认识无理数(1)课后习题
北师大版数学八年级上册同步练习附答案1 认识无理数
1认识无理数一.选择题(共10小题)1. 在下列实数中:0,,﹣3.1415,,,0.343343334…无理数有()A. 1个B. 2个C. 3个D. 4个2. 五个数中:﹣,﹣1,0,,,是无理数的有()A. 0个B. 1个C. 2个D. 3个3. 下列各数中,是无理数的()A. πB. 0C.D. ﹣4. 下列各数中,无理数的是()A. B. C. π D.5. 在实数﹣2,,,0.1122,π中,无理数的个数为()A. 0个B. 1个C. 2个D. 3个6. 下列各数中,属于无理数的是()A. πB. 0C.D. ﹣7. 在﹣2,,,3.14,,,这6个数中,无理数共有()A. 4个B. 3个C. 2个D. 1个8. 下列各数是无理数的是()A. B. C. D. 169. 在,-,0,,3.1415,π这6个数中,无理数共有()A. 1个B. 2个C. 3个D. 4个10. 下列说法正确的是()A. 带有根号的数是无理数B. 无限小数是无理数C. 无理数是无限不循环小数D. 无理数是开方开不尽的数二.填空题(共10小题)11. 如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,且另外两条边长均为无理数,满足这样条件的点C共______个.12. 下列各数:,,5.12,﹣,0,,3.1415926,,﹣,2.181181118…(两个8之间1的个数逐次多1).其中是无理数的有__个.13. 若无理数a满足:﹣4<a<﹣1,请写出两个你熟悉的无理数:__.14. 在实数1.732,,-,,中,无理数的个数为__.15. 在,,,0.8888…,3π,0.262662666266662…,六个数中,无理数有__个.16. 下列实数中,0.13,π,﹣,,1.212212221…(两个1之间依次多一个2)中,是无理数的有__ 个.17. 在实数、、中,无理数是__.18. 在,,0,,,0.010010001…,,﹣0.333…,,3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有__个.19. 写出两个无理数,使它们的和为有理数__,__;写出两个无理数,使它们的积为有理数__,__.20. 下列各数:,,,,,0.010*********,,中,是无理数的有__个.三.解答题(共10小题)21. 把下列各数分别填在相应的集合中:﹣,,,0,,,,,3.1422. 在下列4×4各图中,每个小正方形的边长都为1,请在每一个图中分别画出一条线段,且它们的长度均表示不等的无理数.表示:表示:表示:(注:横线上填入对应的无理数)23. 在:,,0,3.14,,﹣,7.151551…(每相邻两个“1”之间依次多一个“5”)中,整数集合{ …},分数集合{ …},无理数集合{ …}.24. 国涛同学家的客厅是面积为28平方米的正方形,那么请你判断一下这个正方形客厅的边长x是不是有理数?如果误差要求小于0.01米,那么边长x的最大取值是多少(精确到0.001)?25. 500多年前,数学各学派的学者都认为世界上的数只有整数和分数,直到有一天,大数学家毕达哥拉斯的一个名叫希帕索斯的学生,在研究1和2的比例中项时(若1:x=x:2,那么x叫1和2的比例中项),他怎么也想不出这个比例中项值.后来,他画了一个边长为1的正方形,设对角线为x,于是由毕达哥拉斯定理x2=12+12=2,他想x代表对角线的长,而x2=2,那么x必定是确定的数,这时他又为自己提出了几个问题:(1)x是整数吗?为什么不是?(2)x可能是分数吗?是,能找出来吗?不是,能说出理由吗?亲爱的同学,你能帮他解答这些问题吗?26. 下列数中:①﹣|﹣3|,②﹣0.3,③﹣,④,⑤,⑥,⑦0,⑧﹣,⑨1.2020020002…(每两个2之间依次多一个0)(请填序号)无理数是,整数是.负分数是.27. 已知长方体的体积是1620,它的长、宽、高的比是5:4:3,问长方体的长、宽、高是无理数吗?为什么?28. 体积为3的正方体的边长可能是整数吗?可能是分数吗?可能是有理数吗?请说明你的理由.29. 有6个实数:﹣32,﹣,,0.313131…,,﹣,请计算这列数中所有无理数的和.30. 判断下列说法是否正确,如果正确请在括号内打“√”,错误请在括号内打“×”,并各举一例说明理由.(1)有理数与无理数的积一定是无理数.(2)若a+1是负数,则a必小于它的倒数..答案一.选择题1. 【答案】B【解析】根据无理数是无限不循环小数,可得答案.,0.343343334…是无理数,故选B.考点:无理数.2.【答案】B【解析】无理数有:,只有1个.故选B.考点:无理数.3. 【答案】A【解析】A选项中,π是无理数,故此选项正确;B选项中,0是有理数,故此选项错误;C选项中,=2,是有理数,故此选项错误;D选项中,是有理数,故此选项错误;故选A.4. 【答案】C【解析】A选项中,是分数,属于有理数,故A错误;B选项中,是有理数,故B错误;C选项中,是无理数,故C正确;D选项中,是有理数,故D错误;故选C.5. 【答案】C【解析】无理数为:,,共有2个.故选C.6. 【答案】A【解析】A选项中,π是无理数,故此选项正确;B选项中,0是有理数,故此选项错误;C选项中,=2,是有理数,故此选项错误;D选项中,是有理数,故此选项错误;故选A.7.【答案】C【解析】无理数有、共两个,故选C.8. 【答案】B【解析】A选项中,是分数,属于有理数,故A错误;B选项中,是无理数,故B正确;C选项中,是有理数,故C错误;D选项中,16是有理数,故D错误;故选B.9.【答案】B【解析】在上述6个数中,,,0,3.1415都属于有理数,属于无理数的是共2个.故选B. 10.【答案】C【解析】A选项中,带有根号的数不一定是无理数,如是有理数,故此选项错误;B选项中,无限小数包括无限循环小数和无限不循环小数,其中只有无限不循环小数才是无理数,而无限循环小数是有理数,故此选项错误;C选项中,无理数是无限不循环小数的说法是正确的;D选项中,开方开不尽的数是无理数,但无理数不一定是开方产生的,无是无理数,但它不是开方产生的数,故选项错误.故选C.二.填空题11.【答案】4【解析】本题需根据直角三角形的定义和图形即可找出所有满足条件的点.根据题意可得以AB为边画直角△ABC,使点C在格点上,满足这样条件的点C共8个.故答案为:8.12.【答案】4【解析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,、、及(每两个8之间1的个数依次多1)是无理数,其余的数都是有理数,即无理数共有4个.