深圳中考数学模拟考试十套

合集下载

2024年广东省深圳市33校联考中考一模数学试题及答案

2024年广东省深圳市33校联考中考一模数学试题及答案

深圳市2024年初三年级3月质量检测数学(33校联考)一、选择题(每题3分,共30分)1. 2024的倒数是( )A 2024− B. 2024 C. 12024− D. 120242. 2023年“亚运+双节”让杭州火出圈,相关数据显示,国庆期间杭州共接待游客约13000000人次,将数据13000000用科学记数法表示为( )A. 61.310×B. 71.310×C. 80.1310×D. 61310× 3. 第19届亚运会于9月23日至10月8日在杭州成功举办,下列图形中是轴对称图形的是( )A. B. C. D. 4. 右图是我们生活中常用的“空心卷纸”,其主视图为( )A. B. C. D. 5. “立身以立学为先,立学以读书为本”为了鼓励全民阅读,某校图书馆开展阅读活动,自阅读活动开展以来,进馆阅读人次逐月增加,第一个月进馆200人次,前三个月累计进馆728人次,若进馆人次的月增长率相同,求进馆人次的月增长率.设进馆人次的月增长率为x ,依题意可列方程( )A. ()22001728x +=B. ()()220012001728x x +++=C. ()22001728x x ++=D. ()()220020012001728x x ++++= 6. 下列计算正确的是( )A. 236326a a a ⋅=B. 020=C. ()236416x x =D. 2139−=− 7. 对一组数据:4,6,4,6,8−,描述正确的是( ).A. 中位数是4−B. 平均数是5C. 众数是6D. 方差是78. 如图,ABC 与DEF 位似,点O 为位似中心,2AD AO =,若ABC 的周长是5,则DEF 的周长是( )A. 10B. 15C. 20D. 259. A ,B 两地相距60千米,一艘轮船从A 地顺流航行至 B 地所用时间比从B 地逆流航行至A 地所用时间少45分钟, 已知船在静水中航行的速度为20千米/时.若设水流速度为x 千米/时(20x <), 则可列方程为( ) A. 6060320204x x −=−+ B.6060320204x x −=+− C. 6060452020x x −=+− D. 6060452020x x −=−+ 10. 如图,在正方形ABCD 中,BPC △是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连接BD ,DP ;BD 与CF 相交于点H .给出下列结论:①12AE FC =;②15PDE ∠=°;③PBC PCD S S =△△12DHC BHC S S =△△;⑤2DE PF FC =⋅.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二、填空题(共5小题)11. 实数范围内分解因式:2318a −=_____. 12. 在平面直角坐标系中,对于平面内任一点(a ,b ),若规定以下三种变换:①△(a ,b )=(﹣a ,b );②○(a ,b )=(﹣a ,﹣b );③Ω(a ,b )=(a ,﹣b ),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于在_______________.13. 如图,A 是反比例函数k y x=的图象上一点,过点A 作AB y ⊥轴于点B ,点C 在x 轴上,且2ABC S ∆=,则k 的值为_____.14. 如图,已知AOB ∠,以点O 为圆心,以任意长为半径画弧,与OA OB 、分别于点C 、D ,再分别以点C 、D 为圆心,以大于12CD 为半径画弧,两弧相交于点E ,过OE 上一点M 作MN OA ∥,与OB 相交于点N ,50MOB ∠=°,则AOM ∠=______.15. 如图,在直角坐标系中,已知A (4,0),点B 为y 轴正半轴上一动点,连接AB ,以AB 为一边向下作等边△ABC ,连接OC ,则OC 的最小值为_______.三.解答题(共55分)16. ()101220246cos304π− −−−+−−° .17. 化简求值:22112242x x x x x x ++− ÷− −−,其中x 为数据4,5,6,5,3,2的众数. 18. 某校为了调查本校学生对航空航天知识知晓情况.开展了航空航天知识竞赛,从参赛学生中,随机抽取若干名学生的成绩进行统计,得到如下不完整的统计图表:成绩/分频数/人 频率 6070x ≤<10 0.1 7080x ≤<15 b 8090x ≤< a 0.3590100x ≤≤ 40c请根据图表信息解答下列问题:(1)求a ,b ,c 的值;(2)补全频数直方图;(3)某班有2名男生和1名女生的成绩都为100分,若从这3名学生中随机抽取2名学生参加演讲,用列表或画树状图的方法,求抽取的2名学生恰好为1男1女的概率.19. 如图,O 是ABC 的外接圆,直径BD 与AC 交于点E ,点F 在BC 的延长线上,连接DF ,F BAC ∠=∠.(1)求证:DF 是O 的切线;的(2)从以下三个选项中选一个作为条件,使DF AC ∥成立,并说明理由;①AB AC =;② AD DC=;③CAD ABD ∠=∠; 你选的条件是:______.20. 某经销商销售一种成本价为10元/kg 的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不得高于18元/kg ;如图,在销售过程中发现销悬()kg y 与售价x (元/kg )之间满足一次函数关系.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)设销售这种商品每天所获得利润为W 元,求W 与x 之间的函数关系式,并求出该商品售价定为多少元/kg 时,才能使经销商所获利润最大?最大利润是多少?21. 如图1,一灌溉车正为绿化带浇水,喷水口H 离地竖直高度为 1.2h =米.建立如图2所示的平面直角坐标系,可以把灌溉车喷出水的上、下边缘抽象为两条抛物线的部分图象,把绿化带横截面抽象为矩形DEFG ,其水平宽度2DE =米,竖直高度0.7EF =米,下边缘抛物线是由上边缘抛物线向左平移得到,上边缘抛物线最高点A 离喷水口的水平距离为2米,高出喷水口04.米,灌溉车到绿化带的距离OD 为d 米.(1)求上边缘抛物线喷出水的最大射程OC ;(2)求下边缘抛物线与x 轴交点B 的坐标;(3)若 3.2d =米,灌溉车行驶时喷出的水______(填“能”或“不能”)浇灌到整个绿化带. 22. 在矩形ABCD 中,点E 是射线BC 上一动点,连接AE ,过点B 作BF AE ⊥于点G ,交直线CD 于点F .的(1)当矩形ABCD 是正方形时,以点F 为直角顶点在正方形ABCD 的外部作等腰直角三角形CFH ,连接EH .①如图1,若点E 在线段BC 上,则线段AE 与EH 之间的数量关系是________,位置关系是_________; ②如图2,若点E 在线段BC 延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;(2)如图3,若点E 在线段BC 上,以BE 和BF 为邻边作BEHF ,M 是BH 中点,连接GM ,3AB =,2BC =,求GM 的最小值.的深圳市2024年初三年级3月质量检测数学(33校联考)一、选择题(每题3分,共30分)1. 2024的倒数是( )A. 2024−B. 2024C. 12024−D. 12024【答案】D【解析】【分析】本题主要考查了求一个数的倒数,根据乘积为1的两个数互为倒数进行求解即可. 【详解】解:∵1202412024×=, ∴2024的倒数是12024, 故选∶D .2. 2023年“亚运+双节”让杭州火出圈,相关数据显示,国庆期间杭州共接待游客约13000000人次,将数据13000000用科学记数法表示为( )A. 61.310×B. 71.310×C. 80.1310×D. 61310×【答案】B【解析】【分析】本题考查了科学记数法表示较大的数,熟练掌握其定义是解题的关键.将一个数表示成10n a ×的形式,其中110a ≤<,n 为整数,这种记数方法叫做科学记数法,据此即可得到答案. 【详解】13000000=71.310×故选:B .3. 第19届亚运会于9月23日至10月8日在杭州成功举办,下列图形中是轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的定义逐项判断即可.【详解】解:A ,不是轴对称图形,不合题意;B ,是轴对称图形,符合题意;C ,不是轴对称图形,不合题意;D ,不是轴对称图形,不合题意;故选B .【点睛】本题考查轴对称图形的识别,解题的关键是掌握轴对称图形的定义.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.4. 右图是我们生活中常用的“空心卷纸”,其主视图为( )A. B. C. D.【答案】C【解析】【分析】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.看不见的棱要用虚线表示.找到从前面看所得到的图形即可.【详解】解:卷纸的主视图应是:,故选:C .5. “立身以立学为先,立学以读书为本”为了鼓励全民阅读,某校图书馆开展阅读活动,自阅读活动开展以来,进馆阅读人次逐月增加,第一个月进馆200人次,前三个月累计进馆728人次,若进馆人次的月增长率相同,求进馆人次的月增长率.设进馆人次的月增长率为x ,依题意可列方程( )A. ()22001728x +=B. ()()220012001728x x +++=C. ()22001728x x++=D. ()()220020012001728x x ++++= 【答案】D【解析】【分析】本题考查了一元二次方程的应用,解题的关键是先分别表示出第二个月和第三个月的进馆人次,再根据第一个月的进馆人次加第二和第三个月的进馆人次等于728,列方程即可.【详解】解:设进馆人次的月增长率为x ,依题意可列方程为()()220020012001728x x ++++=, 故选D .6. 下列计算正确的是( )A. 236326a a a ⋅=B. 020=C. ()236416x x =D. 2139−=− 【答案】C【解析】【分析】本题主要考查单项式乘以单项式,积的乘方与幂的乘方,零指数幂和负整数指数幂,运用相关运算法则进行计算即可判断出正确结果.【详解】解:A. 235326a a a ⋅=,故选项A 计算错误,不符合题意;B. 021=,故选项B 计算错误,不符合题意;C. ()236416x x =,计算正确,故C 符合题意; D. 2139−=,故选项D 计算错误,不符合题意; 故选:C .7. 对一组数据:4,6,4,6,8−,描述正确的是( )A. 中位数是4−B. 平均数是5C. 众数是6D. 方差是7【答案】C【解析】【分析】本题主要考查了求方差,中位数,平均数和众数,根据方差,中位数,平均数和众数的定义进行求解判断即可. 【详解】解:把这组数据从小到大排列为44,6,6,8−,,处在最中间的数为6, ∴中位数为6,故A 不符合题意;∵数字6出现的次数最多,∴众数是6,故C 符合题意; 平均数为4466845−++++=,故B 不符合题意;方差为()()()()222244442648417.65−−+−+−+−=,故D 不符合题意; 故选:C . 8. 如图,ABC 与DEF 位似,点O 为位似中心,2AD AO =,若ABC 周长是5,则DEF 的周长是( )A. 10B. 15C. 20D. 25【答案】B【解析】 【分析】根据位似变换的概念得到ABC DEF ∽△△,AB DE ∥,根据相似三角形的性质求出AB DE ,再根据相似三角形的周长比等于相似比计算即可.【详解】解:∵ABC 与DEF 位似,2AD AO =,∴ABC DEF ∽△△,AB DE ∥, ∴ABO DEO ∽,∴13ABOA DE OD ==, ∴ABC 的周长:DEF 的周长1:3=,∵ABC 的周长是5,∴DEF 的周长是15.故选:B .【点睛】本题考查位似变换,相似三角形的判定和性质.掌握相似三角形的周长比等于相似比是解题的关键.9. A ,B 两地相距60千米,一艘轮船从A 地顺流航行至 B 地所用时间比从B 地逆流航行至A 地所用时间少45分钟, 已知船在静水中航行的速度为20千米/时.若设水流速度为x 千米/时(20x <), 则可列方程为( )A. 6060320204x x −=−+B. 6060320204x x −=+− 的C. 6060452020x x −=+−D. 6060452020x x−=−+ 【答案】A【解析】【分析】本题考查分式方程的应用,根据时间的关系列方程是解题的关键.顺流的速度=静水速度+水流速度,逆水速度=静水速度-水流速度,根据路程、速度、时间的关系表示出船顺流所用的时间和逆流所用的时间,根据时间的关系建立分式方程即可.详解】解:由题意可得,6060320204x x −=−+, 故选:A .10. 如图,在正方形ABCD 中,BPC △是等边三角形,BP ,CP 的延长线分别交AD 于点E ,F ,连接BD ,DP ;BD 与CF 相交于点H .给出下列结论:①12AE FC =;②15PDE ∠=°;③PBC PCD S S =△△12DHC BHC S S =△△;⑤2DE PF FC =⋅.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】D【解析】 【分析】由BPC △是等边三角形,得12AE BE =,而BE FC =,故①正确;由PC BC CD ==,906030PCD ∠=°−°=°,可判定②正确;过点D 作DM CP ⊥于M ,过点P 作PN BC ⊥于N ,则30DCM ∠=°,30CPN ∠=,可推出12DM CD =,PN =,则PBC PCD S S = ,判定③正确;由FE BC ∥可得FDH CBH ∽,进而得到DH FD BH BC=,得到DHC BHC S DH S BH = ,又因为F 不是AD 中点,故12DHC BHC S S ≠ ,可判定④错误;由PED DEB ∽,得PE ED ED BE=,则2ED PE BE =⋅,可【判定⑤正确.【详解】解:BPC 为等边三角形,PB PC ∴=,60PBC PCB ∠=∠=°,四边形ABCD 是正方形∴FE BC ∥,90ABC ∠=°,FEP CPB ∴△∽△,又PB PC = ,PE PF ∴=,FC EB ∴=,60PBC ∠=° ,90ABC ∠=°,30ABE ∴∠=°,在Rt ABE 中,30ABE ∠=°,12B AE E ∴=, 又BE FC = ,12AE FC ∴=,故①正确; PC BC CD == ,906030PCD ∠=°−°=°,18030752DPC PDC °−°∴∠=∠==°, 907515PDE ADC PDC ∴∠=∠−∠=°−°=°,故②正确;过点D 作DM CP ⊥于M ,过点P 作PN BC ⊥于N ,由题意可得30DCM ∠=°,30CPN ∠=, 12DM CD ∴=,PN =,∴PBC PCD S S = ,故③正确;FE BC ∥,FDH CBH ∴△∽△, ∴DH FD BH BC=, 又BHC △与DHC 同高, ∴DHC BHC S DH S BH= , 又 DH FD BH BC=,F 不是AD 中点, ∴12DHFD BH BC =≠, ∴12DHC BHC S S ≠ ,故④错误; 180180607545EPD EPF DPC ADB ∠=°−∠−∠=°−°−°=°=∠ ,PED PED ∠=∠,PED DEB ∴△∽△, ∴PE ED ED BE=, 2ED PE BE ∴=⋅,又PE PF = ,BE FC =,2DE PF FC ∴=⋅,故⑤正确,综上所述:正确的结论有4个,故选:D .【点睛】本题考查了正方形的性质、等边三角形性质、锐角三角函数、相似三角形的判定及性质,掌握以上基础知识,作出合适的辅助线是解本题的关键.二、填空题(共5小题)11. 在实数范围内分解因式:2318a −=_____.【答案】(3a a +【解析】【分析】本题主要考查了因式分解,掌握提取公因式法和公式法进行因式分解是解题的关键. 先提取公因数3,再运用平方差公式进行分解即可.【详解】解:()(22318363a a a a −=−=.故答案为(3a a +.12. 在平面直角坐标系中,对于平面内任一点(a ,b ),若规定以下三种变换:①△(a ,b )=(﹣a ,b );②○(a ,b )=(﹣a ,﹣b );③Ω(a ,b )=(a ,﹣b ),按照以上变换例如:△(○(1,2))=(1,﹣2),则○(Ω(3,4))等于_______________.【答案】(﹣3,4).【解析】【详解】解:○(Ω(3,4))=○(3,﹣4)=(﹣3,4故答案为(﹣3,4).13. 如图,A 是反比例函数k y x=的图象上一点,过点A 作AB y ⊥轴于点B ,点C 在x 轴上,且2ABC S ∆=,则k 的值为_____.【答案】4−【解析】【分析】此题考查了求反比例函数的比例系数,设点A 的坐标为(,)x y ,利用2ABC S ∆=得到4xy =−,即可得到答案.【详解】解:设点A 的坐标为(,)x y ,点A 在第二象限,0x ∴<,0y >,111||||2222ABC S AB OB x y xy ∆∴=⋅=⋅=−=, 4xy ∴=−,A 是反比例函数k y x=的图象上一点,4k xy ∴==−,故答案为:4−.14. 如图,已知AOB ∠,以点O 为圆心,以任意长为半径画弧,与OA OB 、分别于点C 、D ,再分别以点C 、D 为圆心,以大于12CD 为半径画弧,两弧相交于点E ,过OE 上一点M 作MN OA ∥,与OB 相交于点N ,50MOB ∠=°,则AOM ∠=______.【答案】25度##25°【解析】【分析】通过两直线平行,同位角相等,再利用角平分线定义求解即可.【详解】∵MN OA ,∴50AOB MNB ∠=∠=°,由题意可知:OM 平分AOB ∠, ∴1252AOM MOB AOB ∠=∠=∠=°. 故答案为:25°.【点睛】本题考查了基本作图,作已知角的角平分线及其定义和平行线的性质,解此题的关键是熟练掌握基本作图和平行线的性质及角平分线定义的应用.15. 如图,在直角坐标系中,已知A (4,0),点B 为y 轴正半轴上一动点,连接AB ,以AB 为一边向下作等边△ABC ,连接OC ,则OC 的最小值为_______.【答案】2【解析】【分析】以OA为对称轴,构造等边三角形ADF,作直线DC,交x轴于点E,先确定点C在直线DE上运动,根据垂线段最短计算即可.【详解】如图,以OA为对称轴,构造等边三角形ADF,作直线DC,交x轴于点E,∵△ABC,△ADF都是等边三角形,∴AB=AC,AF=AD,∠F AC+∠BAF=∠F AC+∠CAD=60°,∴AB=AC,AF=AD,∠BAF=∠CAD,∴△BAF≌△CAD,∴∠BF A=∠CDA=120°,∴∠ODE=∠ODA=60°,∴∠OED=30°,∴OE=OA=4,∴点C在直线DE上运动,∴当OC⊥DE时,OC最小,此时OC =12OE =2,故答案为:2.【点睛】本题考查了等边三角形的性质和判断,三角形的全等判定和性质,垂线段最短,熟练掌握三角形全等和垂线段最短原理是解题的关键. 三.解答题(共55分)16. ()101220246cos304π− −−−+−−° .【答案】3−【解析】【分析】本题考查了锐角三角函数的运算,实数的运算,解题的关键是掌握特殊的锐角三角函数值.先算锐角三角函数、绝对值、零指数幂和负整数指数幂,再算加减即可.【详解】解:原式2416=++−241=++−3=−17. 化简求值:22112242x x x x x x ++− ÷− −−,其中x 为数据4,5,6,5,3,2的众数. 【答案】122x x +−,34【解析】【分析】本题考查分式的化简求值,众数.先根据分式混合运算法则进行化简,根据众数的定义求出x 的值,最后代入计算即可. 【详解】解:22112242x x x x x x ++− ÷− −−()()221212222x x x x x x +−−+÷−− ()()()()2111222x x x x x ++−÷−− ()()()()2122211x x x x x +−⋅−+−122x x +=−, 4,5,6,5,3,2的众数为5,将5x =代入,得: 原式5132524+=×−. 18. 某校为了调查本校学生对航空航天知识的知晓情况.开展了航空航天知识竞赛,从参赛学生中,随机抽取若干名学生的成绩进行统计,得到如下不完整的统计图表:成绩/分频数/人 频率 6070x ≤<10 0.1 7080x ≤<15 b 8090x ≤< a 0.3590100x ≤≤ 40c请根据图表信息解答下列问题:(1)求a ,b ,c 的值;(2)补全频数直方图;(3)某班有2名男生和1名女生的成绩都为100分,若从这3名学生中随机抽取2名学生参加演讲,用列表或画树状图的方法,求抽取的2名学生恰好为1男1女的概率.【答案】(1)35a =,0.15b =,0.4c =.(2)见解析 (3)23【解析】【分析】(1)根据6070x ≤<的人数和频率可求抽取总人数,再由频率的定义求出a 、b 、c 即可; (2)由(1)中a 的值,补全频数分布直方图即可;(3)画树状图,共有6种等可能的结果,其中选出的2名学生恰好为一名男生、一名女生的结果有4种,再由概率公式求解即可.【小问1详解】解:由题意得:抽取学生总数100.1100÷=(人), 1000.3535a =×=,151000.15b =÷=,401000.4c ÷==.【小问2详解】解:补全频数分布直方图如图:【小问3详解】画树状图如下:共有6种等可能的结果,其中选出的2名学生恰好为一名男生、一名女生的结果有4种,∴选出的2名学生恰好为一名男生、一名女生的概率为4263=. 【点睛】此题考查的是用树状图法求概率以及频数分布表和频数分布直方图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.19. 如图,O 是ABC 的外接圆,直径BD 与AC 交于点E ,点F 在BC 的延长线上,连接DF ,F BAC ∠=∠.(1)求证:DF 是O 的切线;(2)从以下三个选项中选一个作为条件,使DF AC ∥成立,并说明理由;①AB AC =;② AD DC=;③CAD ABD ∠=∠; 你选的条件是:______.【答案】(1)见解析 (2)见解析【解析】【分析】本题考查切线的判定,圆周角定理,直角三角形两锐角互余,理解并掌握相关图形的性质定理是解决问题的关键.(1)由直径所对圆周角为直角可知90BAC DAC ∠+∠=°,结合圆周定理可知DAC DBC ∠=∠,由F BAC ∠=∠,可知90F DBC ∠+∠=°,进而可知B D D F ⊥,即可证明结论;(2)若选②,由等弧所对圆周角相等可知ABD DBF ∠=∠,结合(1)证ADB F ∠=∠,由圆周角定理可知ADB BCA ∠=∠,证得F BCA ∠=∠,进而可得结论;若选③由同弧所对圆周角相等可知CAD DBC ∠=∠,结合CAD ABD ∠=∠,可知ABD DBC ∠=∠,得 AD DC=,同②,可证DF AC ∥. 【小问1详解】证明:∵BD 是O 的直径,∴90BAD ∠=°,∴90BAC DAC ∠+∠=°,∵ CDCD =, ∴DAC DBC ∠=∠,又∵F BAC ∠=∠,∴90F DBC ∠+∠=°,则90BDF ∠=°,∴B D D F ⊥,∴DF 是O 的切线;【小问2详解】若选② AD DC=; ∵ AD DC=, ∴ABD DBF ∠=∠,由(1)可知:9090ABD ADBDBF F ∠+∠=°=∠+∠=°, ∴ADB F ∠=∠,由圆周角定理可知ADB BCA ∠=∠,∴F BCA ∠=∠,∴DF AC ∥;若选③CAD ABD ∠=∠;∵ CDCD =, ∴CAD DBC ∠=∠,∵CAD ABD ∠=∠,∴ABD DBC ∠=∠,∴ AD DC=, 同②,可知DF AC ∥;20. 某经销商销售一种成本价为10元/kg 的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不得高于18元/kg ;如图,在销售过程中发现销悬()kg y 与售价x (元/kg )之间满足一次函数关系.(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)设销售这种商品每天所获得的利润为W 元,求W 与x 之间的函数关系式,并求出该商品售价定为多少元/kg 时,才能使经销商所获利润最大?最大利润是多少?【答案】(1)y 与x 的之间的函数解析式为:260y x =−+,自变量x 的取值范围为:1018x ≤≤; (2)W 与x 之间的函数关系式为:22(20)200W x =−−+;当该商品销售单价定为18元时,才能使经销商所获利润最大;最大利润是192元.【解析】【分析】考查一次函数、二次函数的应用,求出相应的函数关系式和自变量的取值范围是解决问题的关键,在求二次函数的最值时,注意自变量的取值范围,容易出错.(1)根据一次函数过(12,36),(14,32)可求出函数关系式,然后验证其它数据否符合关系式,进而确定函数关系式,(2)先求出总利润W 与x 的函数关系式,再依据函数的增减性和自变量的取值范围确定何时获得最大利润,但应注意抛物线的对称轴,不能使用顶点式直接求.【小问1详解】解:设y 与x 的解析式为y kx b =+,把(12,36),(17,26)代入, 得:12361726k b k b += +=, 解得:260k b =− =, ∴y 与x 的之间的函数解析式为:260y x =−+,自变量x 的取值范围为:1018x ≤≤;【小问2详解】解:2(10)(260)280600W x x x x =−−+=−+−22(20)200x =−−+20a =−< ,抛物线开口向下,对称轴20x ,在对称轴的左侧,y 随x 的增大而增大,1018x ≤≤ ,∴当18x =时,W 最大22 (1820) 200192=−−+=元答:W 与x 之间的函数关系式为22(20)200W x =−−+,当该商品销售单价定为18元时,才能使经销商所获利润最大,最大利润是192元.21. 如图1,一灌溉车正为绿化带浇水,喷水口H 离地竖直高度为 1.2h =米.建立如图2所示的平面直角坐标系,可以把灌溉车喷出水的上、下边缘抽象为两条抛物线的部分图象,把绿化带横截面抽象为矩形DEFG ,其水平宽度2DE =米,竖直高度0.7EF =米,下边缘抛物线是由上边缘抛物线向左平移得到,是为上边缘抛物线最高点A 离喷水口的水平距离为2米,高出喷水口04.米,灌溉车到绿化带的距离OD 为d 米.(1)求上边缘抛物线喷出水的最大射程OC ;(2)求下边缘抛物线与x 轴交点B 的坐标;(3)若 3.2d =米,灌溉车行驶时喷出的水______(填“能”或“不能”)浇灌到整个绿化带.【答案】(1)上边缘抛物线喷出水的最大射程OC 为6m ;(2)()2,0B ;(3)不能.【解析】【分析】(1)求得上边缘的抛物线解析式,即可求解;(2)根据二次函数的性质,确定平移的单位,求得下边缘抛物线解析式,即可求解;(3)根据题意,求得点F 的坐标,判断上边缘抛物线能否经过点F 即可;【小问1详解】解:由题意可得:()0,1.2H ,()2,1.6A且上边缘抛物线的顶点为A ,故设抛物线解析式为:()22 1.6y a x =−+将()0,1.2H 代入可得:110a =− 即上边缘的抛物线为:()212 1.610y x =−−+ 将0y =代入可得:()212 1.6010x −−+= 解得:12x =−(舍去)或26x =即6m OC =上边缘抛物线喷出水的最大射程OC 为6m ;【小问2详解】由(1)可得,()0,1.2H 上边缘抛物线为:()212 1.610y x =−−+,可得对称轴为:2x = 点H 关于对称轴对称的点为:()4,1.2下边缘抛物线是由上边缘抛物线向左平移得到,可得上边缘抛物线向左平移4个单位,得到下边缘抛物线,即下边缘的抛物线解析式为:()212 1.610y x =−++ 将0y =代入可得:()212 1.6010x −++= 解得:16x =−(舍去)或22x =即点()2,0B ;【小问3详解】∵2 3.26<<, ∴绿化带的左边部分可以灌溉到,由题意可得:()5.2,0.7F将 5.2x =代入到()212 1.610y x =−−+可得:()21 5.22 1.60.5760.710y =−−+=< 因此灌溉车行驶时喷出的水不能浇灌到整个绿化带.【点睛】此题考查了二次函数的应用,涉及了待定系数法求解析式,与x 轴交点等问题,解题的关键是理解题意,正确求得解析式.22. 在矩形ABCD 中,点E 是射线BC 上一动点,连接AE ,过点B 作BF AE ⊥于点G ,交直线CD 于点F .(1)当矩形ABCD 是正方形时,以点F 为直角顶点在正方形ABCD 的外部作等腰直角三角形CFH ,连接EH.①如图1,若点E在线段BC上,则线段AE与EH之间的数量关系是________,位置关系是_________;②如图2,若点E在线段BC的延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;,M是BH中点,连接GM,(2)如图3,若点E在线段BC上,以BE和BF为邻边作BEHFBC=,求GM的最小值.AB=,23【答案】(1)①相等;垂直;②成立,理由见解析;(2【解析】【分析】(1)①证明△ABE≌△BCF,得到BE=CF,AE=BF,再证明四边形BEHF为平行四边形,从而可得结果;②根据(1)中同样的证明方法求证即可;(2)说明C、E、G、F四点共圆,得出GM的最小值为圆M半径的最小值,设BE=x,证明△ABE∽△BCF,得到CF,再利用勾股定理表示出GM的最小值.【详解】解:(1)①∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠BCD=90°,即∠BAE+∠AEB=90°,∵AE⊥BF,∴∠CBF+∠AEB=90°,∴∠CBF=∠BAE,又AB=BC,∠ABE=∠BCF=90°,∴△ABE≌△BCF(AAS),∴BE=CF,AE=BF,∵△FCH为等腰直角三角形,∴FC=FH=BE,FH⊥FC,而CD⊥BC,∴FH∥BC,∴四边形BEHF为平行四边形,∴BF∥EH且BF=EH,∴AE=EH,AE⊥EH,故答案为:相等;垂直;②成立,理由是:当点E 在线段BC 的延长线上时,同理可得:△ABE ≌△BCF (AAS ),∴BE=CF ,AE=BF ,∵△FCH 等腰直角三角形,∴FC=FH=BE ,FH ⊥FC ,而CD ⊥BC ,∴FH ∥BC ,∴四边形BEHF 为平行四边形,∴BF ∥EH 且BF=EH ,∴AE=EH ,AE ⊥EH ;(2)∵∠EGF=∠BCD=90°,∴C 、E 、G 、F 四点共圆,∵四边形BCHF 是平行四边形,M 为BH 中点,∴M 也是EF 中点,∴M 是四边形BCHF 外接圆圆心,则GM 的最小值为圆M 半径的最小值,∵AB=3,BC=2,设BE=x ,则CE=2-x ,同(1)可得:∠CBF=∠BAE ,又∵∠ABE=∠BCF=90°,∴△ABE ∽△BCF , ∴AB BE BC CF=,即32x CF =, ∴CF=23x , ∴设y=213449x x −+, 为当x=1813时,y取最小值1613,∴EF,故GM【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,二次函数的最值,圆的性质,难度较大,找出图形中的全等以及相似三角形是解题的关键.。

