2.积分学公式:- 不定积分的性质:∫(f(x)+g(x))dx = ∫f(x)dx + ∫g(x)dx,∫k*f(x)dx = k*∫f(x)dx,其中f(x)和g(x)是可积函数,k是常数-基本积分公式:- (1) 幂函数的不定积分:∫x^n dx = (1/(n+1))*x^(n+1) + C,其中n不等于-1- (2) 指数函数的不定积分:∫e^x dx = e^x + C,其中C为常数- (3) 对数函数的不定积分:∫1/x dx = ln,x, + C- (4) 三角函数的不定积分:∫sin(x) dx = -cos(x) + C,∫cos(x) dx = sin(x) + C,∫tan(x) dx = -ln,cos(x), + C,∫cot(x) dx = ln,sin(x), + C,∫sec(x) dx = ln,sec(x)+tan(x), + C,∫csc(x) dx = ln,csc(x)-cot(x), + C3.微分方程公式:- 一阶线性微分方程:dy/dx + p(x)y = q(x),其中p(x)和q(x)是已知函数,分别称为系数函数和非齐次项函数。
(完整版)大学高数公式大全
a b c cos , 为锐角时,
4 / 12
高等数学公式
平面的方程:
1、点法式: A( x x0 ) B( y y0 ) C ( z z0 ) 0,其中 n { A, B, C}, M 0 (x0, y0 , z0 ) 2、一般方程: Ax By Cz D 0
3、截距世方程: x
y
z 1
abc
平面外任意一点到该平 面的距离: d
x ( x, y)d
D
, y M y
( x, y) d
M
D
y ( x, y)d
D
( x, y)d
D
平面薄片的转动惯量: 对于 x轴 I x
y2 ( x, y)d , 对于 y轴 I y
x 2 ( x, y)d
D
D
平面薄片(位于 xoy平面)对 z轴上质点 M (0,0, a), (a 0)的引力: F { Fx , Fy , Fz},其中:
隐函数 F ( x, y) 0, dy dx
F F
x y
d2 ,
dx
y
2
( x
隐函数 F ( x, y, z) 0, z Fx , z Fy
x Fz
y Fz
Fx )+ (
Fy
y
Fx ) dy Fy dx
5 / 12
高等数学公式
F (x, y,u, v) 0
隐函数方程组:
J
( F ,G)
·半角公式:
sin 2
1 cos cos
2
2
1 cos 2
1 cos 1 cos
sin
1 cos 1 cos
sin
tg
ctg
2
高等数学提纲
高数笔记一、函数1.求定义域和值域求定义域,注意函数自身性质,例如arcsinx (1x 1≤≤-)求值域,注意函数自身性质如1sinx ≤,还可以运用均值定理求值域 2.反函数定义域值域求解求定义域,尤其是分段函数,要根据原函数的值域更改定义域 求值域,要注意将利用原函数的定义域求反函数的值域 3.求抽象函数的解析式主要是换元和赋值,例如,令 t = x - 1 、令y = -y 、令x = a形如)()(f lim x g x an →=,求间断点极限时候可以变换不同的g(x)变式4.映射单射:当x21x ≠时,y21y ≠,例如单调或者间断单调性质:单射才有逆映射5.函数连续性连续函数×连续函数=连续函数二、极限1.定义证明极限:任意0>ε,要使ε<-A x )(f ,即21x ε<-,可令2εδ=,当δ<-<10x 时,则有ε<-A x f )(,即A x f a=→)(lim x2.利用公式求极限特别注意:x2、 -∞→x 、0x -→一定不能少了负号(1)等价无穷小公式,()[]abx x b~1a 1-+、xx x 221~1cos ~cos ln - (2)∞→x 时候,带有x1,可以考虑换元成等价无穷小,若为多项式可以考虑抓大头 (3)当多项式相乘还带指数根号形式,可以考虑取对数 (4)幂指函数形式,首先考虑e =∞1重要极限,再考虑取对数(5)洛必达法则,注意数列不能求导,可以代数时候停止求导,如2tan a π=∞rc 是需要停止的(6)分子有理化,平方差公式(7)数列无穷项,夹逼或者拆分为减法(8)带绝对值的求解,需要分情况求左右极限来确定 (9)三角函数求极限①可以考虑加上πn ,再利用有理化 ②洛必达③和积化差公式2cos 2sin2sin sin b a b a b a ++=+ 2cos2-sin 2sin -sin ba b a b a +=2cos 2cos 2cos cos b a b a b a -+=+ 2sin2sin 2-cos -cos ba b a b a +-= 3.函数连续性(1)间断点,寻找间断点:①函数自身性质:定义域 值域 ②分母不能为零 ③等价无穷小要分开讨论an →lim 注意其中的a 的值(2)渐近线,判断间断点类型后后直接写 4.函数极限存在性(1)证明极限不存在:找出两列子列(2)证明极限存在:①有界性,常用数学归纳法,还可以用均值定理 ②单调性,利用定义xx nn 1+、xx nn -+1判断5.