1认识无理数

合集下载

《认识无理数》课件

《认识无理数》课件

无理数的特征
无理数的小数部分是无限不循环的, 无法精确表示。
无理数是实数的一种,具有实数的所 有性质和运算规则。
无理数与有理数的区别
有理数是可以表示为 两个整数之比的数, 包括整数、分数和十 进制小数。
有理数和无理数在实 数域中是互斥的,即 它们不能相互转化。
无理数则无法表示为 分数形式,其小数部 分无限不循环。
古希腊数学家阿基米德首次使用圆内接多边形的方法近似计 算出圆周率的值。
根号2的发现
根号2是一个无限不循环小数,表示2的平方根。
古希腊数学家欧几里德在《几何原本》中首次证明了根号2的存在性,并对其进 行了近似计算。
03 无理数的应用
在几何学中的应用
勾股定理
无理数在几何学中最为著名的应 用是勾股定理,它说明了直角三 角形的两条直角边的平方和等于 斜边的平方,其中斜边长度是一
无理数在未来的发展前景
01
推动数学与其他学科的进一步融合
随着科学技术的不断发展,无理数将在更多领域发挥重要作用,推动数
学与其他学科的进一步融合。
02
深化实数理论的研究
随着数学的发展,实数理论的研究将不断深入,无理数作为实数理论的
基础之一,其研究也将得到进一步深化。
03
促进数学教育的发展
无理数是数学教育中的重要内容之一,随着教育的不断改革和完善,无
02 无理数的产生
无法精确表示的数
无法用分数精确表示的数
例如,0.333...虽然可以无限接近于1/3,但无法精确等于1/3。
无法用有限小数或循环小数精确表示的数
例如,0.1010010001...是一个无限不循环小数,无法用有限小数或循环小数来 表示。
圆周率π的发现

认识无理数(1)剖析

认识无理数(1)剖析

第二章实数1.认识无理数(一)基于对课程标准的设计一、学生起点分析八年级学生已经在学习《有理数》的过程中体会到数不够用了,刚刚学完《勾股定理》,再次感受到需要研究新的数了.在此基础上,学生能在“需要—探究—发现—论证”式的课堂中积极参与讨论问题,大胆发表自己的见解和看法,从非常直观的操作中发现问题,实现数的发展.二、教材任务分析《数怎么不够用了》是义务教育课程标准北师大版实验教科书八年级(上)第二章《实数》的第一节. 本节内容安排了2个课时完成,第1课时让学生感受数的发展,建立无理数的概念,第2课时借助计算器感受无理数是无限不循环小数,会判断一个数是无理数.这是第1课时,学生将在具体的背景中,通过操作、估算、分析等活动,感受无理数的产生的实际背景和引入的必要性,并能判断一个数是无理数,并能说出理由.三、教学目标分析(一)教学目标知识与技能目标1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为无理数,并能说出理由.过程与方法目标1.学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养学生的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断识别某些数是否为有理数、无理数,训练他们的思维判断力.3.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.情感与态度目标1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作精神与钻研精神,借助计算器进行估算.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋半的献身精神.(二)教学重点1.让学生经历无理数发现的过程,感知生活中确实存在着不同于有理数的数.2.会判断一个数是否为有理数,是否不是有理数.3.用计算器进行无理数的估算.(三)教学难点1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.2.无理数概念的建立及估算.3.判断一个数是否为有理数.四、教学学法1.教学方法:引导、探究、发现与合作交流相结合.2.课前准备:多媒体,两个边长为1的正方形,剪刀,短绳.五、教学过程:本节课设计六个教学环节;第一环节:章节引入;第二环节:本节引入;第三环节:活动探究;第四环节:献身科学,执着追求;第五环节:课时小结;第六环节:作业布置.第一环节:章节引入内容:a.小红是刚升入八年级的新生,一个周末的上午,当工程师的爸爸给小红出了两个数学题:(1)两个数3.252525……与3.252252225……一样吗?它们有什么不同?(2)一个边长为6cm的正方形木板,按如图的痕迹锯掉四个一样的直角三角形.请计算剩下的正方形木板的面积是多少?剩下的正方形木板的边长又是多少厘米呢?你能帮小红解决这个问题吗?b .你能求出面积为2的正方形的边长吗?你知道圆周率 的精确值吗?它们能用整数或分数(即有理数)来表示吗?意图:通过这些问题,学生将发现,现实生活中存在不同于有理数的数,从而感受到需要学习新的数,激发学生的求知识欲望.效果:通过对实际问题的了解、解决,感受实际生活中需解决的问题,激发学生的好奇心和求知欲,引出本章课题《第二章实数》.第二环节:复习引入内容:a .阅读下面的资料,在数学中,有理数的定义为:形如p q 的数(p 、q 为互质的整数,且p ≠0)叫做有理数,当p =1,q 为任意整数时,有理数p q 就是指所有的整数,如:12=-2等,当p ≠1时,由p 、q 互质可知,有理数p q 就是指所有的分数,如711,-71,-235等,综上所述,有理数就是整数和分数的统称.请用上述材料中所涉及的知识证明下面的问题:a .直角边长分别为3和1的直角三角形的斜边长是不是有理数?b.复习前面学过的数,有理数包括整数和分数,有理数范围是否满足实际生活的需要呢? 意图:回顾前面学过的数和范围,为数的扩充和发展做好铺垫,也可由问题a 直接进入本课的学习.效果:学生通过知识回顾,再次感受数的扩充和发展的必要,为学习本节课在知识上、情感上作好准备.第三环节:活动探究(一)发现新数内容:将课前已准备好的两个边长为1的小正方形剪一剪,拼一拼,设法得到一个大正方形.在学生活动的基础上,教师利用多媒体展示其中一种剪拼过程,并抛出下面的议一议:(1)设大正方形的边长为a ,a 应满足什么条件?(2)满足:a 2=2的数a 是一个什么样的数?a 可能是整数吗?说明你的理由? (3)a 可能是分数吗?说说你的理由?引出课题《数怎么又不够用了》意图:让学生通过分析,探索发现问题,感受数不够用了,感受无理数的产生的现实背景和必然性,培养学生严密的逻辑性推理能力.效果:学生拿出课前准备好的两个边长为1的小正方形 ,通过师生互动、生生互动,调动学生学习的自主意识,在此基础上进行分组讨论,a 2=2中的a 既不是整数,也不是分数,本环节通过独立思考和小组讨论,培养学生的动手能力、合作能力、推理能力,初步感受a 既不是整数也不是分数.(二)感受新数的广泛性内容: 面积为5的正方形,它的边长b 可能是有理数吗?说说你的理由。