点睛:初中阶段所遇到的无理数主要有三种形式:①开方开不尽的数;②无限不循环小数;③含有π的数.13. 【答案】﹣,﹣π【解析】本题答案不唯一,这样的无理数很多,如:.14. 【答案】2【解析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,是无理数,其余的都是有理数,即上述各数中无理数共有2个.15. 【答案】4【解析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,,是无理数,其余的都是有理数,即上述各数中,无理数有4个.16. 【答案】3【解析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,(每两个1之间依次多一个2)是无理数,其余的都是有理数,即上述各数中,无理数有3个.17. 【答案】【解析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.根据无理数的三种形式可求出答案.需要注意的就是本题中=2.考点:无理数18. 【答案】4【解析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,是无理数,其余的都是有理数,即上述各数中,无理数有4个.19. 【答案】【解析】(1)两个无理数的和为有理数,这样的无理数很多,如:和;(2)两个无理数的积为有理数,这样的无理数很多,如:和.点睛:(1)两个无理数的和、差、积、商有可能是无理数,也有可能是有理数;(2)本题的两个小问,在解答时,可以先任写出一个无理数和一个不为0的有理数,再通过有理数减去无理数和有理数除以无理数可得对应的另一根无理数.20. 【答案】2【解析】根据:有理数的定义:“分数和整数统称为有理数”及无理数的定义:“无限不循环小数叫做无理数”分析可知:在上述各数中,是无理数,其余的数都是有理数,即上述各数中,无理数有2个.点睛:带根号的数与无理数的区别:带根号的数不一定是无理数,如是有理数中的整数;带有根号且开方开不尽的数就一定是无理数.三.解答题21. 【解析】本题考查的是实数的分类. 先把-化为-2的形式,-化为-2,化为2的形式,再根据实数分无理数及有理数进行解答即可.解:有理数集合: -,-,0,,,3.14 .无理数集合:,-,22. 【解析】连接任意正方形的对角线,根据勾股定理计算出其长度,再由无理数的定义进行解答即可.23.【解析】根据无理数、整数、分数的定义即可作答.24. 【答案】5.291.【解析】(1)根据正方形的面积是边长的平方,可得该正方形的边长为米,化简可知边长不是有理数;(2)把化简并按指定“精确度”取近似值可得答案.解:(1)由题意可得正方形边长为:,这个正方形客厅的边长x不是有理数;(2)由(1)可得这个正方形边长x的最大取值为:.25. 【答案】(1)在1和2之间不存在另外的整数.(2)不是.【解析】(1)根据比例中项的定义,可知x2=2,结合无理数的概念,就能得出x是不是整数的结论.(2)根据分数的定义,任何分数的平方还是分数,即能得出结论.解:(1)不是,∵1<2<4,而x2=2∴1<x2<4,若x>0,1<x<2,∴在1和2之间不存在另外的整数.(2)不是,因为任何分数的平方不可能是整数.考点:本题主要考查无理数和勾股定理点评:解答本题的关键是熟练掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.26. 【答案】无理数是③④⑨,整数是①⑥⑦,负分数是②⑧.【解析】(1)由无理数的定义:“无限不循环小数叫做无理数”可知,上述各数中,无理数是③④⑨;(2)根据有理数定义和有理数的分类可知:上述各数中,整数是①⑥⑦,负分数是②⑧.27.【答案】长、宽、高分别为15,12,9不是无理数.【解析】首先根据题中条件求出长方体的长、空、高的值,然后再根据无理数的定义判断这些值是否是无理数即可.解:该长方体的长、宽、高不是无理数,理由如下:设该长方体的长、宽、高分别为5x,4x,3x.由题意可得:60x3=1620,解得x=3,∴该长方体的长、宽、高分别为15,12,9,∵15,12,9都是整数,属于有理数,不属于无理数,∴该长方体的长、宽、高不是无理数.28.【答案】体积为3的正方形的边长不可能是整数、分数、有理数.【解析】先根据正方体的体积公式求出棱长,即可判断.解:由题意得,正方体的棱长为,不可能是整数,不可能是是分数,不可能是有理数.考点:本题考查的是正方体的体积公式,实数的分类点评:解答本题的关键是熟练掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.29. 【答案】【解析】首先根据“无理数的定义”,找出上述各数中的无理数,再把它们相加即可.解:∵上述各数中:﹣,,﹣是无理数,∴上述各数中,所有无理数的和为:==.30. 【答案】×,√.【解析】(1)“有理数与无理数的积一定是无理数.”这种说法是错误的,如是无理数,0是有理数,但它们的积是0,为有理数,故这种说法错误;(2)“若a+1是负数,则a必小于它的倒数.”这种说法正确.∵a+1是负数,∴a+1<0,即a<﹣1,∴a必小于它的倒数.如:a=-2,-2的倒数是,-2是小于的.。
1认识无理数精品导学案对应练习题附答案
第二章实数2.1认识无理数第一环节:质疑【想一想】⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?第二环节:课题引入【算一算】一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,问题:x是整数〔或分数〕吗?【剪剪拼拼】把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?第三环节:获取新知【议一议】:a2=2,请问:①a可能是整数吗?②a可能是分数吗?【释一释】:释1 .满足a2 =2的a为什么不是整数?释2.满足a2 =2的a为什么不是分数?【忆一忆】:回忆“有理数〞概念,既然a不是整数也不是分数,那么a 一定不是有理数,这说明:有理数不够用了,为“新数〞〔无理数〕的学习奠定了根底【找一找】:在下歹0正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段第四环节:应用与稳固2.长度不是有理数的线段〔右D【画一画1】:在右1的正方形网格中,画出两条线段:1.