2.1.1 认识无理数(第1课时)

合集下载

2.1.1认识无理数(教案)

2.1.1认识无理数(教案)
2.1.1认识无理数(教案)
一、教学内容
本节教学内容选自数学教科书八年级上册第二章“数与代数”中的2.1.1节“认识无理数”。主要内容包括:
1.无理数的定义:介绍无理数的概念,让学生理解无理数是无限不循环小数,与有理数的区别。
2.无理数的表示:学习无理数的表示方法,如根号表示、无限小数表示等。
3.常见无理数:列举一些常见的无理数,如π、e、√2、√3等,并简要介绍它们的特点。
2.提升逻辑推理能力:在学习无理数性质和应用的过程中,引导学生运用逻辑推理,培养学生逻辑思维和推理能力。
3.增强数学抽象能力:让学生从具体的实例中抽象出无理数的概念,学会用数学符号表示无理数,提高数学抽象能力。
4.培养数学应用意识:通过探讨无理数在实际问题中的应用,让学生体会数学与现实生活的联系,培养数学应用意识。
此外,学生在小组讨论中的成果分享环节表现不错,能够将所学知识运用到实际问题的解决中。但我也注意到,部分学生对于无理数在实际生活中的应用还不够熟悉。为了提高学生的应用意识,我计划在今后的教学中增加一些与生活密切相关的实例,让学生更好地感受到数学知识的实用性。
在课程结束后,我对学生进行了简单的问卷调查,发现他们在本节课中掌握的知识点较为扎实。但同时,他们也反映出了对无理数性质和证明过程的理解不够深入。针对这个问题,我将在下一节课中进行针对性的讲解,通过更多的实例和练习,帮助学生巩固和深化对无理数性质的理解。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解无理数的基本概念。无理数是无限不循环小数,它与有理数(整数和分数)不同,不能精确表示为有限的小数或分数。无理数在数学中具有重要地位,如在几何中的比例关系、物理学的公式中等。
2.案例分析:接下来,我们来看一个具体的案例。通过圆的周长与直径的比例(π),展示无理数在实际中的应用,以及它如何帮助我们解决几何问题。

无理数的认识(一)

无理数的认识(一)
第二章
实数
1. 认识无理数 (第1课时)
复习引入
1、到目前为此,我们学过的数 有哪些?这些数能满足我们的需 要吗? 2、有理数是怎样分类的呢?
回顾与思考
1、正方形的面积是25cm2,则正方
形的边长是______ 2、正方形的面积是0.49cm2,则正 方形的边长是____ 1 3、正方形的面积是 4 cm2,则正 方形的边长是____
巩固提升
如2-3图,等边三角形ABC的边 长为2,高为h,h可能是整数吗?可 A 能是分数吗?

h
D C
B
图2-3
交流小结Leabharlann 作业 课本P22 习题1.1
1、2题
谢谢大家!
探索新知 活动一
1、如下图 ,有两个边长为1 的正方形,你 能通过剪一剪,拼一拼的方式得到一个大 的正方形吗? 1 1 1 1
图1-1
2、设大正方形的边长是a,a满足什么条件呢? 3、a可能是整数或分数吗?尝试说明理由。
活动二
1、在图2-2中,以直角三角形的斜 边为边的正方形的面积是多少? 2、设该正方形的边长为b,则b满足 什么条件呢?b是有理数吗?

2.1.1 认识无理数

2.1.1 认识无理数

二、探究新知
情景二:
(1)如图,以直角三角形的斜边为边的正方形的面积
是多少?
S=22+12=5
(2)设该正方形的边长为b,b满足什么条件?
(3)b是有理数吗?
b2=5
∵b2=5,4<b2<9 ,∴ 2<b<3, ∴b不是整数; ∵b2=5,∴b不是分数
b既不是整数,也不是分数,那么一定不是有理数
二、探究新知
北师大版八年级上册
第二章
实数
2.1 认识无理数(一)
学习目标
1.通过拼图活动,发现生活中存在既不是 整数也不是分数的数 2.会判断给出的数是否为有理数
一、知识回顾
(1)什么是有理数?
整数和分数统称为有理数
(2)有理数的分类
有理数
整数 分数
有理数
正有理数 0 负有理数
二、探究新知 情景一:如图是两个边长为1的小正方形,通过剪一 剪、拼一拼,设法得到一个大正方形,你会吗?
1 1
1 1
二、探究新知
拼法一:
拼法二:
二、探大正方形的边长为 a , a满足什么条件? a2=2
(2) a可能是整数吗?可能是分数吗?
∵a2=2,1<a2<4 ,∴ 1<a <2,∴a不是整数;
∵a2=2,1/2、2/3等分数的平方仍然是分数
∴a不是分数 a既不是整数,也不是分数,那么一定不是有理数
x不是整数,也不是分数, 不是有理数.
3
x
2
三、典例讲解
3.在下面的正方形网格中,画出一条长度是有理数的 线段和一条长度不是有理数的线段
四、课堂检测
1.已知a2=16.5,则正数a是( D )

2.1 认识无理数(第1课时)

2.1 认识无理数(第1课时)
3 3 9 ...... 2 22为分母的
分数.
9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。21.9.1321.9.13Monday, September 13, 2021 10、阅读一切好书如同和过去最杰出的人谈话。04:06:3504:06:3504:069/13/2021 4:06:35 AM 11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。21.9.1304:06:3504:06Sep-2113-Sep-21 12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。04:06:3504:06:3504:06Monday, September 13, 2021
所以BD DC,则BD AB
由勾股定理得: h
h
h不可能是整数;
B
D
C
h也不可能是分数.
四、强化训练
2、长,宽分别是3,2的长方形,它的对角线的长可能是整数 吗?可能是分数吗?
3 2
四、强化训练
3、如图是16个边长为1的小正方形拼成的,任意连接这些 小正方形的若干个顶点,可得到一些线段,试分别找出两 条长度是有理数的线段和两条长度不是有理数的线段.
八年级数学北师大版·上册
第二章 实数
1.1 认识无理数(第1课时)
一、新课引入
图是两个边长为1的小正方形,剪一剪、拼一拼,设法得到 一个大的正方形.
⑴ 设大正方形的边长为a,a满足什么条件? ⑵ a可能是整数吗?说说你的理由. ⑶ a可能是以2为分母的分数吗?可能是以3为分母的分 数吗?说说你的理由. ⑷ a可能是分数吗?说说你的理由,并与同伴进行交流.

北师大版数学八年级上册2.1认识无理数第1课时优秀教学案例

北师大版数学八年级上册2.1认识无理数第1课时优秀教学案例
在教学过程中,我注重启发式教学,引导学生主动探究、积极思考,培养他们的创新精神。同时,关注学生的个体差异,实施差异化教学,使每个学生都能在课堂上得到有效的锻炼。
二、教学目标
(一)知识与技能
1.让学生理解无理数的概念,知道无理数的特点,能够识别生活中的无理数实例。
2.使学生掌握无理数的性质,了解无理数与有理数的区别,能够运用性质进行简单的论证和判断。
2.教师对学生的学习情况进行评价,关注他们的个体差异,实施差异化教学,使每个学生都能得到有效的锻炼。
3.总结本节课的主要内容,强调无理数的概念、性质和运算方法。
(五)作业小结
1.布置课后作业,让学生运用所学知识解决实际问题,提高他们的实践能力。
2.通过作业的完成情况,了解学生对课堂所学知识的掌握程度,为今后的教学提供参考。
五、案例亮点
(二)讲授新知
1.引导学生提出问题:“无理数有什么特点?”,“无理数与有理数有什么区别?”等,激发他们的思考。
2.组织学生进行小组讨论,鼓励他们发表自己的观点和看法,培养他们的团队合作精神。
3.教师通过讲解,引导学生自主探究无理数的性质,如不能表示为两个整数的比值,不能精确表示等。
4.利用多媒体课件展示无理数的性质,让学生直观地感受无理数的特点。
3.鼓励学生在课后进行深入研究,拓展知识面,提高他们的创新能力。
五、教学反思
本节课通过生活实例引入无理数的概念,引导学生探究无理数的性质和运算方法,注重培养学生的实践能力和创新能力。在教学过程中,关注学生的个体差异,实施差异化教学,使每个学生都能得到有效的锻炼。同时,注重启发式教学,培养学生主动探究、积极思考的能力。但在时间安排上,可以更加合理,确保学生有足够的时间进行小组讨论和作业练习。