北师大版数学八年级上册1《认识无理数》教案5

北师大版数学八年级上册1《认识无理数》教案5

北师大版数学八年级上册1《认识无理数》教案5一. 教材分析《认识无理数》是人教版八年级数学上册的一章,本章主要让学生了解无理数的概念、性质和应用。

无理数是实数的一个重要组成部分,与有理数相比,无理数具有无限不循环的小数特点。

本章内容在数学系统中占有重要地位,为学生深入学习三角函数、复数等数学知识打下基础。

二. 学情分析学生在学习本章内容前,已经掌握了有理数、实数等基础知识,对数的运算和性质有一定的了解。

但学生对无理数的概念、性质和应用可能较为陌生,因此,在教学过程中,需要注重引导学生从已有知识出发,逐步理解和掌握无理数的相关概念。

三. 教学目标1.了解无理数的概念,掌握无理数的性质;2.能够对无理数进行简单的运算和估计;3.理解无理数在实际生活中的应用,提高数学素养。

四. 教学重难点1.无理数的概念及其与有理数的区别;2.无理数的性质,如无限不循环小数、不能表示为分数等;3.无理数在实际生活中的应用。

五. 教学方法1.采用情境教学法,以生活实例引导学生认识无理数;2.采用探究教学法,让学生通过小组合作、讨论,探索无理数的性质;3.采用实践教学法,让学生通过实际操作,体会无理数在生活中的应用。

六. 教学准备1.准备相关的生活实例和图片,用于导入和巩固环节;2.准备无理数的性质和运算练习题,用于操练和家庭作业环节;3.准备PPT或黑板,用于呈现和板书。

七. 教学过程1.导入(5分钟)利用生活实例,如测量物体长度、计算圆的周长等,引导学生认识无理数。

让学生感受无理数在实际生活中的存在,激发学生的学习兴趣。

2.呈现(10分钟)通过PPT或黑板,呈现无理数的概念和性质。

详细解释无理数的定义,阐述无理数与有理数的区别,展示无理数的性质,如无限不循环小数、不能表示为分数等。

3.操练(10分钟)让学生进行无理数的运算练习,如求无理数的和、差、积、商等。

通过实际操作,让学生加深对无理数的理解,巩固所学知识。

4.巩固(10分钟)通过小组合作、讨论,让学生探究无理数的性质。

北师版数学八年级上册1 认识无理数(1课时)教案与反思

北师版数学八年级上册1 认识无理数(1课时)教案与反思

1 认识无理数祸兮福之所倚,福兮祸之所伏。

《老子·五十八章》涵亚学校陈冠宇一、基本目标【知识与技能】1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.2.能判断给出的数是否为有理数,并能说出理由.【过程与方法】1.让学生亲自动手实践,感受无理数存在的必要性和合理性,培养学生的动手能力和合作精神.2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练学生的思维判断能力.【情感态度与价值观】1.激励学生积极参与教学活动,提高大家学习数学的热情.2.引导学生充分进行交流,讨论与探索等教学活动,培养合作与钻研精神.3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养为真理而奋斗的献身精神.二、重难点目标【教学重点】无理数的概念.【教学难点】判断一个数是有理数还是无理数.环节1 自学提纲,生成问题【5 min阅读】阅读教材P21~P23的内容,完成下面练习.【3 min反馈】1.无限不循环小数称为无理数.2.下列实数中,是无理数的是( B )A.13B.πC.0 D.9环节2 合作探究,解决问题活动1 小组讨论(师生对学)【例1】下列各数中,哪些是有理数?哪些是无理数?3.14,-53,,-0.125,-5π,0.35,227,5.313 113 111 3…(相邻两个3之间1的个数逐次加1).【互动探索】(引发学生思考)有理数和无理数的区别是什么?【解答】有理数:3.14,-53,,-0.125,0.35,227;无理数:-5π,5.313 113 111 3…(相邻两个3之间1的个数逐次加1).【互动总结】(学生总结,老师点评)有理数与无理数的主要区别:(1)无理数是无限不循环小数,而有理数可以用有限小数或无限循环小数表示.(2)任何一个有理数都可以化为分数形式,而无理数则不能.活动2 巩固练习(学生独学)1.下列说法正确的是( B )A.有理数只是有限小数.无理数是无限小数C.无限小数是无理数D.π3是分数2.在13,3.141 592 6,0.707 007 000 7…(每两个7之间0的个数逐次加1),0.6,π中,无理数有( B )A.1个B.2个C .3个D .4个3.已知半径为1的圆. (1)它的周长l 是有理数还是无理数?说说你的理由;(2)估计l 的值(结果精确到十分位);(3)如果结果精确到百分位呢?解:(1)它的周长l =2π是无理数,理由如下:2π是无限不循环小数.(2)果精确到十分位,2π≈6.28≈6.3.(3)结果精确到百分位,2π≈6.282≈6.28.活动3 拓展延伸(学生对学)【例2】正数x 满足x 2=17,则x 精确到十分位的值是________.【互动探索】哪个正整数的平方最接近17,下一步该怎么办呢?【解答】已知x 2=17,所以4<x <5,4.12=16.81<17,4.22=17.64>17,所以4.1<x <4.2.又因为4.12=16.9744<17,4.132=17.0569>17,所以4.12<x <4.13.故x 精确到十分位是4.1.互动总结】(学生总结,老师点评)估计x 2=a (a >0)中的正数x 各位上的数字的方法:(1)估计x 的整数部分,看它在哪两个连续整数之间,较小数即为整数部分;(2)确定x 的十分位上的数,同样寻找它在哪两个连续整数之间;(3)按照上述方法可以依次确定x 的百分位、千分位…上的数,从而确定x 值.环节3 课堂小结,当堂达标(学生总结,老师点评)无理数⎩⎨⎧ 定义:无限不循环小数识别请完成本课时对应练习!【素材积累】阿达尔切夫说过:“生活如同一根燃烧的火柴,当你四处巡视以确定自己的位置时,它已经燃完了。

