有机化学 第三章 烯烃、炔烃和二烯烃

合集下载

第三章-烯烃、炔烃、二烯烃

第三章-烯烃、炔烃、二烯烃
Br C H H
以反式加成产物为主
Br
Br
CH2 CH2 + Br2 NaCl水溶液 CH2 CH2 + CH2 CH2
Br
Cl
亲电试剂:试剂带有正电荷,或者电子云密度较低,在
反应中进攻反应物上带部分负电荷的位置,这种试剂叫
做亲电试剂,例如X+(卤素)、R+、H +等。详见课本 P54-56。
亲电加成反应:由亲电试剂进攻而引起的加成反应。
1埃 = 0.1纳米(nm) = 10-10米(m)
1
键的特点: 1.成键原子不能绕两核连线自由旋转。
2.键比键易断裂。
3.电子云易极化。
PS:极化(polarization),指事物在一定条件下发生两极 分化,使其性质相对于原来状态有所偏离的现象
烯烃的同分异构
构造异构:碳链异构;官能团位置异构 构型异构:顺反异构 (几何异构or立体异构)
链终止 CH3CH· CH2Br +Br· CH3CHBrCH2Br
注:过氧化物只对HBr有影响,不影响HCl和HI。
诱导效应:受分子中电负性不同的原子或基团的影响,整个分 子中成键的电子云向着一个方向偏移,分子发生极化的效应。
δ+ δ- δ+ δH3C CH CH2 + HBr
CH3CHCH2 Br
电负性差别:O:3.5 Cl:3.1 O> Cl
由于次氯酸不稳定,反应中常用氯气和水代替次氯酸
Cl2 + H2O HOCl + HCl
H2C CH2 + Cl2 + H2O
CH2 CH2 OH Cl
(2) 臭氧化反应
O
CH3CH CH2 O3 CH3HC O

3烯烃、炔烃、二烯烃

3烯烃、炔烃、二烯烃

沸点:
3.7°C
0.88°C -105.6°C
熔点: -138.9°C
三、烯烃、炔烃的化学性质
双键的结构与性质分析
C C C C
键能: 键 ~347 kJ / mol 键 ~263 kJ / mol 键活性比 键大 不饱和,可加成至饱和
电子受原子核吸引较弱, 是电子供体,易受 亲电试剂进攻参与反应。 与亲电试剂结合 与氧化剂反应
乙烯分子中的σ键
乙烯分子中的π键
H H
·
·
H
C = C
C
C H
{
sp2-sp2 σ键 2p-2p π键
π键
σ键和π键比较

存在的情况 键的形成情 况 电子云的分 布情况



1、可以单独存在。 2、存在于任何共价键中。
1、必须与键共存。 2、仅存在于不饱和键中。
成键轨道沿轴向在直线上相 成键轨道对称轴平行,从侧 互重叠。 面重叠。 1、 电子云集中于两原子 核的连线上,呈圆柱形分布 2、 键有一个对称轴,轴 上电子云密度最大。 1、键能较大。 2、键的旋转:以 键连接 的两原子可相对的自由旋转 3、键的可极化度:较小。 1、 电子云分布在 键所 在平面的上下两方,呈块状
第三章
烯烃、炔烃、二烯烃
本章重点
不饱和烃的类型、结构和命名
烯烃构型的表示方式(顺式和反式,E型和Z型)
不饱和烃的亲电加成反应 Markovnilkov加成规则及理论解释 诱导效应及共轭效应 共轭二烯烃的1,4加成
第三章
烯烃、炔烃、二烯烃
本章难点 不饱和烃的亲电加成反应
Markovnilkov加成规则及理论解释
(3)命名:根据主链上的碳数和双、叁键的位次 编号m、n,称为m-某烯-n-炔

甘肃农业大学有机化学练习题参考答案第三章 烯烃炔烃二烯烃

甘肃农业大学有机化学练习题参考答案第三章 烯烃炔烃二烯烃

(2) H3CHC CCH3
CH3
Br2/H2O
(3) H3CHC CCH3
CH3
ICl
(4) H3CHC CCH3
CH3
HBr/H2O2
(5) H3CHC CCH3
CH3
H2SO4
(6) H3CHC CCH3
CH3 (7) H3CHC CCH3
KMnO4/H +
CH3COOH + CH3COCH3
H2C C CH CH2 CH3
(4) (6)
H2C CHCH2CH CH2
(5)
H3C H
C C
CH3 CH2CH2CH3
H3C H
H C C
C C H
CH3 H
4. 写出 2-甲基-2-丁烯与下列试剂作用的反应式:
CH3 (1) H3CHC CCH3 Br2/CCl4 CH3 Br CH3 CH3CHCCH3 Br Br CH3 CH3CHCCH3 OH I CH3 CH3CHCCH3 Cl Br CH3 CH3CHCCH3 H H CH3 CH3CHCCH3 OSO3H H2O H CH3 CH3CHCCH3 OH
12. 推导结构式: (A) CH3CH CHCH(CH3)2 (B) CH3 CH2 CH C(CH3 )2 (C) CH3CH2 CH2CH(CH3)2 13. 推导结构式: (A)
(CH3 )2CHCH2 C CH
(B) (H3C)2C CHCH CH2
PDF 文件使用 "ቤተ መጻሕፍቲ ባይዱdfFactory" 试用版本创建
H3C H3C C CHCH3
(2) CH3CHCH2CH CH2 或 CH3CHCH2C CH

《有机化学》第三章 不饱和烃

《有机化学》第三章 不饱和烃
供电子基团: O- > COO- > (CH3)3C > (CH3)2CH > CH3CH2 > CH3 >H
吸电子基团: +NR3>NO2>CN>COOH>F>Cl>Br>I>COOR>OR>
COR>SH>OH> C CR>C6H5>CH=CH2>H
诱导效应的特点:
(1)诱导效应的强弱取决于原了或基团的电负性的大小
的两原子可相对的自由旋转。 能相对自由旋转。Βιβλιοθήκη c.键的可极化度:较小。 较大
1.2 单烯烃的异构现象
1.2.1 结构异构
CH3 CH2 CH CH2 CH3 CH CH CH3
1-丁 烯
2-丁 烯
官能团碳碳双键 位置异构
CH3 C CH2 2-甲 基 丁 烯 CH3
碳链异构
结构异构是由于分子中各原子的结合顺序不同而引起的, 位置异构和碳链异构均属于结构异构。
(2) 与卤化氢的加成
CH3CH CHCH3 + HCl CH3CH2CHCH3
2–丁烯
HBr CH3CH2CH CH2
Markovnikov规则
Cl
2–氯丁烷
Br
CH3CHCH CH3
80 %
CH3CHCH2 CH2Br 20 %
当不对称的烯烃与卤化氢等极性试剂加成时,氢原总
是加到含氢较多的双键碳原子上,卤原子(或其子或
上相互重叠。
从侧面重叠。
电子云的分布情况 a. 电子云集中于两原子 电子云分布在 键所
核的连线上,呈圆柱形分布。 在平面的上下两方,呈块
状分布。