北师大版初中数学八年级(上)2-1 认识无理数(第1课时)(学案+练习)

北师大版初中数学八年级(上)2-1 认识无理数(第1课时)(学案+练习)

第二章 实 数1 认识无理数(第1课时)学习目标1.通过拼图活动,感受客观世界中无理数的存在.(难点)2.能判断三角形的某边长是否为有理数.3.会判断一个数是否为有理数.(重点)自主学习学习任务一 认识无理数的存在1.如图1所示,边长为1的两个正方形M ,N 可以分割成四个全等的等腰直角三角形,它们又可以拼凑成一个更大的正方形ABCD .(还有其他方法,鼓励学生探究)图1(1)大正方形的面积是 .(2)设大正方形的边长是x ,则x 2= ,x 在 和 之间(填整数). 结论:a 既 整数,也 分数,即a 有理数. 学习任务二 判断一个数是否为有理数 思考:如图2,(1)以直角三角形的斜边为边的正方形的面积是 . (2)设该正方形的边长为b ,b 满足 . (3)b 是有理数吗?图2合作探究例1 在△ABC 中,AB =AC ,AD 是底边上的高,如图3,若AC =10,BC =8. (1)求以AD 的长为边长的正方形的面积; (2)判断AD 是否为有理数,并说明理由.例2你会在如图4所示的正方形网格中画出面积为10的正方形吗?试一试.图4当堂达标1.在直角三角形中两条直角边长分别为2和3,则斜边的长()A.是有理数B.不是有理数C.不确定D.为42.下列面积的正方形,边长不是有理数的是()A.16B.25C.8D.43.如图5,在5×5的正方形网格中,以AB为边画直角三角形ABC,使点C在格点上,且另外两条边长均不是有理数,满足这样条件的点C4.在如图6(1)长度是有理数的线段l1;(2)长度不是有理数的线段l2.课后提升Array在如图7所示的正方形网格中画出四个三角形.(1)三边长都是有理数.(2)只有两边长是有理数.(3)只有一边长是有理数.(4)三边长都不是有理数.反思感悟我的收获:我的易错点:参考答案当堂达标1.B2.C3.解:如图8,共4个.4.解:如图9(答案不唯一).课后提升解:如图10(答案不唯一).。