2024年广东省深圳市中考数学模拟押题预测试卷

2024年广东省深圳市中考数学模拟押题预测试卷

2024年广东省深圳市中考数学模拟押题预测试卷一、选择题(每题3分,共24分)1.(★)(3分)二次根式的值是()A.-3B.3或-3C.9D.32.(★)(3分)函数y=的自变量x的取值范围是()A.x≠-2B.x≥-2C.x>-2D.x<-23.(★)(3分)下列式子、、、、、,二次根式的个数()A.4B.3C.2D.14.(★)(3分)下列各式中,运算正确的是()A.a6÷a3=a2B.C.D.5.(★)(3分)下列根式中,不是最简二次根式的是()A.B.C.D.6.(★★)(3分)已知a为实数,那么等于()A.a B.-a C.-1D.07.(★★)(3分)已知实数a在数轴上对应的点如图所示,则-的值等于() A.2a+1B.-1C.1D.-2a-18.(★)(3分)已知是正整数,则实数n的最大值为()A.12B.11C.8D.3二、填空题(每题3分,共36分)9.(★★)(3分)化简:=.10.(★)(3分)计算:=2.11.(★★)(3分)使在实数范围内有意义的x应满足的条件是x≥1.12.(★★★)(3分)计算=8-4.13.(★★)(3分)当x≤0时,化简|1-x|-的结果是1.14.(★★)(3分)在实数范围内分解因式:x4-25=.15.(★★★)(3分)若|a-2|++(c-4)2=0,则a-b+c=3.16.(★★★)(3分)已知y=--1,求x+y=2.17.(★★)(3分)若成立,则x满足2≤x<3.18.(★★★)(3分)下列各式:①3+3=6;②=1;③+==2;④=2,其中错误的有①②③.19.(★★★)(3分)=-1-.20.(★★★)(3分)观察下列各式:…请你将发现的规律用含自然数n(n≥1)的代数式表达出来(n≥1).三、计算题:(每题6分,共24分)21.(★★★)(6分).22.(★★)(6分)计算:.23.(★★)(6分)化简:.24.(★★)(6分)计算:-++.四、解答题(每题9分,共36分)25.(★★★)(8分)先化简,再求值:,其中x=+1.26.(★★)(10分)设长方形的长与宽分别为a,b,面积为S.①已知a=cm,b=2cm,求S;②已知S=cm2, b=cm,求a.五.阅读理解:(6分)27.(★★★★)(6分)对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.试求12※4的值.六、综合题(12分)28.(★★★)(6分)阅读下面问题:;;.…试求:(1)的值;(2)的值; (3)(n为正整数)的值.29.(★★★)(6分)计算:(+)2007×(-)2006.。

2024年广东省深圳市松岗中学中考模拟数学试题

2024年广东省深圳市松岗中学中考模拟数学试题

2024年广东省深圳市松岗中学中考模拟数学试题一、单选题1.实数5-的相反数是( )A .5B .5-C .15D .15- 2.“二十四节气”是根据太阳在黄道(即地球绕太阳公转的轨道)上的位置来划分的,是在我国春秋战国时期订立的一种用来指导农事的补充历法,下列四幅“二十四节气”标识图中,文字上方所设计的图案是轴对称图案的是( )A .B .C .D .3.大庆油田发现预测地质储量12.68亿吨的页岩油,这标志着我国页岩油勘探开发取得重大战略突破.数字1268000000用科学记数法表示为( )A .91.26810⨯B .81.26810⨯C .71.26810⨯D .61.26810⨯ 4.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示.这些运动员成绩的众数和中位数分别为( )A .1.65米,1.65米B .1.65米,1.70米C .1.75米,1.65米D .1.50米,1.60米 5.下列运算一定正确的是( )A .()222ab a b -=-B .326a a a ⋅=C .()437a a =D .2222b b b +=6.将一副三角板按下图所示摆放在一组平行线内,125∠=︒,230∠=︒,则3∠的度数为( )A .55︒B .65︒C .70︒D .75︒7.位于深圳市罗湖区的梧桐山公园自西南向东北渐次崛起,分布着小梧桐、豆腐头、大梧桐三大主峰.从远处观看,山中最为瞩目的当属小梧桐电视塔.登临小梧桐山顶,可上九天邀月揽星,可鸟瞰深圳关内外壮丽美景.我校某数学兴趣小组的同学准备利用所学的三角函数知识估测该塔的高度,已知电视塔AB 位于坡度i 的斜坡BC 上,测量员从斜坡底端C 处往前沿水平方向走了120m 达到地面D 处,此时测得电视塔AB 顶端A 的仰角为37︒,电视塔底端B 的仰角为30︒,已知A 、B 、C 、D 在同一平面内,则该塔AB 的高度为( )m ,(结果保留整数,参考数据;sin370.60cos370.80tan370.75︒≈︒≈︒≈,, 1.73≈)A .24B .31C .60D .1368.如图,A ,B ,C 为O e 上的三个点,4AOB BOC ∠=∠,若60ACB ∠=︒,则BAC ∠的度数是( )A .20︒B .18︒C .15︒D .12︒9.《孙子算经》中有一道题,原文是:今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,绳长y 尺,根据题意列方程组得( )A . 4.5112y x y x -=⎧⎪⎨=-⎪⎩B . 4.5112x y y x -=⎧⎪⎨=-⎪⎩C . 4.5112y x y x -=⎧⎪⎨=+⎪⎩D . 4.5112x y y x -=⎧⎪⎨=+⎪⎩ 10.如图1,在矩形ABCD 中,1AE =,动点P 由点E 出发,沿点E B C D →→→的方向运动,设点P 的运动路程为x ,DEP V 的面积为y ,y 与x 的函数关系如图2所示,当5x =时,y 的值为( )A .4.5B .5C .5.5D .6二、填空题11.分解因式:34x x -=.12.一个布袋里放有3个红球、2个白球和2个蓝球,它们除颜色外其余都相同.从布袋中任意摸出1个球,摸到红球的概率是 .13.若关于x 的一元二次方程210x x k -++=有两个不相等的实数根,则k 的取值范围是. 14.如图,在平面直角坐标系中,点O 为坐标原点,等边三角形ABO 的边OB 和菱形CDEO 的边BO 均在x 轴上,点C 在AO上,ABD S =△()0,0k y k x x=>>的图像经过点A ,则k 的值为.15.如图,在Rt ABC V 中,90ACB ∠=︒,3AC BC ==,点D 在直线AC 上,1AD =,过点D 作DE AB ∥直线BC 于点E ,连接BD ,点O 是线段BD 的中点,连接OE ,则OE 的长为 .三、解答题16.计算:012022121)3tan 30(1)2-⎛⎫+-+-- ⎪⎝︒⎭; 17.先化简,再求值:221132111x x x x x ⎛⎫--÷ ⎪-+--⎝⎭,其中()10132x -⎛⎫=+- ⎪⎝⎭. 18.随着科技进步发展,在线学习已经成为部分人自主学习的选择、某校计划为学生提供以下四类学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生的需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣的调查”,并根据调查结果绘制成如下两幅不完整的统计图.(1)这次抽样调查的样本容量是________,在扇形统计图中“在线阅读”所在扇形圆心角的度数为________°;(2)将条形统计图补充完整;(3)若该校共有学生1500人,请你估计该校对“在线讨论”最感兴趣的学生人数.19.某校开设智能机器人编程的校本课程,购买了A ,B 两种型号的机器人模型.A 型机器人模型单价比B 型机器人模型单价多200元,用2000元购买A 型机器人模型和用1200元购买B 型机器人模型的数量相同.(1)求A 型,B 型机器人模型的单价分别是多少元?(2)学校准备再次购买A 型和B 型机器人模型共40台,购买B 型机器人模型不超过A 型机器人模型的3倍,且商家给出了两种型号机器人模型均打八折的优惠.问购买A 型和B 型机器人模型各多少台时花费最少?最少花费是多少元?20.如图,ABC V 是等腰直角三角形,90ACB ∠=︒,点O 为AB 的中点,连接CO 交O e 于点E , O e 与AC 相切于点D .(1)求证:BC 是O e 的切线;(2)延长CO 交O e 于点G ,连接AG 交O e 于点F ,若AC =FG 的长.21.【发现问题】一天放学后,妈妈带小丽到面馆去吃牛肉面,爱思考的小丽仔细观察盛面的碗,如图1,她发现面碗的轴截面(不包含碗足部分)可以近似看成是抛物线的一部分.【提出问题】碗体(碗体的厚度忽略不计)上一点到碗底内部所在平面的距离()cm y 与这一点到碗的中轴线(面碗的上、下两个底面圆的圆心所在直线)m 的距离()cm x 之间有怎样的函数关系?【分析问题】小丽从书包里拿出刻度尺、笔和本,向服务员借来一个空的面碗,把面碗正放在桌面上,对面碗进行了简单的测量,并根据测量数据画出面碗的轴截面,如图2,面碗的上口径24AB =cm ,碗底直径6CD EF ==cm ,面碗的边沿上一点B 到桌面EF 的距离8BG =cm ,碗足高1DF =cm .小丽又进一步建立以CD 所在直线为x 轴,以直线m 为y 轴的平面直角坐标系(如图3),从而求出y 与x 的关系式.【解决问题】(1)请你帮助小丽求出y 与x 的关系式;(2)小丽向空面碗中倒入一些水,当水面宽度为20cm 时,求此时面碗中水的深度;(3)小丽将(2)中面碗中的水倾倒至如图4所示,水面刚好与BC 重合,直接写出此时面碗中水的最大深度.22.【特例发现】正方形ABCD 与正方形AEFG 如图1所示放置,G ,A ,B 三点在同一直线上,点E 在边AD 上,连结BE ,DG .通过推理证明,我们可得到两个结论:①BE DG =;②BE DG ⊥.【旋转探究】将正方形AEFG 绕点A 按顺时针方向旋转一定角度到图2所示的位置,则在“特例发现”中所得到的关于BE 与DG 的两个结论还成立吗?如果成立,请给出证明;如果不成立,请说明理由.【迁移拓广】如图3,在矩形ABCD 与矩形AEFG 中,若2AB AD =,2AE AG =.连结BE ,DG .探索线段BE 与线段DG 存在怎样的数量关系和位置关系?为什么?【联想发散】如图4,ABC V 与ADE V 均为正三角形,连结BD ,CE .则线段BD 与线段CE 的数量关系是______;直线BD 与直线CE 相交所构成的夹角中,较小锐角的度数为______.。