第2章 1 认识无理数

第2章 1 认识无理数
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/32021/9/32021/9/32021/9/39/3/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月3日星期五2021/9/32021/9/32021/9/3 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/32021/9/32021/9/39/3/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/32021/9/3September 3, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/32021/9/32021/9/32021/9/3
14.因乔迁新居,小明家新买了一张边长是1.3m的正方形的新桌子,原有 的边长是1m的两块台布都不适用了,丢掉又太可惜了.如图,小明的姥姥 按图示方法,将两块台布拼成一块正方形大台布.你帮小明的姥姥算一 算,这块大台布能盖住现在的新桌子吗?请说明理由.
解:能盖住,设拼接的正方形的边长为x,∴x2=2,∵当1<x<2时,1<S <4; 当1.4<x<1.5时,1.96<S<2.25,∴x>1.3,∴能盖住新桌子.
• You have to believe in yourself. That's the secret of success. 人必须相信自己,这是成功的秘诀。

2.如图所示的正方形网格中,每个小正方形的边长为1,则网格上的三角 形ABC中,边长是无理数的边数有( D )
A.0条
B.1条

北师大版数学八年级上册1《认识无理数》说课稿6

北师大版数学八年级上册1《认识无理数》说课稿6

北师大版数学八年级上册1《认识无理数》说课稿6一. 教材分析《认识无理数》是北师大版数学八年级上册第一单元的第一课时,本节课的主要内容是让学生了解无理数的概念,理解无理数与有理数的关系,以及掌握无理数的估算方法。

教材通过引入π和√2这两个具体的无理数,让学生感受无理数的存在,并通过计算和探究活动,引导学生认识无理数,理解无理数的性质。

二. 学情分析学生在七年级时已经学习了有理数,对数的概念有一定的了解,但无理数是全新的概念,学生可能难以理解。

此外,学生对于实数系统的认识还不够完善,需要通过本节课的学习,使学生的认知结构得到进一步的发展。

三. 说教学目标1.了解无理数的概念,理解无理数与有理数的关系。

2.能够运用无理数的性质进行简单的计算和估算。

3.提高学生的抽象思维能力,培养学生的探究精神。

四. 说教学重难点1.教学重点:无理数的概念,无理数与有理数的关系。

2.教学难点:无理数的性质,无理数的估算方法。

五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探究,发现问题,解决问题。

2.利用多媒体课件,生动形象地展示无理数的概念和性质。

3.采用小组合作学习的方式,培养学生的团队协作能力。

六. 说教学过程1.导入新课:通过介绍π和√2这两个具体的无理数,引导学生思考无理数的存在。

2.探究无理数的概念:让学生通过计算和探究活动,发现无理数的性质,引导学生得出无理数的概念。

3.理解无理数与有理数的关系:通过举例和计算,让学生理解无理数与有理数的关系。

4.掌握无理数的估算方法:引导学生运用无理数的性质,进行简单的估算。

5.巩固练习:布置一些有关无理数的练习题,让学生巩固所学知识。

七. 说板书设计板书设计如下:1.概念:不能表示为两个整数比的数称为无理数。

2.性质:无理数不能精确表示,只能近似计算。

3.估算方法:利用无理数的性质进行估算。

八. 说教学评价通过课堂提问、练习题、小组讨论等方式,评价学生对无理数的理解和运用能力。

2.1 第1课时 认识无理数(教学设计——精品教案)

2.1  第1课时 认识无理数(教学设计——精品教案)