新版北师大八年级上册第二章 《实数》教案

新版北师大八年级上册第二章 《实数》教案

第二章实数2.1.1 认识无理数(第1课时)一、教学目标:①通过拼图活动,让学生感受客观世界中无理数的存在;②能判断三角形的某边长是否为无理数;③学生亲自动手做拼图活动,培养学生的动手能力和探索精神;④能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解;二、教学过程设计本节课设计了6个教学环节:第一环节:置疑;第二环节:课题引入;第三环节:获取新知;第四环节:应用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:质疑内容:【想一想】⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?目的:作必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理.效果:为后续环节的进行起了很好的铺垫的作用第二环节:课题引入内容:1.【算一算】已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?2.【剪剪拼拼】把边长为1的两个小正方形通过剪、拼,设法拼成一个大正方形,你会吗?目的:选取客观存在的“无理数“实例,让学生深刻感受“数不够用了”.效果:巧设问题背景,顺利引入本节课题.第三环节:获取新知内容:【议一议】→【释一释】→【忆一忆】→【找一找】a ,请问:①a可能是整数吗?②a可能是分数吗?【议一议】:已知22【释一释】:释1.满足22a =的a 为什么不是整数? 释2.满足22a =的a 为什么不是分数?【忆一忆】:让学生回顾“有理数”概念,既然a 不是整数也不是分数,那么a 一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础【找一找】:在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段目的:创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣效果:学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,产生了学习新数的必要性.第四环节:应用与巩固内容:【画一画1】→【画一画2】→【仿一仿】→【赛一赛】【画一画1】:在右1的正方形网格中,画出两条线段: 1.长度是有理数的线段 2.长度不是有理数的线段【画一画2】:在右2的正方形网格中画出四个三角形 (右1)2.三边长都是有理数 2.只有两边长是有理数3.只有一边长是有理数 4.三边长都不是有理数 【仿一仿】:例:在数轴上表示满足()220x x =>的x解: (右2)仿:在数轴上表示满足()250x x =>的x【赛一赛】:右3是由五个单位正方形组成的纸片,请你把它剪成三块,然后拼成一个正方形,你会吗?试试看!(右3)目的:进一步感受“新数”的存在,而且能把“新数”表示在数轴上效果:加深了对“新知”的理解,巩固了本课所学知识.第五环节:课堂小结内容:1.通过本课学习,感受有理数又不够用了,请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?目的:引导学生自己小结本节课的知识要点及数学方法,使知识系统化.效果:学生总结、相互补充,学会进行概括总结.本节课的教学目标是:1.借助计算器探索无理数是无限不循环小数,借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并从中体会无限逼近的思想.2.探索无理数的定义,比较无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练学生的思维判断能力.3.能够准确地将目前所学习的数按不同角度进行分类,并说明理由,进一步体会分类思想,培养学生解决问题的能力.4.充分调动学生参与数学问题的积极性,培养学生的合作精神,提高他们的辨识能力.2.1.2 认识无理数(第2课时)三 、教学过程设计本节课设计六个教学环节:第一环节:新课引入;第二环节:活动与探究;第三环节:知识分类整理;第四环节:知识运用与巩固;第五环节:课堂小结;第六环节:作业布置.第一环节:新课引入内容:想一想:1. 有理数是如何分类的?1-,0,2,3,…) 有理数(如31,52-,119,0.5,… )2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.意图:通过这些问题让学生发现有理数不够用了,存在既不是整数,也不是分数的数,激发学生的求知欲,去揭示它的真面目.效果:激发学生的好奇心和求知欲,引出本节课题“数不够用了(2)”.第二个环节:活动与探究1. 探索无理数的小数表示内容:借助计算器以小组讨论的形式对面积为2的正方形的边长a 和面积为5的正方形的边长b 进行估计.请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a 的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.归纳总结:a是介于1和2之间的一个数,既不是整数,也不是分数,则a 一定不是有理数.如果写成小数形式,它们是无限不循环小数.请大家用上面的方法估计面积为5的正方形的边长b的值.目的:让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a=1.41421356…,b=2.2360679…,是无限不循环小数的过程,体会无限逼近的思想.效果:学生感受到无理数确实是无限不循环的,为后续定义无理数打下基础.2. 探索有理数的小数表示,明确无理数的概念内容:请同学们以学习小组的形式活动:一同学举出任意一分数,另一同学将此分数表示成小数,并总结此小数的形式.议一议:分数化成小数,最终此小数的形式有哪几种情况?探究结论:分数只能化成有限小数或无限循环小数.即任何有限小数或无限循环小数都是有理数.强调:像0.585885888588885…,1.41421356…,-2.2360679…等这些数的小数位数都是无限的,并且不是循环的,它们都是无限不循环小数.我们把无限不循环小数叫做无理数.(圆周率π=3.14159265…也是一个无限不循环小数,故π是无理数).目的:通过学生的活动与探究,得出无理数的概念.效果:通过师生互动的教学活动,既培养学生独立思考与小组合作讨论的能力,又感受到无理数存在的必然性,建立了无理数的概念.第三个环节:知识分类整理内容:到目前为止我们所学过的数可以分为几类?(按小数的形式来分).强调“无限不循环小数”与“无限循环小数”的联系和区别.无理数还可以进行怎样的分类?目的:培养学生总结归纳的能力,把新学知识纳入已有的知识体系,进一步发展学生的思维判断能力,加强学生对分类思想的理解.效果:通过师生的共同探究,形成对中学现阶段数的系统认识,提高了总结归纳能力.第四个环节:知识运用与巩固内容:认识一个数是无理数还是有理数. 例1填空:0.351,4.96∙∙-,32-, 3.14159, 6, -5.2323332…,3π,1234567891011…(由相继的正整数组成).例2 判断下列说法是否正确(1)有限小数是有理数; ( ) (2)无限小数都是无理数; ( )有理数:有限小数或无限循环小数无理数:无限不循环小数数整数分数无理数集合…(3)无理数都是无限小数; ( ) (4)有理数是有限数. ( )例3以下各正方形的边长是无理数的是( ) (A )面积为25的正方形; (B ) 面积为254的正方形; (C ) 面积为8的正方形;(D ) 面积为1.44的正方形.例4一个直角三角形两条直角边的长分别是3和5,则斜边a 是有理数吗?解:由勾股定理得: 22235a =+,即2=34a .因为34不是完全平方数,所以a 不是有理数.强调:1. 无理数是无限不循环小数,有理数是有限小数或无限循环小数.2. 任何一个有理数都可以化成分数qp形式(q ≠0, p ,q 为整数且互质),而无理数则不能.练一练:1.课本P 23 随堂练习.2.已知:在数43-,5, 1.42∙∙-,π,3.1416,32,0,24,2n (1)- ,-1.424224222…中, (1)写出所有有理数; (2)写出所有无理数;(3)把这些数按由小到大的顺序排列起来,并用符号“<”连接.目的:通过例题的讲解、练习,让学生充分理解无理数、有理数的概念、区别,感受数的分类.效果:通过学生练习,更加明确了有理数、无理数的概念,及它们之间的区别与联系,激发学生学习兴趣,巩固了对概念的理解.第五个环节:课堂小结内容:本节课你有哪些收获?51.无理数的定义.2.你是怎样判断一个数是无理数还是有理数的?3.请把已学过的数怎样分类?目的:让学生学会及时对知识点、数学方法进行总结,并整理成经验,形成知识体系,培养学生良好的学习习惯,提高其归纳总结能力.效果:师生共同总结补充,形成完整的知识体系.第六个环节:布置作业习题2.2 1.2.3.2.2.1 平方根(第1课时)一、教学目标:①了解算术平方根的概念,会用根号表示一个数的算术平方根;了解求一个正数的算术平方根与平方是互逆的运算,会利用这个互逆运算关系求非负数的算术平方根;了解算术平方根的性质.②在概念形成过程中,让学生体会知识的来源与发展,提高学生的思维能力;在合作交流等活动中,培养他们的合作精神和创新意识.③让学生积极参与教学活动,培养他们对数学的好奇心和求知欲.二、教学过程设计本课时设计六个环节:第一环节:问题情境;第二环节:初步探究;第三环节:深入探究;第四环节:反馈练习;第五环节:学习小结;第六环节:作业布置.本节课教学流程为:第一环节:问题情境方法一:问题导入内容:上节课学习了无理数,了解到无理数产生的实际背景和引入的必要性,掌握了无理数的概念,知道有理数和无理数的区别是:有理数是有限小数或无限循环小数,无理数是无限不循环小数.比如上一节课我们做过的:由两个边长为1的小正方形,通过剪一剪,拼一拼,得到一个边长为a 的大的正方形,那么有22=a ,a = ,2是有理数,而a 是无理数.在前面我们学过若a x =2,则a 叫x 的平方,反过来x 叫a 的什么呢?本节课我们一起来学习.方法二:问题导入内容:前面我们学习了勾股定理,请大家根据勾股定理,结合图形完成填空:=2x ,=2y ,=2z ,=2w .目的:方法一和二都是带着问题进入到这节课的学习,让学生体会到学习算术平方根的必要性.效果:能表示22=x ,32=y ,42=z ,52=w ;能求得2=z ,但不能求得x ,y ,w 的值.说明:方法一的引入是由上节课“数怎么又不够用了”的例子,起到了承前启后的作用,方法二的引入是由学生学习了第一章“勾股定理”后的应用,说明学习这节课的必要性.相对而言,建议选用方法二.第二环节:初步探究内容1:情境引出新概念22=x ,32=y ,42=z ,52=w ,已知幂和指数,求底数x ,你能求出来吗?目的:让学生体验概念形成过程,感受到概念引入的必要性.效果:学生可以估算出x ,y 是1到2之间的数,w 是2到3之间的数但无法表示x ,y ,w ,从而激发学生继续往下学习的兴趣,进而引入新的运算——开方.说明:无论是用方法一引入,还是方法二引入,都是激发学生继续往下学习的兴趣,都可以提出同样的问题“已知幂和指数,求底数x ,你能求出来吗?”内容2:在上面思考的基础上,明晰概念:一般地,如果一个正数x 的平方等于a ,即a x =2,那么这个正数x 就叫做a 的算术平方根,记为“a ”,读作“根号a ”.特别地,我们规定0的算术平方根是0,即00=.目的:对算术平方根概念的认识.效果:了解算术平方根的概念,知道平方运算和求正数的算术平方根是互逆的.内容3:简单运用 巩固概念例1 求下列各数的算术平方根:(1) 900; (2) 1; (3) 6449; (4) 14. 目的:体验求一个正数的算术平方根的过程,利用平方运算求一个正数的算术平方根的方法,让学生明白有的正数的算术平方根可以开出来,有的正数的算术平方根只能用根号表示,如14的算术平方根是14.效果:会求一个正数的算术平方根,更进一步了解算术平方根的性质:一个正数的算术平方根是正数,0的算术平方根是0,负数没有算术平方根.