由一个极限值求另一个极限值利用等式α+=⇒=→A ))((())((g lim x f g A x f an 带入式子中解出f(x)三、导数1.复合函数求导特别注意:不要漏了对复合函数中的x 1和x21 2.参数方程求导极坐标方程可以根据x y x sin ,cos x ρρ==换成参数方程后再求 3.高阶导(1)对数函数,拆分为加减法(2)尼布莱茨公式,不要掉了c、2616c(3)相关变化率写出关系式,对被除的自变量进行求导 (4)求函数的单调性可以运用在求根的个数上(5)二阶导,一阶导后可以代入原来关系式简化运算 4.导数定义式的利用:注意其中的x ∆前的符号要相对应x x f x x f x f ∆-∆+=→∆)()()(lim 0x 时常等价于0)0()(lim 0x --→x f x f涉及复合抽象函数的求导时候,可以根据定义式来拆分子得出多个导数5.反函数求导[]()y f x ''11)(f=-6.求导公式xx 2'11)sin (arc +=[]xx 2'11arcsin +-=7.极值问题当在某一点函数的导数没有定义时,而它的左右导数分别大于零,小于零,那么这一点是极大值8.求导问题偶函数的导数必定是奇函数,奇函数的原函数必定是偶函数。
高等数学必背公式大全
高等数学必背公式大全1、勾股定理:a2+b2=c22、椭圆方程:(x-x0)2/a2+(y-y0)2/b2=13、两点公式:,P1P2,=√((x2-x1)2+(y2-y1)2)4、双曲线方程:a2(x2/b2)-(y2/c2)=15、圆的方程:(x-x0)2+(y-y0)2=r26、三角形公式:a2+b2=c27、直线方程:y = kx + b (斜率k和截距b)8、斜率定理:m1*m2=-1/K29、余弦定理:a2 = b2 + c2 - 2bc*cosA10、正弦定理:a * sinA = b * sinB = c * sinC11、贝塞尔曲线方程:(x-x0)4+(y-y0)4=r412、三角函数公式:sin2A + cos2A = 113、极坐标方程:r = a * e(acosθ + bsinθ)14、反正弦定理:y = arcsin(x/a) + c15、偏微分公式:dy/dx = (dy/du) * (du/dx)16、平面四边形公式:a2+b2=c2+d217、反余弦定理:y = arccos(x/a) + c18、三角形面积公式:S = 1/2 * a * b * sinC19、多边形内角和公式:(n-2)*π=∑(内角弧度)20、抛物线公式:y=ax2+bx+c21、多项式求导公式:f'(x) = an-1 * xn-1 + an-2 * xn-2 + …… + a1 * x + a022、函数变换公式:f(x+h) = f(x) + hf'(x)23、矩阵乘法公式:(AB)ij = ∑k=1n(Aik*Bkj)24、求和公式:∑(a1+an)*n/225、模除法:a / b = a mod b + b * (a div b)26、几何平均数公式:(a1*a2*a3*……*an)^(1/n)27、距离公式:L=(x2-x1)^2+(y2-y1)^228、几何中点公式:(x1+x2)/2,(y1+y2)/229、坐标转换公式:x = x0 + (x-x0)cosα - (y-y0)sinα。
高数公式大全
高等数学公式汇总第一章 一元函数的极限与连续1、一些初等函数公式:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβαβαβαβαβαββααβαβαβαβαβαβ±=±±=±±=⋅⋅±=±±=±±=±和差角公式:sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式: 1sin cos [sin()sin()]21cos sin [sin()sin()]21cos cos [cos()cos()]21sin sin [cos()cos()]2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式:2222222222sin 22sin coscos 22cos 1 12sin cos sin 2tan tan 21tan cot 1cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααααααααααα==-=-=-=--===+==-=+倍角公式:22222222sin cos 1;tan 1sec ;cot 1csc ;1sin 2cos 21cos sin tan 2sin 1cos 1cos sin cot2sin 1cos x x x x ch x sh x αααααααααααααα+=+=+=-===-===++===-半角公式:::ln(2::ln(211::ln21x xx xx x x x e e shx arshx x e e chx archx x shx e e xthx arthx chx e e