大学有机化学第三章 烯烃和炔烃

大学有机化学第三章   烯烃和炔烃

CH3 → CH=CH2 + HX
CH3CH—CH3 X
马代规则是 不对称试剂与双键发生亲电性加成时, 试剂中正电性部分主要加到能形成较稳定正碳离子 的那个双键碳原子上。 + CH3CHCH3 δ+ δ-
CH3—CH=CH2 + H+
HX分子中的氢以H+ 质子形式发生反应,因此称为亲电试剂
CH3CH2CH2
CH3
顺反异构命名与Z .E命名规则不相同,不能混为一 谈,两者之间没有固定的关系
例如:
Cl Cl C=C CH3 H (Z)-1 , 2-二氯丙烯 顺-1 , 2-二氯丙烯 H C H ‖ C H H 大 Br
Cl
C=C
CH3
Cl 大
Cl C COOH ‖ C Br Cl
(E)-1 , 2-二氯-1-溴丙烯 顺--1 , 2-二氯-1-溴丙烯 CH3 C H ‖ C H H
次产物
因此 1.1.1-三氟-3-氯丙烷是主要产物
2. 加硫酸
R-CH=CH2 + HOSO2OH H3PO4 300℃ 7Mpa R-CHCH3 H2O RCH-CH3 OSO2OH OH (间接水化法制备醇) CH3CH2OH
CH2=CH2 + H2O
3. 加卤素
CH2 = CH2 + X2
CH2 = CH2 + Br2/CCl4 Br2/H2O CH2—CH2 X X CH2-CH2 Br Br
如遇到含多个双键化合物而主链编号有选择时,则编号应从 顺型双键的一端开始 4 1 如 3 2 CH3 H 6 5 CH2 C=C 7 C=C H H H CH3 顺· 反-2.5-庚二烯
四、物理性质 五. 化学性质

第3章 烯烃 炔烃 二烯烃

第3章 烯烃 炔烃 二烯烃

pm 109 H 134 pm C C H 121°
H 117. 5° H
2. 炔烃的结构
炔烃分子中C≡C叁键碳原子是 sp杂化。 sp 杂化轨道中 s 成分比 sp2 杂化和 sp3 杂 化的高,键长 C=C(134pm)比 C—C (154pm)短。以乙炔为例:
H
C
120 pm
108 pm C H
H3C H
C=C
CH2CH3 CH3
顺 -3-甲 基 -2-戊 烯
反 -3-甲 基 -2-戊 烯
CH3 C=C CH3CH2
CH3 CH(CH3)2
CH2Cl C=C CH3
CH3 CH2CH3
顺 -2,3,4-三甲基 -3-己烯
反 -2,3-二甲基 -1-氯 -2-戊烯
CH3 C=C CH3CH2 Br
CH3
a≠b 且 c≠d
2、顺/反(cis/trans)命名法:
(1) a=c或b=d时的顺/反异构标记 相同的原子或原子团在双键的同侧为顺 式,异侧为反式。
a b C C
c d
a=c或b=c 或 a=d或
CH3 H C C
H CH3
H CH3 C C
H CH3
H3C H
C=C
CH3 CH2CH3
180°
C=C(134pm),C—C(154pm)
比较σ键和π键的异同点:
σ键的特点 (1)形成: (3)重叠程度: 键能: 沿键轴 大 大 轴对称 (5)旋转性: (6)存在形式: 可以独立 (2)重叠方式: “头碰头” π键的特点 垂直于键轴 “肩并肩” 小 小 呈块柱状 平面对称小 不能 不能
(二)诱导效应(inductive effect)

有机化学简明教程 第三章 2 炔烃和二烯烃

有机化学简明教程  第三章 2  炔烃和二烯烃

应命名为 3-戊烯-1-炔,而不命名为 2-戊烯-4-炔。
上一内容 下一内容 回主目录
返回
2013-7-5
3.7 炔烃的结构
(1) 乙炔的结构
•乙炔分子是一个线形分子,四个原子都排布在同一 条直线上. •乙炔的两个碳原子共用了三对电子.
•烷烃碳: sp3杂化 •烯烃碳: sp2杂化 •炔烃碳: sp杂化
AgC CAg AgC CAg +HCl
2Ag + 2C+364KJ HC CH +2AgCl
应用: 鉴定 C CH基团,即HC CH、R C CH。 C CH和R C C R/。 鉴别
提纯末端炔烃( C
上一内容 下一内容 回主目录
CH)。
返回
2013-7-5
3-9 炔烃的化学性质
三、氧化反应 炔烃和氧化剂反应,往往可以使碳碳叁键断裂,最 后得到完全氧化的产物 ——羧酸或二氧化碳。
回主目录
返回
2013-7-5
3-11 二烯烃的结构
单双键交替的共轭体系叫做 π,π共轭体系,这 个体系所表现的共轭效应叫做π,π共轭效应。 π,π共轭效应的结果: (1)1,3-丁二烯的键长趋于平均化。 (2)单键具有了部分双键的性质。
H2C C H
S-顺式
上一内容 下一内容
C
CH2 H2C H
RC
RC
CH + H2O
CR + H2O
/
HgSO4
H2SO4
H2SO4
R
C O
CH3
CH2 R/
HgSO4
R C
一个分子或离子在反应过程中发生了基因的转 移和电子云密度重新分布而最后生成较稳定的 分子的反应,称为分子重排反应(或称重排反 应)。