广东深圳2024-2025学年九年级上学期期中数学模拟试题(解析版)

广东深圳2024-2025学年九年级上学期期中数学模拟试题(解析版)

2024-2025学年深圳市九年级上册期中考试模拟试卷数学试卷注意事项:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好.2.本卷考试时间90分钟,满分100分.考试范围:九年级上册3.作答选择题时,选出每题答案后,用2B 铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题时,用黑色字迹的钢笔或签字笔将答写在答题卡指定区域内.作答综合题时,把所选题号的信息点框涂黑,并作答.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,将答题卡交回.第Ⅰ卷(选择题)一、单选题(24分)1. 方程x 2=2x 的根是( ) A. 0 B. 2C. 0 或 2D. 无解【答案】C 【解析】【详解】解:移项可得:22x 0x −=, 因式分解可得:x (x -2)=0, 解得:x=0或x=2, 故选C .2. 一元二次方程2230x x +−=的两根分别为12x x 、,则12x x ⋅的值为( ) A. 2 B. 2−C. 3−D. 3【答案】C 【解析】【分析】根据一元二次方程根与系数的关系求解即可. 【详解】解:∵该一元二次方程为2230x x +−=,∴12331cx x a −⋅===−. 故选C .【点睛】本题考查一元二次方程根与系数的关系.熟记一元二次方程20(a 0)++=≠ax bx c 根与系数的关系:12b x x a +=−和12c x x a⋅=是解题关键. 3. 关于x 的一元二次方程()21230k x x −−+=有两个不同的实根,则k 的取值范围是( ) A. 43k <B. 43k <且1k ≠ C. 403k <<D. 1k ≠【答案】B 【解析】【分析】本题考查了根的判别式:一元二次方程200ax bx c a ++=≠()的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当0∆<时,方程无实数根.根据题意可得()1044310k k −≠ =−×−>再解不等式组,从而可得答案;【详解】解: 关于x 的一元二次方程()21230k x x −−+=有两个不相等的实数根, ()1044310k k −≠ ∴ =−×−>解得:43k <且1k ≠ , 故选:B .4. 若关于x 的一元二次方程方程kx 2﹣2x ﹣1=0有实数根,k 的取值范围是( ) A. k >﹣1 B. k ≥﹣1且k ≠0C. k <﹣1D. k <1且k ≠0【答案】B 【解析】【分析】根据一元二次方程根有实数根,可得ΔΔ≥0,代入系数解不等式,需要注意k ≠0. 【详解】∵一元二次方程有实数根 ∴()()2=2410k ∆−−⋅−≥ ,解得1k ≥−,又∵一元二次方程二次项系数不为0,∴0k ≠, ∴k 的取值范围是1k ≥−且0k ≠. 故选B.【点睛】本题考查一元二次方程的定义和根的判别式,当0∆>时,方程有两个不相等的实数根,当=0∆时,方程有两个相等的实数根,当∆<0时,方程无实数根,熟记概念是解题的关键.5. 对于一个位置确定的图形,如果它的所有点都在一个水平放置的矩形内部或边上,且该图形与矩形每条边都至少有一个公共点(如图1),那么这个矩形水平方向的边长我们称为该图形的宽,矩形铅垂方向的边长我们称为该图形的高.如图2,已知菱形ABCD 的边长为1,菱形的边AB 水平放置,如果该菱形的高是宽的23,那么菱形的宽是( )A.1813B.139C.32D. 2【答案】A 【解析】【分析】先根据要求画图,设AF =x ,则CF =23x ,根据勾股定理列方程可得结论. 【详解】解:在菱形上建立如图所示的矩形EAFC , 设AF =x ,则CF =23x , 在Rt △CBF 中,CB =1,BF =x -1, 由勾股定理得:BC 2=BF 2+CF 2, 12=(x −1)2+(23x )2, 解得:x =1813或0(舍), 则该菱形的宽是1813,故选A .【点睛】本题考查了新定义、矩形和菱形的性质、勾股定理,理解新定义中矩形的宽和高是关键.6. 设a 、b 是两个整数,若定义一种运算“ ”,2a b a ab =+ ,则方程()212x x −=的实数根是( ) A. 12x =−,23x =B. 1 2x =,23x =−C. 11x =−,26x =D. 1 1x =,26x =−【答案】A 【解析】【分析】根据题目中的新定义的运算规则,将所求方程化为一元二次方程方程,解方程即可解答. 【详解】解:∵2a b a ab =+ , ∴x △(x-2)=x 2 +x (x-2)=12, 整理得:2x 2-2x-12=0, 解得:x 1=-2,x 2=3. 故选A.【点睛】本题考查了新定义运算及一元二次方程的解法,根据新定义的运算规则将所求方程化为一元二次方程方程是解决本题的关键.7. 已知3是关于x 的方程220x ax a −+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( ) A 9 B. 12C. 12或15D. 15【答案】D 【解析】【分析】把x =3代入已知方程求得a 的值,然后求出该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可. 【详解】解:把x =3代入方程得:220x ax a −+=, 解得a =9,则原方程为29180x x −+=,解得:123,6x x ==, 因为这个方程的两个根恰好是等腰△ABC 的两条边长, ①当△ABC 的腰为3,底边为6时,不符合三角形三边关系②当△ABC 的腰为6,底边为3时,符合三角形三边关系,△ABC 的周长为6+6+3=15, 综上所述,△ABC 的周长为15. 故选:D .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了解一元二次方程、等腰三角形的性质以及三角形三边关系..8. .如图,在黄金矩形ABCD (AB BC >)的边AB 上取一点E ,使得BE BC =,连接DE ,则AEAD等于( )A.B.C.D.【答案】B 【解析】【分析】利用黄金矩形的定理求出ADAB= ,再利用矩形的性质得1AE AB BE AB AD AB AD AD AD AD−−===−,代入求值即可解题. 【详解】解:∵矩形ABCD 中,AD=BC,根据黄金矩形的定义可知AD AB , ∵BE BC =,∴11AE AB BE AB AD ABAD AD AD AD −−===−=−= 故选B【点睛】本题考查了黄金矩形这一新定义,属于黄金分割概念的拓展,中等难度,读懂黄金矩形的定义,表示出边长比是解题关键.第Ⅱ卷(非选择题)二、填空题(12分)9. 现有4种没有标签的无色溶液(蒸馏水、烧碱、稀盐酸、纯碱),任取其中两种滴加无色酚酞溶液(友情提示:酚酞遇蒸馏水、稀盐酸不变色,酚酞遇烧碱、纯碱变红色)颜色恰好都发生变化的概率是________. 【答案】16【解析】【分析】蒸馏水、烧碱、稀盐酸、纯碱分别记为A B C D 、、、,画出树状图,找出颜色恰好都发生变化的等可能情况和所有等可能情况,根据概率公式进行求解即可.【详解】解:蒸馏水、烧碱、稀盐酸、纯碱分别记为A B C D 、、、,画树状图如下:∵颜色恰好都发生变化的是取到B D 、的情况有两种,共有12种等可能情况, ∴颜色恰好都发生变化的概率是21126=, 故答案为:16【点睛】此题考查了树状图或列表法求概率,找出所有等可能情况数是解题的关键.10. 一元二次方程()()2311x x +−=的解为 __.【答案】1x =,2x =【解析】【分析】先化为一般形式,再用一元二次方程求根公式即可得到答案.【详解】解:()()2311x x +−=, 化为一般形式得:2240x x +−=, ()2142433=−××−=△,∴x =∴1x =2x =故答案为:1x =2x = 【点睛】本题考查解一元二次方程,解题的关键是掌握一元二次方程的求根公式. 11. 已知a b ≠,且满足22510a a −+=,22510b b −+=,那么b aa b+的值为______. 【答案】212【解析】【分析】本题考查了根与系数的关系,牢记“两根之和等于ba −、两根之积等于c a”是解题的关键.由a 、b 满足的条件可得出a 、b 为方程22510x x −+=的两个实数根,根据根与系数的关系可得出52a b +=、12ab =,将其代入()22a b ab b a a b ab+−+=中可求出结论. 【详解】解: a b ≠,且满足22510a a −+=,22510b b −+=,∴a 、b 为方程22510x x −+=的两个实数根,52a b ∴+=,12ab =,()222212221212252a b ab b a a b a b ab ab−× +−+ ∴+==== 故答案为:212. 12. 如图,矩形ABCD 中,15AD =,12AB =,E 是AAAA 上一点,且8AE =,F 是BC 上一动点,若将EBF △沿EF 对折后,点B 落在点P 处,则点P 到点D 的最短距离为______.【答案】13 【解析】【分析】连接PD ,DE,易得17DE ,4EB AB AE =−=,由翻折可得4PE EB ==,由EP DP DE +≥可知,当E ,P ,D 三点共线时,DP 最小,进而可得出答案.【详解】解:连接PD ,DE ,四边形ABCD 为矩形, 90A ∴∠=°,15AD = ,8AE=,17DE ∴=,12AB = ,4EB AB AE ∴=−=,由翻折可得PE EB =,4PE ∴=, EP DP DE +≥ ,∴当E ,P ,D 三点共线时,DP 最小, 17413DP DE EP ∴=−=−=最小值.故答案:13.【点睛】本题考查翻折变换(折叠问题)、矩形的性质,熟练掌握翻折的性质是解答本题的关键.三、解答题(62分)13. 某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,求该厂家一月份到三月份的口罩产量的月平均增长率.【答案】该厂家一月份到三月份的口罩产量的月平均增长率为30%. 【解析】【分析】设该厂家一月份到三月份的口罩产量的月平均增长率为x ,根据一月份的口罩产量是30万个,三月份的口罩产量是50.7万个,列出方程,解方程即可得到答案. 【详解】解:设该厂家一月份到三月份的口罩产量的月平均增长率为x , 由题意得,()230150.7x +=解得10.3x =,1 2.3x =−(不合题意,舍去)∴该厂家一月份到三月份口罩产量的月平均增长率为30%.【点睛】此题考查了一元二次方程的应用,读懂题意,准确列出方程是解题的关键.14. “当你背单词时,阿拉斯加的鳕鱼正跃出水面;当你算数学时,南太平洋的海鸥正掠过海岸;当你晚自习时,地球的极圈正五彩斑斓;但少年,梦要你亲自实现,那些你觉得看不到的人和遇不到的风景都终将在你生命里出现.”这是直播带货新平台“东方甄选”带货王董宇辉在推销鳕鱼时的台词.所推销鳕鱼的成本为每袋50元,当售价为每袋90元时,每分钟可销售100袋. 为了吸引更多顾客,“东方甄选”采取降价措施.据市场调查反映:销售单价每降1元,则每分钟可多销售10袋. (1)每袋鳕鱼的售价为多少元时,每分钟的销量为150袋?(2)“东方甄选”不忘公益初心,热心教育事业,其决定从每分钟利润中捐出500元帮助留守儿童,为为的了保证捐款后每分钟利润达到5500元,且要最大限度让利消费者,求此时鳕鱼销售单价为多少元? 【答案】(1)每袋鳕鱼的售价为85元时,每分钟的销量为150袋. (2)鳕鱼的销售单价为70元. 【解析】【分析】本题考查一元一次方程和一元二次方程的应用,解题的关键是根据题意,找到等量关系,列出方程,进行解答.(1)设每袋鳕鱼的售价为x 元,根据题意,则()1090100150x −+=,解出x ,即可; (2)设此时鳕鱼的销售单价为y 元,根据题意,则方程为()()5010901005005500y y −×−+−=,解出方程,即可. 【小问1详解】解:设每袋鳕鱼的售价为x 元,每分钟的销售量为150袋,∴()1090100150x −+=, 解得:85x =,答:每袋鳕鱼的售价为85元时,每分钟的销售量为150袋. 【小问2详解】解:设此时鳕鱼的销售单价为y 元,∴()()5010901005005500y y −×−+=, 解得:170y =,280y =, ∵要最大限度让利消费者, ∴70y =,答:此时鳕鱼的销售单价为70元.15. 某公司去年10月份的营业额为2500万元,按计划12月的营业额要达到3600万元,那么该公司11月、12月两个月营业额的月均增长率是多少?(请列方程解答) 【答案】20% 【解析】【分析】本题考查了一元二次方程应用中的增长率问题,找准等量关系,正确列出一元二次方程是解题的关键;根据该公司10月份和12月份的营业额,即可得到关于x 的一元二次方程,解方程取其正值即可. 【详解】解:设该公司11月、12月两个月营业额的月均增长率是x ,根据题意得:的的()2250013600x +=解得:10.220%x ==,2 2.2x =−(不合题意,舍去), 答:该公司11月、12月两个月营业额的月均增长率是20%.16. 如图,Rt ABC 中,90ACB ∠=°,点D ,E 分别是AB ,AC 的中点,点F 在BC 的延长线上,且CEF A ∠=∠.(1)求证:DE CF =;(2)若1BC =,3AB =,求四边形DCFE 的周长. 【答案】(1)见解析 (2)4 【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得CD AD BD ==,进而证明四边形DCEF 是平行四边形,根据平行四边形的性质即可得证;(2)根据直角三角形斜边上的中线等于斜边的一半求得CD ,根据中位线的性质求得DE ,根据平行四边形的性质即可求解. 【小问1详解】证明:90ACB ∠=° ,点D 是AB 中点,CD AD BD ∴==,DAC DCA ∴∠=∠,CEF A ∠=∠ , CEF DCE ∴∠=∠,CD EF ∴∥,点E 是AC 中点,DE CF ∴∥,∴四边形DCEF 是平行四边形, DE CF ∴=;【小问2详解】解:1BC = ,3AB =,AD BD = ,AE CE =,1122DE BC CF ∴===, 3AB = ,四边形DCEF 是平行四边形,1322CD EF AB ∴===, ∴四边形DCFE 的周长为132422 +×=. 【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,三角形中位线的性质,平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键.17. 如图,ABCD 中,对角线AC 与BD 相交于点,E 点G 为AD 的中点,连接,CG CG 的延长线交BA 的延长线于点,F 连接FD .(1)求证:AGF DGC ≌;(2)若,120,AG AB BAD =∠=°判断四边形ACDF 的形状,并证明你的结论. 【答案】(1)见解析;(2)四边形ACDF 是矩形,理由见解析.【解析】【分析】(1)先根据平行四边形的性质和平行线的性质得出FAG GDC ∠=∠,然后利用ASA 即可证明;(2)首先根据全等三角形的性质得出AF CD =,进而可证四边形ACDF 是平行四边形,然后利用平行四边形的性质和角度之间的关系得出AFG 是等边三角形,则有AG GF =,进而得出AD FC =,最后利用对角线相等的平行四边形是矩形即可证明.【详解】()1证明: 四边形ABCD 是平行四边形,//AB CD ∴,FAG GDC ∴∠=∠.点G 是AD 的中点,GA GD ∴=.又AGF DGC ∠=∠ ,()AGF DGC ASA ∴≅ ;()2解:四边形ACDF 是矩形.理由:AGF DGC ≌,AF CD ∴=,FG CG =.又//AB CD ,∴四边形ACDF 是平行四边形.四边形ABCD 是平行四边形,AB CD ∴=, AB AF ∴=.又AG AB = ,AG AF ∴=.120BAD ∠=° ,60FAG ∴∠=°,AFG ∴ 是等边三角形,AG GF ∴=.2,2AD AG FC FG == ,AD FC ∴=,∴四边形ACDF 是矩形.【点睛】本题主要考查平行四边形的判定及性质,矩形的判定,全等三角形的判定及性质,等边三角形的判定及性质,掌握矩形的判定,全等三角形的判定及性质是解题的关键.。