长度是有理数的线段【画一画2】:在右2的正方形网格中画出四个三角形2.三边长都是有理数 2.只有两边长是有理数3.只有一边长是有理数4.三边长都不是有理数二二二二「二二二【仿一仿】:例:在数轴上表示满足X23=2〔XA0〕的x rm n rCB 解: ------------- 一1——1——1A―-Ur-1——1——'〔右2〕仿:在数轴上表示满足X2=5〔X A0〕的X-- 1-- 1-- 1Q--- 8-- 1-- 1-- 1-- 1A【赛一赛】:右3是由五个单位正方形组成的纸片,请你把rFR它剪成三块,然后拼成一个正方形,你会吗?试试看!〔右3〕第五环节:课堂小结内容:1 .通过本课学习,感受有理数乂不够用了,请问你有什么收获与体会?2.客观世界中,确实存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?6.4 数据的离散程度【预习展示】1、完成课本149页引例2、一组数据中________ 与^差,称为极差,是刻画数据离散程度的一个统计量。
八年级数学上册 2.1 认识无理数课时同步练习北师大版
认识无理数1.下列各数中的无理数是( )A .0.7 B.12C .πD .-8 2.面积为6的长方形,长是宽的2倍,则宽为( )A .整数B .分数C .无理数D .不能确定3.下列说法正确的是( )A .有理数是有限小数B .有理数是无限小数C .无理数是无限循环小数D .无限不循环小数是无理数4.已知直角三角形的两直角边长分别是4和5,则这个直角三角形的斜边的长度( )A .在4和5之间B .在5和6之间C .在6和7之间D .在7和8之间5.如图所示,在正方形网格中,每个小正方形的边长都为1,对于网格中的△ABC ,边长为无理数的有( )A .0条B .1条C .2条D .3条6.在37,0,π2,-xx ,65,0.01001这六个数中,无理数有________个. 7.如图所示,Rt△ABC 的三边长分别是a ,b ,c.(1)计算:①若a =1,c =2,则b 2=______;②若a =3,c =5,则b 2==______;③若a =0.6,c =1,则b 2=________.(2)通过(1)中计算出的b 2值,我们知道,b 是整数的有______;b 是分数的有______;b 既不是整数,也不是分数的有______.(填序号)8.已知m 2=5,x ,y 为两个连续的整数,且x <m <y ,则x -y =________.9.下列各数中,哪些是有理数?哪些是无理数?-34,-1.42··,π,3.1416,23,0,42,-1.4242242224…(相邻两个4之间2的个数逐次加1).10、下列各数中,哪些是有理数?哪些是无理数?3.14, -34, ••75.0, 0.1010010001…(相邻两个1之间0的个数逐次加1). 解:有理数: 无理数:11、设面积为5π的圆的半径为a 。
(1)、a 是有理数吗?说说你的理由。
(2)、估计a 的值(精确到十分位,并利用计算器验证你的估计).(3)、如果精确到百分位呢?解:(1)、(2)、(3)、12、下列各数中,哪些是有理数?哪些是无理数?0.4583, •7.3, -π, -71, 18。
八年级数学上册 2.1 认识无理数课时同步练习 试题
轧东卡州北占业市传业学校认识无理数1.以下各数中的无理数是( )A .0.7 B.12C .πD .-8 2.面积为6的长方形,长是宽的2倍,那么宽为( )A .整数B .分数C .无理数D .不能确定3.以下说法正确的选项是( )A .有理数是有限小数B .有理数是无限小数C .无理数是无限循环小数D .无限不循环小数是无理数4.直角三角形的两直角边长分别是4和5,那么这个直角三角形的斜边的长度( )A .在4和5之间B .在5和6之间C .在6和7之间D .在7和8之间5.如下列图,在正方形网格中,每个小正方形的边长都为1,对于网格中的△ABC ,边长为无理数的有( )A .0条B .1条C .2条D .3条6.在37,0,π2,-2021,65,0.01001这六个数中,无理数有________个. 7.如下列图,Rt△ABC 的三边长分别是a ,b ,c.(1)计算:①假设a =1,c =2,那么b 2=______; ②假设a =3,c =5,那么b 2==______; ③假设a =0.6,c =1,那么b 2=________. (2)通过(1)中计算出的b 2值,我们知道,b 是整数的有______;b 是分数的有______;b 既不是整数,也不是分数的有______.(填序号)8.m 2=5,x ,y 为两个连续的整数,且x <m <y ,那么x -y=________. 9.以下各数中,哪些是有理数?哪些是无理数? -34,-1.42··,π,416,23,0,42,-242242224…(相邻两个4之间2的个数逐次加1). 10、以下各数中,哪些是有理数?哪些是无理数?4, -34, ••75.0, 0.1010010001…(相邻两个1之间0的个数逐次加1). 解:有理数: 无理数:11、设面积为5π的圆的半径为a 。
(1)、a 是有理数吗?说说你的理由。
八年级数学北师大版上册课时练第2章《2.1认识无理数》(含答案解析)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!课时练2.1认识无理数1.下列正方形中,边长为无理数的是()A.面积为64的正方形B.面积为16的正方形C.面积为1.44的正方形D.面积为12的正方形2.下列各数是无理数的是()A.1B.-0.6C.-6D.π3.下列说法正确的是()A.3.78788788878888是无理数B.无理数分为正无理数、0、负无理数C.无限小数不能化成分数D.无限不循环小数是无理数4.下列说法中,正确的是()A.无理数包括正无理数、零和负无理数B.无限小数都是无理数C.正实数包括正有理数和正无理数D.实数可以分为正实数和负实数两类5.2020年3月14日,是人类第一个“国际数学日”这个节日的昵称是“π(Day )”.国际数学日之所以定在3月14日,是因为“3.14”是与圆周率数值最接近的数字.在古代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年,以下对于圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.其中表述正确的序号是()A.②③ B.①③C.①④D.②④6.