有机化学 第三章 不饱和烃

有机化学 第三章 不饱和烃
6-甲基-2-癸烯-8-炔
同分异构现象
1.碳链异构:和烷烃一样,
2.官能团位置异构:由于双键或三键位置不同所产生的异构,如:
3. 立体异构:由于双键不能绕σ键键轴旋转,导致相连基团在空间的不同排列方式 产生的异构现象。
顺反异构—— 相同基团在双键同侧为顺式,不同侧为反式
CH3
CH3
CC
H
H
顺式(cis)
本章学习内容
1.烯烃、炔烃等不饱和烃的命名(掌握) 2.烯烃、炔烃及共轭二烯烃的结构特征(理解) 3.烯烃、炔烃、共轭二烯烃的物理、化学性质(重点难点掌握)
3.1 分类
烯烃(alkene):C=C 不饱和烃
单烯烃:含一个双键
多烯烃 :含两个及以上个双键, 含两个双键叫二烯烃
炔烃(alkyne):
H3C CH3CH2
CH2CH2CH3 CH2CH3
Br Cl
Cl
H
顺-3-甲基-4-乙基-3-庚烯 (E)-3-甲基-4-乙基-3-庚烯
反-1,2-二氯-1-溴乙烯 (Z) -1,2-二氯-1-溴乙烯
课堂练习:命名下列化合物
CH3CH2 H
Cl CH3
H3C CH3CH2
CH3 CHCH3 CH2CH2CH3
氯加在含氢多的碳原子上,合成卤代醇的方法。
+ H2C CH2 H O Cl
H2C Cl
CH2 OH
+ H3C CH CH2
H O Cl
H3C
CH OH
CH2 Cl
4. 与卤化氢加成(亲电加成)——碳正离子中间体机理 反应历程:H+首先与双键中的p电子对结合使另一碳原子形成 碳正离子,碳正离子再与X- 结合成卤代烷。

第三章 不饱和烃

第三章  不饱和烃

H
116.7
C
C
H 121.6
烷烃:C C 154 pm CCC 109.3
H
C H 110 pm
上一内容
下一内容
回主目录
返回
2014-8-24
烯烃的结构
构成σ 键的电子称为σ电子;构成π 键的电子 称为π电子。 π键的特征: (1)无对称轴,因此不能自由旋转,否则键会 破裂。 (2)不能单独存在于共价键中。 (3)两个原子间可能有一个或两个π键。 (4)侧面相互重叠,重叠程度小于σ 键 (5)稳定性差,易破裂发生反应。
CH C
返回
CH2 CH
2014-8-24
C CH 相当于
C C
CH C
上一内容
下一内容
回主目录
烯烃的构造异构和命名
CH3 C H C CH3 CH3 CH2CH3 E型 H Z型 CH3 C H E型
返回
Br Z型 C H
CH3 C C
Br CH2CH3 CH3 CH2CH3
(CH3)2CH C
返回
2014-8-24
烯烃的构造异构和命名
注意事项:



主链应含双键 主官能团的位号尽可能小 烯烃存在位置异构,母体名称前要加官能团位 号 > C10称“某碳烯”

上一内容
下一内容
回主目录
返回
2014-8-24
烯烃的构造异构和命名

烯烃的顺反异构: 由于双键不能自由旋转,也由于双键两端碳原 子连接的四个原子是处在同一平面上的,因此, 当双键的两个碳原子各连接不同的原子或基团 时,就有可能生成两种不同的异构体。
卤代
H H C CH CH2 H

有机化学 第三章 烯烃和炔烃

有机化学  第三章 烯烃和炔烃

炔烃的加氢:
炔烃的催化加氢反应是逐步实现的。
R C C R' + H2
pd
R H
C C
R' H 2 H pd
RCH2CH2R'
选择适当的催化剂可是产物停留在烯烃阶段: 使用Lindlar催化剂、Pd/C、硼化镍(P-2)催化剂可得顺 式烯烃;在液氨中用Na、Li还原炔烃主要得到反式产物。
RC CR' + H2
H2C 乙烯 HC 乙炔
2013年8月2日7时17分
CH2
H2C
H C 丙烯
CH3
C11H22 十一(碳)烯
CH
HC
C 丙炔
CH3
C15H28 十五(碳)炔
22
2)从靠近重键端开始编号,并以构成重键的 两个碳原子中号数小的一个表示重键的位置, 将重键位号写在母体名称之前:
H2 C
H3C
C H C
H C H2 C
2013年8月2日7时17分
10
碳碳双键(C≡ C)中C的杂化轨道:
C C
C
sp 杂化
杂化 2s2
2013年8月2日7时17分
2p2
sp 杂化
2p
11
C C
2013年8月2日7时17分 12
C2H2(乙炔)分子:
H
2013年8月2日7时17分
C C
H 线型分子
13
2013年8月2日7时17分
Lindlar Cat.
R H
R' C C H
C2H5 C C H H
38
(顺式烯烃); H2
2013年8月2日7时17分
Pd/CaCO3 喹啉

有机化学第三章烯烃和二烯烃资料

有机化学第三章烯烃和二烯烃资料

【次序规则】 ①Br > Cl > S > P > O > N > C > H ②(CH3)3C->(CH3)2CH->CH3CH2->CH3-
【原则】 两个次序高的基团在双键同侧——Z 式 两个次序高的基团在双键异侧——E 式
下一页
第三章 烯烃和 二烯烃
例如:
第一节 烯烃的结构、异构 和命名
H
C H3C 2
第二节 烯烃的性质
二、烯烃的化学性质
C=C双键是烯烃的官能团
与官能团直接相连的碳原子叫做α-碳原子 α-碳原子上的氢原子叫做α-氢原子
烯烃的化学反应主要发生在官能团C=C双键以及受
C=C双键影响较大的α-C-H键上。
例如:
H H H α-碳原子

CCCH

官能团
H ← α-氢原子
下一页
第三章 烯烃和 二烯烃
下一页
同学们再见!
同学们好! 欢迎学习《有机化学》课

下一页
有 机 化 学 第三章 烯烃和二烯
【复习旧课】

1.烯烃双键的组成
2.π键的特点
随分子中碳原子数目↑而↑ 1.烯基: 烯烃分子中去掉一个氢原子后剩下的基团
【导入新课】 选主链:含双键、最长、取代基最多
熟悉烯烃的分类和异构现象,掌握其命名法; 【产生原因】双键不能自由旋转 (两个双键连在同一个碳原子上)
H CH2CH3
下一页
第三章 烯烃和 二烯烃
• 【本课小结】
第一节 烯烃的结构、异构 和命名
1.烯烃的结构
乙烯的结构:平面型分子,键角120°
C原子杂化方式:SP2杂化
双键的组成:一个σ键和一个π键
构造异构 2.烯烃的同分异构