答案:解:(1)因为900302=,所以900的算术平方根是30,即30900=;(2)因为112=,所以1的算术平方根是1,即11=;(3)因为6449)87(2=,所以 6449的算术平方根是87, 即876449=; (4)14的算术平方根是14.内容4:回解课堂引入问题22=x ,32=y ,52=w ,那么2=x ,3=y ,5=w .第三环节:深入探究内容1:例2 自由下落物体的高度h (米)与下落时间t (秒)的关系为29.4t h =.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?目的:用算术平方根的知识解决实际问题.效果:学生多能利用等式的性质将29.4t h =进行变形,再用求算术平方根的方法求得题目的解.解:将6.19=h 代入公式29.4t h =,得42=t ,所以正数24==t (秒).即铁球到达地面需要2秒.说明:强调实际问题t 是正数,用的是算术平方根,此题是为得出下面的结论作铺垫的.内容2:观察我们刚才求出的算术平方根有什么特点.目的:让学生认识到算术平方根定义中的两层含义:a 中的a 是一个非负数,a 的算术平方根a 也是一个非负数,负数没有算术平方根.这也是算术平方根的性质——双重非负性.效果:再一次深入地认识算术平方根的概念,明确只有非负数才有算术平方根.第四环节:反馈练习一、填空题:1.若一个数的算术平方根是7,那么这个数是 ;2.9的算术平方根是 ;3.2)32(的算术平方根是 ; 4.若22=+m ,则=+2)2(m .二、求下列各数的算术平方根:36,144121,15,0.64,410-,225,0)65(. 三、如图,从帐篷支撑竿AB 的顶部A 向地面拉一根绳子AC 固定帐篷.若绳子的长度为5.5米,地面固定点C 到帐篷支撑竿底部B 的距离是4.5米,则帐篷支撑竿的高是多少米?答案:一、1.7;2.3;3.32;4.16;二、6;1211;15;0.8;210-;15;1.三、解:由题意得 AC =5.5米,BC =4.5米,∠ABC =90°,在R t △ABC 中,由勾股定理得105.45.52222=-=-=BC AC AB (米).所以帐篷支撑竿的高是10米.目的:旨在检测学生对算术平方根的概念和性质的掌握情况,以便根据学生情况调整教学进程.效果:练习注意了问题的梯度性,由浅入深,一步步加深对算术平方根的概念以及性质的认识.对学生的回答,教师要给予评价和点评.第五环节:学习小结内容:这节课学习的算术平方根是本章的基本概念,是为以后的学习做铺垫的.通过这节课的学习,我们要掌握以下的内容:(1)算术平方根的概念,式子a 中的双重非负性:一是a ≥0,二是a ≥0.(2)算术平方根的性质:一个正数的算术平方根是一个正数;0的算术平方根是0;负数没有算术平方根.(3)求一个正数的算术平方根的运算与平方运算是互逆的运算,利用这个互逆运算关系求非负数的算术平方根.目的:依照本节课的教学目标引导学生自己小结本节课的知识要点,强化算术平方根的概念和性质.第六环节:作业布置习题2.3、2.2.2 平方根(第2课时)一、教学目标①了解平方根、 开平方的概念,明确算术平方根与平方根的区别和联系.②进一步明确平方与开平方是互逆的运算关系.③经历平方根概念的形成过程,让学生不仅掌握概念,而且提高和巩固所学知识的应用能力.教学重点是①了解平方根、开平方的概念.②了解开方与乘方是互逆的运算,会利用这个互逆运算关系求某些非负数的算术平方根和平方根.③了解平方根与算术平方根的区别与联系.教学难点是①平方根与算术平方根的区别和联系.②负数没有平方根,即负数不能进行开平方的运算.二、教学过程设计:本节课采用引导、探究、类比相结合的教学方法,设计了六个教学环节 第一环节 复习旧知 引入新知;第二环节 形成概念,辨析概念;第三环节 例题和巩固练习;第四环节 课堂小结;第五环节 思维拓展;第六环节 布置作业. 第一环节 复习旧知 引入新知内容:方法一 复习引入1.什么叫算术平方根?3的平方等于9,那么9的算术平方根就是 3 . 52的平方等于 254 ,那么254 的算术平方根就是_____52_________. 展厅的地面为正方形,其面积49平方米,则边长_ 7_米.2.到目前为止,我们已学过哪些运算?这些运算之间的关系如何?乘方有没有逆运算?平方与算术平方根之间的关系?已知折叠着的正方形ABCD 面积为1,则边长为__1___.将它扩展,若面积变为原来的2倍,那么它的边长为___2___;若面积变为原来的3倍,则边长为____3_____;若面积变为原来的n 倍,则边长为____n ____.方法二 复习引入问题 平方等于9,254,49的数还有吗?目的: 这一环节主要是复习旧知识和提出问题,由上节课的“算术平方根”的求法使学生能明白“平方”和“算术平方根”的关系,让学生在几何图形中认识.熟悉它们的互化关系.并把上节课的思考题制作成Flash 情景引入,增加动画效果.效果 借助多媒体吸引学生的注意力,激发学生的学习兴趣.说明 数学知识源于生活,并服务于我们的生活.这两种方法通过生活中的具体问题激发学生的学习兴趣,并让他们产生解决问题的强烈愿望.第二环节 : 新课学习内容 (一)探究新知填空32=(9 ) (-3)2=(9 ) ( )2=9 02=0(12)2=(14))214= (不存在)2=-4 (12-)2=((二)形成概念(1)一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根.而把正的平方根叫做a 的算术平方根.表达式为:若x 2=a ,那么x 叫做a 的平方根. 记作 a ±.例如:(±4)2=16,则+4和-4都是16的平方根;即16的平方根是±4;4是16的算术平方根.(三)探索平方与开平方的关系:给出几组具体的数据,由平方探知开平方与平方的互逆关系.(四)概念辨析平方根与算术平方根的联系与区别联系 1.包含关系 平方根包含算术平方根,算术平方根是平方根的一种.2.只有非负数才有平方根和算术平方根.3. 0的平方根是0,算术平方根也是0.区别 1.个数不同:一个正数有两个平方根,但只有一个算术平方根.2.表示法不同:平方根表示为 a ± ,而算术平方根表示为a .目的 形成“平方根”的概念.在列举一些具体数据的感性认识基础上,由平方运算反推出平方根的概念和定义,并让学生非常熟练地进行平方和平方根之间的互化并,明白它们之间的互逆关系,辨析概念 “平方根”与 “算术平方根”的区别与联系,使之与上一节课紧密联系.效果 由于遵循了从具体到抽象的过程,注重学生原有认知基础的回顾,并和原有的概念进行了比较与辨析,因此,学生对这一抽象的概念掌握得比较牢靠.说明 平方根与算术平方根的区别是本节课的一大难点,也是学生经常容易出错的地方.对这两个概念加以比较与区别有利于学生的理解与掌握.第三环节 例题和新知巩固(一)例题示范求下列各数的平方根:(1)64;(2)49121;(3) 0.0004;(4)()225-;(5) 11解 (1)()2648=±,648∴±的平方根是,8=±即;(2)()24949771211211111,=∴±±的平方根为,711±=±即;(3)()20.0004,0.00040.020.02=∴±±的平方根是,0.02=±即;(4)()()()22,25252525=∴±±--2的平方根是, 25±=±即;(5)11的平方根是目的 这是书上的例题,要求学生能正确掌握平方根的文字说理及符号化的表达.能熟练地求出一个数的平方根,然后由题中的数据探索出正数、0、负数的平方根的个数.效果 通过对例题的详解,学生能准确地书写表达,规范平方根的书写格式,掌握正确的符号化语言.(二)思考提升1.()25-的平方根是 ,的算术平方根是_____,49的平方根是_____;2.2= ,= ,= ,=_______;3= ,20a≥=当 .(三)巩固练习1 .下列说法正确的是①3-②25的平方根是5;③-36的平方根是-6;④平方根等于0的数是0;⑤64的平方根是8.2.下列说法不正确的是( ) .(A)0的平方根是0 (B)22-的平方根是2±(C)非负数的平方根是互为相反数 (D)一个正数的算术平方根一定大于这个数的相反数3.已知一个自然数的算术平方根是a ,则该自然数的下一个自然数的算术平方根是( ).(A) a +1(C) 2a +1(D)4.x为何值,有意义? 答 因为02x -≥,所以0x ≤ 目的 围绕本节课的重点知识 (平方根)作适当的练习,在不同的变式练习中加深对平方根意义的理解.效果 学生基本能顺利解决这些问题,并利用探索的规律进行规范的表达. 第四环节 课堂小结内容 引导学生总结本课时的知识、方法.目的 让学生对所学的知识进行梳理,使之思路清晰,既巩固了有关知识,又培养了学生良好的学习习惯.效果 在老师的引导下学生自己总结本节课的知识、方法,如平方根的概念 若2x a =,则x 叫a的平方根,x =平方根的个数 正数有2个平方根,0的平方根是0,负数没有平方根.平方与开方之间的关系;求平方根的方法 求一个数的平方根就是转化寻找哪个数平方等于这个数.第五环节 提高训练内容1.5的小数部分为a,5b ,求a b +的值.2.已知实数a ,b满足296b b =①若a ,b 为ABC ∆的两边,求第三边c 的取值范围;②若a ,b 为ABC ∆的两边,第三边c 等于5,求ABC ∆的面积.目的 安排了两道题,其中最后一题是用算术平方根的意义来解决三角形的问题,这一环节主要针对层次较好的学生提供的题.可供老师根据教学的实际情况灵活处理.第六环节 作业布置 习题2.42.3.立方根一 、教学目标①了解立方根的概念,会用根号表示一个数的立方根;会用立方运算求一个数的立方根,了解开立方与立方互为逆运算,了解立方根的性质;区分立方根与平方根的不同;②经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略,培养逆向思维能力和分类讨论的意识.学生在经历用类比的方法学习立方根的有关知识过程中,领会类比思想;③立方根概念、符号、运算及性质的探究过程中,培养学生联系实际、善于观察、勇于探索和勤于思考的精神;二、教学过程设计本节课设计了七个教学环节:第一环节:创设问题情境;第二环节:复习引入、类比学习;第三环节:初步探究;第四环节:尝试反馈,巩固练习;第五环节:深入探究;第六环节:课时小结;探究与思考;第七环节:作业布置及课外探究.第一环节:创设问题情境内容:某化工厂使用一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果它的体积是原来的8倍,那么它的半径是原储气罐的多少倍?如果储气罐的体积是原来的4倍呢? (球的体积公式为334R =v ,R 为球的半径) 提问:怎样求出半径R ?学完本节知识后,相信你会有一个满意的答案.有关体积的运算和面积的运算有类似之处,让我们用上节课解决问题的方法来学习新知识 .目的:通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望.效果:在思考问题的同时,学生既感受了数学的应用价值,激发了学生的学习热情,又很快将问题归结为如何确定一个数,它的立方等于4,从而顺利引入新课.第二环节:复习引入、类比学习内容:提问:(1)什么叫一个数a 的平方根?如何用符号表示数a (a ≥0)的平方根?(2)正数的平方根有几个?它们之间的关系是什么?负数有没有平方根?0的平方根是什么?(3)平方和开平方运算有何关系?(4)算术平方根和平方根有何区别与联系?强调:一个正数的平方根有两个,且互为相反数;一个负数没有平方根;0的平方根是0.(5)为了解决前面情景中的问题,需要引入一个新的运算,你将如何定义这个新运算?1.一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(也叫做二次方根).2.一般地,如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根(cube root, 也叫做三次方根).如:2是8的立方根,的立方根是--273,0是0的立方根.目的:学生通过回顾上节课的学习内容,为进一步研究立方根的概念及性质做好铺垫,同时突出平方根与立方根的对比,以利于弄清两者的区别和联系.效果:复习引入既复习了平方根的知识,又利于学生用类比学习法学习立方根知识.第三环节:初步探究内容:1做一做:怎样求下列括号内的数?各题中已知什么数?求什么数?(1)001.0 3=)( ; (2)6427 3=-)( ; (3)0 3=)(.。