2023年深圳市中考一模数学试卷(含答案)数学参考答案

2023年深圳市中考一模数学试卷(含答案)数学参考答案

深圳市2022-2023 学年初三年级中考适应性考试数学学科参考答案及评分标准一、选择题 题号 12345678910答案DCBCACBDAB二、填空题三、解答题16.解法一:1242=−x x ……………………………………………………………1分412442+=+−x x ……………………………………………………………2分16)2(2=−x ……………………………………………………………3分42±=−x ……………………………………………………………4分即 61=x ,22−=x .……………………………………………………………5分解法二:24120x x −−=这里1a =,7b =−,12c =−………………………………………………………1分∵ 0644816)12(141642>=+=−××−=−ac b ……………………………2分∴ 28412644±=×±=x ……………………………………………………………3分即 61=x ,22−=x . ………………………………………………………………5分解法三:24120x x −−=0)2)(6(=+−x x …………………………………………………………………3分06=−x 或02=+x 即 61=x ,22−=x . ………………………………………………………………5分17.(1)_________;…………………………………………………………………………3分(2)解法一:………………………………6分(A ,A ) (A ,B ) (A ,C ) (B ,A ) (B ,B ) (B ,C ) (C ,A ) (C ,B ) (C ,C ) 共有9种可能的结果,其中小亮和小颖同时选择“参观航天科技展”的结果有1种, 所以小亮和小颖同时选择“参观航天科技展”的概率为91.……………………………7分 解法二:……………………6分共有9种可能的结果,其中小亮和小颖同时选择“参观航天科技展”的结果有1种, 所以小亮和小颖同时选择“参观航天科技展”的概率为91. ……………………………7分 (备注:①解法一中,9种等可能结果没有列举出来不扣分,即“树状图”正确3分,“结果”正确1分;②解法二中,表格中没有结果表示,只作标记如打√,且没对√的含义给出解释,扣1分)18.(1) 1∶2 ;(或21)………………………………………………………………2分 (2………………………4分(备注:△A 1B 1C 1只需要描点及连接正确即可,建议描对一个点给1分,虚线OA 和OCAy xBCB 1 O24 68101224 6 8 A 1 C 1 31没有画出来或连接成实线,均不扣分)(3) ;(备注:坐标表示没有括号不给分) …………………………………6分 (4) 3 . ………………………………………………………………………………8分19. (1) 60-x ;(备注:写成“160-100-x ” 不扣分)…………………………3分 (2)根据题意得:(200+10x )(60-x )=15000 ………………………………………………………………5分 解得:101=x ,302=x ……………………………………………………………………6分 因为降价不超过20元,所以302=x (不合题意,舍去) ………………………………7分 答:每件工艺品应降价10元.………………………………………………………………8分 (备注:解正确但没有舍根,只扣1分;答的表述不规范,扣1分) 20.(1) 解法一:所选择的条件是 ② ,………………………………………………………………………1分 证明: ∵ DE //AC ,DF //AB∴ 四边形AEDF 是平行四边形……………………………………………………3分 ∠ADE =∠DAC∵ AD 是△ABC 的角平分线∴ ∠EAD =∠DAC ∴ ∠EAD =∠ADE∴ AE =DE …………………………4分 ∴ 四边形AEDF 是菱形……………5分解法二:所选择的条件是 ③ ,………………………………………………………………………1分 证明: ∵ DE //AC ,DF //AB∴ 四边形AEDF 是平行四边形……………………………………………………3分 ∵点E 与点F 关于直线AD 对称∴ EF ⊥AD …………………………………………………………………………4分 ∴ 四边形AEDF 是菱形……………………………………………………………5分)2,2(b a ABCDEF解法三:所选择的条件是 ③ ,………………………………………………………………………1分 证明:∵DE //AC ,DF //AB∴四边形AEDF 是平行四边形 ………………………………………………………3分 ∵点E 与点F 关于直线AD 对称∴AE =AF ………………………………………………………………………………4分 ∴四边形AEDF 是菱形…………………………………………………………………5分 (2) 解法一:∵四边形AEDF 是菱形 ∴DE =DF =2………………………………6分 ∵ DF //AB ∴∠FDC =∠ABC ∵ DE //AC ∴∠FCD =∠EDB∴△BED ∽△DFC …………………………………………………………………………7分 ∴DFBE CF DE =,即212BE=∴BE =4………………………………………………………………………………………8分 解法二:∵四边形AEDF 是菱形 ∴AE =DF =AF =2∴CA =CF +AF =1+2=3 ………………………………………………………………………6分 ∵ DF //AB ∴∠CAB =∠CFD ∠CDF =∠CBA∴△CDF ∽△CBA …………………………………………………………………………7分 ∴AB DFCA CF =,即AB231= ∴AB =6∴BE =4 ……………………………………………………………………………………8分ABCDEF21.(1)DE 与BC…………………………………………………2分 (2)点A 与点B ,………………………………………………4分 点O 到双曲线C 1的距离是_________;……………………………………………………6分 (3)作直线l 5:y x b =−+交y 轴于点P ,交C 2于M ,N 两点,作MG ⊥l 4,NH ⊥l 4,垂足分别为G ,H 两点,作OK ⊥l 5,垂足为K .当OK =80时,隔音屏障为GH 的长. ∵y x b =−+,OK =80, ∴∠POK =45°,∴2802==OK OP ,即l 5:y x =−+……………………………………………7分 由y x =−+与2400y x=联立可求: M ,N …………………………………………………………8分∴80GH MN ===答:需要在高速路旁修建隔音屏障的长度是80 m .………………………………………9分 (其它解法,酌情按步骤给分)22.(1)证明:∵四边形ABCD 是正方形∴AD =AB ,∠DAB =90° …………………………………1分 ∵旋转90°∴∠P AQ =90°且AP =AQ …………………………………2分 ∴∠DAB -∠P AB =∠P AQ -∠P AB 即:∠P AD =∠QAB ∴△APD ≌△AQB∴BQ =DP …………………………………………………3分图5 y /m x /m l 4C 2 Ol 5MNGHKP6 ABCDQP M(2)解法一:(如图2)过点B 作BE ⊥AQ ,交AQ 的延长线于点E ∵旋转60°∴AP =AQ ,∠P AQ=60°∴△APQ 为等边三角形∴AP =AQ =PQ ,∠PQA =60° ∵PQ ⊥BQ∴∠BQE =180°–∠PQA –∠PQB =180°-90°-60°=30° 又∵∠DAP =∠BAQ=15°∴∠ABQ =∠BQE –∠BAQ =30°-15°=15°=∠BAQ∴AQ =QB …………………………………………………5分 设BE =x ,在Rt △BQE 中,则BQ =2x =AQ ,QE =3x ∴AE =AQ +QE =x x x )32(32+=+ 在Rt △BQE 中,AB 2=AE 2+BE 2即 222])32[)26(x x ++=+(…………………6分 解得 x =±1(舍负),∴AP =AQ =BQ =2x =2 …………………………………7分 解法二:(如图3)过点P 作PF ⊥AB ,垂足为F 点 ∵∠DAB=60°,∠DAP =15°, ∴∠P AB=∠DAB –∠DAP =45° ∵旋转60°∴AP =AQ ,∠BAQ =∠P AQ –∠P AB =15°∴△APQ 为等边三角形………………………………4∴AP =AQ =PQ ,∠PQA =60° ∵PQ ⊥BQ∴∠AQB =∠PQA +∠PQB =60°+90°=150° ∴∠ABQ=180°-∠AQB –∠BAQ =150°-15°=15° ∴AQ =QB =PQEDA BCPQ l图2F DABCP Ql图3即△BPQ 为等腰Rt △∴∠PBQ =45°,∠PBA=∠PBQ –∠ABQ =45°-15°=30°…………………5分 设AF =x ,则PF =x ,BF =x 3 则AB =BF +AF =2613(3+=+=+x x x )……6分解得 x =2 ∴AF =PF =x =2∴AP =22=x ……………………………………………7分 (3)51124和523……………………………………10分 (备注:对1个答案给2分,对2个答案给3分) 解析:设AM 交CD 于T ,过点T 作TK ⊥AC 于K 在△TKC 中,易得TK =3,即DT =3.第一种情况:以点B 为直角顶点,即∠PBR =90°,P 、R 的位置如图5所示 连接DP ,延长CB 交AR 于点H ,过R 作RG ⊥CH ,交BH 于点G 由43==AR AP AB DA ,∠DAB =∠P AR =90° 可证△ADP ∽△ABR 则∠APD =∠ARB 由于∠PBR =∠P AR =90° 则∠ARB +∠APB =180° 即∠APD +∠APB =180° 所以D 、P 、B 三点共线 由于RG ⊥CD ,∠DAT =∠BAH 易得△RGH ∽△ABH ∽△ADT 所以2163====AD DT AB BH RG GH 由于AB =8,则BH =4,AH =54 易得△BRG ∽△DBCPRABCDMG HKT 图5所以DBBRDC BG BC RG == 又因为CB =6,CD =8,则BD =10 设RG =3x ,则BG =4x ,BR =5x ,GH =x 23,11512253==x RH ∴BH =BG +GH =4x +x 23=x 211=4,解得118=x ∴11512253==x RH ∴511325111254=−=−=RH AH AR ∴51124511324343=×==AR AP . 第二种情况:以点R 为直角顶点,即∠PRB =90°,P 、R 的位置如图6所示 连接BP ,过B 作BI ⊥AR 于点I 易证△APR ∽△IRB ∴43==BI RI AR AP 设RI =3y ,则BI =4y ,BR =5y 易证△ABI ∽△ADT 则236===DT AD BI AI ∴AI =2BI =8y ∴854)48(2222==+=+=y y y BI AI AB () ∴552548==y ∴AR =AI -RI =8y -3y =5y =52 ∴523524343=×==AR AP .PRIABCDM图6T。

深圳中考数学模拟试卷十套

深圳中考数学模拟试卷十套

中考数学模拟测试卷一一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的) 1.32-的倒数为【 】A .23-B .23 C .32 D .32-2.下面四个几何体中,同一几何体的主视图和俯视图相同A 、1个B 、2个C 、3个D 、4个 3.我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留三个有效数字)用科学计数法表示为 【 】A 、 91037.1⨯B 、71037.1⨯C 、81037.1⨯D 、正方体 圆锥 球 圆柱 (第二题图)101037.1⨯4、下列四个点,在正比例函数X Y 52-=的图像上的点是 【 】A 、( 2, 5 )B 、( 5, 2)C 、(2,-5)D 、 ( 5 , -2 ) 5.在△ABC 中,若三边BC ,CA,AB 满足 BC :CA :AB=5:12:13,则cosB= 【 】A 、125B 、512C 、135D 、13126.某校男子男球队10名队员的身高(厘米)如下:179,182,170,174,188,172,180,195,185,182,则这组数据的中位数和众数分别是 【 】A 、181,181B 、182,181C 、180,182D 、181,1827.同一平面内的两个圆,他们的半径分别为2和3 ,圆心距为d,当51 d 时,两圆的位置关系是 【 】A 、外离B 、相交C 、内切或外切D 、内含8.如图,过y 轴上任意一点p ,作x 轴的平行线,分别与反比例函数xy xy 24=-=和的图像交于A 点和B 点,若C 为x轴上任意一点,连接AC,BC 则△ABC 的面积为 【 】9、 如图,在ABCD 中EF 分别是AD 、 CD 边上的点,连接BE 、AF,他们相交于G ,延长BE 交CD 的延长线于点H,则图中的相似三角形有 【 】A 、2对B 、3对C 、4对D 、5对10、若二次函数c x x y +-=62的图像过)321,23(),,2(),,1(Y C Y B Y A +-,则321,,y y y 的大小关系是第Ⅱ卷(非选择题 共70分)二、填空题(共4小题,每小题3分,计12分) 11.计算:23-=.(结果保留根号) 12.如图,AC ∥BD,AE 平分∠BAC 交BD 于点E ,若0641=∠ 则=∠1.13、分解因式:=+-a ab ab 442.14、如图,在梯形ABCD 中,AD ∥BC ,对角线AC ⊥BD ,若AD=3,BC=7,则梯形ABCD 面积的最大值三、解答题(共8小题,计58分.解答应写出过程) 15.(本题满分5分)解分式方程:xx x -=--2312416.(本题满分6分) 某校有三个年级,各年级的人数分别为七年级600人,八年级540人,九年级565人,学校为了解学生生活习惯是否符合低碳观念,在全校进行了一次问卷调查,若学生生活习惯符合低碳观念,则称其为“低碳族”;否则称其为“非低碳族”,经过统计,将全校的低碳族人数按照年级绘制成如下两幅统计图:(1)根据图①、图②,计算八年级“低碳族”人数,并补全上面两个统计图;(2)小丽依据图①、图②提供的信息通过计算认为,与其他两个年级相比,九年级的“低碳族”人数在本年级全体学生中所占的比例较大,你认为小丽的判断正确吗?说明理由。