第三章烯烃和二烯烃

第三章烯烃和二烯烃

第三章烯烃和二烯烃第一节烯烃一、烯烃的同分异构现象烯烃的通式: CnH2n。

烯烃的官能团:C=C1.构造异构2.顺反异构(a)反-2-丁烯(b) 顺-2-丁烯二、烯烃的结构1.碳的sp2杂化及乙烯的结构碳原子的sp2杂化过程如下:每一个sp2杂化轨道含有1/3s成分和2/3p成分,其形状也是一头大,一头小的葫芦形。

三个sp2杂化轨道以平面三角形对称地排布在碳原子周围,它们的对称轴之间的夹角为120°,未参与杂化的2p轨道垂直于三个sp2杂化轨道组成的平面。

如图3-1所示。

(a)三个sp2杂化轨道(b) 三个sp2杂化轨道与一个p轨道图3-2碳原子的sp2杂化轨道乙烯分子形成时,两个碳原子各以一个sp2杂化轨道沿键轴方向重叠形成一个C—Cσ键,并以剩余的两个sp2杂化轨道分别与两个氢原子的1s轨道沿键轴方向重叠形成四个等同的C—Hσ键,五个σ键都在同一平面内,因此乙烯为平面构型。

此外,每个碳原子上还有一个未参与杂化的p轨道,两个碳原子的p轨道相互平行,于是侧面重叠成键。

这种成键原子的p轨道侧面重叠形成的共价键叫做π键。

乙烯分子中的σ键和π键如图3-2所示。

图3-2 乙烯分子的结构2.σ键和π键的比较σ键和π键的特点比较如下:其他烯烃的结构与乙烯相似,双键碳原子也是sp2杂化,与双键碳原子相连的各个原子在同一平面上,碳碳双键都是由一个σ键和一个π键组成的。

三、烯烃的命名1.构造异构体的命名烯烃分子去掉一个氢原子剩下的部分,叫做烯基;常见的烯基有:CH2=CH—CH3—CH=CH—CH2=CH—CH2—乙烯基丙烯基烯丙基(二)烯烃的命名(1)习惯命名法烯烃和二烯烃的个别化合物常采用习惯命名法命名。

例如:正丁烯异丁烯异戊二烯(2)系统命名法命名方法与烷烃基本相似,原则如下:①选择含有官能团的最长碳链作为母体,母体命名原则同直链烯化合物。

若有多条最长链可供选择时,选择原则与烷烃相同。

②靠近官能团一端编号,即使官能团的位次符合“最低系列”。

《有机化学》第三章 不饱和烃

《有机化学》第三章 不饱和烃

第三章 不饱和烃不饱和烃是指分子结构中含有碳碳双键或三键的烃。

不饱和烃中含有碳碳双键的叫烯烃,含有碳碳三键的称为炔烃。

含有两个或多个碳碳双键的不饱和烃称为二烯烃和多烯烃。

一个不饱和烃分子结构中同时含有碳碳双键和三键则称为烯炔。

不饱和烃的双键和三键不太牢固,容易发生亲电加成反应、取代反应及氧化反应。

烯烃是指含有碳碳双键的不饱和烃,包括链状烯烃和环状烯烃,其官能团为碳碳双键。

链状烯烃的通式为C n H 2n (n ≥2)。

相对于饱和烷烃,烯烃分子结构中每增加1个双键则减少2个氢原子。

一、烯烃的结构和异构现象 (一)烯烃的结构烯烃的结构中主要特征部分为碳碳双键,以最简单的烯烃-乙烯为例来了解双键的结构,乙烯的分子式为C 2H 4,乙烯的两个C 原子和四个氢原子均在同一个平面上,每个碳原子只和3个原子相连,为平面型分子。

碳碳双键由1个σ键和1个π键构成,而不是两个单键构成。

乙烯的平面构型如图3-1(a )所示,分子模型见图3-1(b )和3-1(c )。

CCH HH H121.7°117°0.108nm(a)乙烯的平面构型 (b)球棍模型 (c)比例模型图3-1 乙烯分子的结构拓展阅读碳原子的sp 2杂化和π键杂化轨道理论认为,乙烯分子中的碳原子在成键过程中,处于激发态的1个2s 轨道和2个2p 轨道进行杂化,形成3个能量相同的sp 2杂化轨道,称为sp 2杂化,其杂化过程可表示为:2s 2p激发sp 2杂化sp 2杂化轨道2p2s 2p基态激发态杂化态形成的3个sp 2杂化轨道中每个含有1/3的s 轨道成分和2/3的p 轨道成分,形状是一头大一头小;3个sp 2杂化轨道的对称轴分布在同一平面上,夹角为120°,呈平面三角形,每个碳原子还有一个2p z 轨道未参与杂化,其对称轴垂直于3个sp 2杂化轨道的对称轴所形成的平面,见图3-2。

由此可见,乙烯分子中碳碳双键是由1个σ键和1个π键组成的,π键是由2个p 轨道侧面重叠形成的,电子云分布于键轴上下,键能较小,同时由于π键电子云离核较远,受原子核束缚力较弱,容易被外电场极化,所以π键不稳定,比σ键容易断裂。