2.1 第1课时 认识无理数(教学设计——精品教案)

2.1  第1课时 认识无理数(教学设计——精品教案)

2.1认识无理数教学目标【知识与能力】感受无理数产生的实际背景和引入的必要性.【过程与方法】经历动手拼图过程,发展动手能力和探索精神.【情感态度价值观】通过现实中的实例,让学生认识到无理数与实际生活是紧密联系的,数学是来源于实践又应用于实践的.教学重难点【教学重点】感受无理数产生的背景.【教学难点】会判断一个数是不是无理数.教学准备两张边长为1的正方形纸片,多媒体课件.教学过程第一环节:情境引入导入一:七年级的时候,我们学习了有理数,知道了整数和分数统称为有理数,考虑下面的问题:(1)一个整数的平方一定是整数吗?(2)一个分数的平方一定是分数吗?[设计意图]做必要的知识回顾,为第二环节埋下伏笔,便于后续问题的说理,为后续环节的进行起了很好的铺垫作用.导入二:一个等腰直角三角形的直角边长为1,那么它的斜边长等于多少?利用勾股定理计算一下.【总结】我们在小学学了非负数,在七年级发现数不够用了,引入了负数,即把小学学过的正数、零扩充到有理数的范围,有理数包括整数和分数,那么有理数范围是否能满足我们实际生活的需要呢?第二环节:新知构建探究活动问题:x是整数(或分数)吗?2.把边长为1的两个小正方形,通过剪、拼,设法拼成一个大正方形,你会吗?出示教材P21图2 - 1.图2 - 1是两个边长为1的小正方形,剪一剪、拼一拼,设法得到一个大的正方形.问题1:拼成后的正方形是什么样的呢?问题2:拼成后的大正方形面积是多少?问题3:若新的大正方形边长为a,a2=2,则:①a可能是整数吗?②a可能是分数吗?【总结】没有两个相等的整数的积等于2,也没有两个相等的分数的积等于2,因此a 不可能是有理数.[设计意图]选取客观存在的“无理数”实例,让学生深刻感受“数不够用了”.巧设问题背景,顺利引入本节课题.思路一(1)如图所示,以直角三角形的斜边为边的正方形的面积是多少? (2)设该正方形的边长为b,b满足什么条件?(3)b是有理数吗?【问题解答】(1)由勾股定理可知,直角三角形的斜边的平方为5,所以正方形的面积是5.(2) b2=5.(3)没有一个整数或分数的平方为5,也就是没有一个有理数的平方为5,所以b不是有理数.思路二在下列正方形网格中,先找出长度为有理数的线段,再找出长度不是有理数的线段.【问题解答】构造直角三角形,利用勾股定理可得,长度为有理数的线段有AB,EF.长度不是有理数的线段有CD,GH,MN.[设计意图]创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣 ,让学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,了解学习“新数”的必要性.[知识拓展] 正方形网格中的线段既可以表示有理数,也可以表示有理数之外的数.数轴上的点可以表示有理数,也可以表示有理数之外的数.比如正方形OCBA 的对角线长度就不是有理数,数轴上的点P 表示的就是这个非有理数.网格上长方形(包括正方形)的对角线的长度都不一定是有理数.第三环节:课堂小结通过生活中的实例,证实了确实存在不是有理数的数.第四环节:检测反馈1.在直角三角形中两个直角边长分别为2和3,则斜边的长 ( )A .是有理数B .不是有理数C .不确定D .4答案:B2.下列面积的正方形,边长不是有理数的是 ( )A .16B .25C .2D .4答案:C3.在右面的正方形网格中,按照要求连接格点的线段:长度是有理数的线段为 ,长度不是有理数的线段为 .答案:略第五环节:布置作业一、教材作业【必做题】教材随堂练习及教材习题2.1第1题.【选做题】教材第22页习题2.1第2题.二、课后作业【基础巩固】1.在正方形网格中,每个小正方形的边长为1,则网格上的ΔABC 中,边长不是有理数的线段有 ,在图中再画一条边长不是有理数的线段.【能力提升】2.在任意两个有理数之间都有无数个有理数. 假设a ,b 是两个有理数,且a <b ,在a ,b 两数之间插入一个数为 .【拓展探究】3.把下列小数化成分数.(1)0.6;(2)0.7·;(3)0.3·4·.4.你会在下面的正方形网格(每个小正方形面积为1)中画出面积为10的正方形吗?试一试.【答案与解析】1.AB ,BC ,AC 略(解析:AB 2=42+12=17,BC 2=22+32=13,AC 2=22+42=20.)2.a+b 2(解析:答案不唯一,如插入a 和b 正中间的数.)3.解析:(1)0.6=35; (2)设0.7·=x ,则10x =7.7·,∴9x =7,从而x =79;(3)设0.3·4·=x ,则100x =34.3·4·,∴99x =34,从而x =3499.解:(1)0.6=35. (2) 0.7·=79. (3) 0.3·4·=3499.4.略板书设计2.1.1认识无理数1.拼接正方形.2.做一做.3.a ,b 存在,但不是有理数.教学设计反思成功之处大量事实证明,与生活贴得越近的东西就越容易引起学生的浓厚兴趣,更能激发学生学习的积极性.为此,本课时通过拼图游戏引发学生学习的欲望,把课程内容通过学生的生活经验呈现出来,然后进行大胆质疑.不足之处在教学过程中,没有刻意安排一些环节,帮助理解能力差的学生加深对“新数”的理解. 再教设计设计更多的实例让理解能力差的学生较好地理解“新数”.为进一步学习“新数”,即第二课时的教学埋下伏笔.。