2.1认识无理数教学目标【知识与能力】感受无理数产生的实际背景和引入的必要性.【过程与方法】经历动手拼图过程,发展动手能力和探索精神.【情感态度价值观】通过现实中的实例,让学生认识到无理数与实际生活是紧密联系的,数学是来源于实践又应用于实践的.教学重难点【教学重点】感受无理数产生的背景.【教学难点】会判断一个数是不是无理数.教学准备两张边长为1的正方形纸片,多媒体课件.教学过程第一环节:情境引入导入一:七年级的时候,我们学习了有理数,知道了整数和分数统称为有理数,考虑下面的问题:(1)一个整数的平方一定是整数吗?(2)一个分数的平方一定是分数吗?[设计意图]做必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理,为后续环节的进行起了很好的铺垫作用.导入二:一个等腰直角三角形的直角边长为1,那么它的斜边长等于多少?利用勾股定理计算一下.【总结】我们在小学学了非负数,在七年级发现数不够用了,引入了负数,即把小学学过的正数、零扩充到有理数的范围,有理数包括整数和分数,那么有理数范围是否能满足我们实际生活的需要呢?第二环节:新知构建探究活动问题:x是整数(或分数)吗?2.把边长为1的两个小正方形,通过剪、拼,设法拼成一个大正方形,你会吗?出示教材P21图2 - 1.图2 - 1是两个边长为1的小正方形,剪一剪、拼一拼,设法得到一个大的正方形.问题1:拼成后的正方形是什么样的呢?问题2:拼成后的大正方形面积是多少?问题3:若新的大正方形边长为a,a2=2,则:①a可能是整数吗?②a可能是分数吗?【总结】没有两个相等的整数的积等于2,也没有两个相等的分数的积等于2,因此a 不可能是有理数.[设计意图]选取客观存在的“无理数”实例,让学生深刻感受“数不够用了”.巧设问题背景,顺利引入本节课题.思路一(1)如图所示,以直角三角形的斜边为边的正方形的面积是多少? (2)设该正方形的边长为b,b满足什么条件?(3)b是有理数吗?【问题解答】(1)由勾股定理可知,直角三角形的斜边的平方为5,所以正方形的面积是5.(2) b2=5.(3)没有一个整数或分数的平方为5,也就是没有一个有理数的平方为5,所以b不是有理数.思路二在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段.【问题解答】构造直角三角形,利用勾股定理可得,长度为有理数的线段有AB,EF.长度不是有理数的线段有CD,GH,MN.[设计意图]创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣 ,让学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,了解学习“新数”的必要性.[知识拓展] 正方形网格中的线段既可以表示有理数,也可以表示有理数之外的数.数轴上的点可以表示有理数,也可以表示有理数之外的数.比如正方形OCBA 的对角线长度就不是有理数,数轴上的点P 表示的就是这个非有理数.网格上长方形(包括正方形)的对角线的长度都不一定是有理数.第三环节:课堂小结通过生活中的实例,证实了确实存在不是有理数的数.第四环节:检测反馈1.在直角三角形中两个直角边长分别为2和3,则斜边的长 ( )A .是有理数B .不是有理数C .不确定D .4答案:B2.下列面积的正方形,边长不是有理数的是 ( )A .16B .25C .2D .4答案:C3.在右面的正方形网格中,按照要求连接格点的线段:长度是有理数的线段为 ,长度不是有理数的线段为 .答案:略第五环节:布置作业一、教材作业【必做题】教材随堂练习及教材习题2.1第1题.【选做题】教材第22页习题2.1第2题.二、课后作业【基础巩固】1.在正方形网格中,每个小正方形的边长为1,则网格上的ΔABC 中,边长不是有理数的线段有 ,在图中再画一条边长不是有理数的线段.【能力提升】2.在任意两个有理数之间都有无数个有理数. 假设a ,b 是两个有理数,且a <b ,在a ,b 两数之间插入一个数为 .【拓展探究】3.把下列小数化成分数.(1)0.6;(2)0.7·;(3)0.3·4·.4.你会在下面的正方形网格(每个小正方形面积为1)中画出面积为10的正方形吗?试一试.【答案与解析】1.AB ,BC ,AC 略(解析:AB 2=42+12=17,BC 2=22+32=13,AC 2=22+42=20.)2.a+b 2(解析:答案不唯一,如插入a 和b 正中间的数.)3.解析:(1)0.6=35; (2)设0.7·=x ,则10x =7.7·,∴9x =7,从而x =79;(3)设0.3·4·=x ,则100x =34.3·4·,∴99x =34,从而x =3499.解:(1)0.6=35. (2) 0.7·=79. (3) 0.3·4·=3499.4.略板书设计2.1.1认识无理数1.拼接正方形.2.做一做.3.a ,b 存在,但不是有理数.教学设计反思成功之处大量事实证明,与生活贴得越近的东西就越容易引起学生的浓厚兴趣,更能激发学生学习的积极性.为此,本课时通过拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆质疑.不足之处在教学过程中,没有刻意安排一些环节,帮助理解能力差的学生加深对“新数”的理解. 再教设计设计更多的实例让理解能力差的学生较好地理解“新数”.为进一步学习“新数”,即第二课时的教学埋下伏笔.。