有机化学单烯烃炔烃和二烯烃

有机化学单烯烃炔烃和二烯烃

+-
3个 sp2 轨道在空间的分布
+ -
未参与杂化的 p 轨道
H C
H
H
C
H
+ + HH CC
C
C
H
H _ _ HH
H
H


++
反键 *
-
键的形成 能
+

(分子轨道)
-
+ 原子轨道p -
+
-
成键
键的特点:1.成键原子不能绕两核连线自由旋转;
2. 键比键易破裂;
3 . 电子云易极化。
§3.2 烯烃的同分异构和命名
HX酸性:
HI >HBr>HCl
马氏规则:不对称烯烃加HX,X-(负基)主要加到含氢较少的C上, H+(正基)主要加到含氢较多的C上。
定量
HH
H H H2C CH2
H3C CH3
• 加氢热效应 称氢化热;可 衡量烯烃的稳定性。
H3C
CH3
CC
H2
H
H
Pt
H3C C
H
H H2
C
Pt
CH3
CH3CH2CH2CH3 △ H = -119.7 KJ/mol
CH3CH2CH2CH3
△H = -115.5 KJ/mol
能 量
115.5
119.7
例: 1.
X2
CH3CH=CH2 + Br2/CCl4
CH3CHBrCH2Br
Br2/CCl4褪色 鉴定C=C
反应活性:F2 > Cl2 > Br2 > I2 (ICl, IBr, 多卤代物)

第三章 烯烃 二烯烃

第三章  烯烃  二烯烃

CH2=CH-CH2烯丙基 HC C-CH2炔丙基
CH3-C=CH2 异丙烯基 -CH=CH1,2-亚乙烯基
(2) 衍生物命名法 衍生物命名法只适用于简单的烯烃和炔烃。 烯烃以乙烯为母体,将其它的烯看作乙烯的衍生物。例:
CH3-CH=CH2 甲基乙烯 CH3C CCH3 二甲基乙炔
(CH3)2CH=CH2 不对称二甲基乙烯 CH3CH2C CCH3 甲基乙基乙炔

-C(CH3)3>-CH(CH3)2>-CH2CH3>-CH3 -CH2Cl>-CH2OH>-CH2NH2
③当取代基不饱和时,把双键碳或三键碳看成以单键和多个原 子相连。
(C) (C) -C CH 可看作 -C C-H (C) (C) (C) (C) -CH=CH2 可看作 -C H C-H H
C
C
次序规则
①比较与双键碳原子直接相连的原子,原子序数大者较优先,
I>Br>Cl>S>O>N>C>D>H>:
②直接相连的原子相同时,则比较其次相连的原子。 (CH3)3CC(C,C,C) 最优先 (CH3)2CHC(C,C,H) 次优先 CH3CH2C(C,H,H) 再次优先 CH3C(H,H,H) 最不优先
CF3CH 2 CH CH 2 + HBr CF3CH 2CH 2CH 2Br
(6) 过氧化物效应
一般情况下: CH3-CH=CH2
+ HBr
CH3-CH-CH3 Br (主)
CH3CH2CH2Br (反马)
但有过氧化物存在时:
CH3-CH=CH2 + HBr
hor 过氧化物
只能是HBr (HCl、HI都不反马)

二烯烃-有机化学

二烯烃-有机化学

炔烃二烯烃分子中含有碳碳双键的烃称为烯烃。

碳碳双键是烯烃的官能团。

烯烃的通式为。

乙烯是最简单的烯烃。

乙烯、丙烯、丁烯等组成了烯烃的同系列。

烯烃以游离状态存在于自然界的不多,主要以其衍生物的形态存在于自然界中。

杂化轨道理论认为:在烯烃分子中,组SP2杂化轨道城建。

轨道进行杂化,形杂化轨道,并对称地分布在碳原子周围,其对称轴在同一平1200。

所以,SP2杂化又称为平面三角杂化。

杂化碳原子各以一个SP2杂化的轨道沿着对称轴的方向相互重叠形π键,π键的电子键所在平面的上下方。

烯烃的异构体比烷烃的复杂。

除有碳链异构体外,还有因双键位置不同而产生的官能团位置异构。

例如丁烯就有以下同分C H CH3CH2C CH3CH32-甲基丁烯丁烯是官能团双键的位置不同而产生的异构,成为官能团位置异构,简称位置异构。

此外,烯烃还由于碳碳双键两侧连有不同原子或原子团而产生顺反异构。

顺反异构又称为几何异构,是立体异构的一种。

一般是由于分子中具有双键或环状结构使键的自由旋转受阻,与双键或环相连的不同原子或原子团可能存在不同的空间排布,由此而产生的立体异构现象称为顺丁烯的顺反异构。

烯反-2-丁烯IUPAC系统命名法。

它的命名原则和烷烃相似:、选择的主链必须包括碳碳双键,按主链碳原子数称为某烯。

如果主链碳原子数超过十,则称为某碳烯。

、从靠近双键的一端对主链碳原子编号,并以双键碳原子中编号较小的数字表示双键的位次,写在烯烃名称的前面。

例C H CH CCH 3CH 2CH 3CH 3CH 3CH 33,5,6,6-四甲基-3-庚烯当烯烃分子中去掉一个氢原子后剩下的C H 2C CH 3C CH 2H 烯丙基异丙烯基烯基的碳原子编号应从自由价的碳原子开始:2顺反异构体命名时,常把两个双键碳原子上所连接的两个相同或近似的基团在双键同一侧称为顺式,在双键异侧称为反式。

HC CCH3-2-丁烯以上方法虽然简明,但如果双键碳原子上连接有四个不相同的原子或原子团,就命名法。

chapt 3烯烃 炔烃和二烯烃

chapt 3烯烃 炔烃和二烯烃
α
CH3
CH
CH2
+
Cl2
500。 C
α
CH2 Cl
CH
CH2
(四) 聚合反应
nCH2=CH2 高 温 高 压
CH2-CH2 n
(五) 金属炔化物的生成
HC CH + 2AgNO3 + 2NH3.H2O
AgC
HC
CAg
+ 2NH4NO3 + 2H2O
乙炔银(白色)
CH + Cu2Cl2 + 2NH3.H2O CuC CCu + 2NH4Cl + 2H2O
HBr
有过氧化物
C H3C H2C H C H2 H Br
反―马氏规则‖
注意:氯化氢、碘化氢无过氧化物效应
该反应不使用HX的水溶液,以避免烯烃与水加成。
HX对烯烃加成的相对活性:
HI HBr HCl HF
因为:在HF中,F的原子半径小,但电负性大, 故对H原子的束缚力较大,不易离解出H+和F-。 3.加 H2SO4
CH 2=CH
CH 3CH=CH
CH 2=CHCH 2
乙 基 烯
丙烯基
烯 基 丙
三 烯烃和炔烃的物理性质
与烷烃的不同之处:
不同碳原子的电负性: 三键碳原子>双键碳原子>饱和碳原子。 偶极矩:端炔>端烯(但极性较弱)。如: CH3CH2C≡CH
μ 2.67×10-30 C· m
CH3CH2CH=CH2
C C2H5
P-2 催化剂
C2H5 C H C
C2H5 H
采用Na(或Li)/液NH3还原炔烃将得到反式烯烃。
Na , 液 NH3 。 - 78 C C2H5 C H C (CH )3CH3 2 H