在(6)--,2020(1)-,43-,1+-,|4|--,π2-,0.050050005…(相邻两个5之间依次增加1个0)中,无理数共有()A.2个 B.3个 C.4个 D.5个7.小华家新买了一张边长为1.4m 的正方形桌子,原有的边长是1m 的两块正方形桌布都不适用了,但扔掉太可惜,小华想了一个办法,如图,将两块桌布拼成一块正方形大桌布,请你帮小华计算,这块大桌布能盖住现在的新桌子吗?8.如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.9.已知34-, 1.42- ,π,3.1416,23,0,24,2(1)n-,-1.4242242224…(相邻两个4之间2的个数逐次加1).(1)写出所有有理数;(2)写出所有无理数;(3)把这些数按从小到大的顺序排列起来.参考答案1.D2.D3.D4.C5.A6.A7.解:根据题意,得正方形大桌布的面积为()222112m +=,因为新桌子的边长为1.4m ,所以新桌子的面积为()21.4 1.4 1.96m ´=.因为2 1.96>,所以这块大桌布能盖住现在的新桌子.8.(1)(2)(3)9.(1)有理数:34-, 1.42- ,3.1416,23,0,24,2(1)n -.(2)无理数:π,-1.4242242224…(相邻两个4之间2的个数逐次加1).(3) 1.421.424242224-<- (相邻两个4之间2的个数逐次加1)22320(1)π 3.1416443n <-<<<-<<<.。
【红对勾45分钟】-八年级数学上册 2.1 认识无理数课时作业 (新版)北师大版
2.1 认识无理数1.下列说法正确的是( ) A .除不尽的分数是无理数 B .无限小数是无理数 C .无理数是无限循环小数 D .无限不循环小数是无理数2.在下列各数中,是无理数的是( )A .0.5·6·B .π C.227D .1.7323.正方形的面积为10,则它的边长x 是( ) A .分数 B .有限小数 C .无限循环小数D .无限不循环小数4.如图,图中有16个边长为1的小正方形拼成的大正方形,连接CA ,CB ,CD ,CE 四条线段,其中长度既不是整数也不是分数的有________条.5.在0.351,-23,4.969 696…,6.751 755 175 551…,0,-π2,5.411 010 010 001…中,无理数有________________________________________________________________________________________.6.一面长方形旗的长为240 cm ,宽为160 cm ,这面旗对角线的长可能是整数吗?可能是分数吗?可能是有理数吗?7.如图,直角三角形两直角边的长分别是2,3,阴影部分是一个正方形,设正方形的边长为a.(1)图中阴影部分的面积为多少?(2)a是有理数吗?8.(综合题)面积为7的正方形的边长为x,请回答下列问题:(1)x的整数部分是多少?(2)把x的值精确到十分位时是多少?精确到百分位呢?(3)x是有理数吗?请简要说明理由.9.如图,要从离地面5 m的电线杆上的B处向地面C处拉一条钢丝绳来固定电线杆,使固定点C到A的距离为3 m.求钢丝绳BC的长度.(精确到十分位)10.如图是五个同样大小,边长为1的正方形拼图.(1)你能否切割两次,将它重新拼成一个大的正方形吗?(2)这个大正方形的面积是多少?(3)大正方形的边长是有理数吗?11.(2013·长沙)下列实数是无理数的是( ) A.-1 B.0C.12D. 31.D 由无理数概念可知. 2.B π是无理数.3.D 边长是10,是无理数,即无限不循环小数. 4.3 AC =225,BC =32,CD =5,CE =17. 5.6.751 755 175 551…,-π2,5.411 010 010 001…6.解:由题意可知1602+2402=83 200,2882=82 944,2892=83 521.所以对角线长不是整数.因为分数的平方还是分数,所以对角线长不是分数,也不是有理数.因为整数的平方是整数,分数的平方是分数,整数和分数统称有理数,对角线的长既不是整数也不是分数,所以不是有理数.7.解:(1)由勾股定理得a 2=22+32=13,则阴影部分的面积为13.(2)a 不是有理数. 8.解:令该正方形的面积为S ,则S =x 2=7.当2<x <3时,4<S <9;当2.6<x <2.7时,6.76<S <7.29; 当2.64<x <2.65时,6.969 6<S <7.022 5; 当2.645<x <2.646时,6.996 025<S <7.001 316.则有(1)x 的整数部分为2;(2)精确到十分位时,x ≈2.6;精确到百分位时,x ≈2.65;(3)x 不是有理数,由计算可知,x 是无限不循环小数.9.解:由勾股定理得BC 2=AB 2+AC 2=34.当5<BC <6时,25<BC 2<36;当5.8<BC <5.9时,33.64<BC 2<34.81;当5.83<BC <5.84时,33.988 9<BC 2<34.105 6.则精确到十分位时,BC 约为5.8 m10.解:(1)可以拼成一个大正方形,如右图所示. (2) S 正方形=5 (3)边长不是有理数.11.D 3是无理数.。
人教版八年级教案-认识无理数(1)
2.1 認識無理數1.瞭解無理數的概念及意義,會判斷一個數是有理數還是無理數;(重點)2.會對一個無理數進行估算.(難點)一、情境導入拼圖發現新數——無理數請大家四個人為一組,拿出自己準備好的兩個邊長為1的正方形紙片和剪刀,按虛線剪開拼成一個大的正方形.因為兩個小正方形面積之和等於大正方形的面積,所以根據正方形面積公式可知a 2=2,那麼a 是整數嗎?a 是分數嗎?二、合作探究探究點一:無理數的概念及認識下列各數中,哪些是有理數?哪些是無理數?3.14,-53,0.58··,-0.125,-5π,0.35,227,5.3131131113…(相鄰兩個3之間1的個數逐次加1).解析:準確理解有理數和無理數的概念是解答本題的關鍵.任何有限小數或無限循環小數都是有理數;無限不循環小數稱為無理數,故-5π,5.3131131113…是無理數,其他都是有理數.解:有理數:3.14,-53,0.58··,-0.125,0.35,227;無理數:-5π,5.3131131113…(相鄰兩個3之間1的個數逐次加1).方法總結:有理數與無理數的主要區別.(1)無理數是無限不循環小數,而有理數可以用有限小數或無限循環小數表示.(2)任何一個有理數都可以化為分數形式,而無理數則不能.探究點二:借助計算器用“夾逼法”求無理數的近似值正數x 滿足x 2=17,則x 精確到十分位的值是________.