认识无理数优秀教案

认识无理数优秀教案

2.1认识无理数(第一课时)一、教学目标叙写1.学生通过预习教材21页,并思考情景引入中的问题1.2.学生通过合作探究部分,初步感知数不够用了,让学生充分感受“新数”(无理数)的存在.3.学生通过交流知识点、易错点和思想方法,培养学生归纳能力和有条理的表达能力.4.学生能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解.二、教学重难点1.重点:让学生经历无理数的发现过程.2.难点:会判断一个数是否为无理数.三、教学过程(一)、情景引入[师]同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?[生]在小学我们学过自然数、小数、分数.[生]在初一我们还学过负数.[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.1、思考:⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?2、已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?(二)、自主探究1.问题的提出[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?[生]好.(学生非常高兴地投入活动中).[师]经过大家的共同努力,每个小组都完成了任务,请同学们把自己拼的图展示一下.同学们非常踊跃地呈现自己的作品给老师.[师]现在我们一齐把大家的做法总结一下:下面再请大家共同思考一个问题,假设拼成大正方形的边长为a ,则a 应满足什么条件呢?[生甲]a 是正方形的边长,所以a 肯定是正数.[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a 2=2.[生丙]由a 2=2可判断a 应是1点几.[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a 是整数吗?a 是分数吗?请大家分组讨论后回答.[生甲]我们组的结论是:因为12=1,22=4,32=9,…整数的平方越来越大,所以a 应在1和2之间,故a 不可能是整数. [生乙]因为913131,943232,412121=⨯=⨯=⨯,…两个相同因数的乘积都为分数,所以a 不可能是分数.[师]经过大家的讨论可知,在等式a 2=2中,a 既不是整数,也不是分数,所以a 不是有理数,但在现实生活中确实存在像a 这样的数,由此看来,数又不够用了.活动内容:【议一议】→【释一释】→【忆一忆】→【找一找】将两个边长为1的小正方形,剪一剪、拼一拼,设法得到一个大的正方形.设这个大的正方形的边长为a,a 满足什么条件?【议一议】: 已知22a =,请问:①a 可能是整数吗?②a 可能是分数吗?【释一释】:释1.满足22a =的a 为什么不是整数?释2.满足22a =的a 为什么不是分数?【忆一忆】:让学生回顾“有理数”概念,既然a 不是整数也不是分数,那么a 一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础(四)、整理反思1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?2.客观世界中,的确存在不是有理数的数,你能列举几个吗?3.除了本课所认识的非有理数的数以外,你还能找到吗?2.1认识无理数(第二课时) 一、教学目标叙写1、学生通过预习教材22-23页,初步感知无理数的估算过程.2、学生通过合作探究“活动1”部分,让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a =1.41421356…,b =2.2360679…,是无限不循环小数的过程,体会无限逼近的思想,通过学生的活动2并探究得出无理数的概念.3、学生通过交流知识点、易错点和思想方法,培养学生归纳能力和有条理的表达能力.4、学生通过完成“五、当堂评价”,能正确地对给出的数进行分类,加深对有理数和无理数的理解.二、教学重难点1.重点:了解无理数与有理数的区别并能正确判断.2.难点:无理数概念的建立及估算,会判断一个数是无理数还是有理数.三、教学过程(一)、复习引入1. 有理数是如何分类的?整数(如1-,0,2,3,…)有理数分数(如31,52-,119,0.5,… )2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了解到一些数,如22=a ,25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.(二)、自主探究1.探索无理数的小数表示请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a 的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.(归纳总结:a是介于1和2之间的一个数,既不是整数,也不是分数,则a一定不是有理数.如果写成小数形式,它们是无限不循环小数).[生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.[师]大家能不能判断一下面积为2的正方形的边长a的大致范围呢?[生]因为a2大于1且a2小于4,所以a大致为1点几.[师]很好.a肯定比1大而比2小,可以表示为1<a<2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如 1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4<a<1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位、千分位上的数字.[生]因为1.412=1.9881,1.422=2.0164,所以a应比1.41大且比1.42小,所以百分位上数字为1.[生]因为 1.4112=1.990921,1.4122=1.993744,1.4132=1.996569,1.4142=1.999396,1.4152=2.002225,所以a应比1.414大而比1.415小,即千分位上的数字为4.[生]因为1.41422=1.99996164,1.41432=2.00024449,所以a应比1.4142大且比1.4143小,即万分位上的数字为2.[师]大家非常聪明,请一位同学把自己的探索过程整理一下,用表格的形式反映出来.[生]我的探索过程如下.[师]还可以继续下去吗?[生]可以.[师]请大家继续探索,并判断a是有限小数吗?[生]a=1.41421356…,还可以再继续进行,且a是一个无限不循环小数.[师]请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)[生]b=2.236067978…,还可以再继续进行,b也是一个无限不循环小数.[生]边长b不会算到某一位时,它的平方恰好等于5,但我不知道为什么.[师]好.这位同学很坦诚,不会就要大胆地提出来,而不要冒充会,这样才能把知识学扎实,学透,大家应该向这位同学学习.这个问题我来回答.如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数.2.探索有理数的小数表示,明确无理数的概念思考:分数化成小数,最终此小数的形式有哪几种情况?——分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数.3,112,458,95,54,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.[生]3=3.0,54=0.8,95=•5.0, •=71.0458,••=818.1112 [生]3,54是有限小数,112,458,95是无限循环小数. [师]上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.像上面研究过的a 2=2,b 2=5中的a ,b 是无限不循环小数.无限不循环小数叫无理数(irrational number).除上面的a ,b 外,圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.3.有理数与无理数的主要区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任何一个有理数都可以化为分数的形式,而无理数则不能.(三)、合学应用例1:填空:0.351, 4.96••-,0.4583,•7.3,-π,-71,18. 3.14159, 6, -5.2323332…,1234567891011…(由相继的正整数组成).例2 :判断下列说法是否正确:(1)有限小数是有理数; ( )(2)无限小数都是无理数; ( )(3)无理数都是无限小数; ( )(4)有理数是有限数. ( )(四)、整理反思1.无理数的定义.2.你是怎样判断一个数是无理数还是有理数的?3.请把已学过的数怎样分类?易错点: .(五)、当堂评价1、以下各正方形的边长是无理数的是( )(A)面积为25的正方形;(B)面积为254 的正方形; (C)面积为8的正方形; (D)面积为1.44的正方形.2.已知:在下数中254 ,5,1.42••-,π,3.1416,32,0,24,2n (1)- ,-1.424224222…, (1)写出所有有理数;(2)写出所有无理数;(3)把这些数按由小到大的顺序排列起来,并用符号“<”连接.(六)、变练拓展1. 设面积为5π的圆的半径为a .(1)a 是有理数吗?说说你的理由.(2)估计a 的值(精确到十分位,并利用计算器验证你的估计).(3)如果精确到百分位呢?解:∵πa 2=5π∴a 2=5(1)a 不是有理数,因为a 既不是整数,也不是分数,而是无限不循环小数.(2)估计a ≈2.2.(3)a ≈2.24.。

2.1 认识无理数(第1课时)

2.1 认识无理数(第1课时)

探究新知
2.1 认识无理数
归纳总结
有理数包括:整数和分数. 如果一个数既不是整数也不是分数, 那么这个数不是有理数. 在a2=2中,a不是有理数.
探究新知
2.1 认识无理数
素养考点 1 非有理数的识别
例 如图,有一个由五个边长为1的小正方形组成的图形,我
们可以把它剪拼成一个正方形.则拼成的正方形的面积是多
数学 八年级 上册
2.1 认识无理数(第1课时)
导入新知
2.1 认识无理数
已知一个直角三角形的两条直角边长分别为1和2, 算一算斜边长x的平方 ,x是整数(或分数)吗?
x 1
2
素养目标
2.1 认识无理数
2.能判断一个数是否为有理数.
1.通过拼图活动和勾股定理的应用感受无理 数产生的实际背景和引入的必要性.
非有理数的识别
课后作业
作业 内容
2.1 认识无理数
教材作业 从课后习题中选取 自主安排 配套练习册练习
谢谢
方形,则大正方形的面积是___2___,它的边长_不__是__有
理数(填写“是”或“不是”)
课堂检测
2.1 认识无理数
能力提升题
请你在方格纸上按照如下要求设计直角三角形.(所作三 角形的各个顶点均在格点上) (1)使它的一边为有理数,另两边边长不是有理数; (2)使它的三边边长都是有理数.
课堂检测
探究新知
2.1 认识无理数
归纳总结
用生命换来的新数
像上面讨论的数a,b都不是有理数,而是另一类数—无理数.
早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙 间的一切现象都能归结为整数或整数之比”.但是这个学派中的一个叫希 伯索斯的成员却发现边长为1的正方形的对角线的长不能用整数或整数之 比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯 被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的, 后来古希腊人终于正视了希伯索斯的发现.也就是a2=2中的a不是有理数.