x-----==++==±+-+===+-双曲正弦;反双曲正弦双曲余弦;反双曲余弦双曲正切;反双曲正切3322()()()a b a b a ab b ±=±+,222(1)(21)126n n n n +++++=22333(1)124n n n ++++=2、极限➢常用极限:1,lim 0n n q q →∞<=;1n a >=;lim 1n =➢ ln(1())limln(1())~()()lim[()()]1/()()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x ee ++±→→∞±=−−−−−−→若则➢ 两个重要极限100sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x→→∞→∞→==+==+ ➢:常用等价无穷小2111cos ~; ~sin ~arcsin ~arctan 1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x x n a x a e x x ax x x--++++3、连续:定义:000lim 0;lim ()() x x x y f x f x ∆→→∆==00lim ()lim ()()()x x x x f x f x f x f x -+-+→→⇔==极限存在或 第二章 导数与微分1、 基本导数公式:00000000()()()()()limlim lim tan x x x x f x x f x f x f x yf x x x x x α∆→∆→→+∆--∆'====∆∆-_0+0()()f x f x -+''⇔=导数存在1220; (); (sin )cos ; (cos )sin ; (tan )sec ; (cot )csc ;(sec )sec tan ; (csc )csc ; ()ln ;();11(log ); (ln ); (arcsin ) (arccos )ln a a x x x x a C x ax x x x x x x x x x x x x x ctgx a a a e e x x x x x a x -''''''======-''''=⋅=-⋅==''''====222211(arctan ); (cot ); ();();1111(); () ())1x arc x shx hx chx shx x x thx arshx archx arthx ch x x ''''==-==++''''====-2、高阶导数:()()()()!()()!; ()ln ()()!n k n k n n x n x n x n x n x x x n a a a e e n k -=⇒==⇒=-()()()1111(1)!1(1)!1!(); (); ()()()n n n n n n n n n n n x x x a x a a x a x +++--===++-- ()()(sin )sin(); (cos )cos();22n n n n kx k kx n kx k kx n ππ=⋅+⋅=⋅+⋅()1()(1)1(1)!1(1)![ln()](1)[ln()]()(1)()n n n n n n nn n a x x a x x x-----+=-⇒==-+ 牛顿-莱布尼兹公式:()()()0()(1)(2)()()()()(1)(1)(1)2!!nn k n k k n k n n n n k k n uv C u v n n n n n k u v nu v u v u v uv k -=---=---+'''=++++++∑3、微分:0()()(); =()();y f x x f x dy o x dy f x x f x dx ''∆=+∆-=+∆∆=⇒⇔⇒连续极限存在收敛有界;=⇔⇔⇒可微可导左导右导连续;⇒不连续不可导第三章微分中值定理与微分的应用1、基本定理()()()(),(,)()()(),(,)()()()F()f b f a f b a a b f b f a f a b F b F a F x x ξξξξξ'-=-∈'-=∈'-=拉格朗日中值定理:柯西中值定理:当时,柯西中值定理就是拉格朗日中值定理。
高数复习知识点及提纲
高数复习知识点及提纲第一篇:高数复习知识点及提纲高数复习知识点及提纲1.瑕积分的判别,广义积分和Γ(n)的计算。
6分2.罗必达法则求未定式。
6分3.利用导数研究函数的单调性和极值,凸凹性和拐点。
10’4.利用定积分求解封闭图形的面积7分5.多元函数连续与可微的关系3分6.多元函数的一阶、二阶偏导数的计算;二元函数的全微分,多元函数复合函数的求导及隐函数求导。
20分7.二元函数极值的经济应用7分8.二重积分的计算以及交换积分次序10分9.利用级数的收敛性证明极限,求幂级数的收敛域和函数,函数的幂级数展开18分10.微分方程解的概念,一阶线性的微分方程的求解。
13’--------------------第二篇:高数知识点高等数学B2知识点1、二元函数的极限、连续、偏导数、全微分;微分法在几何上的应用;二元函数的方向导数与梯度;二元函数的极值。