解析:已知x 2=17,所以4<x<5,4.12=16.81<17,4.22=17.64>17,所以 4.1<x<4.2.又因為 4.122=16.9744<17,4.132=17.0569>17,所以4.12<x<4.13.故x 精確到十分位是4.1.方法總結:估計x 2=a(a>0)中的正數x 各位上的數字的方法:(1)估計x 的整數部分,看它在哪兩個連續整數之間,較小數即為整數部分;(2)確定x 的十分位上的數,同樣尋找它在哪兩個連續整數之間;(3)按照上述方法可以依次確定x 的百分位、千分位、…上的數,從而確定x 的值.三、板書設計無理數⎩⎪⎨⎪⎧定义:无限不循环小数识别讓學生通過估計、借助計算器進行探索和討論,體會數學學習的樂趣,體會無限逼近的數學思想,得到無理數的概念;同時引導學生回顧舊知、探索新知,形成一定的數學探究能力,進一步培養學生的分類和歸納的思想,為今後的數學學習打下堅實的基礎.。
北师大版初中数学八年级(上)2-1 认识无理数(第1课时)(学案+练习)
第二章 实 数1 认识无理数(第1课时)学习目标1.通过拼图活动,感受客观世界中无理数的存在.(难点)2.能判断三角形的某边长是否为有理数.3.会判断一个数是否为有理数.(重点)自主学习学习任务一 认识无理数的存在1.如图1所示,边长为1的两个正方形M ,N 可以分割成四个全等的等腰直角三角形,它们又可以拼凑成一个更大的正方形ABCD .(还有其他方法,鼓励学生探究)图1(1)大正方形的面积是 .(2)设大正方形的边长是x ,则x 2= ,x 在 和 之间(填整数). 结论:a 既 整数,也 分数,即a 有理数. 学习任务二 判断一个数是否为有理数 思考:如图2,(1)以直角三角形的斜边为边的正方形的面积是 . (2)设该正方形的边长为b ,b 满足 . (3)b 是有理数吗?图2合作探究例1 在△ABC 中,AB =AC ,AD 是底边上的高,如图3,若AC =10,BC =8. (1)求以AD 的长为边长的正方形的面积; (2)判断AD 是否为有理数,并说明理由.例2你会在如图4所示的正方形网格中画出面积为10的正方形吗?试一试.图4当堂达标1.在直角三角形中两条直角边长分别为2和3,则斜边的长()A.是有理数B.不是有理数C.不确定D.为42.下列面积的正方形,边长不是有理数的是()A.16B.25C.8D.43.如图5,在5×5的正方形网格中,以AB为边画直角三角形ABC,使点C在格点上,且另外两条边长均不是有理数,满足这样条件的点C4.在如图6(1)长度是有理数的线段l1;(2)长度不是有理数的线段l2.课后提升Array在如图7所示的正方形网格中画出四个三角形.(1)三边长都是有理数.(2)只有两边长是有理数.(3)只有一边长是有理数.(4)三边长都不是有理数.反思感悟我的收获:我的易错点:参考答案当堂达标1.B2.C3.解:如图8,共4个.4.解:如图9(答案不唯一).课后提升解:如图10(答案不唯一).。
2022八年级数学上册 第二章 实数2.1 认识无理数习题课件 (新版)北师大版
15、一个人炫耀什么,说明他内心缺 少什么 。。2022年5月 上午9时32分22.5.609:32May 6, 2022
16、业余生活要有意义,不要越轨。2022年5月6日 星期五9时32分 19秒09:32:196 May 2022
17、一个人即使已登上顶峰,也仍要 自强不 息。上 午9时32分19秒 上午9时32分09:32:1922.5.6
15、一个人炫耀什么,说明他内心缺 少什么 。。2022年5月 上午9时32分22.5.609:32May 6, 2022
16、业余生活要有意义,不要越轨。2022年5月6日 星期五9时32分 19秒09:32:196 May 2022
17、一个人即使已登上顶峰,也仍要 自强不 息。上 午9时32分19秒 上午9时32分09:32:1922.5.6
12、人乱于心,不宽余请。09:32:1909:32:1909:32Fri day, May 06, 2022
13、生气是拿别人做错的事来惩罚自 己。22.5.622.5.609:32:1909:32:19May 6, 2022
14、抱最大的希望,作最大的努力。2022年5月6日 星期五 上午9时 32分19秒09:32:1922.5.6
15、一个人炫耀什么,说明他内心缺 少什么 。。2022年5月 上午9时32分22.5.609:32May 6, 2022
16、业余生活要有意义,不要越轨。2022年5月6日 星期五9时32分 19秒09:32:196 May 2022
17、一个人即使已登上顶峰,也仍要 自强不 息。上 午9时32分19秒 上午9时32分09:32:1922.5.6
12、人乱于心,不宽余请。09:32:1909:32:1909:32Fri day, May 06, 2022
北师版八年级数学 2.1 认识无理数(学习、上课课件)
2.1 认识无理数
学习目标
1 课时讲解 生活中存在不是有理数的数
无理数的概念
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 生活中存在不是有理数的数
知1-讲
整数和分数统称为有理数 . 随着研究的深入,人们发现
了不是有理数的数,现实生活中存在大量不是有理数的数 .
如图 2-1-1,用剪拼的方法将两个边长为 1 的小正方形 拼成
感悟新知
知识点 2 无理数的概念
知2-讲
1. 无理数的概念 无限不循环小数称为无理数,如圆周率 π =3.141 592 65…,1.010 010 001…(相邻两个 1 之间 0 的 个数逐次加 1)等 .
感悟新知
特别提醒 从小数观点理解无理数 :
(1)小数; (2)位数无限 ; (3)不循环 . 三者一不可 .
无理数
认识的 过程
产生 大小的估计 概念
感悟新知
知1-练
1-1. 已知直角三角形的两直角边长分别是9 cm和5 cm,斜 边长是x cm.
(1)估计x在哪两个连续整数之间; 解:根据题意,可得x2=92+52=106. 因为100<x2<121, 所以10<x<11,即x在整数10与11之间.
感悟新知
(2)如果把x的结果精确到0.1,估计x的值;如果精确到 知1-练
数或无限循环小数; 2.有理数可化为分数,无理数不能化为分数 .
知2-讲
感悟新知
知2-练
例2 [母题 教材P23例题]下列各数中,哪些是有理数?哪些 是无理数? 3.14,π,0,-272,2.3.,7.141 441 444 1…(相邻两个1 之间4的个数逐次加1).