认识无理数教学设计

认识无理数教学设计


教学难点 对拼图得出的面积为 2 的正方形边长 a 是个什么样的
数的探究过程。
(5)教学方法 (学法)
“引导探索法” (自主探究,合作学习,采用小组合作的方法, 教学环节 1 教学内容 创设情境引出质疑
教师活动 ①讲述毕达哥拉斯“万物皆数”的故事
②除了有理数外还有没有其他的数呢?
(6)教 学 过 程
为后面学习二次根式、二元一次方程打下基础,在初中数学中 占有重要地位。
①通过拼图活动,让学生感受无理数产生的实际背景
和引入的必要性
(3)教学目标
知识与技 能
②运用有理数的有关知识,通过逻辑推理判断一个数
是否为有理数
③结合勾股定理知识,会根据要求画线段
过程与方 法
引导学生进行合作交流,让其经历剪拼,观察、实验、
猜想、证明等数学活动过程,发展逻辑思维能力。
情感态度 与价值观
通过系列的数学活动,让学生充分体验数学源于生
活、寓于生活、用于生活的实际意义,激发学生学习
的热情。
①让学生参与无理数发现的过程,感知生活中无理数
(4) 教学重点难点 教学重点
存在的必要性和合理性 ②能够运用有理数的知识判断给出的数是否为有理
教学环节 3 教学内容 实例剖析加深理解
教学过程
教师活动 例 1:如图,以直角三角形的斜边为边的正 方形的面积是多少? 设该正方形的边长为 b,b 满足什么样条 件?③b 是有理数吗?
S ?
2
1
教师活动 例 2:.如图,正三角形的边长为 2,高为 h,
h 可能是整数吗?可能是分数吗?
A

h
教学环节 4
教师 王丽
2.1 认识无理数 (第 1 课时)教学设计

八年级数学上册第2章名师教案:认识无理数(1)(北师大版)

八年级数学上册第2章名师教案:认识无理数(1)(北师大版)

北师大版数学八年级上册 2.1认识无理数(1)名师教案(2)a可能是整数吗?说说你的理由.(3)a可能是分数吗?说说你的理由.师:事实上,我们可以证明,在等式a2=2中,a既不是整数,也不是分数,所以a不是有理数.【做一做】(1)如图,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,b满足什么条件?(3)b是有理数吗?【总结提升】的大正方形的面积是2,如果大正方形的边长为a,a应该满足a2=2.没有两个相等的整数的积等于2,也没有两个相等的分数的积等于2,因此a不可能是有理数.生:由勾股定理可知,直角三角形的斜边的平方为5,所以正方形的面积是5.b2 = 5生:没有一个整数或分数的平方为5,也就是没有一个有理数的平方为5,所以b不是有理数.创设从感性到理性的认知过程,让学生充分感受“新数”(无理数)的存在,从而激发学习新知的兴趣 ,让学生感受到无理数产生的过程,确定存在一种数与以往学过的数不同,了解学习“新数”的必要性.在上面的两个问题中,数a,b确实存在,但都不是有理数.在解决实际问题时,我们发现原来学习的有理数远远不能满足解决实际问题的需要,也就是存在这样的一类数,既不是整数也不是分数,或者说不是有理数.课堂练习 1.在直角三角形中两个直角边长分别为2和3,则斜边的长(B)A.是有理数B.不是有理数C.不确定D.42.下列面积的正方形,边长不是有理数的是(C)A. 16B. 25C. 2D. 43. 已知在△ABC中,∠C=90°,AC=4,BC=5,那么斜边AB的长是(D)A.整数B.分数C.有理数D.非有理数4.如图,有一个由五个边长为1的小正方形组成的图形,我们可以把它剪拼成一个正方形.则拼成的正方形的面积是多少?这个正方形的边长是有理数吗?因为小正方形的边长为1,所以每个小正方形的面积为1,所以拼成的正方形的面积为5×1=5.因为找不到平方等于5的有理数,所以这个正方形的边长不是有理数.5.(2018•锦州)下列实数为无理数的是(D)A.-5 B.72C.0 D.π6.(河池)下列实数中,为无理数的是(B)学生认真做课堂练习.通过课堂习题练习,进一步理解并掌握新知.提高练习是为了巩固学生所学的新知,并让学生学会对新知识的正用、逆用、变形用的能力,加强学生的计算能力和解决问题能力的培养,同时实现了优等生有事做,学困生跟着做的隐性分层教学.。

2.1(1)认识无理数

2.1(1)认识无理数
(1)使它的三边中有一边边长不是有理数; (2)使它的三边中有两边不是有理数; (3)使它的三边边长都不是有理数。
∴a≈3.6
【金典知识】
【金典精讲】
【金典精练】
1. 通过拼图活动,感受有理数又不够用了。 谈谈本节课你有什么收获与体会?有哪些困 难需要别人帮你解决?
2. 感受数不够用了,会确定一个数是有理数或 不是有理数。
2.任何一个有理数都可以化成分数 p 形式( p,
q q 为整数且互质),而无理数不能.
用16个边长为1的小正方形拼成 了如图的网格,任意连接两个格点, 就得到一条线段,
试分别画出一条长度是有理数的线 段和一条长度不是有理数的线段.
B C
A
G
E
D
F
提高:P22
2、请你在方格纸上按照如下要求设计直角 三角形:
11
古希腊的毕达哥拉斯学派认为, 所有的数量都可以用整数或整 数的比来表示
把两个边长为1的小正方形通过 剪、拼,设法得到一个大正方形。
1 1
1 1
11 11
1
1
1
1
1
1
1
1

1
1
1
11 22
1
1
2
2
11 11
a2 2
a
.
a2 2
小组讨论:
a
a可能是整数吗?
aaaa
a可能是分数吗?
a可能是整数吗?
,
a
,
越来越大,
32 9, 所以a不可能是整数
可能是以2为分母的分数吗?
,
a
3 3 9 ..... . 2 2 4,
结果都为分数,所以a不可能是以2 为分母的分数。

《认识无理数(第1课时)》课件 (一等奖)2022年最新PPT2

《认识无理数(第1课时)》课件 (一等奖)2022年最新PPT2

如图,一个矩形木条长为4㎝,宽为3㎝, 用刻度尺作出每条边的中点,并顺次连结它们。 猜一猜你能得到什么图形?
认识无理数
1
1
有两个边长为1的小正方形,剪一剪,拼一 拼,设法得到一个大正方形。
⑴ 设大正方形的边长为a,a满足什么条件?
⑵ a可能是整数吗?说说你的理由。 ⑶ a可能是以2为分母的分数吗?可能是以3为 分母的分数吗?说说你的理由。
⑷ a可能是分数吗?说说你的理由,并与同伴 交流。
做一做
〔1〕以直角三角形的 斜边为正方形的面积是 多少?
2
1〔2〕设该正方形的边源自为b,b满足什么条件? 〔3〕b是有理数吗?
比较线段的长短
比较两根铅笔的长短,你有哪些方法?
如果把铅笔抽象成线段,让你比较两条线 段的长短,你能想出哪些方法?
我们常见的路为什么大多都是直的?
在一张透明纸上任意画一条线段,折叠纸片,
使这条线段的两个端点重合在一起,你会有什么 发现?