2、二重积分的计算(直角坐标、极坐标);三重积分的计算(直角坐标、柱面坐标)。
3、曲线积分、曲面积分的计算;格林公式;高斯公式。
4、数项级数收敛性的判别;幂级数的收敛半径、收敛域。
第三篇:高数知识点总结高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(y ax),三角函数(y=sinx),常数函数(y=c)2、分段函数不是初等函数。
x2+xx=lim=13、无穷小:高阶+低阶=低阶例如:limx→0x→0xxsinx4、两个重要极限:(1)lim=1x→0x(2)lim(1+x)=ex→01x⎛1⎫lim 1+⎪=e x→∞⎝x⎭g(x)x经验公式:当x→x0,f(x)→0,g(x)→∞,lim[1+f(x)]x→x0=ex→x0limf(x)g(x) 例如:lim(1-3x)=ex→01xx→0⎝⎛3x⎫lim -⎪x⎭=e-35、可导必定连续,连续未必可导。
例如:y=|x|连续但不可导。
6、导数的定义:lim∆x→0f(x+∆x)-f(x)=f'(x)∆xx→x0limf(x)-f(x0)=f'(x0)x-x07、复合函数求导:df[g(x)]=f'[g(x)]•g'(x)dx例如:y=x+x,y'=2x=2x+1 2x+x4x2+xx1+18、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx x2+y2=1例如:解:法(1),左右两边同时求导,2x+2yy'=0⇒y'=-x ydyx法(2),左右两边同时微分,2xdx+2ydy⇒=-dxy9、由参数方程所确定的函数求导:若⎨⎧y=g(t)dydy/dtg'(t)==,则,其二阶导数:dxdx/dth'(t)⎩x=h(t)d(dy/dx)d[g'(t)/h'(t)]dyd(dy/dx)dtdt===2dxdxdx/dth'(t)210、微分的近似计算:f(x0+∆x)-f(x0)=∆x•f'(x0)例如:计算sin31︒11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:y=sinx(x=0x是函数可去间断点),y=sgn(x)(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:f(x)=sin ⎪(x=0是函数的振荡间断点),y=数的无穷间断点)12、渐近线:水平渐近线:y=limf(x)=cx→∞⎛1⎫⎝x⎭1(x=0是函xlimf(x)=∞,则x=a是铅直渐近线.铅直渐近线:若,x→a斜渐近线:设斜渐近线为y=ax+b,即求a=limx→∞f(x),b=lim[f(x)-ax]x→∞xx3+x2+x+1例如:求函数y=的渐近线x2-113、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高中数学公式大全(必备版)教学提纲
高中数学公式大全(必备版)高中数学公式及知识点速记1、函数的单调性(1)设1212[,],x x a b x x ∈<、且那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数. (2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数; 若0)(<'x f ,则)(x f 为减函数; 若()=0f x ',则)(x f 有极值。
2、函数的奇偶性若)()(x f x f =-,则)(x f 是偶函数;偶函数的图象关于y 轴对称。
若)()(x f x f -=-,则)(x f 是奇函数;奇函数的图象关于原点对称。
3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数)(0x f '是曲线)(x f y =在))(,(00x f x P 处的切线的斜率,相应的切线方程是))((000x x x f y y -'=-. 4、几种常见函数的导数①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=; ⑤a a a x x ln )('=; ⑥x x e e =')(; ⑦a x x a ln 1)(log '=; ⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()u u v uv v v-=. 6、求函数()y f x =的极值的方法是:解方程()0f x '=得0x .当()00f x '=时:① 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ② 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 7、分数指数幂(1)m na =.(2)1m nm naa-==.8、根式的性质 (1)n a =.(2)当na =;当n,0||,0a a a a a ≥⎧==⎨-<⎩.9、有理指数幂的运算性质 (1)rs r s aa a +⋅=;(2)()r srsa a =;(3)()r r rab a b =. 10、对数公式(1)指数式与对数式的互化式: log b a N b a N =⇔=。