认识无理数优秀教案

认识无理数优秀教案

2.1认识无理数(第一课时)一、教学目标叙写1.学生通过预习教材21页,并思考情景引入中的问题1.2.学生通过合作探究部分,初步感知数不够用了,让学生充分感受“新数”(无理数)的存在.3.学生通过交流知识点、易错点和思想方法,培养学生归纳能力和有条理的表达能力.4.学生能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解.二、教学重难点1.重点:让学生经历无理数的发现过程.2.难点:会判断一个数是否为无理数.三、教学过程(一)、情景引入[师]同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数、小数、分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.1、思考:⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?2、已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?(二)、自主探究1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请同学们把自己拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.[师]现在我们一齐把大家的做法总结一下:下面再请大家共同思考一个问题,假设拼成大正方形的边长为a ,则a 应满足什么条件呢?[生甲]a 是正方形的边长,所以a 肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a 2=2.[生丙]由a 2=2可判断a 应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a 是整数吗?a 是分数吗?请大家分组讨论后回答.[生甲]我们组的结论是:因为12=1,22=4,32=9,…整数的平方越来越大,所以a 应在1和2之间,故a 不可能是整数. [生乙]因为913131,943232,412121=⨯=⨯=⨯,…两个相同因数的乘积都为分数,所以a 不可能是分数.[师]经过大家的讨论可知,在等式a 2=2中,a 既不是整数,也不是分数,所以a 不是有理数,但在现实生活中确实存在像a 这样的数,由此看来,数又不够用了.活动内容:【议一议】→【释一释】→【忆一忆】→【找一找】将两个边长为1的小正方形,剪一剪、拼一拼,设法得到一个大的正方形.设这个大的正方形的边长为a,a 满足什么条件?【议一议】: 已知22a =,请问:①a 可能是整数吗?②a 可能是分数吗?【释一释】:释1.满足22a =的a 为什么不是整数?释2.满足22a =的a 为什么不是分数?【忆一忆】:让学生回顾“有理数”概念,既然a 不是整数也不是分数,那么a 一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础(四)、整理反思1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?2.1认识无理数(第二课时) 一、教学目标叙写1、学生通过预习教材22-23页,初步感知无理数的估算过程.2、学生通过合作探究“活动1”部分,让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a =1.41421356…,b =2.2360679…,是无限不循环小数的过程,体会无限逼近的思想,通过学生的活动2并探究得出无理数的概念.3、学生通过交流知识点、易错点和思想方法,培养学生归纳能力和有条理的表达能力.4、学生通过完成“五、当堂评价”,能正确地对给出的数进行分类,加深对有理数和无理数的理解.二、教学重难点1.重点:了解无理数与有理数的区别并能正确判断.2.难点:无理数概念的建立及估算,会判断一个数是无理数还是有理数.三、教学过程(一)、复习引入1. 有理数是如何分类的?整数(如1-,0,2,3,…)有理数分数(如31,52-,119,0.5,… )2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.(二)、自主探究1.探索无理数的小数表示请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a 的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.(归纳总结:a是介于1和2之间的一个数,既不是整数,也不是分数,则a一定不是有理数.如果写成小数形式,它们是无限不循环小数).[生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.[师]大家能不能判断一下面积为2的正方形的边长a的大致范围呢?[生]因为a2大于1且a2小于4,所以a大致为1点几.[师]很好.a肯定比1大而比2小,可以表示为1<a<2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如 1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4<a<1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位、千分位上的数字.[生]因为1.412=1.9881,1.422=2.0164,所以a应比1.41大且比1.42小,所以百分位上数字为1.[生]因为 1.4112=1.990921,1.4122=1.993744,1.4132=1.996569,1.4142=1.999396,1.4152=2.002225,所以a应比1.414大而比1.415小,即千分位上的数字为4.[生]因为1.41422=1.99996164,1.41432=2.00024449,所以a应比1.4142大且比1.4143小,即万分位上的数字为2.[师]大家非常聪明,请一位同学把自己的探索过程整理一下,用表格的形式反映出来.[生]我的探索过程如下.[师]还可以继续下去吗?[生]可以.[师]请大家继续探索,并判断a是有限小数吗?[生]a=1.41421356…,还可以再继续进行,且a是一个无限不循环小数.[师]请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)[生]b=2.236067978…,还可以再继续进行,b也是一个无限不循环小数.[生]边长b不会算到某一位时,它的平方恰好等于5,但我不知道为什么.[师]好.这位同学很坦诚,不会就要大胆地提出来,而不要冒充会,这样才能把知识学扎实,学透,大家应该向这位同学学习.这个问题我来回答.如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数.2.探索有理数的小数表示,明确无理数的概念思考:分数化成小数,最终此小数的形式有哪几种情况?——分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数.3,112,458,95,54,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.[生]3=3.0,54=0.8,95=•5.0, •=71.0458,••=818.1112 [生]3,54是有限小数,112,458,95是无限循环小数. [师]上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.像上面研究过的a 2=2,b 2=5中的a ,b 是无限不循环小数.无限不循环小数叫无理数(irrational number).除上面的a ,b 外,圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.3.有理数与无理数的主要区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化为分数的形式,而无理数则不能.(三)、合学应用例1:填空:0.351, 4.96••-,0.4583,•7.3,-π,-71,18. 3.14159, 6, -5.2323332…,1234567891011…(由相继的正整数组成).例2 :判断下列说法是否正确:(1)有限小数是有理数; ( )(2)无限小数都是无理数; ( )(3)无理数都是无限小数; ( )(4)有理数是有限数. ( )(四)、整理反思1.无理数的定义.2.你是怎样判断一个数是无理数还是有理数的?3.请把已学过的数怎样分类?易错点: .(五)、当堂评价1、以下各正方形的边长是无理数的是( )(A)面积为25的正方形;(B)面积为254 的正方形; (C)面积为8的正方形; (D)面积为1.44的正方形.2.已知:在下数中254 ,5,1.42••-,π,3.1416,32,0,24,2n (1)- ,-1.424224222…, (1)写出所有有理数;(2)写出所有无理数;(3)把这些数按由小到大的顺序排列起来,并用符号“<”连接.(六)、变练拓展1. 设面积为5π的圆的半径为a .(1)a 是有理数吗?说说你的理由.(2)估计a 的值(精确到十分位,并利用计算器验证你的估计).(3)如果精确到百分位呢?解:∵πa 2=5π∴a 2=5(1)a 不是有理数,因为a 既不是整数,也不是分数,而是无限不循环小数.(2)估计a ≈2.2.(3)a ≈2.24.。