第三章-烯烃和炔烃-亲电加成反应

第三章-烯烃和炔烃-亲电加成反应

2S2
2Px1 2Py1 Pz
3SP2 Pz
.
a)SP2杂化轨道由1/3s轨道和2/3p轨道组成;
b)成键能力较sp3杂化轨道弱,但比未杂化轨道强
c)杂化轨道对称轴在同一平面,夹角120°,未杂化 2p轨道垂直这一平面。
3、π键:
未杂化的p轨道沿对称轴平行方向(“肩并肩”)重 叠成形成π键,构成π键的电子叫做π电子。
C2H5C CC2H5 P-2 催化剂
C2H5 C
H
C2H5 C
H
液氨钠与二取代乙炔反应得反式产物
C2H5C
Na , 液NH3
C(CH2)3CH3
- 78 。C
C2H5 C
H
H
C (CH2)3CH3
烯炔与氢加成优先发生在三键上
H2 RC C (CH2)n-CH=CH2 Pt-BaSO4 喹啉 CHR CH (CH2)n-CH=CH2
CH2 CHCH2C CH
+ Br2
-C20C。lC4
CH2 CHCH2C CH Br Br
4,5-二溴-1-戊炔
(2)加卤化氢 烯烃与卤化氢加成生成一卤代烷
C = C + HX
C-C
HX的反应活性:
HX
HI > HBr > HCl > HF (HF加成无实用价值 )
如乙烯的加成
CH2=CH2 + HX → CH3CH2X
C
C
4. 键与 键的差异: 键
①存在的情况

a.可以单独存在
键必须与键共存仅存
b.存在于任何共价键中 在于不饱和键如双键等
②成键方式 沿对称轴平行方向“肩并
沿轴向“头碰头”重叠 肩”重叠

[理学]张小兰有机化学 第三章 2炔烃及3双烯烃

[理学]张小兰有机化学 第三章 2炔烃及3双烯烃

第一节 炔烃
二、炔烃的命名
1、炔烃的命名法与烯烃的相似,只是将“烯”字改 为“炔”。

第一节 炔烃
2、烯炔的命名 烯炔命名时首先要选取含双键和三键的最长碳链作 为主链。碳链的编号应从最先遇到的双键或三键的一端 开始,并以双键在前三键在后的原则命名。 若在主链两端等距离处遇到双键或三键时,应从靠 近双键的一端开始。
在较高温度下、浓的高锰酸钾或酸性高锰酸钾溶液 中,炔烃的三键断裂,生成羧酸、二氧化碳等产物。
根据高锰酸钾溶液颜色变化可以对不饱和烃作鉴定。
第一节 炔烃
注意:三键比双键难于加成,也难于氧化。炔烃的 氧化速度比烯烃的慢,如在特殊试剂作用下,分子中同 时存在三键和双键,则氧化首先发生在双键上。
炔烃与臭氧氧化,与烯烃一样,可发生碳碳三键的 断裂,生成两个羧酸,可以由所得产物的结构推知原炔 烃的结构。
乙炔是最简单的炔烃,气体,分子式C2H2。 乙炔分子中含有一个三键,可通过乙炔来了解炔烃 碳碳三键的结构:H-C≡C-H(结构式)
第一节 炔烃
炔烃三键的两个碳原子为sp杂化,键角为 180°。在乙炔分子中,碳碳三键由1条σ键和2 条π键组成。键能为835 KJ· mol-1,比碳碳双键 的键能(611 KJ· mol-1)大。同时,在乙炔分子 中由于两个碳原子为sp杂化,s成分增加更多, 从而增加了对对方原子核的吸引力,使两个碳原 子更加靠近,键长仅为120pm。因此,乙炔中的 π键比乙烯中的π键强一些,乙炔中的π电子与 电负性较强的sp杂化碳原子结合更紧密,不易受 外界亲电试剂的接近而极化,所以,乙炔的亲电 加成反应活性不如乙烯的亲电加成反应活性。
H2C
CHCN
聚 合
CH2 CH CN
n
第一节 炔烃

有机化学 第三章 烯烃、炔烃和二烯烃

有机化学 第三章 烯烃、炔烃和二烯烃

第三章烯烃、炔烃和二烯烃第一节烯烃和炔烃单烯烃是指分子中含有一个C=C的不饱和开链烃,简称烯烃.通式为C n H2n。

炔烃是含有(triple bond) 的不饱和开链烃。

炔烃比碳原子数目相同的单烯烃少两个氢原子,通式CnH2n-2。

一、烯烃和炔烃的结构乙烯是最简单的烯烃, 乙炔是最简单的炔烃,现已乙烯和乙炔为例来讨论烯烃和炔烃的结构。

(一)乙烯的结构分子式为C2H4,构造式H2C=CH2,含有一个双键C=C,是由一个σ 键和一个π 键构成。

现代物理方法证明,乙烯分子的所有原子都在同一平面上,每个碳原子只和三个原子相连.杂化轨道理论根据这些事实,设想碳原子成键时,由一个s轨道和两个p轨道进行杂化,组成三个等同的sp2杂化轨道,sp2轨道对称轴在同一平面上, 彼此成1200角.此外,还剩下一个2p轨道,它的对称轴垂直于sp2轨道所在的平面。

乙烯:C-C σ键4C-H σ键在乙烯分子中,两个碳原子各以一个sp2轨道重叠形成一个C-Cσ键,又各以两个sp2轨道和四个氢原子的1s轨道重叠,形成四个C-Hσ键,五个σ键都在同一平面上。

