1.1 认识无理数(第1课时)教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章实数
1. 理解无理数(第1课时)
一、学生起点分析
通过前一章《勾股定理》的学习,学生已经明白什么是勾股数,但也发现并不是所有的直角三角形的边长都是勾股数,甚至有些直角三角形的边长连有理数都不是,例如:①腰长为1的等腰直角三角形的底边长不是有理数,②两条直角边分别为1,2的直角三角形的斜边长不是有理数,这为引入“新数”奠定了必要性.
二、教学任务分析
《数不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节.本节内容安排了2个课时完成,第1课时让学生感受无理数的存有,初步建立无理数的印象,结合勾股定理知识,会根据要求画线段;第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.本课是第1课时,学生将在具体的实例中,通过操作、估算、分析等活动,感受无理数的客观存有性和引入的必要性,并能判断一个数是不是有理数.本节课的教学目标是:
①通过拼图活动,让学生感受客观世界中无理数的存有;
②能判断三角形的某边长是否为无理数;
③学生亲自动手做拼图活动,培养学生的动手水平和探索精神;
④能准确地实行判断某些数是否为有理数,加深对有理数和无理数的理解;
三、教学过程设计
本节课设计了6个教学环节:
第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.
第一环节:质疑
内容:【想一想】
⑴一个整数的平方一定是整数吗?
⑵一个分数的平方一定是分数吗?
目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的实行起了很好的铺垫的作用
第二环节:课题引入
内容:1.【算一算】
已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?
2.【剪剪拼拼】
把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?
目的:选择客观存有的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.
第三环节:获取新知
内容:【议一议】→【释一释】→【忆一忆】→【找一找】
【议一议】:已知22
a=,请问:①a可能是整数吗?②a可能是分数吗?
【释一释】:释1.满足22
a=的a为什么不是整数?
释2.满足22
a=的a为什么不是分数?
【忆一忆】:让学生回顾“有理数”概念,既然a不是整数也不是分数,
那么a一定不是有理数,这表明:有理数不够用了,为“新
数”(无理数)的学习奠定了基础
【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出
长度不是有理数的线段
目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存有,从而激发学习新知的兴趣
效果:学生感受到无理数产生的过程,确定存有一种数与以往学过的数不同,
产生了学习新数的必要性.
第四环节:应用与巩固
内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】
【画一画1】:在右1的正方形网格中,画出两条线段:
1.长度是有理数的线段 2.长度不是有理数的线段
【画一画2】:在右2的正方形网格中画出四个三角形 (右1)
2.三边长都是有理数 2.只有两边长是有理数
3.只有一边长是有理数 4.三边长都不是有理数
【仿一仿】:例:在数轴上表示满足()220x x =>的x
解: (右2)
仿:在数轴上表示满足()250x x =>的x
【赛一赛】:右3是由五个单位正方形组成的纸片,请你把
它剪成三块,然后拼成一个正方形,你会吗?试试看! (右3)
目的:进一步感受“新数”的存有,而且能把“新数”表示在数轴上 效果:加深了对“新知”的理解,巩固了本课所学知识.
第五环节:课堂小结
内容: 1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?
2.客观世界中,的确存有不是有理数的数,你能列举几个吗?
3.除了本课所理解的非有理数的数以外,你还能找到吗? 目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化. 效果:学生总结、相互补充,学会实行概括总结.
第六环节:布置作业
习题2.1
六、教学设计反思
(一)生活是数学的源泉,兴趣是学习的动力
大量事实都证明一点,与生活贴得越近的东西最容易引起学习者的浓厚兴趣,才能激发学习者的学习积极性,学习才可能是主动的.本节课中教师首先用拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验表现出来,然后实行大胆置疑,生活中的数并不都是有理数,那它们究竟是什么数呢?从而引发了学生的好奇心,为获取新知,创设了积极的氛围.在教学中,不要盲目的抢时间,让学生能够充分的思考与操作.
(二)化抽象为具体
常言道:“数学是锻炼思维的体操”,数学教师应通过一系列数学活动开启学生的思维,所以对新数的学习不能仅仅停留于感性理解,还应要求学生充分理解,并能用恰当数学语言实行解释.正是基于这个原因,在教学过程中,刻意安排了一些环节,加深对新数的理解,充分感受新数的客观存有,让学生觉得新数并不抽象.
(三)强化知识间联系,注意纠错
既然称之为“新数”,那它当然不是有理数,亦即不是整数,也不是分数,所以“新数”不能够用分数来表示,这为进一步学习“新数”,即第二课时教学埋下了伏笔,在教学中,要着重强调这个点:“新数”不能表示成分数,为无理数的教学奠好基.