北师大版八年级数学上册《认识无理数》第1课时示范课教学设计

北师大版八年级数学上册《认识无理数》第1课时示范课教学设计

第二章实数1 认识无理数第1课时一、教学目标1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;2.能判断给出的数是否为有理数,并能说出理由;3.通过实践活动,体会到无理数在现实生活中大量存在;4.感受无理数的广泛性,提高学生学习的自主性.二、教学重难点重点:通过拼图活动,让学生感受客观世界中无理数的存在难点:能判断给出的数是否为有理数,并能说出理由.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计提出问题:除了有理数外还有没有其他的数呢?【合作探究】教师活动:教师课件展示两个边长为1的小正方形,让学生通过不同的方法剪一剪,再拼起来组成一个大正方形,得到相应大正方形后再探索大正方形边长究竟是什么数,进而了解到除了有理数外还存在别的数.问题:如下图是两个边长为1的小正方形,通过剪一剪、拼一拼,设法得到一个大正方形,你会吗?预设答案:拼法一:拼法二:拼法三:问题(1)设大正方形的边长为a ,a 满足什么条件? 预设答案: 分析:一个小正方形的面积为:S 小正方形=1×1=1. S 大正方形=S 小正方形+S 小正方形=1+1=2, ∴ S 大正方形=2;根据正方形面积公式:S 大正方形=a 2 ∴ a 2=2.问题(2)a 可能是整数吗?说说你的理由. 预设答案: 从“数”的角度:∵ a 2=2, 而12=1, 22=4, 32=9··· ∴ 12<a 2<22 , 1< a < 2 ∴ a 不是整数. 从“形”的角度:在△ABC 中,AC =1,BC =1,AB =a 根据三角形的三边关系,斜边AB 满足: AC -BC < a <AC +BC 即0<a <2,且 a ≠1,∴ a 不是整数问题(3)a 可能是分数吗?并与同伴进行交流. 分析:41)21(2=,91)31(2= ,161)41(2=从上面的式子中发现:两个相同的最简分数的乘积仍然是分数,而a 2=2是整数,∴a不是分数.【归纳】在等式a2=2中,a既不是整数,也不是分数,所以a不是有理数.【做一做】问题:(1)如下图,以直角三角形的斜边为边的正方形的面积是多少?(2)设该正方形的边长为b,b满足什么条件?(3)b是有理数吗?预设答案:解:(1)设直角三角形的斜边长为b,根据勾股定理得:b2=12+22=5,根据正方形面积公式得:S正方形=b2∴以图中直角三角形的斜边为边的正方形的面积是5.(2)∵正方形的边长为b,根据正方形面积公式得:S正方形=b2而S正方形=5,得出b2=5∵ b满足b2=5.(3)∵b2=5,4<b2<9 ,∵ 2<b<3,∵ b不是整数;∵两个相同最简分数的乘积仍然是分数,而b2=5是整数,∵ b不是分数.b既不是整数,也不是分数,那么一定不是有理数.【归纳】a2=2 b2=5数a,b确实存在,但都不是有理数.环节三应用新知【典型例题】教师活动:教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例1 如图,等边三角形ABC中的边长是2,高AD为h,h可能是整数吗?可能是分数吗?解:∵△ABC是等边三角形,AD⊥BC∴D是BC的中点,且BC=2∴BD=CD=1在Rt△ABD中,由勾股定理得:h2=22-12=4-1=3∵1< h2<4 ,∴ 1<h<2,∴h不是整数;∵两个相同最简分数的乘积仍然是分数,而h2=3是整数.∴h不是分数.∴h不可能是整数,也不可能是分数.明确例题的做法通过例题的探究让学生进一步感受除有理数外还有别的数存在,感受无理数的广泛性.【随堂练习】教师活动:教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.下图是由16个边长为1的小正方形拼成的,任意连接这些小正方形的若干个顶点,可得到一些线段,试分别找出两条长度是有理数的线段和两条长度不是有理数的线段.2.已知a2=17,则a是()A.整数B.分数C.有理数D.非有理数3.以下各正方形的边长不是有理数的是( )A.面积为25的正方形的正方形B.面积为425C.面积为8的正方形D.面积为1.44的正方形答案:1.解析:长度是有理数的线段是指:长度可以用整数与分数表示的线段.AB=1,AD=3,根据勾股定理:AE2=32+42=25,AE=5,∴线段AB,AD,AE均为长度是有理数的线段.根据勾股定理得:AC2=12+12=2,AC2=2,1<AC2<4 ,∴ 1<h<2,∴AC不是整数;∵两个相同最简分数的乘积为分数,而AC2=2是整数,∴AC不是分数.∴AC 长度不是有理数的线段. 同理可得BE ,CD 为长度不是有理数的 线段.2.选D.解析:∵ a 2=17, 而42=16, 52=25, ∵ 42<a 2<52 , 4< a < 5 ∵ a 不是整数.∵两个相同最简分数的乘积为分数,而a 2=17是整数,∵ a 不是分数.∵ a 既不是整数,也不是分数,一定不是有理数.所以答案选D.3.选C.解析:假设正方形边长为a ,选项A 中面积为25的正方形的边长是5,而5是有理数,排除A 选项;选项B 中面积为425的正方形的边长是25,而25是有理数,排除B 选项;选项C 中面积为8的正方形中的边长满足:S 正方形=a 2=8,∵ a 2=8, 而22=4, 32=9, 42=16··· ∵ 22<a 2<32 , 2< a < 3 ∵ a 不是整数.∵ 两个相同最简分数的乘积为分数,而a 2=8是整数,思维导图的形式呈现本节课的主要内容:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a
有理数 。
a既不是整数又不是分数,所以a一定不是

那么a到底是什么数呢?
找一找
在下列正方形网格中,先找出长度为有 理数的线段,再找出长度不是有理数的 线段.
画一画(1)
在下面的正方形网格中,画出一条 长度 是有理数的线段和一条长度不 是有理数的线段
画一画(2)
在下面在正方形网格中画出四个三角形 1.三边长都是有理数 2.只有两边长是有理数 3.只有一边长是有理数 4.三边长都不是有理数
,
,

越来越大, 所以

a
a不可能是整数

3 9,
2
(2)a可能是分数吗? a可能是以2为分母的分数吗?
,
a

3 3 9 ...... 2 2 4,
结果都为分数,所以a不可能是
以2为分母的分数。
(2)a可能是分数吗? a可能是以3为分母的分数吗?
仿一仿
例:在数轴上表示满足x2 2 x 0 的 x
仿:在数轴上表示满足 x 5 x 0的 x
2
巧妙的组合:
(1)图2-1中,以直角三角形的斜边 为边的正方形的面积是多少? (2)设该正方形的边长为b, 2 b满足什么样条件? (3)b是有理数吗?
S ?
b 1
图2-1
随堂练习:
如图,正三角形的边长为2,高为h,h可能是
整数吗?可能是分数吗?
解 : 因为ABC是正三角形, 且AD BC
所以BD DC, 则BD AB 由勾股定理得: h
A

h
D C
h不可能是整数; h也不可能是分数。
B
课堂小结
1.通过本课学习,感受有理数不
第二章
实数
1. 认识无理数(第1课时)
一 复习引入:
1.我们学过的数有哪些?
2.什么是有理数?
回顾 & 思考 ☞ 什么叫有理数?
正整数:如:1,2,3,…
有 理 数
整数
零:0 负整数:如-1,-2,-3,… 1 1 正分数:如 , , 5.2, … 2 3
分数
1 负分数:如 5
5 , 6
,-3.5, …
,
,
,
a

...... ,
结果都为分数,所以a不可能是以 3为分母的分数。
a可能是其他分数吗? 试说出原因。
a

两个相同的最简分数的乘积仍然是分 数,所以a不可能是分数。
• 有理数:整数和分数统称为有理数。
• 分数与有限小数和无限循环小数可以互化 所以我们把有限小数和无限循环小数都看 作分数。 • 有限小数 • 分数 • 无限循环小数
想一想
.
1.一个整数的平方一定是整数吗?
.
2.一个分数的平方一定是分数吗?
算一算
1
x
2
x ?
2
问:x是整数(或分数)吗?
剪一剪
够用了.请问你有什么收获与 体会?
2.客观世界中,的确存在不是有理
数的数,你能列举几个吗?
3.除了本课所认识的非有理数的数
以外,你还能找到吗?
读一读
无理数的发现(教材第23页)
做一做
习题2.1
把两个边长为1的小正方形通过剪、 拼,设法得到一个大正方形,你会吗?
11Biblioteka 11拼图:
1 1
变 化 的 世 界
奇 妙 的 组 合
问题与思考
(1)设大正方形的边长为a,a满足什么条件?
a
因为正方形的面积为2
所以
a

S
释一释
a 2
2
释1.
a 可能是整数吗? a 可能是分数吗?
释2.
(1)a可能是整数吗?
相关文档
最新文档