每个碳原子剩下的一个py轨道,它们平行地侧面重叠,便组成新的分子轨道,称为π轨道。

其它烯烃的双键也都是由一个σ键和一个π键组成的。

双键一般用两条短线来表示,如:C=C,但两条短线含义不同,一条代表σ键,另一条代表π 键。

π键重叠程度比σ键小,不如σ键稳定,比较容易破裂。

(二)乙炔的结构乙炔的分子式是C2H2,构造式H-C≡C-C,碳原子为sp 杂化。

两个sp杂化轨道向碳原子核的两边伸展,它们的对称轴在一条直线上,互成180°。

在乙炔分子中,两个碳原子各以一个sp轨道互相重叠,形成一个C-Cσ键,每个碳原子又各以一个sp轨道分别与一个氢原子的1s轨道重叠形成C-Hσ键。

此外,每个碳原子还有两个互相垂直的未杂化的p轨道(px,py),它们与另一碳的两个p轨道两两相互侧面重叠形成两个互相垂直的π键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章烯烃、炔烃和二烯烃第一节烯烃和炔烃单烯烃是指分子中含有一个C=C的不饱和开链烃,简称烯烃.通式为C n H2n。

炔烃是含有(triple bond) 的不饱和开链烃。

炔烃比碳原子数目相同的单烯烃少两个氢原子,通式CnH2n-2。

一、烯烃和炔烃的结构乙烯是最简单的烯烃, 乙炔是最简单的炔烃,现已乙烯和乙炔为例来讨论烯烃和炔烃的结构。

(一)乙烯的结构分子式为C2H4,构造式H2C=CH2,含有一个双键C=C,是由一个σ 键和一个π 键构成。

现代物理方法证明,乙烯分子的所有原子都在同一平面上,每个碳原子只和三个原子相连.杂化轨道理论根据这些事实,设想碳原子成键时,由一个s轨道和两个p轨道进行杂化,组成三个等同的sp2杂化轨道,sp2轨道对称轴在同一平面上, 彼此成1200角.此外,还剩下一个2p轨道,它的对称轴垂直于sp2轨道所在的平面。

乙烯:C-C σ键4C-H σ键在乙烯分子中,两个碳原子各以一个sp2轨道重叠形成一个C-Cσ键,又各以两个sp2轨道和四个氢原子的1s轨道重叠,形成四个C-Hσ键,五个σ键都在同一平面上。

每个碳原子剩下的一个py轨道,它们平行地侧面重叠,便组成新的分子轨道,称为π轨道。

其它烯烃的双键也都是由一个σ键和一个π键组成的。

双键一般用两条短线来表示,如:C=C,但两条短线含义不同,一条代表σ键,另一条代表π 键。

π键重叠程度比σ键小,不如σ键稳定,比较容易破裂。

(二)乙炔的结构乙炔的分子式是C2H2,构造式H-C≡C-C,碳原子为sp 杂化。

两个sp杂化轨道向碳原子核的两边伸展,它们的对称轴在一条直线上,互成180°。

在乙炔分子中,两个碳原子各以一个sp轨道互相重叠,形成一个C-Cσ键,每个碳原子又各以一个sp轨道分别与一个氢原子的1s轨道重叠形成C-Hσ键。

此外,每个碳原子还有两个互相垂直的未杂化的p轨道(px,py),它们与另一碳的两个p轨道两两相互侧面重叠形成两个互相垂直的π键。

故乙炔的叁键是由一个σ键和两个相互垂直的π键组成。

两个π键的电子云分布好象是围绕两个碳原子核心的圆柱状的π电子云。

乙炔分子中两个碳原子的sp轨道,有½ s性质,s轨道中的电子较接近了核。

因此被约束得较牢,sp轨道比sp2轨道要小,因此sp杂化的碳所形成的键比sp2杂化的碳要短,它的p电子云有较多的重叠。

二、烯烃和炔烃的同分异构及命名(一)烯烃和炔烃的异构现象1.烯烃和炔烃的构造异构由于烯烃含有双键,其异构现象较烷烃复杂,它包括碳干异构,双键位置不同引起的位置异构(position isomerism),以及由于双键两侧的基团在空间的位置不同引起的顺反异构。

例如:丁烷只有正丁烷和异丁烷两个异构体,而丁烯就有三个异构体:CH3CH2CH=CH2CH3CH=CHCH31-丁烯2-丁烯2-甲基丙烯双键位置异构碳架异构2.烯烃的顺反异构由于双键不能自由旋转又产生了另一个异构现象--顺反异构,如:2-丁烯有两个:顺-2-丁烯反-2-丁烯两个相同基团在双键的一边称为顺式(cis-); 两个相同基团分处在双键的两边称为反式(trans- 。

顺、反异构现象在烯烃中很普遍,凡是以双键相连的两个碳原子上都带有不同的原子或原子团时,都有顺、反异构现象。

如果以双键相连的两个碳原子,其中有一个带有两个相同的原子或原子团,则这种分子就没有顺、反异构体。

因为它的空间排列只有一种。

如:(二)烯烃和炔烃的命名1.构造异构体的系统命名①选择一个含双键或叁键的最长的碳链为主链。

据主链碳原子数目的多少称为‗某烯‘或―某炔‖。

②从最靠近双键或叁键的一端起,把主链碳原子依次编号。

2,4-二甲基-2-己烯③双键或叁键的位次必须标明出来,只写双键两个碳原子中位次较小的一个,放在烯烃名称的前面。

④其他同烷烃的命名原则2.烯烃顺反异构的命名顺反异构有两种命名方法(1)顺反命名法与烷烃的顺反异构体命名相同,当双键的两个碳原子上各连有的相同原子或基团位于双键同侧时,在系统名称前冠以―顺‖字,在异侧的冠以―反‖字。

并加短线与系统名称隔开。

如(2) Z 、E 命名法根据IUPAC 命名法,字母Z 是德文Zusammen 的字头,指同一侧的意思。

E 是德文Entgegen 的字头,指相反的意思。

用―次序规则‖来决定Z 、E 的构型。

主要内容有两点:①次序规则:ⅰ将双键碳原子所连接的原子或基团按其原子序数的大小排列,把大的排在前面,小的排在后面,同位素则按原子量大小次序排列。

I ,Br, Cl,, S, P, O, N, C, D, H当与双键C1所连接的两个原子或基团中原子序数大的与C2所连原子序数大的原子或基团处在平面同一侧时为(Z )构型,命名时在名称的前面附以(Z )字。