高等数学各章重要公式及知识点归总
第一章 函数类1. y=x 1,x ≠0 →y=□1,□≠0 (-∞,0)∪(0,+∞)类2.y=2n x ,x ≥0 →y=2n □,□≥0 [0,+∞)2. 若f (x )过(a ,b ),f -1(x )过(b ,a )3. f (x )和f -1(x )的图像关于y=x 对称4.Sinx sin[arcsinx]=x →arcsinx arcsin[sinx]=xEg.f[f-1(3)]=3基本初等函数幂函数:y=x u,u取任意的实数共同点(1,1)偶函数:图像关于y轴对称y=x2指数函数(变化最快):y=a x,a>0且a≠12共同点(0,1)共同点(1,0)y=e x反函数是y=log e x=lnxsinx :ππ单调增区间:z k k π2πk π2π-∈++),(cotx:→1.奇函数:sinx,tanx,cotx原点对称偶函数:cosx y=x对称2.有界函数:sinx,cosx 有界是根据值域定的3.周期函数:sinx,cosx→T=2πtanx,cotx→T=πtanx·cotx=1 sin0=0Sin2x=2sinxcosxCos2x=cos2x-sin2x=2cos2x-1=1-2sin2x2.特殊角度→函数值反三角函数:arcsinx,arccosx,arctanx,arccotx arcsinx:arccox:arctanx:arccotx:arctanx,arccotx 2234πarctan3=3π定义域: -1≤x≤1复合函数:y=f(u),u=g(x), y=f[g(x)] Z⊂D 复合1.y=u2,u=sinx→y=sin2x2.y=u3,u=cosv,v=2x+3→y=cos3(2x+3)条件:3.y=arccosu,u=x2+3→y=arccos(x2+3)×初等函数:由基本的初等函数经过有限次的四则运算及复合得到的函数 复合函数的分解:1.由内到外,分解的每一步必须为基本初等型 2.遇到四则运算或基本初等型则停止 x 的最大整数称为x 的整数部分,记作:[x] [e]=2 [π]=3x-1<[x]≤x x=t 2+2→y 与xy=3t引入参数,导致y 与x 有联系幂指函数:y=u (x )v (x )→1.lny=lnu (x )v (x )=v (x )lnu (x )2.)()()()(x lnu x v x lnu e ey x v ==,恒等变形函数的性质:必须在所给的定义域内单调性,有界性,周期性,奇偶性1.常见的有界函数:sinx,cosx,arcsinx,arccosx,arctanx,arccotx2.有界函数的运算:有界+有界=有界有界-有界=有界有界×有界=有界无穷大量±有界一定>0+∞+有界=+∞-∞+有界=-∞周期函数:sinx→T=2πcosx→T=2πtanx→T=πcotx→T=π奇偶性:1.偶函数:图像关于y轴对称,f(x0)=f(-x0)2.奇函数:图像关于原点对称,f(x0)=-f(-x0)常见的奇函数:sinx,tanx,cotx,arcsinx,arctanx,x n(n为奇数)常见的偶函数:cosx,x n(n为偶数),|x|常熟C C,C≠0→偶函数0,可奇可偶奇偶运算规则:偶偶:+ - ×÷是偶函数→x2,1-x2,x2(1-x)2,1+x2,,cosx1=secx奇奇:+ - 是奇函数x+x3×÷是偶函数x×x=x2x·sinx sin4x=sinx·sinx·sinx·sinx 1+x21+x2 1-x2奇偶:×÷是奇函数x×x2=x3+ - 可奇,可偶,非奇非偶极限等差数列: 1,2,3,4,……,n ,…… 公差d=1,通项x n =n=1+(n-1)×1通项x n =x 1+(n-1)d →等差数列:首项x 1,公差d前n 项和,(求和公式):2nxn +x1)(等比数列:2,22,23,24,……,2n 公比q=2,x n =2n =2·2n-1 1k =4.1k z =∞k 3=13+23+33+……+n 3=]2n 1n [)(+ 2 5.1n 1-n 131-2121-111n n 12?11?11k k 1z n 1k ++⋯⋯++=++⋯⋯++=+=)()(=1n 1-1+ =1n n + 数列极限的定义:若不存在常数a ,则极限不存在,或x n 发散几何含义:当n>N 时,所有的点x n 都落在(a-ε,a+ε)内,只有有限个(至多只有N 个)在其外数列的性质:极限存在的充要条件:左极限=右极限1.唯一性2.有界性:|x n -a|<ξ3.保号性:∀ξ>0,∃n >N ,使得|x n -a|<ξ 若a >0,n >N 时,x n >0 若a <0,n >N 时,x n <0 去心领域:只考虑点a 邻近的点,不考虑点a ,即考虑点集(a-δ,a )∪(a ,a+δ),称这个点集为点a 的去心邻域函数的极限性质:1.