八年级数学上册 2.1 认识无理数课时练 (新版)北师大版
认识无理数【教材训练】 5分钟1.无理数的概念无限不循环小数称为无理数,如π是无限不循环小数,故它是无理数;0.4656656665…(相邻的两个5之间6的个数逐次加1)是无限不循环小数,也是无理数;a2=3中,a是无限不循环小数,故a也是无理数.2.无理数与有理数的区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化成分数的形式,而无理数则不能.3.估算法在探索x2=a(a≥0)中x的值时,先估计x的整数部分,看它在哪两个连续整数之间,较小数即为其整数部分.其次,确定x的十分位上的数,同样寻找它在哪两个连续整数之间.按照上述方法依次确定x的百分位、千分位……的值,从而确定x的值.4.判断训练(打“√”或“×”)(1)无限小数包括无限循环小数与无限不循环小数. (√)(2)面积为5cm2的正方形边长b是一个有理数. (×)(3)边长为4的正方形的对角线的长度一定是无理数. (√)(4)无理数一定是无限不循环小数. (√)【课堂达标】 20分钟训练点一:有理数和无理数的概念及辨析1.(2分)下列说法正确的是( )A.有理数都是有限小数B.-π是无理数C.不循环小数是无理数D.有理数是整数,无理数是分数【解析】选B.根据有理数和无理数的概念可知,-π是无理数.2.(2分)下列各数中:-3,,π,,0.536,2. 4&,1.52552555255552…(相邻两个2之间5的个数逐次加1),无理数有( )A.2个B.3个C.4个D.5个【解析】选B.所有分数、整数、无限循环小数都是有理数,π是无理数,所以无理数有π,和1.52552555255552…(相邻两个2之间5的个数逐次加1),共3个.3.(2分)面积为6的长方形,长是宽的2倍,则宽为( )A.小数B.分数C.无理数D.不能确定【解析】选C.设宽为x,则长为2x.即有2x2=6,x2=3.而没有任何有理数的平方等于3.所以x 为无理数.4.(6分)把下列各数填在相应的括号里.0,3,2.75,-6,,1.,,-1.010010001.自然数{ …};有理数{ …};整数{ …};分数{ …};无理数{ …}.【解析】由自然数、有理数、整数、分数和无理数的概念知自然数{0,3,…};有理数{0,3,2.75,-6,1.,,-1.010010001,…};整数{0,3,-6,…};分数{2.75,1.,,-1.010010001,…};无理数{,…}.训练点二:估计无理数的近似值1.(2分)正数m满足m2=39,则m的整数部分为( )A.6B.7C.8D.9【解析】选A.因为62<m2<72,所以6<m<7.故m的整数部分为6.2.(2分)已知Rt△ABC中,∠C=90°,AC=1,BC=3,则AB的取值范围是( )A.3.0<AB<3.1B.3.1<AB<3.2C.3.2<AB<3.3D.3.3<AB<3.4【解析】选B.在Rt△ABC中,由勾股定理得AB2=AC2+BC2=12+32=10.因为32<10<42,所以3<AB<4.而3.12=9.61,3.22=10.24.所以3.1<AB<3.2.3.(6分)面积为7的正方形的边长为x.请你回答下列问题:(1)x的整数部分是多少?(2)把x的值精确到十分位时是多少?精确到百分位呢?(3)x是有理数吗?并说明理由.【解析】设正方形的面积为S,则S=x2=7.当2<x<3时,4<S<9;当2.6<x<2.7时,6.76<S<7.29;当2.64<x<2.65时,6.9696<S<7.0225;当2.645<x<2.646时,6.996025<S<7.001316.则(1)x的整数部分是2.(2)把x的值精确到十分位时,x≈2.6.精确到百分位时,x≈2.65.(3)x不是有理数.理由是:由计算可知,x是无限不循环小数.4.(8分)如图,在棱长为4cm的正方体箱子中,想放入一根细长的玻璃棒,则这根玻璃棒的最大长度可能是多少?你能估算出来吗?(结果保留3位有效数字)【解析】因为BC2=BD2+CD2=42+42=32,所以AC2=AB2+BC2=42+32=48.而6.932≈48.025,6.922≈47.886,所以6.92<AC<6.93.设能放进的玻璃棒的最大长度为l,则l2不能超过48,所以l≈6.92(cm).答:能放进的玻璃棒的最大长度约为6.92cm.【课后作业】 30分钟一、选择题(每小题4分,共12分)1.下列说法正确的有( )①有理数与无理数的差都是有理数;②无限小数都是无理数;③无理数都是无限小数;④0既不是无理数,也不是有理数;⑤6.010060006是无理数.A.1个B.2个C.3个D.4个【解析】选A.有理数与无理数的差都是无理数,故①错误;无限不循环小数是无理数,所以无理数都是无限小数,故②错误,③正确;0是有理数,故④错误;6.010060006是有限小数,所以是有理数,故⑤错误.2.一个正方形的面积是15,估计它的边长大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间【解析】选B.设正方形的边长为x,则有x2=15,因为9<15<16,所以3<x<4.3.如图所示的正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC中,边长为无理数的边数是( )A.0B.1C.2D.3【解析】选C.因为AB2=52+12=26,BC2=32+22=13,AC2=42+32=25,所以AB和BC的长为无理数.二、填空题(每小题4分,共12分)4.写出一个比4小的正无理数__________.【解析】此题答案不唯一,如3.030030003…(每两个3之间的0依次增加1个)等.答案:3.030030003…(每两个3之间的0依次增加1个)(答案不唯一)5.有六个数:0.1427,(-0.5)3,3.1416,,-2π,0.1020020002…(相邻两个2之间0的个数逐次加1),其中是无理数的有________;若无理数的个数为x,整数的个数为y,非负数的个数为z,那么x+y+z等于________.