深圳中考数学模拟试卷及答案10套合集

深圳中考数学模拟试卷及答案10套合集

十套合(总一、选择题(本大题共12小题1. (3分)如果a 的倒数是A.12. (3分)党的十八大以来情况到底怎么样?从今年“两会从2012年的9899万人减少到年平均每年减贫1300多万人A .1.66×107B 3.(3分)下图是由大小相同的A . C .4.(3分)下列我国著名企业商A . C .十套合集深圳中考数学模拟试卷1(总分100分,考试时间90分钟) 小题,每小题3分,共36分) 数是-1,那么a 2021等于( )B.-1C.2020 D.-以来,我国精准扶贫已经实施了六年,脱贫攻坚战已两会”新闻中心获知,脱贫攻坚取得了显著成就减少到2018年的1660万人,6年时间减少了8000万人.数字1660万用科学记数法表示为( ) .1.66×103C .166×105D .1.3相同的5个小正方体搭成的几何体,则它的主视图是B .D .企业商标图案中,是中心对称图形的是( )B .D .2020坚战已经打了三年,成就,我国贫困人口000多万人,连续6×107视图是( )5.(3分)下列计算正确的是A .x 2+x 2=x 4C .6.(3分)某市疾控中心在对潜伏期分别为:5,5,5数据的说法中不正确的是A .众数是5天 C .平均数是7.9天7.(3分)如图,已知a ∥=50°,则∠3为( A .55°B 8.(3分)如图,四边形( )A .48°B 9.(3分)某中学随机调查了锻炼时间(小时)5人数2则这15名同学一周在校参加A .6,7B 10.(3分)已知关于x 的一元于( )的是( ) B .(x +y )2=x 2+y 2D .x 2•x 3=x 6在对10名某传染病确诊病人的流行病史的调查中发现,7,7,8,8,9,11,14(单位:天),则下列关的是( ) B .中位数是7.5天 D .标准差是2.5天b ,点A 在直线a 上,点B ,C 在直线b 上,若∠ ).65°C .70°D .75ABCD 内接于圆O ,AD ∥BC ,∠DAB =48°,则∠.96°C .114°D .132查了15名学生,了解他们一周在校参加体育锻炼时间 6 7 8652校参加体育锻炼时间的中位数和众数分别是( .7,7C .7,6D .6的一元二次方程kx 2﹣2x ﹣1=0有实数根,若k 为非正中发现,这10人的下列关于这组潜伏期∠1=125°,∠2°∠AOC 的度数是°炼时间,列表如下: ) ,6为非正整数,则k 等A .B 11.(3分)已知:如图,直线M 作x 轴的垂线交直线l A .B 12.(3分)如图,等腰直角三CE ,过D 、E 作DM 、中①四边形AMFN 是正方形时,AD 2=DE •CD .正确结A .1个B二、填空题(本大题共4小题13.(3分)分解因式:xy 14.(3分)若分式的值15.(3分)如图,在Rt △AB 的垂直平分线于点= ..0 C .0或﹣1 D .﹣直线l 经过点A (﹣2,0)和点B (0,1),点M 于点C ,若OM =2OA ,则经过点C 的反比例函数表达.C .D .直角三角形ABC ,∠BAC =90°,D 、E 是BC 上的两EN 分别垂直AB 、AC ,垂足为M 、N ,交与点F ,连接正方形;②△ABE ≌△ACD ;③CE 2+BD 2=DE 2;④正确结论有( ).2个C .3个D .4小题,每小题3分,共12分) x xy +-22= 的值为0,则x 的值为 . ABC 中,∠ACB =90°,过点C 作△ABC 外接圆D ,AB 的垂直平分线交AC 于点E .若OE =2,1在x 轴上,过点数表达式为( )上的两点,且BD =AD 、AE .其当∠DAE =45°个⊙O 的切线交AB =8,则CD16.(3分)如图,函数y 绕点B (,0)顺时针旋转为 .三、解答题(本大题共7小题17.(6分)计算:18.(6分)先化简,再求值19.(7分)某校组织学生开展了组织者提出了两条指导性建(1)A 类“武汉加油”防新型冠状病毒”4个中任(2)E 类为自拟其它与疫情评奖之余,为了解学生的选抽取了部分作品进行了统计=x (x ≥0)的图象与反比例函数y =的图象交于针旋转90°后,得到的点A '仍在y =的图象上,小题,共52分) .求值:(1﹣)÷,其中a =2+.开展了“2020新冠疫情”相关的手抄报竞赛.对于手导性建议:、B 类“最美逆行者”、C 类“万众一心抗击疫情”个中任选一个; 与疫情相关的主题.生的选题倾向,发掘出最能引发学生触动的主题素材了统计,并将统计结果绘制成了如下两幅尚不完整的统象交于点A ,若点A ,则点A 的坐标对于手抄报的主题,”、D 类“如何预题素材,组织者随机整的统计图.请根据以上信息回答:(1)本次抽样调查的学生总(2)扇形统计图中,“(3)本次抽样调查中,“20.(7分)如图,从地面上的点向前走9m 到达B 点,测得(1)求∠BPQ 的度数;(2)求该电线杆PQ 的高度21.(8分)六一儿童节,某玩月能售出500个,销售单价元,请回答以下问题:(1)若月销售利润定为(2)由于资金问题,在月销单价至少定为多少元?学生总人数是 ,并补全条形统计图;C ”对应的扇形圆心角的度数是 ,x = ,y “学生手抄报选题”最为广泛的是 类.(填字母上的点A 看一山坡上的电线杆PQ ,测得杆顶端点P 的仰测得杆顶端点P 和杆底端点Q 的仰角分别是60°;的高度.(结果保留根号)某玩具经销商在销售中发现:某款玩具若以每个50售单价每涨1元,月销售量就减少10个,这款玩具的进为8000元,且尽可能让利消费者,销售单价应定为多在月销售成本不超过10000元、且没有库存积压的情﹣z = ; 填字母) 的仰角是45°,°和30°. 元销售,一个具的进价为每个40定为多少元?压的情况下,问销售22.(9分)(8分)如图,在半径画弧交BA 的延长线于接CF .(1)求证:△BCD ≌△AF (2)若AC =6,∠BAC23.(9分)如图1所示,已知直一点,交点分别是点B (1)试确定抛物线的解析式(2)在抛物线的对称轴上是点坐标,不存在请说明理由(3)如图2,点Q 是线段AQM 的最小周长.参考答案选择题1-12答案:B A B B C D 13.x (y −1)(y −1)在△ABC 中,AB =AC ,D 是AB 上一点,以点D 长线于点E ,连接CD ,作EF ∥CD ,交∠EAC 的平分AFE ;=30°,求四边形CDEF 的面积S 四边形CDEF .已知直线y =kx +m 与抛物线y =ax 2+bx +c 分别交于(6,0)和点C (0,6),且抛物线的对称轴为直线解析式;轴上是否存在点P ,使△PBC 是直角三角形?若存在明理由;线段BC 上一点,且CQ =,点M 是y 轴上一B C D D B D D B C为圆心,AC 为的平分线于点F ,连交于x 轴和y 轴上同为直线x =4; 若存在请直接写出P 轴上一个动点,求△14.215.(3分)如图,在Rt △AB 的垂直平分线于点D 3 .【解答】解:连接OC ∵CD 是⊙O 的切线, ∴∠OCD =90°, ∵∠ACB =90°, ∴∠DCE =∠COB , ∵OD ⊥AB , ∴∠AOE =90°,∴∠A +∠B =∠A +∠AEO ∴∠AEO =∠B , ∵OC =OB , ∴∠OCB =∠B , ∵∠DEC =∠AEO , ∴∠DEC =∠DCE , ∴DE =DC , 设DE =DC =x , ∴OD =2+x , ∵OD 2=OC 2+CD 2, ∴(2+x )2=42+x 2, 解得:x =3, ∴CD =3, 故答案为:3.ABC 中,∠ACB =90°,过点C 作△ABC 外接圆,AB 的垂直平分线交AC 于点E .若OE =2,AB, EO =90°, ⊙O 的切线交=8,则CD =16.(3分)如图,函数y 绕点B (,0)顺时针旋转(2,2).【解答】解:设点A 的坐标过A 作AC ⊥x 轴于C ,过∴∠ACB =∠A ′DB =∴BC =﹣a ,∵点A 绕点B (,0)∴∠ABA ′=90°,AB ∴∠CAB +∠ABC =∠∴∠CAB =∠A ′BD ,∴△ACB ≌△BDA ′(∴BD =AC =a ,A ′D =∵点A '在y =的图象上∴解得:k =8,a =2,∴点A 的坐标为(2故答案为:(2,2=x (x ≥0)的图象与反比例函数y =的图象交于针旋转90°后,得到的点A '仍在y =的图象上,的坐标为(a ,a ),过A ′作A ′D ⊥x 轴于D , 90°,AC =OC =a , 顺时针旋转90°后,得到的点A ',=A ′B ,ABC +∠A ′BD =90°, AAS ), BC =﹣a ,象上,,,2),).象交于点A ,若点A ,则点A 的坐标为17. 计算:【解答】解:原式=﹣=﹣4+4﹣2+3+2=3.18. (6分)先化简,再求值【解答】解:(1﹣)===,当a =2+时,原式=19. 某校组织学生开展了“202提出了两条指导性建议:(1)A 类“武汉加油”防新型冠状病毒”4个中任(2)E 类为自拟其它与疫情评奖之余,为了解学生的选抽取了部分作品进行了统计. 4+|2﹣4|++2×求值:(1﹣)÷,其中a =2+.)÷=.2020新冠疫情”相关的手抄报竞赛.对于手抄报的:、B 类“最美逆行者”、C 类“万众一心抗击疫情”个中任选一个; 与疫情相关的主题.生的选题倾向,发掘出最能引发学生触动的主题素材了统计,并将统计结果绘制成了如下两幅尚不完整的统抄报的主题,组织者”、D 类“如何预题素材,组织者随机整的统计图.请根据以上信息回答:(1)本次抽样调查的学生总(2)扇形统计图中,“C ”对应(3)本次抽样调查中,“【解答】解:(1)调查的学120×20%=24(人),120﹣30﹣36﹣24﹣18=如图所示:(2)“C ”对应的扇形圆心x %=×100%=30%10%,故x =30,y ﹣z =10﹣5故答案为:72°,30,5(3)由(2)中所求,可得故答案为:B .学生总人数是 120 ,并补全条形统计图;对应的扇形圆心角的度数是 72° ,x = 30 “学生手抄报选题”最为广泛的是 B 类.(填字查的学生总人数:30÷25%=120(人),12(人), 形圆心角的度数是:360°×20%=72°, 0%,y %=×100%=15%,z %=1﹣30%﹣15%=5, ;可得出:“学生手抄报选题”最为广泛的是B 类.,y ﹣z = 5 ; 填字母) ﹣25%﹣20%=.20. 【解答】解:延长(1)∠BPQ =90°﹣60°(2)设PE =x 米.在直角△APE 中,∠A 则AE =PE =x 米; ∵∠PBE =60°, ∴∠BPE =30°, 在直角△BPE 中,BE =∵AB =AE ﹣BE =9米,则x ﹣x =9,解得:x =. 则BE =米.在直角△BEQ 中,QE =∴PQ =PE ﹣QE =答:电线杆PQ 的高度为21.六一儿童节,某玩具经销商500个,销售单价每涨答以下问题:(1)若月销售利润定为(2)由于资金问题,在月销单价至少定为多少元?PQ 交直线AB 于点E ,如图所示: °=30°; =45°, PE =x 米,BE =米. ﹣=9+3(米).度为(9+3)米.经销商在销售中发现:某款玩具若以每个50元销售1元,月销售量就减少10个,这款玩具的进价为每个为8000元,且尽可能让利消费者,销售单价应定为多在月销售成本不超过10000元、且没有库存积压的情销售,一个月能售出为每个40元,请回定为多少元? 压的情况下,问销售【解答】解:(1)设销售单由题意,得(x ﹣40)解得x 1=60,x 2=80,∵尽可能让利消费者,∴x =60.答:消费单价应定为60元(2)设销售单价定为a 元由题意,得40[500﹣10解得a ≥75答:销售单价至少定为22. (8分)如图,在△弧交BA 的延长线于点E ,(1)求证:△BCD ≌△AF (2)若AC =6,∠BAC【解答】解:(1)∵AB ∴∠B =∠ACB , ∵∠EAC =∠B +∠ACB ∴∠EAC =2∠B , ∵∠1=∠2, ∴∠EAC =2∠1, ∴∠B =∠1, ∵EF ∥CD ,销售单价应定为x 元, [500﹣10(x ﹣50)]=8000, 元. 元,(a ﹣50)]≤10000, 75元. ABC 中,AB =AC ,D 是AB 上一点,以点D 为圆心,连接CD ,作EF ∥CD ,交∠EAC 的平分线于点AFE ;=30°,求四边形CDEF 的面积S 四边形CDEF .=AC , , 圆心,AC 为半径画线于点F ,连接CF .∴∠BDC =∠AEF , ∵AB =AC =DE , ∴BD =AE ,∴△BCD ≌△AFE (ASA (2)如图,过A 作AH ∵△BCD ≌△AFE , ∴CD =EF , 又∵EF ∥CD ,∴四边形CDEF 是平行四边∴CF =AB =AC =6,且∵∠BAC =30°, ∴∠ACH =30°, ∴AH =AC =3,∴S 四边形CDEF =CF ×AH23. 如图1所示,已知直线交点分别是点B (6,0)(1)试确定抛物线的解析式(2)在抛物线的对称轴上是点坐标,不存在请说明理由(3)如图2,点Q 是线段AQM 的最小周长.);⊥CF ,垂足为H , 行四边形, CF ∥AB , =6×3=18.线y =kx +m 与抛物线y =ax 2+bx +c 分别交于x 轴和)和点C (0,6),且抛物线的对称轴为直线x =4解析式;轴上是否存在点P ,使△PBC 是直角三角形?若存在明理由;线段BC 上一点,且CQ =,点M 是y轴上一y 轴上同一点,; 若存在请直接写出P 轴上一个动点,求△【解答】解:(1)∵抛物线∴点A 的坐标为(2,0∵抛物线y =ax 2+bx +c ∴,解得a =,b =﹣4,c ∴抛物线的解析式为:y (2)设P (4,y ), ∵B (6,0),C (0,6∴BC 2=62+62=72,PB 2当∠PBC =90°时,BC 2∴72+22+y 2=42+(y ﹣6解得:y =﹣2, ∴P (4,﹣2);当∠PCB =90°时,PC 2∴42+(y ﹣6)2+72=22解得:y =10, ∴P (4,10);当∠BPC =90°时,PC 2∴42+(y ﹣6)2+22+y 2=解得:y =3.∴P (4,3+)或P抛物线y =ax 2+bx +c 与x 轴交于点A 、B 两点,对称轴).过点A (2,0),B (6,0),C (0,6), =6.=;),=22+y 2,PC 2=42+(y ﹣6)2, +PB 2=PC 2, )2, +BC 2=PB 2, +y 2, +PB 2=BC 2. 72, (4,3﹣).对称轴为直线x =4,综合以上可得点P 的坐标为(3)过点Q 作QH ⊥y 轴于∵B (6,0),C (0,6∴OB =6,OC =6, ∴∠OCB =45°,∴∠CQH =∠HCQ =45°∵CQ =,∴CH =QH =∴OH =6﹣,∴点Q 的坐标为(在x 轴上取点G (﹣2,∴AQ =QG =∴AQ +QG =∴△AQM 的最小周长为坐标为(4,﹣2)或(4,10)或(4,3+)或P (轴于点H , ), °, ,,),0),连接QG 交y 轴于点M ,则此时△AQM 的周长=, =,, 为4.4,3﹣).的周长最小,202(总一、选择题(本大题共12小题1. (3分)﹣2的倒数是(A .2B2. 2.(3分)《战狼2》中56亿元(5600000000元)A .5.6×109B 3.(3分)下列运算正确的是A .C .3a +5b =8ab4.(3分)等腰三角形的一边为A .17B 5.(3分)下列立体图形中,A .C .6.(3分)某市疾控中心在对潜伏期分别为:5,5,5数据的说法中不正确的是A .众数是5天 C .平均数是7.9天7.(3分)如图,已知a ∥2021深圳中考数学模拟试卷2 (总分100分,考试时间90分钟) 小题,每小题3分,共36分) ( ).﹣3C .﹣D .中“犯我中华者,虽远必诛”,令人动容,热血沸腾),5600000000用科学记数法表示为( ) .5.6×108C .0.56×109D .56的是( )B .D .3a 2b ﹣4ba 2=﹣a 2b一边为4,另一边为9,则这个三角形的周长为( .22C .13D .17,主视图是矩形的是( )B .D .在对10名某传染病确诊病人的流行病史的调查中发现,7,7,8,8,9,11,14(单位:天),则下列关的是( ) B .中位数是7.5天 D .标准差是2.5天b ,点A 在直线a 上,点B ,C 在直线b上,若∠血沸腾.其票房突破×108) 或22中发现,这10人的下列关于这组潜伏期∠1=125°,∠2=50°,则∠3为( A .55°B 8.(3分)下列选项中的尺规作是( )A .C .9. 9.(3分)10个全等的小正Q 是边XY 一点.若线段A .B 10.(3分)如图,点E 、F 分别且∠EAF =45°,AE ,ADF ;②EF =BE +DF ;以上结论中,正确的个数有 ).65°C .70°D .75尺规作图(各图中的点P 都在△ABC 的边上),能推 B .D .的小正方形拼成如图所示的图形,点P 、X 、Y 是小正PQ 恰好将这个图形分成面积相等的两个部分,则.C .D .分别为正方形ABCD 的边BC 、CD 上一点,AC 、AF 分别交对角线BD 于点M ,N ,则有以下结论:③∠AEB =∠AEF =∠ANM ;④S △AEF =2S △AMN 个数有( )个.°能推出P A =PC 的是小正方形的顶点,的值为( )BD 交于点O ,:①△AOM ∽△MNA .1 B11.(3分)如图,一棵珍贵的高度,现采取以下措施:=45°,则这棵树的高1.4)A .14米B 12.(3分)如图,正方形ABC 于直线EF 的对称点G 接CM .则下列结论,其中①∠1=∠2; ②∠3=∠4; ③GD =CM ;④若AG =1,GD =2,则A .①②③④ B.2C .3D .4珍贵的树倾斜程度越来越厉害了.出于对它的保护:在地面上选取一点C ,测得∠BCA =37°,AC AB 约为( )(参考数据:sin37°≈,tan37.15米C .17米D .18ABCD 中,E 是BC 延长线上一点,在AB 上取一点落在AD 上,连接EG 交CD 于点H ,连接BH 交其中正确的是( ) 则BM =..①②C .③④D .①②4保护,需要测量它的=28米,∠BAC an37°≈,≈米取一点F ,使点B 关EF 于点M ,连①②④二、填空题(本大题共4小题13.(3分)分解因式:m 4n14.(3分)如图,在 ABCD 的周长长 cm .15.(3分)如图,小正方形构个小扇形的面积之和为16.(3分)如图,正方形ABC 一象限,点D 在x 轴的负半则b ﹣k = .三、解答题(本大题共7小题17.(6分)计算(﹣π18.(6分)先化简:代入求值.19.(7分)为推进“传统文化小题,每小题3分,共12分) ﹣4m 2n = . BCD 中,AB =2cm ,AD =4cm ,AC ⊥BC ,则△第15题方形构成的网络中,半径为1的⊙O 在格点上,则图 (结果保留π).ABCO 的边长为,OA 与x 轴正半轴的夹角为的负半轴上,且满足∠BDO =15°,直线y =kx +b 经过小题,共52分) )0﹣3tan30°+()﹣2+|1﹣|,再从﹣3、2、3中选择一个合适的统文化进校园”活动,某校准备成立“经典诵读”、“△DBC 比△ABC则图中阴影部分两角为15o,点B 在第B 、D 两点,合适的数作为a 的值“传统礼仪”、“民族器乐”和“地方戏曲”小组):(1)报名参加课(2)扇形图中m = (3)根据报名情况,学校决排两人到“地方戏曲”小组请用列表或画树状图的方法20.(7分)某建材销售公司在品牌的建材售价为每件600(1)若该销售公司在第一季种品牌的建材多少件?(2)该销售公司决定在基础上下调a %,B 种品牌的低销售额的销售量相比,量减少了a %,结果a 的值.21.(8分)如图,已知△作DE ⊥AB ,垂足为E ,(1)求证:△DOE ∽△AB ”等四个课外活动小组.学生报名情况如图(每人外活动小组的学生共有人,将条形图,n = ;学校决定从报名“经典诵读”小组的甲、乙、丙、小组,甲、乙恰好都被安排到“地方戏曲”小组的的方法说明. 公司在2019年第一季度销售A ,B 两种品牌的建材共6000元,B 种品牌的建材售价为每件9000元.第一季度售完两种建材后总销售额不低于96.6万元在2019年第二季度调整价格,将A 种品牌的建材在品牌的建材在上一个季度的基础上上涨a %;同时,,A 种品牌的建材的销售量增加了a %,B 种品牌2019年第二季度的销售额比(1)问中最低销售额增ABC 内接于⊙O ,AB 是直径,点D 在⊙O 上,OD ,连接CD 交OE 边于点F . ABC ;每人只能选择一个补充完整;、丁四人中随机安小组的概率是多少?建材共126件,A 种万元,求至多销售A 建材在上一个季度的,与(1)问中最种品牌的建材的销售售额增加a %,求∥BC ,过点D(2)求证:∠ODF =∠BD (3)连接OC .设△式子表示)22.(9分)如图,点A 、边△ABC ,,(1)若点C 在反比例函数(2)在(1)中的反比例函求出点N 坐标,若不存在(3)点P 在第一象限的反坐标.23.(9分)如图1所示,已知直一点,交点分别是点B (1)试确定抛物线的解析式(2)在抛物线的对称轴上是BDE ;DOE 的面积为S .sin A =,求四边形BCOD 的面积B 分别在x 轴和y 轴的正半轴上,以线段AB 为边在,且CA ∥y 轴. 例函数的图象上,求该反比例函数的解析比例函数图象上是否存在点N ,使四边形ABCN 是菱存在,请说明理由.限的反比例函数图象上,当四边形OAPB 的面积最小时已知直线y =kx +m 与抛物线y =ax 2+bx +c 分别交于(6,0)和点C (0,6),且抛物线的对称轴为直线解析式;轴上是否存在点P ,使△PBC是直角三角形?若存在的面积(用含有S 的为边在第一象限作等的解析式; 是菱形,若存在请最小时,求出P 点交于x 轴和y 轴上同为直线x =4;若存在请直接写出P点坐标,不存在请说明理由(3)如图2,点Q 是线段AQM 的最小周长.参考答案1.C2.A3.D4.B5.B6.D7.D8. D 10.(3分)如图,点E 、F 分别且∠EAF =45°,AE ,ADF ;②EF =BE +DF ;以上结论中,正确的个数有A .1 B 【解答】解:如图,把△由旋转的性质得,BH =∵∠EAF =45°∴∠EAH =∠BAH +∠∴∠EAH =∠EAF =45在△AEF 和△AEH 中明理由;线段BC 上一点,且CQ =,点M 是y 轴上一D 8. D 9.D分别为正方形ABCD 的边BC 、CD 上一点,AC 、AF 分别交对角线BD 于点M ,N ,则有以下结论:③∠AEB =∠AEF =∠ANM ;④S △AEF =2S △AMN 个数有( )个..2 C .3 D .4△ADF 绕点A 顺时针旋转90°得到△ABHDF ,AH =AF ,∠BAH =∠DAFBAE =∠DAF +∠BAE =90°﹣∠EAF =45°°轴上一个动点,求△BD 交于点O ,:①△AOM ∽△MN4∴△AEF ≌△AEH (SAS ∴EH =EF∴∠AEB =∠AEF∴BE +BH =BE +DF =EF 故②正确∵∠ANM =∠ADB +∠∠AEB =90°﹣∠BAE ∠BAH∴∠ANM =∠AEB∴∠ANM =∠AEB =∠故③正确,∵AC ⊥BD∴∠AOM =∠ADF =90∵∠MAO =45°﹣∠∴△OAM ∽△DAF故①正确连接NE ,∵∠MAN =∠MBE =45°∴△AMN ∽△BME∴∴∵∠AMB =∠EMN∴△AMB ∽△NME∴∠AEN =∠ABD =45∵∠EAN =45°∴∠NAE =NEA =45°∴△AEN是等腰直角三角形),DAN =45°+∠DAN ,=90°﹣(∠HAE ﹣∠BAH )=90°﹣(45°﹣∠ANM ;°NAO ,∠DAF =45°﹣∠NAO°,∠AMN =∠BME°三角形 ∠BAH )=45°+∴AE =∵∠MBE =∠EAF =45°∴△AFE ∽△BME ,∵△AMN ∽△BME ,∴△AMN ∽△AFE∴∴∴∴S △AFE =2S △AMN故④正确故选:D .11.C12.(3分)如图,正方形ABC 于直线EF 的对称点G 接CM .则下列结论,其中①∠1=∠2;②∠3=∠4;③GD =CM ;④若AG =1,GD =2,则°,∠AEB =∠AEF ,ABCD 中,E 是BC 延长线上一点,在AB 上取一点落在AD 上,连接EG 交CD 于点H ,连接BH 交其中正确的是( )则BM =.取一点F ,使点B 关EF 于点M ,连A .①②③④B 【解答】解:如图1中,∵B ,G 关于EF 对称,∴EB =EG ,∴∠EBG =∠EGB ,∵四边形ABCD 是正方形∴AB =BC ,∠A =∠∴∠AGB =∠EBG ,∴∠AGB =∠BGK ,∵∠A =∠BKG =90°,∴△BAG ≌△BKG (AAS ∴BK =BA =BC ,∠ABG ∵∠BKH =∠BCH =90°∴Rt △BHK ≌Rt △BHC ∴∠1=∠2,∠HBK =∠∴∠GBH =∠GBK +∠过点M 作MQ ⊥GH 于∵∠1=∠2,∴MQ =MP ,∵∠MEQ =∠MER ,∴MQ =MR ,∴MP =MR ,∴∠4=∠MCP =∠∴∠GBH =∠4,故②正确.①② C .③④ D .①②,过点B 作BK ⊥GH 于K .方形,ABC =∠BCD =90°,AD ∥BC ,BG =BG ,AS ),BG =∠KBG ,°,BH =BH ,(HL ),∠HBC ,故①正确,HBK =∠ABC =45°,Q ,MP ⊥CD 于P ,MR ⊥BC 于R .BCD =45°,正确,①②④如图2中,过点M作∵B,G关于EF对称,∴BM=MG,∵CB=CD,∠4=∠∴△MCB≌△MCD(∴BM=DM,∴MG=MD,∵MW⊥DG,∴WG=WD,∵∠BTM=∠MWG=∠BM ∴∠BMT+∠GMW=90°∵∠GMW+∠MGW=90°∴∠BMT=∠MGW,∵MB=MG,∴△BTM≌△MWG(∴MT=WG,∵MC=TM,DG=2∴DG=CM,故③正确∵AG=1,DG=2,∴AD=AB=TM=3,∴BM==故选:A.MW⊥AD于W,交BC于T.MCD,CM=CM,SAS),BMG=90°,°,°,AAS),WG,正确,EM=WD=TM=1,BT=AW=2,=,故④正确,13. 分解因式:m 4n ﹣4m 2n =【解答】解:原式=m 2n 故答案为:m 2n (m +214.如图,在 ABCD 中,AB 4 cm . 【解答】解:在 ABCD 中∵AC ⊥BC ,∴AC ==6∴OC =3cm ,∴BO ==5∴BD =10cm ,∴△DBC 的周长﹣△故答案为:4. 15.四分之一圆面积(半径为16. (3分)如图,正方形AB 一象限,点D 在x轴的负半= m 2n (m +2)(m ﹣2) .(m 2﹣4)=m 2n (m +2)(m ﹣2),)(m ﹣2)=2cm ,AD =4cm ,AC ⊥BC ,则△DBC 比中,∵AB =CD =2cm ,AD =BC =4cm ,AO =cm , cm , ABC 的周长=BC +CD +BD ﹣(AB +BC +AC )=BD ﹣AC径为1)ABCO 的边长为,OA 与x 轴正半轴的夹角为的负半轴上,且满足∠BDO =15°,直线y =kx +b经过比△ABC 的周长长 CO ,BO =DO ,=10﹣6=4cm , 角为15o,点B 在第B 、D 两点,则b ﹣k = 2﹣ .【解答】解:连接OB ,过点∵正方形ABCO 的边长为∴∠AOB =45°,OB =∵OA 与x 轴正半轴的夹角为∴∠BOE =45°﹣15°=又∵∠BDO =15°,∴∠DBO =∠BOE ﹣∠∴∠BDO =∠DBO ,∴OD =OB =2,∴点D 的坐标为(﹣2在Rt △BOE 中,OB =2,∴BE =OB =1,OE =∴点B 的坐标为(将B (,1),D (﹣解得:, ∴b ﹣k =4﹣2﹣(2故答案为:2﹣. 17.计算(﹣π)0﹣3tan30过点B 作BE ⊥x 轴于点E ,如图所示.长为, OA =2.夹角为15o ,=30°.BDO =15°,,0).,∠BOE =30°,=, ,1).2,0)代入y =kx +b ,得:, ﹣)=2﹣.an30°+()﹣2+|1﹣|【解答】解:原式=1﹣=1﹣+4+﹣1 =4.18. 先化简:值.【解答】解:===a +2, 当a =﹣3时,原式=﹣19. 为推进“传统文化进校园和“地方戏曲”等四个课外(1)报名参加课(2)扇形图中m = 25(3)根据报名情况,学校决排两人到“地方戏曲”小组请用列表或画树状图的方法【解答】解:(1)∵根据两∴报名参加课外活动小组的参加民族乐器的有100统计图为:3×+4+﹣1 ,再从﹣3、2、3中选择一个合适的数作为3+2=﹣1.校园”活动,某校准备成立“经典诵读”、“传统礼仪个课外活动小组.学生报名情况如图(每人只能选择一外活动小组的学生共有 100 人,将条形图,n = 108 ;学校决定从报名“经典诵读”小组的甲、乙、丙、小组,甲、乙恰好都被安排到“地方戏曲”小组的的方法说明.根据两种统计图知地方戏曲的有13人,占13%,小组的学生共有13÷13%=100人,﹣32﹣25﹣13=30人,数作为a 的值代入求礼仪”、“民族器乐”选择一个小组):补充完整;、丁四人中随机安小组的概率是多少?(2)∵m %=×∴m =25,n =×360=108,故答案为:25,108;(3)树状图分析如下:∵共有12种情况,恰好选中∴P (选中甲、乙)=20. 某建材销售公司在2019材售价为每件6000元,(1)若该销售公司在第一季种品牌的建材多少件?(2)该销售公司决定在基础上下调a %,B 种品牌的低销售额的销售量相比,量减少了a %,结果a 的值.【解答】解:(1)设销售依题意,得:6000x +9000解得:x ≤56.100%=25%,好选中甲、乙的有2种,=.019年第一季度销售A ,B 两种品牌的建材共126件B 种品牌的建材售价为每件9000元.第一季度售完两种建材后总销售额不低于96.6万元在2019年第二季度调整价格,将A 种品牌的建材在品牌的建材在上一个季度的基础上上涨a %;同时,,A 种品牌的建材的销售量增加了a %,B 种品牌2019年第二季度的销售额比(1)问中最低销售额增销售A 品牌的建材x 件,则销售B 品牌的建材(126000(126﹣x )≥966000,件,A 种品牌的建万元,求至多销售A 建材在上一个季度的,与(1)问中最种品牌的建材的销售售额增加a %,求﹣x )件,答:至多销售A 品牌的建材(2)在(1)中销售额最低依题意,得:6000(1﹣×56+9000×70)(1+令a %=y ,整理这个方程解得:y 1=0,y 2=∴a 1=0(舍去),a 2=答:a 的值为30.21. 如图,已知△ABC 内接于AB ,垂足为E ,连接(1)求证:△DOE ∽△AB (2)求证:∠ODF =∠BD (3)连接OC .设△式子表示)【解答】(1)证明:∵∴∠ACB =90°, ∵DE ⊥AB , ∴∠DEO =90°, ∴∠DEO =∠ACB , ∵OD ∥BC , ∴∠DOE =∠ABC , ∴△DOE ∽△ABC ;的建材56件.额最低时,B 品牌的建材70件. a %)×56(1+a %)+9000(1+a %)×70(1﹣a %),方程,得:10y 2﹣3y =0, ,30, 接于⊙O ,AB 是直径,点D 在⊙O 上,OD ∥BC ,CD 交OE 边于点F . ABC ; BDE ;DOE 的面积为S .sin A =,求四边形BCOD 的面积AB 是⊙O 的直径,a %)=(6000,过点D 作DE ⊥的面积(用含有S的(2)证明:∵△DOE ∴∠ODE =∠A , ∵∠A 和∠BDC 是所对的∴∠A =∠BDC , ∴∠ODE =∠BDC , ∴∠ODF =∠BDE ;(3)解:∵△DOE ∽△AB ∴即S △ABC =4S △DOE =4S ∵OA =OB , ∴,即S △BOC =2S , ∵sin A =,sin A =sin a ∴,∴OE =, ∴,∴∴S 四边形BCOD =S △BOC +S 如图,点A 、B 分别在x ,且CA ∥∽△ABC , 所对的圆周角,ABC ,,,∠ODE , ,△DOE +.轴和y 轴的正半轴上,以线段AB 为边在第一象限作y 轴.象限作等边△ABC ,(1)若点C 在反比例函数(2)在(1)中的反比例函求出点N 坐标,若不存在(3)点P 在第一象限的反坐标.【解答】解:(1)如图∵CA ∥y 轴,CD ⊥y 轴,∴CD ∥OA ,AC ∥OD ,∴四边形OACD 是平行四边∵∠AOD =90°, ∴四边形OACD 是矩形,∴k =S 矩形OACD =2S △ABC ∴反比例函数的解析式为(2)如图2中,作BD例函数的图象上,求该反比例函数的解析比例函数图象上是否存在点N ,使四边形ABCN 是菱存在,请说明理由.限的反比例函数图象上,当四边形OAPB 的面积最小时1中,作CD ⊥y 轴于D ., 行四边形, , =2,式为y =.⊥AC 于D ,交反比例函数图象于N ,连接CN ,AN 的解析式;是菱形,若存在请最小时,求出P 点.∵△ABC 是等边三角形,∴×2m ×m =∴m =1或﹣1(舍弃),∴B (0,1),C (,∴N (2,1),∴BD =DN , ∵AC ⊥BN ,∴CB =CN ,AB =AN ,∵AB =BC ,∴AB =BC =CN =AN ,∴四边形ABCN 是菱形,∴N (2,1).(3)如图3中,连接S四边形OAPB =S △POB +S △, ∴当a =时,四边形,面积为,设CD =AD =m ,则BD =m ,,,2),A (,0),, PB ,P A ,OP .设P (a ,).POA =×1×a +××=a +=(边形OAPB 的面积最小,﹣)2+解得a =或﹣(舍弃此时P (,).23.(10分)如图1所示,已知同一点,交点分别是点(1)试确定抛物线的解析式(2)在抛物线的对称轴上是点坐标,不存在请说明理由(3)如图2,点Q 是线段AQM 的最小周长.【解答】解:(1)∵抛物线∴点A 的坐标为(2,0∵抛物线y =ax 2+bx +c ∴,解得a =,b =﹣4,c ∴抛物线的解析式为:y (2)设P (4,y ), ∵B (6,0),C (0,6∴BC 2=62+62=72,PB 2当∠PBC =90°时,BC 2∴72+22+y 2=42+(y ﹣6舍弃), 已知直线y =kx +m 与抛物线y =ax 2+bx +c 分别交于B (6,0)和点C (0,6),且抛物线的对称轴为直解析式;轴上是否存在点P ,使△PBC 是直角三角形?若存在明理由;线段BC 上一点,且CQ =,点M 是y 轴上一抛物线y =ax 2+bx +c 与x 轴交于点A 、B 两点,对称轴).过点A (2,0),B (6,0),C (0,6), =6.=;),=22+y 2,PC 2=42+(y ﹣6)2, +PB 2=PC 2, )2,别交于x 轴和y 轴上轴为直线x =4; 若存在请直接写出P 轴上一个动点,求△对称轴为直线x =4,解得:y =﹣2, ∴P (4,﹣2);当∠PCB =90°时,PC 2∴42+(y ﹣6)2+72=22解得:y =10, ∴P (4,10);当∠BPC =90°时,PC 2∴42+(y ﹣6)2+22+y 2=解得:y =3.∴P (4,3+)或P 综合以上可得点P 的坐标为(3)过点Q 作QH ⊥y 轴于∵B (6,0),C (0,6∴OB =6,OC =6, ∴∠OCB =45°,∴∠CQH =∠HCQ =45°∵CQ =,∴CH =QH =∴OH =6﹣,∴点Q 的坐标为(在x 轴上取点G (﹣2,+BC 2=PB 2, +y 2, +PB 2=BC 2. 72, (4,3﹣).坐标为(4,﹣2)或(4,10)或(4,3+)或P (轴于点H , ), °, ,,),0),连接QG 交y 轴于点M ,则此时△AQM 的周长4,3﹣).的周长最小,∴AQ =QG =∴AQ +QG =∴△AQM 的最小周长为(总一、选择题(本大题共12小题1.(3分)2的倒数是( A .B 2.(3分)如图,该几何体的俯A .C .3.(3分)一方有难,八方支援先后约有42000名来自外省表示正确的是( )A .42×103B 4.(3分)下列图案是中心对称=, =,, 为4.深圳中考数学模拟试卷3(总分100分,考试时间90分钟) 小题,每小题3分,共36分) ) .﹣2C .﹣D .2体的俯视图是( )B .D .方支援!据报道,在新型冠状病毒感染的肺炎疫情在湖自外省的医护人员勇敢逆行、驰援湖北.将“42000 .4.2×103C .4.2×104D .4.2心对称图形的是( )2情在湖北肆虐期间,000”用科学记数法4A .C . 5.(3分)如图,在△ABC 中∠C =120°,则∠A 为(A .60°B 6.(3分)已知,关于x 的一元是( ) A .m <3B 7.(3分)如图,点P (﹣n 的值为( )A .4B 8.(3分)如图,AB 是⊙O直径 B .D .中,D 、E 分别是AB 、AC 边上的点,DE ∥BC ,( ).45°C .35°D .25的一元二次方程(m ﹣2)x 2+2x +1=0有实数根,则.m ≤3C .m <3且m ≠2D .m 2,3)向右平移n 个单位后落在直线y =2x ﹣1上的.5C .6D .7直径,C ,D 是圆上的点,若∠D =20°,则∠BAC ,∠ADE =35°,°则m 的取值范围≤3且m ≠2上的点P ′处,则7AC 的值是( )A .20° B9.(3分)某中学随机调查了锻炼时间(小时)5人数2则这15名同学一周在校参加A .6,7B 10.(3分)已知关于x 的一元于( ) A .B 11.(3分)已知:如图,直线M 作x 轴的垂线交直线l A .B 12.(3分)如图,等腰直角三CE ,过D 、E 作DM 、中①四边形AMFN 是正方形时,AD 2=DE •CD .正确结.60°C .70°D .80查了15名学生,了解他们一周在校参加体育锻炼时间 6 7 8652校参加体育锻炼时间的中位数和众数分别是(.7,7C .7,6D .6的一元二次方程kx 2﹣2x ﹣1=0有实数根,若k 为非正.0C .0或﹣1D .﹣直线l 经过点A (﹣2,0)和点B (0,1),点M 于点C ,若OM =2OA ,则经过点C 的反比例函数表达.C .D .直角三角形ABC ,∠BAC =90°,D 、E 是BC 上的两EN 分别垂直AB 、AC ,垂足为M 、N ,交与点F ,连接正方形;②△ABE ≌△ACD ;③CE 2+BD 2=DE 2;④正确结论有( )°炼时间,列表如下: ) ,6为非正整数,则k 等1在x 轴上,过点数表达式为( )上的两点,且BD =AD 、AE .其当∠DAE =45°A .1个B二、填空题(本大题共4小题13.(3分)把多项式am 214.(3分)若分式的值15.(3分)如图,在Rt △AB 的垂直平分线于点= .16.(3分)如图,函数y 绕点B (,0)顺时针旋转为 .三、解答题(本大题共7小题17.(6分)计算(﹣π18.(6分)先化简,再求值19. (7分)某校组织学生开展.2个C .3个D .4小题,每小题3分,共12分)﹣9a 分解因式的结果是 . 的值为0,则x 的值为 . ABC 中,∠ACB =90°,过点C 作△ABC 外接圆D ,AB 的垂直平分线交AC 于点E .若OE =2,=x (x ≥0)的图象与反比例函数y =的图象交于针旋转90°后,得到的点A '仍在y =的图象上,小题,共52分) )0﹣3tan30°+()﹣2+|1﹣|求值:(1﹣)÷,其中a =2+.生开展了“2020新冠疫情”相关的手抄报竞赛.对于手个⊙O 的切线交AB =8,则CD 象交于点A ,若点A ,则点A 的坐标对于手抄报的主题,组织者提出了两条指导性建(1)A 类“武汉加油”防新型冠状病毒”4个中任(2)E 类为自拟其它与疫情评奖之余,为了解学生的选抽取了部分作品进行了统计请根据以上信息回答:(1)本次抽样调查的学生总(2)扇形统计图中,“(3)本次抽样调查中,“20.如图,在△ABC 中,AB 的延长线于点E ,连接(1)求证:△BCD ≌△AF (2)若AC =6,∠BAC21.(8分)因“抗击疫情”导性建议:、B 类“最美逆行者”、C 类“万众一心抗击疫情”个中任选一个;与疫情相关的主题.生的选题倾向,发掘出最能引发学生触动的主题素材了统计,并将统计结果绘制成了如下两幅尚不完整的统学生总人数是 ,并补全条形统计图;C ”对应的扇形圆心角的度数是 ,x = ,y “学生手抄报选题”最为广泛的是 类.(填字母=AC ,D 是AB 上一点,以点D 为圆心,AC 为半CD ,作EF ∥CD ,交∠EAC 的平分线于点F ,连接AFE ;=30°,求四边形CDEF 的面积S 四边形CDEF .”需要,学校决定再次购进一批医用一次性口罩及”、D 类“如何预题素材,组织者随机整的统计图.﹣z = ;填字母)为半径画弧交BA 连接CF .口罩及KN 95口罩共。