反之,若不在同一侧的则为(E )构型,命名时在名称前面附以(E )字。

如:C=C CH 3H H 3C H 顺-2-丁烯C=C H CH 3H 3C H 反-2-丁烯ⅱ如果与双键碳原子连接的基团第一个原子相同而无法确定次序时,则应看基团的第二个原子的原子序数,依次类推。

按照次序规则(Sequence rule)先后排列。

②Z、E命名法:烯烃碳碳双键C1和C2上原子序数大的原子或原子团在双键平面同一侧时,为―Z‖构型,在异侧时为―E‖构型。

③顺、反异构体的命名与(Z)、(E)构型的命名不是完全相同的。

这是两种不同的命名法。

顺、反异构体的命名指的是相同原子或基团在双键平面同一侧时为―顺‖,在异侧时为―反‖。

Z、E构型指的是原子序数大的原子或基团在双键平面同一侧时为―Z‖,在异侧时为―E‖。

3.烯炔的命名若分子中同时含有叁键和双键,这类化合物称为烯炔。

它的命名首先选取含双键和叁键最长的碳链为主链。

位次的编号通常使双键具有最小的位次。

三、烯烃和炔烃的物理性质在常温下,C2-C4的烯烃炔烃为气体,C5-C18的烯烃和C5-C17的炔烃为液体,C原子数更多的烯烃和炔烃为固体。

沸点、熔点、比重都随分子量的增加而上升,比重都小于1,都是无色物质,溶于有机溶剂,不溶于水。

沸点: 3.7°C 0.88°C熔点:-138.9°C -105.6°C顺、反异构体之间差别最大的物理性质是偶极矩,一般反式异构体的偶极矩较顺式小,或等于零,这是因为在反式异构体中两个基团和双键碳相结合的键,它们的极性方向相反可以抵消,而顺式中则不能。

四、烯烃的化学性质烯烃官能团:C=C, 由一个σ键和一个π键组成。

由于π键键能小,易破裂,所以烯烃的反应都是围绕着π键进行的:① π键电子云流动,较松散,可作为一电子源,起lewis 碱的作用,与亲电试剂发生加成反应,生成饱和产物:X YC=C+ X-Y C C②与双键相连的α-C上的氢,受C=C影响,可发生取代反应。

炔烃官能团:-C≡C-:1个σ、2个π①有π键:有类似于烯烃的性质,如加成、氧化、聚合;② 2个相互⊥的π:有不同于烯烃的性质,如炔氢的酸性。

(一)加成反应由于烯烃的电子云流动性强,易极化,容易给出电子,所以容易被缺电子的试剂进攻。

这种缺电子的试剂叫亲电试剂,它容易与能给出电子的烯烃双键起加成反应,这种反应就叫亲电加成反应。

1.加卤素反应在常温时就可以迅速地定量地进行,溴的四氯化碳溶液与烯烃反应时,溴的颜色消失,在实验室里,常利用这个反应来检验烯烃。

如:卤素的活泼性:氟> 氯> 溴> 碘烯烃和氟作用,反应非常剧烈,得到的大部分是分解产物,碘和烯烃的作用非常慢,同时产物邻二碘化合物不很稳定,极易脱碘成烯烃,所以通常不与烯烃起加成反应。

所以一般所谓烯烃的加卤,实际上是指加氯或加溴来说的。

炔烃在加成时,炔需首先给出电子对与正离子结合,与烯相比,炔烃的键的碳为sp杂化,吸电子能力比较强,故不易给出电子对,所以较烯烃不易进行亲电加成反应。

再者,叁键的键长(0.12nm)比双键(0.134nm)短,它的p电子云有较多的重叠,所以π键较难被打开。

(双键优先与Br反应)2.加卤化氢①HX的活泼次序:HI > HBr >HCl浓HI,浓HBr能和烯烃起反应,浓盐酸要用AlCl3催化剂才行。

②马氏规则(Markovnikov 规则)凡是不对称的烯烃和酸(HX)加成时,酸的负基X-主要加到含氢原子较少的双键碳原子上,H+加到含氢多的双键碳原子上。

③过氧化物(H2O2,R-OOR等)存在下,HBr与不对称烯烃加成--反马氏规则.过氧化物对HCl,HI加成反应方向没影响.④炔烃与HX3.与硫酸的加成将乙烯通入冷浓硫酸中生成硫酸氢乙酯硫酸氢乙酯水解生成乙醇:不对称烯烃与H2SO4加成时,产物符合马氏规则。

4. 加水①烯烃加水C=C+ H3O++CH-C CH-COH2+H+H2O CH-COH-H+H+此反应副产物多,缺乏制备价值。

但控制Cat条件,烯烃可直接水合:CH2=CH2 + H2O H3PO4/硅藻土300 C,7~8MPa。

CH3-CH2-OH 195 C,2MPa。

异丙醇CH2=CHCH3 + H2O H3PO4/硅藻土CH3-CH-CH3OH(遵循马氏规则)②炔烃加水CH CH + H2O HgSO4,稀H2SO4HC CHHOH重排H-C-CH3O98-105 C。

烯醇式酮式RC CH + H2OR-C-CH3O HgSO4,稀H2SO4RC CHHOH重排烯醇式为什么会重排成酮式呢?更稳定!99%1%H C C H H HO H C C HH OH 总键能2678KJ/mol2741KJ/mol互变异构室温下,两个构造异构体能迅速地相互转变,达到动态平衡的现象,叫互变异构现象。

ͪʽϩ´¼Ê½£¬¼´ÎªÒ»ÖµäÐ͵Ļ¥±äÒ칡£5.与次卤酸加成次卤酸的酸性很弱,它与烯烃加成时,生成β-氯代醇:CH 2=CH 2 + HO Cl δ+δ-Cl-CH 2-CH 2-OHβ-氯乙醇实际操作时,常用氯和水直接反应。

例:CH 2=CH 2CH 2CH 2Cl+Cl 2-Cl-H 2O -H+CH 2CH 2Cl ClCl -CH 2CH 2ClOH(主)(副)β-氯乙醇CHCH 2Cl+CH 3-CH 3-CH=CH 2+CHCH 2CH 3-ClOHCHCH 2CH 3-ClOHH 2O -H+Cl 2-Cl -2-氯-1-丙醇1-氯-2-丙醇a b这个反应也是亲电加成反应,即亲电试剂首先进攻,形成正离子。

相关文档
最新文档