函数极限的唯一性:若A =∞→→)(x f lim x x0x ,则极限必唯一2.函数极限的局部有界性3.函数极限的局部保号性:若A =→)(x f lim x0xA >0,0<|x-x 0|<δ,f (x )>0A <0,0<|x-x 0|<δ,f (x )<0无穷小(无穷小量)与无穷大常数的极限永远是本身关系:1.∞=→)(x f lim x0x →0x f 1limx0x =→)(互为倒数关系2.0x f 0x f lim x0x ≠=→)(且)(→∞=→)(x f 1limx0x01=∞ ∞=01总结:极限不存在的三种情形 1.limf (x )=∞ 2.左极限≠右极限3.没有确定的函数值极限值区间内波动]1,1[sinx lim x -=∞→方法一:000=⨯=⨯有界)无穷小量(即无穷小量有界函数 方法二:四则运算:(极限存在,则可以拆) 1.lim[f (x )±g (x )]=limf (x )±limg (x )=A ±B 2.lim[f (x )·g (x )]=limf (x )·limg (x )=A ·B 3.)()()()()(0x lim g x lim f x g x f lim≠==B BA 4.limC ·f (x )=C ·limf (x )=C ·A C 是常数 5.lim[f(x)]n =limf (x )·limf (x )……=A n总结:x →x 0时,x 0在初等函数定义域内,可直接将值代入求极限 方法三:消0因子法(0)方法四:抓大头思想(∞∞) 方法五:利用分子有理化求极限 方法六:先求和再求极限 方法七:先求积再求极限方法八:利用夹逼准则求极限(找两边) 极限存在准则:1.夹逼准则(1)x n ≤y n ≤z n ,且a zn lim a xn lim n n ==∞→∞→,→a yn lim n =∞→→ 2.□→00·∞→∞⨯=⨯→001000 →01⨯∞=∞⨯∞→∞∞②e x 1limx1x =+→)( ①∞1 e x11limxx =+∞→)( ②1+形式→e □1lim 0□□1=+→时)(e n 11lim nn =+∞→)( ③互为倒数总结:若今后遇到∞1型①若)()](1[lim x g x f + 为∞1,则原式=)()(x g x limf e②若)(x g )]([lim x f 为∞1,则原式=)(x g ]1)([lim e ⨯-x f方法十:利用等价无穷小求极限 → 无穷小的比较→型→0,∞,c (c ≠0)注意1.因子:只有乘除关系,等价必须是因子 2.非0因子直接代入方法十一:利用左右极限求极限左极限:0-0x x x x x f lim -0<),(→ 右极限:+→+00x x x x x f lim 0<),(极限存在的充要条件:若A A =→→=+→→→)()()(x f lim x f lim x f lim 0-0x x x x x x左极限=右极限极限不存在:1.limf (x )=∞2.左极限≠右极限3.没有确定的函数值极限值区间内波动]1,1[sinx lim x -=∞→注意:分段函数分界点要分左右极限连续与间断→极限的应用设f (x )在x 0的邻域内又定义,如果)()(0x x x f x f lim 0=→,则称f (x )在x 0处连续。
高三数学知识点总结全提纲
高三数学知识点总结全提纲一、函数与方程1.一次函数与二次函数- 线性函数与仿射函数的概念- 一次函数与二次函数的图像特征- 一次函数与二次函数的性质及应用2.指数与对数函数- 指数函数与对数函数的定义与性质- 指数方程与对数方程的解法- 指数函数与对数函数在实际问题中的应用二、数列与数列的极限1.等差数列与等比数列- 等差数列与等比数列的概念及性质- 等差数列与等比数列的通项公式与求和公式 - 等差数列与等比数列的应用2.数列的极限- 数列极限的定义与性质- 数列收敛与发散的判定- 数列极限的计算方法与应用三、三角函数与立体几何1.三角函数- 三角函数的定义与性质- 求解三角方程与三角不等式 - 三角函数的应用2.立体几何- 空间几何体的基本概念与性质 - 空间几何体的计算与应用- 空间几何体的投影与旋转四、概率与统计1.基本概念与统计图- 概率与统计的基本概念与方法- 统计图的绘制与分析- 频率与概率的关系2.样本与抽样- 样本与总体的概念与表示 - 不同抽样方法的特点与应用 - 样本统计量的计算与推断五、微积分1.导数与微分- 导数的定义与性质- 导数的计算方法与应用- 微分的概念与微分法的应用 2.不定积分与定积分- 不定积分的概念与性质- 不定积分的计算与定义- 定积分的概念与性质- 定积分的计算与应用六、平面几何与圆锥曲线1.平面几何- 平面几何中的基本概念与性质- 平面几何中的直线和圆的性质- 平面几何中的相似与全等2.圆锥曲线- 椭圆、双曲线、抛物线的定义与性质 - 圆锥曲线的参数方程与一般方程- 圆锥曲线的应用七、数论与离散数学1.数与式的整除性- 整数的性质与分类- 整除、最大公因数与最小公倍数- 素数与素数分解2.离散数学- 集合论与命题逻辑- 排列与组合- 图论与网络优化综上所述,高三数学知识点总结全提纲包括了函数与方程、数列与数列的极限、三角函数与立体几何、概率与统计、微积分、平面几何与圆锥曲线以及数论与离散数学等方面的内容。