中考数学模拟试题十套及答案(最新)

中考数学模拟试题十套及答案(最新)

中考数学模拟试题一一.选择题(30分)1.我国2016年第一季度GDP总值经核算大约为159000亿元,数据159000用科学记数法表示为()A.1.59×104B.1.59×105C.1.59×104D.15.9×1042. 在下列实数中,﹣3,,0,2,﹣1中,绝对值最小的数是()A.﹣3 B.0 C.D.﹣13.下列调查中,最适宜采用普查方式的是()A.对我国初中学生视力状况的调查 B.对量子科学通信卫星上某种零部件的调查C.对一批节能灯管使用寿命的调查 D.对“最强大脑”节目收视率的调查4.若一组数据2,3,4,5,x的平均数与中位数相同,则实数x的值不可能的是()A.6 B.3.5 C.2.5 D.15.不等式组的解集,在数轴上表示正确的是()A. B.C. D.6.商场将某种商品按原价的8折出售,仍可获利20元.已知这种商品的进价为140元,那么这种商品的原价是()A.160元B.180元C.200元D.220元7.如图,AD为△ABC的BC边上的中线,沿AD将△ACD折叠,C的对应点为C′,已知∠ADC=45°,BC=4,那么点B与C′的距离为()A.3 B.2C.2D.48.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.9.如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是()A.71 B.78 C.85 D.8910.二次函数2(0)y ax bx c a=++≠的图象如图所示,C(n,-2)是图象上的一点,且AC⊥BC,则a的值为:( )A.2 B.1 C.12D.13二.填空题.(18分)11.如图是由6个棱长均为1的正方体组成的几何体,它的主视图的面积为.12.函数y=的自变量x的取值范围是.13.已知在平面直角坐标系中,点A(﹣3,﹣1)、B(﹣2,﹣4)、C(﹣6,﹣5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为.14. 为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点;所跑的路程S(米)与所用的时间t (秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后的第秒.15.若方程(x﹣m)(x﹣n)=3(m,n为常数,且m<n)的两实数根分别为a,b(a<b),则m,n,a,b的大小关系是.16.如图,MN是⊙O的直径,MN=4,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,则PA+PB的最小值为.三.解答题。