北师大版数学八年级上册1《认识无理数》说课稿5

北师大版数学八年级上册1《认识无理数》说课稿5

北师大版数学八年级上册1《认识无理数》说课稿5一. 教材分析《认识无理数》这一节内容是北师大版数学八年级上册的教学重点,旨在让学生了解无理数的概念、性质和应用。

通过本节课的学习,学生能够掌握无理数的定义,了解无理数在实际生活中的应用,以及学会运用无理数解决一些实际问题。

二. 学情分析学生在学习这一节内容之前,已经学习了实数的概念,对有理数有一定的了解。

但是,对于无理数的概念和性质,学生可能较为陌生。

因此,在教学过程中,需要引导学生从已有的知识出发,逐步理解和掌握无理数的相关概念和性质。

三. 说教学目标1.知识与技能目标:让学生掌握无理数的概念,了解无理数的性质,能够运用无理数解决一些实际问题。

2.过程与方法目标:通过观察、分析、归纳等方法,让学生自主探索无理数的性质,培养学生的逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。

四. 说教学重难点1.教学重点:无理数的概念和性质。

2.教学难点:无理数在实际生活中的应用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等,引导学生主动探究无理数的性质。

2.教学手段:利用多媒体课件、实物模型等辅助教学,提高学生的学习兴趣和效果。

六. 说教学过程1.导入新课:通过展示生活中的实例,引发学生对无理数的思考,导入新课。

2.自主探究:让学生通过观察、分析、归纳等方法,自主探索无理数的性质,引导学生发现无理数的定义和特点。

3.合作交流:学生分组讨论,分享各自的学习心得和体会,共同总结无理数的性质。

4.教师讲解:针对学生自主探究和合作交流的结果,教师进行讲解,强调无理数的概念和性质。

5.应用拓展:让学生运用无理数解决一些实际问题,巩固所学知识。

6.课堂小结:教师引导学生总结本节课的学习内容,加深学生对无理数的理解和记忆。

7.布置作业:布置一些有关无理数的练习题,巩固所学知识,提高学生的实际应用能力。

北师大版八年级数学上册第二章实数第1节认识无理数教学设计

北师大版八年级数学上册第二章实数第1节认识无理数教学设计
北师大版八年级数学上册第二章实数第1节认识无理数教学设计
一、教学目标
(一)知识与技能
1.理解无理数的概念,掌握无理数与有理数的区别,能够识别常见的无理数,例如π和√2等。
2.学会使用数轴比较无理数的大小,能够进行无理数的近似计算,提高数学运算能力。
3.能够运用无理数的性质进行简单的数学推导,为后续学习打下基础。
(四)课堂练习,500字
课堂练习是检验学生知识掌握情况的重要环节。我会设计一系列由浅入深的练习题,让学生独立完成。这些题目将涵盖无理数的定义、性质、大小比较和近似计算等方面。
在学生完成练习后,我会组织他们进行互相批改和讨论,鼓励他们解释自己的解题过程,分享解题心得。我会及时给予反馈,指出学生的错误和不足,并提供正确的解题方法。通过这样的方式,学生能够及时巩固所学知识,提高解题能力。
3.生活实例分析:请同学们在生活中找到一个涉及无理数的实例,如建筑、艺术、科学等领域,分析无理数在这个实例中的应用,并说明其重要性。这将有助于同学们认识到数学与生活的紧密联系,提高数学在实际生活中的应用能力。
4.小组合作任务:以小组为单位,设计一道关于无理数的数学题目,要求题目具有一定的挑战性和趣味性。各小组之间可以互相交换题目进行解答,并在课堂上分享解题过程和心学生在情境中感知数学,提高学习的兴趣和参与度。
-及时反馈,针对学生的个别差异,给予个性化指导,帮助学生克服学习难点。
-培养学生的数学语言表达能力,让他们能够清晰地表达自己的思考和推理过程。
四、教学内容与过程
(一)导入新课,500字
在导入新课的环节,我将利用学生的已有知识作为切入点,激发他们对新知识的兴趣和好奇心。首先,我会通过一个简单的数轴活动开始本节课。让学生在数轴上标出他们已知的整数和分数,然后提问:“数轴上的点是否都已经被我们找到了对应的数?”这个问题将引导学生思考数轴上除了有理数之外,是否还有其他类型的数。

北师大版数学八年级上册1《认识无理数》教案7

北师大版数学八年级上册1《认识无理数》教案7

北师大版数学八年级上册1《认识无理数》教案7一. 教材分析《认识无理数》是北师大版数学八年级上册第一单元的第一课时,本节课的内容包括了解无理数的定义、性质和应用。