(完整版)高数常用公式手册
高等数学复习公式1、乘法与因式分解公式2、三角不等式■Ti3、一元二次方程U H-珀+巴=0 的解4、某些数列的前n项和5、二项式展开公式6、基本求导公式7、基本积分公式8—些初等函数两个重要极限9、三角函数公式正余弦定理10、莱布尼兹公式11、中值定理12、空间解析几何和向量代数13、多元函数微分法及应用14、多元函数的极值15、级数16、微分方程的相关概念1、乘法与因式分解公式1.1a3'—护=(口一卜)(& + b)1.2八土护干必十們n ■ n / ■ 、/ n 1 n 2.g a b (a b)(a a b2、三角不等式2.1 匕■. J -2.2 ■' > r - L2.3 二;•- * 门'2.4 ■- ■- ■- r - ■■- 2.6|训£ b 旨一常用高数公式(a-b)(a n~ (口十&)(厂十络十a" 皆---------------- a b n~2十矿+ ft Q —& t1+ '■' + fit —Q J伉为正整数)g为偶数)n 3 2 n 2 n 1、a b L ab b )( n 为奇数)3、一元二次方程 。
十+斑十的解3.2(韦达定理)根与系数的关系:r >0万程口恂定一黄恨, 3-3利别朮 沪-伽彳=0方程有相尊二买抿”I < U 方程有决辄肆琅.4、某些数列的前 n 项和4.1T r - 亦 + 1)1十2十3十…•十沖= ------ ---- 4.21 十3 + B+ —十(2⑺一1) = □& 4.32+4 + 5+ ■■■ + (2 外)=n (n 十 1)44[十沪十护十…十卅=巾+ 1)帥+ 1)64.5 f 十护十扌十…十(亦章=吧-1)a4.61彳+尸+*+…+异+44.7P+孑十用+…十(加一⑵^一 1)4.81卄也十L )=*十挈+可'J5、二项式展开公式5.1 (一时—+严时答2-沪十捫一%一宀…+7 !U p+止土色土^右 忖十十屮Jd!6、基本求导公式:(C) 0 (C为常数)(cot x) csc 2 xsin "2x (sec x)(csc x)sec x tan xesc x cot x (arcsin x)(log a x)1 1(ln x)x x ln a(sin x) cos x (cos x) sin x(tan x) sec2 x1 cos2 x(x ) x 1 (为实数) (a x) a x lna (e x) e x(arccos(arctan7、基本积分公式:0dx x) x)(arc cot x)1 x211 ~x7x dx 1)Idx xxe dx lnxsec xdx ln secx tan x Ccsc xdx ln cscx cot x Cdxarctan x C1 x2dxarcsin x C疋1e x Ca x dxx—C Inadx2~ cosx2sec xdx tancosxdx sin x Csin xdx cosx C 8、一些初等函数:两个重要极限:双曲正弦:shx 双曲余弦:chxx x e e2x x e e2双曲正切:thxshx x echx x e arshx ln (x x2 1) archx ln (x .x21)xeedx2sin x2csc xdx cot x Csec x tan xdxcscx cot xdxlimx 0lim(1丄厂x xsecxcscx Ce 2.718281828459045…arthx Iln 1_-2 1 x 9、三角函数公式:高等数学复习公式sinsin 2si n-cos22sinsin2 cos-sin22 coscos2 cos-cos-22 coscos 2 sin --sin -22■倍角公式:■半角公式:c os —21 cosV 2cot —21cos 1 cos sin 1 cossin 1 cos柯西中值定理: 当F(x) x 时,柯西中值定理就是 拉格朗日中值定理sin( )sin cos cos sin cos()cos cos sin sintan() tan tan 1 tan tan、 cot cot 1cot()cot cot■和差化积公式:sin2tan — 2■正弦定理: a sin A b sin B — 2R •余弦定理:c 2 sin C 2 2a b 2abcosC•反三角函数性质: arcs in x arccosx arcta n x —arc cot x2(uv)(n) n C :u (nkJ)u (n)v (n 1) nu v n(n 1)u(n 2)vn(n 1) (n k 1) (n k )v(k )10、高阶导数公式一一莱布尼兹( Leibniz )公式: 2!k!11、中值定理与导数应用: U V(n)拉格朗日中值定理: f(b) f(a) f ( )(b a)■和差角公式:si