广东省深圳市宝安、罗湖、福田、龙华四区2024届中考数学全真模拟试卷含解析

广东省深圳市宝安、罗湖、福田、龙华四区2024届中考数学全真模拟试卷含解析

广东省深圳市宝安、罗湖、福田、龙华四区2024届中考数学全真模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为()A.30°B.15°C.10°D.20°2.益阳市高新区某厂今年新招聘一批员工,他们中不同文化程度的人数见下表:文化程度高中大专本科硕士博士人数9 17 20 9 5关于这组文化程度的人数数据,以下说法正确的是:()A.众数是20 B.中位数是17 C.平均数是12 D.方差是263.为了增强学生体质,学校发起评选“健步达人”活动,小明用计步器记录自己一个月(30天)每天走的步数,并绘制成如下统计表:步数(万步) 1.0 1.2 1.1 1.4 1.3天数 3 3 5 7 12在每天所走的步数这组数据中,众数和中位数分别是()A.1.3,1.1 B.1.3,1.3 C.1.4,1.4 D.1.3,1.44.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数 2 3 2 3 4 1则这些运动员成绩的中位数、众数分别为()A.1.65、1.70B.1.65、1.75C.1.70、1.75D.1.70、1.705.能说明命题“对于任何实数a,|a|>﹣a”是假命题的一个反例可以是()A.a=﹣2 B.a=13C.a=1 D.a=26.如图,AD为△ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是()A.DC=DE B.AB=2DE C.S△CDE=14S△ABC D.DE∥AB7.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的()A.方差B.极差C.中位数D.平均数8.如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习9.若一个多边形的内角和为360°,则这个多边形的边数是()A.3 B.4 C.5 D.6 10.3点40分,时钟的时针与分针的夹角为()A.140°B.130°C.120°D.110°11.下列运算正确的是()A.(a﹣3)2=a2﹣9 B.(12)﹣1=2 C.x+y=xy D.x6÷x2=x312.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.1200012000100 1.2x x=+B.12000120001001.2x x=+C.1200012000100 1.2x x=-D.12000120001001.2x x=-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在ABCD中,AB=8,P、Q为对角线AC的三等分点,延长DP交AB于点M,延长MQ交CD于点N,则CN =__________.14.分解因式:2x 2﹣8=_____________15.若从 -3,-1,0,1,3这五个数中随机抽取一个数记为a ,再从剩下的四个数中任意抽取一个数记为b ,恰好使关于x ,y 的二元一次方程组21x y b ax y -=⎧⎨+=⎩有整数解,且点(a ,b)落在双曲线3y x =-上的概率是_________.16.计算:(1)(23b a)2=_____;(2)210ab c 54ac÷=_____. 17.如图,在圆O 中,AB 为直径,AD 为弦,过点B 的切线与AD 的延长线交于点C ,AD =DC ,则∠C =________度.18.如图,用10 m 长的铁丝网围成一个一面靠墙的矩形养殖场,其养殖场的最大面积________m 1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,某高速公路建设中需要确定隧道AB 的长度.已知在离地面1500m 高度C 处的飞机上,测量人员测得正前方A 、B 两点处的俯角分别为60°和45°.求隧道AB 的长(≈1.73).20.(6分)如图,在△ABC 中,∠C =90°,∠CAB =50°,按以下步骤作图:①以点A 为圆心,小于AC 长为半径画弧,分别交AB 、AC 于点E 、F ;②分别以点E 、F 为圆心,大于12EF 长为半径画弧,两弧相交于点G ;③作射线AG ,交BC 边于点D .则∠ADC 的度数为( )A .40°B .55°C .65°D .75°21.(6分)如图,已知ABC DCB ∠=∠,ACB DBC ∠=∠.求证AB DC =.22.(8分)解不等式组: .23.(8分)在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.求证:四边形BFDE 是矩形;若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .24.(10分)已知a 2+2a=9,求22212321121a a a a a a a +++-÷+--+的值. 25.(10分)如图,∠AOB=90°,反比例函数y=﹣2x(x <0)的图象过点A (﹣1,a ),反比例函数y=k x (k >0,x>0)的图象过点B ,且AB ∥x 轴. (1)求a 和k 的值;(2)过点B 作MN ∥OA ,交x 轴于点M ,交y 轴于点N ,交双曲线y=kx于另一点C ,求△OBC 的面积.26.(12分)如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+1.求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.27.(12分)列方程解应用题:某景区一景点要限期完成,甲工程队单独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,则工程期限为多少天?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【解题分析】分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.详解:如图所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故选B.点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.2、C【解题分析】根据众数、中位数、平均数以及方差的概念求解.【题目详解】A、这组数据中9出现的次数最多,众数为9,故本选项错误;B、因为共有5组,所以第3组的人数为中位数,即9是中位数,故本选项错误;C、平均数=91720955++++=12,故本选项正确;D、方差=15[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=1565,故本选项错误.故选C.【题目点拨】本题考查了中位数、平均数、众数的知识,解答本题的关键是掌握各知识点的概念.3、B【解题分析】在这组数据中出现次数最多的是1.1,得到这组数据的众数;把这组数据按照从小到大的顺序排列,第15、16个数的平均数是中位数.【题目详解】在这组数据中出现次数最多的是1.1,即众数是1.1.要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第15、16个两个数都是1.1,所以中位数是1.1.故选B . 【题目点拨】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求. 4、C 【解题分析】根据中位数和众数的概念进行求解. 【题目详解】解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65, 1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80 众数为:1.75; 中位数为:1.1. 故选C . 【题目点拨】本题考查1.中位数;2.众数,理解概念是解题关键. 5、A 【解题分析】将各选项中所给a 的值代入命题“对于任意实数a ,a a >- ”中验证即可作出判断. 【题目详解】(1)当2a =-时,22?(2)2a a =-=-=--=,,此时a a =-, ∴当2a =-时,能说明命题“对于任意实数a ,a a >- ”是假命题,故可以选A ; (2)当13a =时,11 33a a =-=-,,此时a a >-, ∴当13a =时,不能说明命题“对于任意实数a ,a a >- ”是假命题,故不能B ; (3)当1a =时,1?1a a =-=-,,此时a a >-, ∴当1a =时,不能说明命题“对于任意实数a ,a a >- ”是假命题,故不能C ;(4)当a =a a =-=,此时a a >-,∴当a =“对于任意实数a ,a a >- ”是假命题,故不能D ;故选A. 【题目点拨】熟知“通过举反例说明一个命题是假命题的方法和求一个数的绝对值及相反数的方法”是解答本题的关键.6、A【解题分析】根据三角形中位线定理判断即可.【题目详解】∵AD为△ABC的中线,点E为AC边的中点,∴DC=12BC,DE=12AB,∵BC不一定等于AB,∴DC不一定等于DE,A不一定成立;∴AB=2DE,B一定成立;S△CDE=14S△ABC,C一定成立;DE∥AB,D一定成立;故选A.【题目点拨】本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7、C【解题分析】13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选C.8、B【解题分析】分析:由平面图形的折叠以及正方体的展开图解题,罪域正方体的平面展开图中相对的面一定相隔一个小正方形. 详解:由图形可知,与“前”字相对的字是“真”.故选B.点睛:本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手分析及解答问题.9、B【解题分析】利用多边形的内角和公式求出n即可.【题目详解】由题意得:(n-2)×180°=360°,故答案为:B. 【题目点拨】本题考查多边形的内角和,解题关键在于熟练掌握公式. 10、B 【解题分析】根据时针与分针相距的份数乘以每份的度数,可得答案. 【题目详解】解:3点40分时针与分针相距4+2060=133份, 30°×133=130, 故选B . 【题目点拨】本题考查了钟面角,确定时针与分针相距的份数是解题关键. 11、B 【解题分析】分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果. 详解:A. (a ﹣3)2=a 2﹣6a+9,故该选项错误; B. (12)﹣1=2,故该选项正确; C.x 与y 不是同类项,不能合并,故该选项错误; D. x 6÷x 2=x 6-2=x4,故该选项错误. 故选B.点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键. 12、B 【解题分析】首先设文学类图书平均每本的价格为x 元,则科普类图书平均每本的价格为1.2x 元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程, 【题目详解】设学校购买文学类图书平均每本书的价格是x 元,可得:12000120001001.2x x=+ 故选B .此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解题分析】根据平行四边形定义得:DC∥AB,由两角对应相等可得:△NQC∽△MQA,△DPC∽△MPA,列比例式可得CN 的长.【题目详解】∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CNQ=∠AMQ,∠NCQ=∠MAQ,∴△NQC∽△MQA,同理得:△DPC∽△MPA,∵P、Q为对角线AC的三等分点,∴12CN CQAM AQ==,21CP CDAP AM==,设CN=x,AM=1x,∴82 21x=,解得,x=1,∴CN=1,故答案为1.【题目点拨】本题考查了平行四边形的性质和相似三角形的判定和性质,熟练掌握两角对应相等,两三角形相似的判定方法是关键.14、2(x+2)(x﹣2)【解题分析】先提公因式,再运用平方差公式.【题目详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【题目点拨】考核知识点:因式分解.掌握基本方法是关键.15、320【解题分析】分析:根据题意可以写出所有的可能性,然后将所有的可能性代入方程组21x y b ax y -=⎧⎨+=⎩和双曲线3y x =-,找出符号要求的可能性,从而可以解答本题.详解:从﹣3,﹣1,0,1,3这五个数中随机抽取一个数记为a ,再从剩下的四个数中任意抽取一个数记为b ,则(a ,b )的所有可能性是:(﹣3,﹣1)、(﹣3,0)、(﹣3,1)、(﹣3,3)、(﹣1,﹣3)、(﹣1,0)、(﹣1,1)、(﹣1,3)、(0,﹣3)、(0,﹣1)、(0,1)、(0,3)、(1,﹣3)、(1,﹣1)、(1,0)、(1,3)、(3,﹣3)、(3,﹣1)、(3,0)、(3,1),将上面所有的可能性分别代入关于x ,y 的二元一次方程组21x y b ax y -=⎧⎨+=⎩有整数解,且点(a ,b )落在双曲线3y x=-上的是:(﹣3,1),(﹣1,3),(3,﹣1),故恰好使关于x ,y 的二元一次方程组21x y b ax y -=⎧⎨+=⎩有整数解,且点(a ,b )落在双曲线3y x =-上的概率是:320.故答案为320. 点睛:本题考查了列表法与树状图法,解题的关键是明确题意,写出所有的可能性.16、429b a8b c 【解题分析】(1)直接利用分式乘方运算法则计算得出答案;(2)直接利用分式除法运算法则计算得出答案.【题目详解】(1)(23b a )2=429b a; 故答案为429b a; (2)210ab c 54a c ÷=21045ab c c a ⨯=8b c.故答案为8b c. 【题目点拨】此题主要考查了分式的乘除法运算,正确掌握运算法则是解题关键.17、1【解题分析】利用圆周角定理得到∠ADB=90°,再根据切线的性质得∠ABC=90°,然后根据等腰三角形的判定方法得到△ABC 为等腰直角三角形,从而得到∠C 的度数.【题目详解】解:∵AB 为直径,∴∠ADB=90°,∵BC 为切线,∴AB ⊥BC ,∴∠ABC=90°,∵AD=CD ,∴△ABC 为等腰直角三角形,∴∠C=1°.故答案为1.【题目点拨】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了等腰直角三角形的判定与性质.18、2【解题分析】设与墙平行的一边长为xm ,则另一面为202x - , 其面积=2201·1022x x x x -=--, ∴最大面积为241005042ac b a -== ; 即最大面积是2m 1.故答案是2.【题目点拨】求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a 的绝对值是较小的整数时,用配方法较好,如y=-x1-1x+5,y=3x1-6x+1等用配方法求解比较简单.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、简答:∵OA,OB=OC=1500,∴AB=(m).答:隧道AB的长约为635m.【解题分析】试题分析:首先过点C作CO⊥AB,根据Rt△AOC求出OA的长度,根据Rt△CBO求出OB的长度,然后进行计算.试题解析:如图,过点C作CO⊥直线AB,垂足为O,则CO="1500m"∵BC∥OB ∴∠DCA=∠CAO=60°,∠DCB=∠CBO=45°∴在Rt△CAO 中,OA==1500×=500m在Rt△CBO 中,OB=1500×tan45°=1500m∴AB=1500-500≈1500-865=635(m)答:隧道AB的长约为635m.考点:锐角三角函数的应用.20、C.【解题分析】试题分析:由作图方法可得AG是∠CAB的角平分线,∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,故选C.考点:作图—基本作图.21、见解析【解题分析】根据∠ABD=∠DCA ,∠ACB=∠DBC ,求证∠ABC=∠DCB ,然后利用AAS 可证明△ABC ≌△DCB ,即可证明结论.【题目详解】证明:∵∠ABD=∠DCA ,∠DBC=∠ACB∴∠ABD+∠DBC=∠DCA+∠ACB即∠ABC=∠DCB在△ABC 和△DCB 中ABC DCB BC CBACB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△DCB (ASA )∴AB=DC【题目点拨】本题主要考查学生对全等三角形的判定与性质的理解和掌握,证明此题的关键是求证△ABC ≌△DCB .难度不大,属于基础题.22、x<2.【解题分析】试题分析 :由不等式性质分别求出每一个不等式的解集,找出它们的公共部分即可. 试题解析:,由①得:x<3,由②得:x<2,∴不等式组的解集为:x<2.23、(1)见解析(2)见解析【解题分析】 试题分析:(1)根据平行四边形的性质,可得AB 与CD 的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA =∠FAB ,根据等腰三角形的判定与性质,可得∠DAF =∠DFA ,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD .∵BE ∥DF ,BE =DF ,∴四边形BFDE 是平行四边形.∵DE ⊥AB ,∴∠DEB =90°,∴四边形BFDE 是矩形;(2)∵四边形ABCD 是平行四边形,∴AB ∥DC ,∴∠DFA =∠FAB .在Rt △BCF 中,由勾股定理,得BC ,∴AD =BC =DF =5,∴∠DAF =∠DFA ,∴∠DAF =∠FAB ,即AF 平分∠DAB .【题目点拨】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF =∠DFA 是解题关键.24、22(1)a +,15. 【解题分析】试题分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值.试题解析:22212321121a a a a a a a +++-÷+--+=()()()()()211211112a a a a a a a -+-⨯++-++ =()21111a a a --++ =()221a +, ∵a 2+2a =9,∴(a +1)2=1.∴原式=21105=. 25、(1)a=2,k=8(2)OBC S=1.【解题分析】 分析:(1)把A (-1,a )代入反比例函数2x得到A (-1,2),过A 作AE ⊥x 轴于E ,BF ⊥x 轴于F ,根据相似三角形的性质得到B(4,2),于是得到k=4×2=8;(2)求的直线AO的解析式为y=-2x,设直线MN的解析式为y=-2x+b,得到直线MN的解析式为y=-2x+10,解方程组得到C(1,8),于是得到结论.详解:(1)∵反比例函数y=﹣2x(x<0)的图象过点A(﹣1,a),∴a=﹣21-=2,∴A(﹣1,2),过A作AE⊥x轴于E,BF⊥⊥x轴于F,∴AE=2,OE=1,∵AB∥x轴,∴BF=2,∵∠AOB=90°,∴∠EAO+∠AOE=∠AOE+∠BOF=90°,∴∠EAO=∠BOF,∴△AEO∽△OFB,∴AE OE OF BF=,∴OF=4,∴B(4,2),∴k=4×2=8;(2)∵直线OA过A(﹣1,2),∴直线AO的解析式为y=﹣2x,∵MN∥OA,∴设直线MN的解析式为y=﹣2x+b,∴2=﹣2×4+b,∴b=10,∴直线MN的解析式为y=﹣2x+10,∵直线MN交x轴于点M,交y轴于点N,∴M(5,0),N(0,10),解2108y xyx=-+⎧⎪⎨=⎪⎩得,1482x xy y=-=⎧⎧⎨⎨==⎩⎩或,∴C(1,8),∴△OBC的面积=S△OMN﹣S△OCN﹣S△OBM=12⨯5×10﹣12×10×1﹣12×5×2=1.点睛:本题考查了一次函数图象上点的坐标特征,反比例函数与一次函数交点问题,相似三角形的判定和性质,求函数的解析式,三角形的面积的计算,正确的作出辅助线是解题的关键.26、(1)y=﹣x2+2x+1;(2)P (97,127);(1)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【解题分析】(1)先求得点B和点C的坐标,然后将点B和点C的坐标代入抛物线的解析式得到关于b、c的方程,从而可求得b、c的值;(2)作点O关于BC的对称点O′,则O′(1,1),则OP+AP的最小值为AO′的长,然后求得AO′的解析式,最后可求得点P的坐标;(1)先求得点D的坐标,然后求得CD、BC、BD的长,依据勾股定理的逆定理证明△BCD 为直角三角形,然后分为△AQC∽△DCB和△ACQ∽△DCB两种情况求解即可.【题目详解】(1)把x=0代入y=﹣x+1,得:y=1,∴C(0,1).把y=0代入y=﹣x+1得:x=1,∴B(1,0),A(﹣1,0).将C(0,1)、B(1,0)代入y=﹣x2+bx+c得:9303b cc-++=⎧⎨=⎩,解得b=2,c=1.∴抛物线的解析式为y=﹣x2+2x+1.(2)如图所示:作点O关于BC的对称点O′,则O′(1,1).∵O′与O 关于BC 对称,∴PO=PO′.∴OP+AP=O′P+AP≤AO′.∴OP+AP 的最小值()()221330--+-. O′A 的方程为y=3344x + P 点满足33443y x y x ⎧=+⎪⎨⎪=+⎩﹣解得:97127x y ⎧=⎪⎪⎨⎪=⎪⎩所以P (97 ,127) (1)y=﹣x 2+2x+1=﹣(x ﹣1)2+4,∴D (1,4).又∵C (0,1,B (1,0),∴2,25∴CD 2+CB 2=BD 2,∴∠DCB=90°.∵A (﹣1,0),C (0,1), ∴OA=1,CO=1.∴13AO CD CO BC ==. 又∵∠AOC=DCB=90°,∴△AOC ∽△DCB .∴当Q 的坐标为(0,0)时,△AQC ∽△DCB .如图所示:连接AC ,过点C 作CQ ⊥AC ,交x 轴与点Q .∵△ACQ为直角三角形,CO⊥AQ,∴△ACQ∽△AOC.又∵△AOC∽△DCB,∴△ACQ∽△DCB.∴CD ACBD AQ=21025=AQ=3.∴Q(9,0).综上所述,当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.【题目点拨】本题考查了二次函数的综合应用,解题的关键是掌握待定系数法求二次函数的解析式、轴对称图形的性质、相似三角形的性质和判定,分类讨论的思想.27、15天【解题分析】试题分析:首先设规定的工期是x天,则甲工程队单独做需(x-1)天,乙工程队单独做需(x+6)天,根据题意可得等量关系:乙工程队干x天的工作量+甲工程队干4天的工作量=1,根据等量关系列出方程,解方程即可.试题解析:设工程期限为x天.根据题意得,x41 x6x-1+= +解得:x=15.经检验x=15是原分式方程的解.答:工程期限为15天.。