【解析】(-0.5)3=-0.125,所给的数中无理数有-2π,0.1020020002…(相邻两个2之间0的个数逐次加1),共有2个,所以x=2,没有整数,所以y=0,非负数有0.1427,3.1416,,0.1020020002…(相邻两个2之间0的个数逐次加1),共有4个,所以z=4.所以x+y+z=2+0+4=6.答案:-2π,0.1020020002…(相邻两个2之间0的个数逐次加1) 66.如图,正方形面积(阴影部分)为______,正方形边长是______(精确到个位).【解析】设三角形斜边长为c,则c2=42+52=41,故正方形面积(阴影部分)为41.又6.42=40.96,6.52=42.25,所以6.42<c2<6.52,即6.4<c<6.5,故c≈6.答案:41 6三、解答题(共26分)7.(8分)如图,在△ABC中,AB=AC,AD是底边上的高,若AC=6cm,AD=5cm,求BD的值(精确到0.01cm).【解析】因为AB=AC,AD是底边上的高,AC=6cm,所以AB=6cm,△ABD是直角三角形.在Rt△ABD 中,BD2=AB2-AD2=62-52=11.利用计算器可得3.3162=10.995856,3.3172=11.002489,而10.995856<11<11.002489,所以BD≈3.32cm.8.(8分)如图是由边长为1的小正方形拼成的.(1)把图中各阴影部分分别剪拼成大正方形,这些大正方形的面积一样大吗?(2)这些大正方形的边长是有理数吗?说明理由.(3)试画出同样的网络,并在上面画出甲阴影部分剪拼成的“大正方形”.【解析】(1)不一样大.甲、乙、丙中阴影剪拼成的正方形的面积依次为5,6,7.(2)这些大正方形的边长都不是有理数.设大正方形的边长为x,当x2=5时,x不是整数;因为分数的平方为分数,所以x不是分数.所以x既不是整数,也不是分数,即x不是有理数.同理,当x2=6,x2=7时,x均不是有理数.综上所述,这些正方形的边长都不是有理数.(3)如图:9.(10分)(能力拔高题)乔迁新居,小明家买了一张边长是1.3m的正方形新桌子,原有的边长是1米的两块台布都不适用了,丢掉又太可惜了.如图,小明的姥姥按下列方法,将两张台布拼成一块正方形大台布,你帮小明的姥姥算一算,这块大台布能盖住现在的新桌子吗?【解析】设大台布边长为xm,则x2=2.又1.32=1.69<2,即x2>1.32,故x>1.3,即大台布的边长大于新桌子的边长,所以大台布能盖住现在的新桌子.。
2.1 认识无理数(第1课时)
探究新知
2.1 认识无理数
归纳总结
有理数包括:整数和分数. 如果一个数既不是整数也不是分数, 那么这个数不是有理数. 在a2=2中,a不是有理数.
探究新知
2.1 认识无理数
素养考点 1 非有理数的识别
例 如图,有一个由五个边长为1的小正方形组成的图形,我
们可以把它剪拼成一个正方形.则拼成的正方形的面积是多
数学 八年级 上册
2.1 认识无理数(第1课时)
导入新知
2.1 认识无理数
已知一个直角三角形的两条直角边长分别为1和2, 算一算斜边长x的平方 ,x是整数(或分数)吗?
x 1
2
素养目标
2.1 认识无理数
2.能判断一个数是否为有理数.
1.通过拼图活动和勾股定理的应用感受无理 数产生的实际背景和引入的必要性.
非有理数的识别
课后作业
作业 内容
2.1 认识无理数
教材作业 从课后习题中选取 自主安排 配套练习册练习
谢谢
方形,则大正方形的面积是___2___,它的边长_不__是__有
理数(填写“是”或“不是”)
课堂检测
2.1 认识无理数
能力提升题
请你在方格纸上按照如下要求设计直角三角形.(所作三 角形的各个顶点均在格点上) (1)使它的一边为有理数,另两边边长不是有理数; (2)使它的三边边长都是有理数.
课堂检测
探究新知
2.1 认识无理数
归纳总结
用生命换来的新数
像上面讨论的数a,b都不是有理数,而是另一类数—无理数.
早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙 间的一切现象都能归结为整数或整数之比”.但是这个学派中的一个叫希 伯索斯的成员却发现边长为1的正方形的对角线的长不能用整数或整数之 比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯 被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的, 后来古希腊人终于正视了希伯索斯的发现.也就是a2=2中的a不是有理数.
(名师整理)最新北师大版数学8年级上册第2章第1节《认识无理数》精品习题课件
1 认识无理数
2.如图,在方格纸中,假设每个小正方形的面积为2,则图中的四条线段中
长度为有理数的线段是
.
答案 CD,EF
1 认识无理数
解析 设小正方形的边长为x,则x2=2. ∵AB2=x2+(3x)2=10x2=20, ∴AB的长不是有理数. ∵CD2=(2x)2+(2x)2=8x2=16, ∴CD=4,即CD的长是有理数. ∵EF2=x2+x2=2x2=4, ∴EF=2,即EF的长是有理数. ∵GH2=x2+(2x)2=5x2=10, ∴GH的长不是有理数.
1 认识无理数
知识点二 无理数的概念
友情提示 有理数与无理数的区别:①有理数是有限小数或无限循环小 数,而无理数是无限不循环小数;②所有的有理数都能化成分数(整数可 以看成是分母为1的分数),而无理数不能化成分数.注意: π 形似分数,但
2
它不是分数,是无理数.
1 认识无理数
例2
在
1
,0,3.14,-0.
1 认识无理数
例1 如图2-1-1,有一个由五个边长为1的小正方形组成的图形,我们可 以把它剪拼成一个大正方形,则拼成的大正方形的面积是多少?这个大 正方形的边长是有理数吗?
图2-1-1
1 认识无理数
解析 因为小正方形的边长为1,所以每个小正方形的面积均为1,所以 拼成的大正方形的面积为5×1=5.因为找不到平方等于5的有理数,所以 这个大正方形的边长不是有理数.
1 认识无理数
如图,已知每个小正方形的面积为1,给出点C,请你按要求设计△ABC, 使∠C=90°,AC=BC. (1)AB的长为无理数,AC、BC的长均为有理数; (2)AB的长为有理数,AC、BC的长均为无理数; (3)三边的长均为无理数.