n2 cos2 cot2 tan22sin cos 22 cos 1 cot 2 12cot 2ta n 1 tan 21 2si n 22cos.2 sinsi n3 3sin4s in 3cos3 4CO £3 cos tan33ta n tan 321 3ta n12、空间解析几何和向量代数:空间2点的距离:d M 1M 2 向量在轴上的投影:Pr j u ABPrj u@1 a ?) Pr ja 1 Prja ?a b cos a x b xa zb z ,是一个数量,代表平行六面体的体积平面的方程:1、点法式:A(x X o ) B(y y o ) C(z z o ) 0,其中 n{代 B,C}, M o (x o , y o ,z o )2、一般方程:Ax By Cz D o3、截距世方程:△ y z -1a b c平面外任意一点到该平面的距离:|Ax o By o d -- ------------- Cz o D〜 、‘A 2 B 2 C 2x X o mt空间直线的方程:xX o y y ozzt,其中s {m,n, p};参数方程:y y o ntmnPPtz z o二次曲面:22 21、椭球面:y_ 刍1 ab 2 c222、抛物面:丄 y_ z,(p, q 同号)2p 2q3、双曲面:222单叶双曲面:务y_ 刍1 ab 2c 222双叶双曲面:qy ~~2刍1(马鞍abc13、多元函数微分法及应用两向量之间的夹角: cos axb : x 2 2 一 a xa y a yb y T~' 2 a z ... b x a z b z 2 2 b y b zcab a xb x ay b y k a z ,c b z a b sin 例:线速度: 向量的混合积: [abc] (a b) c a x b x ayb y C ya zb z Czc cos ,为锐角时, (X 2 X 1)2 Q2 yJ 2 (Z 2 Z 1)2 AB cos ,是AB 与u 轴的夹角。
高等数学公式必背大全
高等数学必背公式说明:这里有你想要的东西,高等数学必备公式一应俱全。
导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一阶初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβα-+=--+=+βαβαβαβαβαβαβαβαtg tg tg ±=±=±±=±)(sin sin cos cos )cos(sin cos cos sin )sin(μxxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑ΛΛΛ中值定理与导数应用:拉格朗日中值定理。
时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。
:化量;点,切线斜率的倾角变点到从平均曲率:其中弧微分公式:ααααααααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==定积分的近似计算:⎰⎰⎰----+++++++++-≈++++-≈+++-≈ban n n ban n ba n y y y y y y y y nab x f y y y y n a b x f y y y nab x f )](4)(2)[(3)(])(21[)()()(1312420110110ΛΛΛΛ抛物线法:梯形法:矩形法:定积分应用相关公式:⎰⎰--==⋅=⋅=bab a dt t f a b dx x f a b y k rmm k F Ap F sF W )(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功:空间解析几何和向量代数:。
代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。
是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u ϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖϖ⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-==(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y mtx x p n m s t p z z n y y m x x C B A DCz By Ax d czb y a x D Cz By Ax z y x M C B A n z z C y y B x x A ϖϖ多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx y x x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ϖϖωψϕωψϕωψϕ方向导数与梯度:上的投影。