无理数是实数的一个重要组成部分,它对于学生来说是一个新的概念,难度较大。

通过本节课的学习,学生能够理解无理数的概念,掌握无理数的性质,并能够运用无理数解决一些实际问题。

二. 学情分析学生在学习本节课之前,已经学习了有理数的相关知识,对于实数的概念有一定的了解。

但是,无理数作为一个新的概念,学生可能难以理解。

因此,在教学过程中,教师需要从学生的实际出发,用生动形象的例子和实际问题引入无理数的概念,激发学生的学习兴趣,引导学生主动参与学习。

三. 教学目标1.了解无理数的定义,能够正确地判断一个数是否为无理数。

2.掌握无理数的性质,能够运用无理数解决一些实际问题。

3.培养学生的逻辑思维能力和数学素养,提高学生的数学思维水平。

四. 教学重难点1.无理数的定义和性质。

2.运用无理数解决实际问题。

五. 教学方法1.情境教学法:通过生动的例子和实际问题,引导学生了解无理数的定义和性质。

2.探究教学法:通过学生的自主探究和实践,让学生掌握无理数的性质和运用。

3.小组合作学习:通过小组讨论和合作,培养学生的团队协作能力和沟通能力。

六. 教学准备1.PPT课件:制作与本节课内容相关的PPT课件,包括无理数的定义、性质和应用等方面的内容。

2.教学素材:准备一些实际问题,用于引导学生运用无理数解决。

3.黑板、粉笔:用于板书和标注重要内容。

七. 教学过程1.导入(5分钟)利用PPT课件展示一些生活中的实际问题,如测量金字塔的高度、计算运动员的跳远距离等,引导学生思考这些问题是如何解决的。

通过这些问题,引出无理数的概念。

2.呈现(15分钟)利用PPT课件呈现无理数的定义和性质,让学生初步了解无理数的概念。

同时,通过例题和练习题,让学生巩固无理数的定义和性质。

3.操练(15分钟)让学生分组进行讨论,每组选择一个实际问题,运用无理数进行解决。

2.1认识无理数(教案)

2.1认识无理数(教案)
(3)了解常见无理数的性质:如π、e、√2等。教师应引导学生了解这些无理数的性质,为后续学习实数及其运算打下基础。
举例:π是一个无限不循环小数,且在数学中具有重要地位,如圆的周长与直径的比值就是π。
2.教学难点
(1)无理数与有理数的区别:这是学生容易混淆的地方。教师应通过数轴上的表示、运算性质等方面,帮助学生明确无理数与有理数的区别。
举例:讲解有理数可以表示为分数,而无理数不能表示为分数;有理数在数轴上表示为整数和分数,无理数表示为非整数和非分数。
(2)理解无理数的证明过程:对于初学者来说,理解无理数的证明过程较为困难。教师应采用逐步引导、简化证明方法等方式,帮助学生理解。
举例:对于√2是无理数的证明,可以通过反证法,假设√2是有理数,然后推导出矛盾,从而证明√2是无理数。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解无理数的基本概念。无理数是不能表示为两个整数比的数,它在数学中具有重要地位,如π、e等。
2.案例分析:接下来,我们来看一个具体的案例,如π在圆的周长和面积计算中的应用,理解无理数如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调无理数的定义和表示方法这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解无理数与有理数的区别。
此外,教学难点部分的处理,我认为还有待提高。无理数与有理数的区别是学生容易混淆的地方,我尝试通过举例和比较来帮助学生理解,但效果似乎并不理想。我需要反思如何在讲解这部分内容时,能够用更简洁明了的语言和更直观的方式,让学生真正掌握这个难点。
总体来说,今天的课堂氛围较好,学生们对无理数的认识有了初步的了解。但在教学过程中,我也发现了不少需要改进的地方。在今后的教学中,我会努力针对学生的实际需求,调整教学策略和方法,以便让他们更好地理解和掌握无理数的知识。同时,我也将关注学生的学习反馈,及时调整教学进度和难度,使他们在数学学习的道路上走得更远。