北师大版八年级数学上册《2.1 认识无理数》课时作业(含答案)
2.1 认识无理数1、在实数3.14,25,3.3333,0.412⋅⋅,0.10110111011110…,π,中,有( )个无理数?A .2个B .3个C .4个D .5个2、下列说法中,正确的是( )A .带根号的数是无理数B .无理数都是开不尽方的数C .无限小数都是无理数D .无限不循环小数是无理数3.下列命题中,正确的个数是( )①两个有理数的和是有理数; ②两个无理数的和是无理数; ③两个无理数的积是无理数;④无理数乘以有理数是无理数; ⑤无理数除以有理数是无理数; ⑥有理数除以无理数是无理数。
A .0个B .2个C .4个D .6个4.判断(正确的打“√”,错误的打“×”)①带根号的数是无理数;( ) 一定没有意义;( ) ③绝对值最小的实数是0;( )④平方等于3;( ) ⑤有理数、无理数统称为实数;( ) ⑥1的平方根与1的立方根相等;( )⑦无理数与有理数的和为无理数;( ) ⑧无理数中没有最小的数,也没有最大的数。
( )5.a )A .有理数B .正无理数C .正实数D .正有理数6.下列四个命题中,正确的是( )A .倒数等于本身的数只有1B .绝对值等于本身的数只有0C .相反数等于本身的数只有0D .算术平方根等于本身的数只有17.下列说法不正确的是( )A .有限小数和无限循环小数都能化成分数B .整数可以看成是分母为1的分数C .有理数都可以化为分数D .无理数是开方开不尽的数8.代数式21a +y ,()21a -中一定是正数的有( ) A .1个 B .2个 C .3个 D .4个9 )A .m 是完全平方数B .m 是负有理数C .m 是一个完全平方数的相反数D .m 是一个负整数10.已知a 为有理数,b 为无理数,则a+b 为( )A .整数B .分数C .有理数D .无理数11215的大小关系是( )A .215< B .215<< C .215<<D 215<<12的相反数之和的倒数的平方为 。
初中数学《认识无理数》完整版 北师大版1
2、若长方形的长、宽分别是3、4,那么它的对角线 的长是有理数吗?说明理由。
是有理数,对角线的长等于5
(变式)若长方形的长、宽分别是1、3,那么它的对
角线的长是有理数吗? 不是有理数,对角线长的平方等于10
3、(随堂练习P21):如图,等边三角形
A
ABC的边长为2,高为h,h可能是整数吗? 可能是分数吗?
至少找出两条长度是有理数的线段和两条长度不是有理
数的线段(最长的和最短的).
A
两条有理数的线段: 最长的AC=5
最短的DE=1 两条不是有理数的线段:最长的AB
DE
最短的DF
F CB
6.长,宽分别是7,5的长方形,它的对角线的长c可能是
整数吗?可能是分数吗?
解:∵由勾股定理得 c2=52+72=74 ∴c既不是整数也不是分数.
自学指导2 (1分钟)
1.自学课本P21做一做的内容,完成下列问题:
(1)如图,以直角三角形的斜边为边的正方形ABEF
的面积是多少? S正方形ABEF=AB×BE=b2=5
F
(2)设该正方形的边长为b,b满足什么条件? A
b2=AB2=AC2+BC2=22+12=5
(3)b是有理数吗? b不是有理数
正本作业 P22问题解决2 画在4×4的方格里
P22问题解决2,
(2)
(1)
(3)
板书设计
2.1.1认识无理数
1.有理数:整数和分数
2.不是有理数的数:既不是整数也不是分数的数
例如: a 2 2 如右图
a2=2,1<a2<4 ,得到1<a <2,
a一定不是整数;
11 1 3 3 9,
《认识无理数》PPT课件 (公开课)2022年北师大版 (8)
① 3x2 5x3
② (5a2b)(2a2)
③ (5an1b)(2a.) ④ (2x)3(2x2y)
⑤ (x2 yz3)2(x2y)3
收获感悟:
本节课你学到了什么? 发现了什么? 有什么收获? 还存在什么没有解决的问题?
课后作业:
1. 习题 2. 拓展探究:
, 若 (am1bn2)(a2n1b)a5b3 求 mn的值 。
2.客观世界中,的确存在不是有理 数的数,你能列举几个吗?
3.除了本课所认识的非有理数的数 以外,你还能找到吗?
读一读
无理数的发现(教材第23页)
作业布置 习题2.2 1,3
赛一赛
下图是由五个单位正方形组成的纸片, 请你把它剪成三块,然后拼成一个正 方形,你会吗?试试看!
第一章 整式的乘除
4 整式的乘法(第1课时)
3、在你探索单项式乘法运算法则的过 程中,运用了哪些运算律和运算法则?
探索规律:
单项式乘法的法则: 单项式与单项式相乘,把它们的系
数、相同字母的幂分别相乘,其余字母 连同它的指数不变,作为积的因式。
例题解析:
例1 计算:
(1)2 xy 2 ( 1 xy ) 3
(2) 2a2b3 (3a)
(3)7xy2z(2xyz)2
(4)单项式乘以单项式,结果仍为单项式。
完成课本15页:随堂练习
延伸拓展:
一家住房的结构如图
y
2y
示,房子的主人打算把 卧室以外的部分全都铺
卫生间
卧室
上地砖,至少需要多少
x
厨房
4x
平方米的地砖?如果某
种地砖的价格是a元/平 2x
客厅
方米,那么购买所需地
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 认识无理数(1)课后习题
1.如图2为一个底面为正方形,侧面为四个全等三角形围成的的几何体(其
中高与底面边长相等),若它的体积为7,试问它的棱长是整数吗-------------------,
是分数吗------------------------,借助计算器求它精确到0.001的值为
---------------------------------------.(该几何体的体积V=1
/3a 2h ,a 边长,h 为高) 2.若x >0,x 2=13,则x 精确到十分位的值是_________.
3.图4是一个边长为1的小正方形拼成的,任意连接这些小正方形的若干个顶点,可得到一些线段.试分别找出两条长度是有理数的线段和两条长度不是有理数的线段,在图中划出来.
3.在图5中按要求设计直角三角形:
(1)使它的三边中有一边边长不是有理数; (2)使它的三边中有两边边长不是有理数;
(3)使它的三边中有三边边长不是有理数.
4.如图6,点P 为由64个边长为1的小正方形拼成的大正方形的中心,请找出由小正方形的顶点与点P 连成的线段的长度是有理数的点,并标上字母,这样的点在图中能找出多少个?其它的点为什么不符合要求呢?。