北师大版八年级数学上册《认识无理数》第1课时示范课教学设计

北师大版八年级数学上册《认识无理数》第1课时示范课教学设计

第二章实数1 认识无理数第1课时一、教学目标1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;2.能判断给出的数是否为有理数,并能说出理由;3.通过实践活动,体会到无理数在现实生活中大量存在;4.感受无理数的广泛性,提高学生学习的自主性.二、教学重难点重点:通过拼图活动,让学生感受客观世界中无理数的存在难点:能判断给出的数是否为有理数,并能说出理由.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计提出问题:除了有理数外还有没有其他的数呢?【合作探究】教师活动:教师课件展示两个边长为1的小正方形,让学生通过不同的方法剪一剪,再拼起来组成一个大正方形,得到相应大正方形后再探索大正方形边长究竟是什么数,进而了解到除了有理数外还存在别的数.问题:如下图是两个边长为1的小正方形,通过剪一剪、拼一拼,设法得到一个大正方形,你会吗?预设答案:拼法一:拼法二:拼法三:问题(1)设大正方形的边长为a ,a 满足什么条件? 预设答案: 分析:一个小正方形的面积为:S 小正方形=1×1=1. S 大正方形=S 小正方形+S 小正方形=1+1=2, ∴ S 大正方形=2;根据正方形面积公式:S 大正方形=a 2 ∴ a 2=2.问题(2)a 可能是整数吗?说说你的理由. 预设答案: 从“数”的角度:∵ a 2=2, 而12=1, 22=4, 32=9··· ∴ 12<a 2<22 , 1< a < 2 ∴ a 不是整数. 从“形”的角度:在△ABC 中,AC =1,BC =1,AB =a 根据三角形的三边关系,斜边AB 满足: AC -BC < a <AC +BC 即0<a <2,且 a ≠1,∴ a 不是整数问题(3)a 可能是分数吗?并与同伴进行交流. 分析:41)21(2=,91)31(2= ,161)41(2=从上面的式子中发现:两个相同的最简分数的乘积仍然是分数,而a 2=2是整数,∴a不是分数.【归纳】在等式a2=2中,a既不是整数,也不是分数,所以a不是有理数.【做一做】问题:(1)如下图,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,b满足什么条件?(3)b是有理数吗?预设答案:解:(1)设直角三角形的斜边长为b,根据勾股定理得:b2=12+22=5,根据正方形面积公式得:S正方形=b2∴以图中直角三角形的斜边为边的正方形的面积是5.(2)∵正方形的边长为b,根据正方形面积公式得:S正方形=b2而S正方形=5,得出b2=5∵ b满足b2=5.(3)∵b2=5,4<b2<9 ,∵ 2<b<3,∵ b不是整数;∵两个相同最简分数的乘积仍然是分数,而b2=5是整数,∵ b不是分数.b既不是整数,也不是分数,那么一定不是有理数.【归纳】a2=2 b2=5数a,b确实存在,但都不是有理数.环节三应用新知【典型例题】教师活动:教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例1 如图,等边三角形ABC中的边长是2,高AD为h,h可能是整数吗?可能是分数吗?解:∵△ABC是等边三角形,AD⊥BC∴D是BC的中点,且BC=2∴BD=CD=1在Rt△ABD中,由勾股定理得:h2=22-12=4-1=3∵1< h2<4 ,∴ 1<h<2,∴h不是整数;∵两个相同最简分数的乘积仍然是分数,而h2=3是整数.∴h不是分数.∴h不可能是整数,也不可能是分数.明确例题的做法通过例题的探究让学生进一步感受除有理数外还有别的数存在,感受无理数的广泛性.【随堂练习】教师活动:教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.下图是由16个边长为1的小正方形拼成的,任意连接这些小正方形的若干个顶点,可得到一些线段,试分别找出两条长度是有理数的线段和两条长度不是有理数的线段.2.已知a2=17,则a是()A.整数B.分数C.有理数D.非有理数3.以下各正方形的边长不是有理数的是( )A.面积为25的正方形的正方形B.面积为425C.面积为8的正方形D.面积为1.44的正方形答案:1.解析:长度是有理数的线段是指:长度可以用整数与分数表示的线段.AB=1,AD=3,根据勾股定理:AE2=32+42=25,AE=5,∴线段AB,AD,AE均为长度是有理数的线段.根据勾股定理得:AC2=12+12=2,AC2=2,1<AC2<4 ,∴ 1<h<2,∴AC不是整数;∵两个相同最简分数的乘积为分数,而AC2=2是整数,∴AC不是分数.∴AC 长度不是有理数的线段. 同理可得BE ,CD 为长度不是有理数的 线段.2.选D.解析:∵ a 2=17, 而42=16, 52=25, ∵ 42<a 2<52 , 4< a < 5 ∵ a 不是整数.∵两个相同最简分数的乘积为分数,而a 2=17是整数,∵ a 不是分数.∵ a 既不是整数,也不是分数,一定不是有理数.所以答案选D.3.选C.解析:假设正方形边长为a ,选项A 中面积为25的正方形的边长是5,而5是有理数,排除A 选项;选项B 中面积为425的正方形的边长是25,而25是有理数,排除B 选项;选项C 中面积为8的正方形中的边长满足:S 正方形=a 2=8,∵ a 2=8, 而22=4, 32=9, 42=16··· ∵ 22<a 2<32 , 2< a < 3 ∵ a 不是整数.∵ 两个相同最简分数的乘积为分数,而a 2=8是整数,思维导图的形式呈现本节课的主要内容:。

《认识无理数》word教案 (公开课)2022年北师大版 (9)

《认识无理数》word教案 (公开课)2022年北师大版 (9)

2.1 认识无理数本节课的教学目标是:1.借助计算器探索无理数是无限不循环小数,借助计算器进行估算,培养学生的估算能力,开展学生的抽象概括能力,并从中体会无限逼近的思想.2.探索无理数的定义,比拟无理数与有理数的区别,并能区分出一个数是无理数还是有理数,训练学生的思维判断能力.3.能够准确地将目前所学习的数按不同角度进行分类,并说明理由,进一步体会分类思想,培养学生解决问题的能力.4.充分调动学生参与数学问题的积极性,培养学生的合作精神,提高他们的辨识能力. 三 、教学过程设计本节课设计六个教学环节:第一环节:新课引入;第二环节:活动与探究;第三环节:知识分类整理;第四环节:知识运用与稳固;第五环节:课堂小结;第六环节:作业布置. 第一环节:新课引入内容:想一想:1. 有理数是如何分类的?整数〔如1-,0,2,3,…) 有理数 分数(如31,52-,119,0.5,… ) 2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目. 第二个环节:活动与探究1. 探索无理数的小数表示内容:借助计算器以小组讨论的形式对面积为2的正方形的边长a 和面积为5的正方形的边长b 进行估计.请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a 的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.边长a 面积s 1<a <2 1<s<4 1.4<a 1.41<a 1.414<a 1.4142<a归纳总结:a 是介于1和2之间的一个数,既不是整数,也不是分数,那么a 一定不是有理数.如果写成小数形式,它们是无限不循环小数.请大家用上面的方法估计面积为5的正方形的边长b 的值. 2. 探索有理数的小数表示,明确无理数的概念请同学们以学习小组的形式活动:一同学举出任意一分数,另一同学将此分数表示成小数,并总结此小数的形式.议一议:分数化成小数,最终此小数的形式有哪几种情况? 探究结论:分数只能化成有限小数或无限循环小数. 即任何有限小数或无限循环小数都是有理数.强调:像0.585885888588885……,-…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数叫做无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数).第三个环节:知识分类整理 有理数和无理数统称为实数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档