2024年广东省深圳市深圳中学共同体中考一模数学试题(解析版)

2024年广东省深圳市深圳中学共同体中考一模数学试题(解析版)

2023-2024 学年第二学期模拟考试九年级数学试卷1.答题前,务必将自己的姓名、学号等填写在答题卷规定的位置上.2.考生必须在答题卷上按规定作答:凡在试卷、草稿纸上作答的,其答案一律无效.3.全卷共6页,考试时间90分钟,满分100分.一.选择题(共10小题,每小题3分,共30分)1. 某正方体的平面展开图如图所示,则原正方体中与“祖”字所在的面相对的面上的字是()A. 繁B. 荣C. 昌D. 盛【答案】D【解析】【分析】本题主要考查正方体的展开图,熟练掌握正方形的展开图是解题的关键.根据正方形的展开图找到对立面即可得到答案.【详解】解:正方体中与“祖”字所在的面相对的面上的字是“盛”,故选:D.2. 剪纸艺术是最古老的中国民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.鱼与“余”同音,寓意生活富裕、年年有余,是剪纸艺术中很受喜爱的主题.以下关于鱼的剪纸中,是轴对称图形,但不是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题考查了轴对称图形和中心对称图形的概念,把一个图形绕某一点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称;熟练掌握知识点是解题的关键.根据中心对称图形与轴对称图形的概念进行判断即可.【详解】解:A .该图不是轴对称图形,是中心对称图形,不符合题意;B . 该图是轴对称图形,不是中心对称图形,符合题意;C .该图既是轴对称图形,又是中心对称图形,不符合题意;D .该图不是轴对称图形,是中心对称图形,不符合题意.故选:B .3. 某校“校园之声”社团招新时,需考查应聘学生的应变能力、知识储备、朗读水平三个项目,布布的三个项目得分分别为85分、90分、92分.若评委按照应变能力占20%,知识储备占30%,朗读水平占50%计算加权平均数来作为最终成绩,则布布的最终成绩为( )A. 85分B. 89分C. 90分D. 92分【答案】C【解析】【分析】本题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,根据加权平均数的求法可以求得布布的最终成绩,本题得以解决.【详解】解:根据题意得:8520%9030%9250%90×+×+×=(分), ∴布布的最终成绩是90分.故选:C .4. 图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB 、CD 都与地面l 平行,60BCD ∠=°,50BAC ∠=°,当MAC ∠为( )度时,AM BE ∥.A. 15B. 65C. 70D. 115【答案】C【解析】 【分析】本题考查了平行线的性质,三角形内角和定理.根据“两直线平行内错角相等”求得ABC ∠的度数,利用三角形内角和定理求得ACB ∠的度数,再利用“两直线平行内错角相等”即可求解.【详解】解:∵AB 、CD 都与地面l 平行,∴AB CD ∥,∴60ABC BCD ∠=∠=°,∵50BAC ∠=°,∴180506070ACB ∠=°−°−°=°,∵AM BE ∥,∴70MAC ACB ∠=∠=°,故选:C .5. 下列计算正确的是( )A. 3332a a a ⋅=B. ()326ab ab =C. 232(3)6ab ab ab ⋅−=−D. ()321052ab ab b ÷−=− 【答案】D【解析】【分析】本题考查幂的运算,涉及同底数幂的乘除法、积的乘方等知识.根据同底数幂的乘除法、积的乘方法则逐一解答.【详解】解:A 、33632a a a a ⋅=≠,故本选项不符合题意;B 、()32366ab a b ab =≠,故本选项不符合题意; C 、22332(3)66ab ab a b ab ⋅−=−≠−,故本选项不符合题意;D 、()321052ab ab b ÷−=−,故本选项符合题意; 故选:D .6. 下列命题正确的是( )A. 在圆中,平分弦直径垂直于弦并且平分弦所对的两条弧B. 顺次连接四边形各边中点得到的是矩形,则该四边形是菱形C. 若C 是线段 AB 的黄金分割点,2AB =,则1AC =−D. 相似图形不一定是位似图形,位似图形一定是相似图形【答案】D【解析】【分析】此题考查了菱形的判定、命题与定理的知识,解题的关键是了解菱形的判定方法、相似图形、中点的四边形的知识,难度不大根据菱形的判定方法、相似图形、中点四边形和黄金分割点判断即可.【详解】解:A 、平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧,原命题是假命题,不符合题意;B 、顺次连接四边形各边中点得到的是矩形,则该四边形的对角线相互垂直,原命题是假命题,不符合题意;C 、已知点C 为线段AB 的黄金分割点,若2AB =,则1AC =−或3AC =−不符合题意;D 、位似图形一定是相似图形,但是相似图形不一定是位似图形,原命题是真命题,符合题意; 故选:D .7. 古代数学著作《孙子算经》中有“多人共车”问题:今有五人共车,二车空;三人共车,十人步.问人与车各几何?其大意是:每车坐5人,2车空出来;每车坐3人,多出10人无车坐,问人数和车数各多少?设共有x 人,y 辆车,则可列出方程组为( ) A. ()52310y x y x −= +=B. 52310y x y x −= +=C. ()52310y x y x −= +=D. ()52310y x y x −= −=【答案】A【解析】 【分析】本题考查了二元一次方程组的应用,设共有x 人,y 辆车,根据题意,列出方程组,解方程组即可求解,根据题意,找到等量关系,列出二元一次方程组是解题的关键.【详解】解:设共有x 人,y由题意可得,()52310y x y x −= +=, 故选:A .8. 某露营爱好者在营地搭建一种“天幕”(如图1),其截面示意图是轴对称图形(如图2),对称轴是垂直于地面的支杆AB 所在的直线,撑开的遮阳部分用绳子拉直,分别记为AC ,AD ,且2AC AD ==米,CAD ∠的度数为140°,则此时“天幕”的宽度CD 是( )A. 4sin70° 米B. 4cos70°米C. 2sin20°米D. 2cos20°米【答案】A的【分析】本题考查了解直角三角形,等腰三角形三线合一的性质,解题的关键是掌握相关知识的灵活运用.根据正弦的定义,即可求解.【详解】解:2AC AD == 米,对称轴是垂直于地面的支杆AB 所在的直线,CAD ∠的度数为140°,CE DE ∴=,1702CAE CAD ∠=∠=°,sin CECAE AC∠=, sin 2sin 70CE AC CAE ∴=⋅∠=⋅°24sin 70CD CE ∴°,故选:A .9. 已知二次函数 ()20y ax bx c a ++≠图象的一部分如图所示,该函数图象经过点(50),,对称轴为直线2x =.对于下列结论:0b >①;②a c b +<;③多项式2ax bx c ++可因式分解为(1)(5)x x +−;④无论 m 为何值时,242am bm a b +≤+.其中正确个数有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】 【分析】本题主要考查了二次函数图象与系数的关系,二次函数 图象的性质等等:先根据图像的开口方向和对称轴可判断①;由抛物线的对称轴为1222x x x +=可得抛物线与x 轴的另一个交点为(1,0)−,由此可判断②;根据抛物线与x 轴的两个交点坐标可判断③;根据函数的对称轴为2x =可知2x =时y 有最大值,由此可判断④.【详解】解:∵抛物线开口向下,∵对称轴为直线22b x a=−=, ∴40b a =−>,结论①正确;∵抛物线与x 轴一个交点为()50,,且对称轴为直线2x =, ∴抛物线与x 轴的另一个交点为()1,0−,即当=1x −时,0y =,∴0a b c −+=,∴a c b +=,结论②错误;∵抛物线2y ax bx c ++与x 轴的两个交点为()1,0−,()50,, ∴多项式2ax bx c ++可因式分解为()()15a x x +−,结论③错误;∵对称轴为直线2x =,且函数开口向下,∴当2x =时,y 有最大值,由2y ax bx c ++得,当2x =时,42y a b c =++,当x m =时,2y am bm c ++,∴无论m 为何值时,242am bm c a b c ++≤++,∴242am bm a b +≤+,结论④正确;综上:正确的有①④.故选:B .10. 如图,菱形ABCD 的边长为3cm ,60B ∠=°,动点P 从点B 出发以3cm /s 的速度沿着边BC CD DA −−运动,到达点A 后停止运动;同时动点Q 从点B 出发,以1cm /s 的速度沿着边 BA 向A 点运动,到达点A 后停止运动,设点P 的运动时间为()s x ,BPQ 的面积为y 2cm ,则y 关于x 的函数图象为( )的A. B.C. D.【答案】D【解析】【分析】本题考查动点问题的函数图象.根据拐点得到各个自变量范围内的函数解析式是解决本题的关键.用到的知识点为:30°的直角三角形三边比是:2.易得点P 运动的路程为3x cm ,点Q 运动的路程为x cm .当01x ≤≤时,点P 在线段BC 上,点Q 在线段AB 上,过点Q 作QE BC ⊥于点E ,求得QE 的长度,然后根据面积公式可得y 与x 关系式;当点P 在线段CD 上时,12x <≤,BQ 边上的高是AB和CD 之间的距离,根据面积公式可得y 与x 之间的关系式;当点Q 在线段AD 上时,23x <≤,作出BQ 边上的高,利用三角形的面积公式可得y 与x 的关系式.然后根据各个函数解析式可得正确选项.【详解】解: 点P 的速度是3cm/s ,点Q 的速度为1cm/s ,运动时间为(s)x ,∴点P 运动的路程为3x cm ,点Q 运动的路程为x cm .①当01x ≤≤时,点P 在线段BC 上,点Q 在线段AB 上.过点Q 作QE BC ⊥于点E ,90BEQ ∴∠=°.60B ∠=° ,30BQE ∴∠=°.12BE x ∴=cm .QE x ∴cm .22113(cm )22BPQ S BP QE x ∆∴=⋅=×.2(01)y x x ∴=≤≤. ∴此段函数图象为开口向上的二次函数图象,排除B ;②当12x <≤时,点P 在线段CD 上,点Q 在线段AB 上.过点C 作CF AB ⊥于点F ,则CF 为BPQ 中BQ 边上的高.90BFC ∴∠=°.60ABC ∠=° ,30BCF ∴∠=°.3cm BC = ,3cm 2BF ∴=.CF ∴.211(cm )22BPQ S BQ CF x ∆∴=⋅=.(12)y x x ∴=<≤. ∴此段函数图象为y 随x 的增大而增大的正比例函数图象,故排除A ;③当23x <≤时,点P 在线段AD 上,点Q 在线段AB 上.过点P 作PM AB ⊥于点M .90M ∴∠=°.四边形ABCD 是菱形,AD BC ∴∥.60ABC ∠=° ,60MAP ∴∠=°.30APM ∴∠=°.由题意得:(93)cm APx =−. 93cm 2x AM −∴=.PM ∴.211)22BPQ S BQ PM x ∆∴=⋅=.y ∴ ∴此段函数图象为开口向下的二次函数图象.故选:D .二.填空题(共5小题)11. 分解因式:244xy xy x −+=____________________【答案】()221x y −【解析】【分析】先提取公因式x ,再利用完全平方公式进行二次分解即可.【详解】解:244xy xy x −+=()2441x y y −+=()221x y −,故答案为:()221x y −.【点睛】本题考查提公因式法与公式法分解因式,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12. a 是方程210x x −−=的一个根,则代数式2202422a a −+的值是______.【答案】2022【解析】【分析】本题考查一元二次方程的解:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解.由题意得21a a −=,根据()2220242220242a a a a −+=−−,利用整体思想即可求解.【详解】解:由题意得:210a a −−=∴21a a −= ∴()22202422202422024212022a a a a −+=−−=−×= 故答案为:202213. 如图,在ABC 中,40B ∠=°,50C ∠=°,通过观察尺规作图的痕迹,可以求得DAE ∠=___________.【答案】25°##25度【解析】【分析】本题主要考查线段垂直平分线的性质、角平分线的定义、三角形内角和定理等知识点,熟练掌握线段垂直平分线的性质、角平分线的定义是解答本题的关键.由题可得,直线DF 是线段AB AE 为DAC ∠的平分线,再根据线段垂直平分线的性质、角平分线的定义以及三角形内角和定理求解即可.【详解】解:由题可得,直线DF 是线段AB 的垂直平分线,AE 为DAC ∠的平分线,∴AD BD DAE CAE =∠=∠,, ∴40B BAD ∠=∠=°, ∴80ADC B BAD ∠=∠+∠=°,∵50C ∠=°,∴180805050DAC ∠=°−°−°=°, ∴1252DAE CAE DAC ∠=∠=∠=°, 故答案为:25°.14. 如图,在平面直角坐标系中,四边形OABC 为菱形,反比例函数()0,0k y k x x =≠>的图象经过点C ,交AB 于点D ,若2sin 3B =,6OCD S =△,则k 值为___________.【答案】【解析】【分析】过点C 作CE OA ⊥于点E ,根据菱形性质,得2sin sin 3CE AOC B OC ∠==∠= ,设2CE a =,则3OC OA a ==,再表示出点C 的坐标,根据26212菱形OCD OABC S S ==×= 列方程即可求出a 的值及k 的值.【详解】解:过点C 作CE OA ⊥于点E ,四边形OABC 为菱形,,OC OA AOC B ∴=∠=∠,2sin sin 3CE AOC B OC ∴∠==∠=, 设2CE a =,则3OC OA a ==,在Rt OEC △中,OE =,,2)C a ∴26212菱形OCD OABC S S ==×= ,又3212菱形OABC S OA CE a a =×=×= ,0a > ,a ∴,C,k =的故答案为:【点睛】本题考查的是反比例函数综合题目,考查了反比例函数解析式的求法、坐标与图形性质、菱形的性质、三角函数等知识,关键是辅助线的作法.15. 如图,矩形ABCD 的长BC =,将矩形ABCD 对折,折痕为PQ ,展开后,再将C ∠ 折到DFE ∠的位置,使点 C 刚好落在线段AQ 的中点 F 处,则折痕DE =___________.【解析】 【分析】本题考查了矩形的性质,直角三角形的性质,相似三角形的判定和性质等知识,解决问题的关键是作辅助线,构造相似三角形.过点F 作GH BC ⊥于H ,交AD 于G ,不妨设CQDQ a ==,可求得AQ ,AD ,DG ,FG ,FH 的值,证明DGF FHE △∽△,从而求得EF ,进而求得CE 和BE 的值,从而求得结果.【详解】解:如图,设DQCQ a ==,则22DF CD DQ a ===, 四边形ABCD 是矩形,90∴∠=∠=°C ADC ,BC AD =,F 是AQ 的中点,24AQ DF a ∴==,AD BC ∴===== ∴1a =∴1DQCQ ==,2DF CD ==,4AQ =, 过点F 作GH BC ⊥于H ,交AD 于G ,90GHC ∴∠=°,∴四边形CDGH 是矩形,2GH CD ∴==,GH CD ∥,AFG AQD ∴△∽△, ∴12AG FG AF AD DQ AQ ===,12AG AD ∴==,1122FG DQ ==, 13222FH GH FG ∴=−=−=, 90DGF FHE ∠=∠=° ,90HFE HEF ∴∠+∠=°,、90DFE C ∠=∠=° ,90DFG HFE ∴∠+∠=°,DFG HEF ∴∠=∠,DGF FHE ∴△∽△, ∴DG DF FH EF=,∴2EF=,EF ∴,CE EF ∴==,DE ∴===. 三.解答题(共7题,共55分)16 计算:4cos30°﹣2|+)0+(﹣13)﹣2. 【答案】8. .【解析】【分析】代入特殊角的三角函数值,按照实数的混合运算法则计算即可得答案.【详解】4cos30°﹣2|++(﹣13)-2=214(211()3−+−+=219−++−+=8.【点睛】本题考查特殊角的三角函数值、零指数幂、负整数指数幂及二次根式的性质与化简,熟练掌握实数的混合运算法则,熟记特殊角的三角函数值是解题关键.17. 先化简:231(1)224x x x −−÷++,再从1−,0中选取适合的数字求这个代数式的值. 【答案】21x +,当0x =时,值为2 【解析】【分析】本题考查的是分式的化简求值,先计算括号内分式的减法,再计算除法运算,得到化简的结果,结合分式有意义的条件,把0x =代入计算即可. 【详解】解;231(1)224x x x −−÷++()()()1123222x x x x x +−+−÷++ ()()()221211x x x x x +−⋅++− 21x =+, ∵分式有意义,∴1x ≠±且2x ≠−, ∴当0x =时,原式2201=+; 18. 某校为了解本校学生每天在校体育锻炼时间的情况,随机抽取了若干名学生进行调查,获得了他们每天在校体育锻炼时间的数据(单位:min ),并对数据进行了整理,描述,部分信息如下: a .每天在校体育锻炼时间分布情况:每天在校体育锻炼时间x (min ) 频数(人) 百分比6070x ≤<14 14% 7080x ≤<40 m 8090x ≤< 3535% 90x ≥n 11% b .每天在校体育锻炼时间在8090x ≤<这一组的是:80 81 81 81 82 82 83 83 84 84 84 84 84 85 85 85 85 85 85 85 85 86 87 87 87 87 87 88 88 88 89 89 89 89 89根据以上信息,回答下列问题:(1)表中m =______,n =______;(2)若该校共有1000名学生,估计该校每天在校体育锻炼时间不低于80分钟的学生的人数;(3)该校准备确定一个时间标准p (单位:min ),对每天在校体育锻炼时间不低于p 的学生进行表扬.若要使25%的学生得到表扬,则p 的值可以是______.【答案】(1)40%,11(2)460人(3)86(答案不唯一)【解析】【分析】(1)根据所有组别的频率之和为1求出m 即可;用组别6070x ≤<的频数除以频率得到参与调查的学生人数,进而求出n 的值即可;(2)用1000乘以样本中每天在校体育锻炼时间不低于80分钟的学生的人数占比即可得到答案; (3)把每天在校体育锻炼时间从低到高排列,找到处在第75名和第76名的锻炼时间即可得到答案.【小问1详解】解:由题意得,114%35%11%40%m =−−−=,1414%100÷=人,∴这次参与调查的学生人数为100人,∴10011%11n =×=,故答案为:40%,11;【小问2详解】解:()100011%35%460×+=人,∴估计该校每天在校体育锻炼时间不低于80分钟的学生的人数为460人;【小问3详解】解:把每天在校体育锻炼时间从低到高排列,处在第75名和第76名的锻炼时间分别为85min 86min 、, ∵要使25%的学生得到表扬,∴8586p <≤,∴p 的值可以为86,故答案为:86(答案不唯一).【点睛】本题主要考查了频率与频数分布表,用样本估计总体等等,灵活运用所学知识是解题的关键. 19. 如图,在ABC 中,AB BC =,AB 为O 的直径,AC 与O 相交于点 D ,过点D 作DE BC ⊥于点E ,CB 延长线交O 于点F .(1)求证:DE 为O 的切线;(2)若1BE =,2BF =,求【答案】(1)见解析;(2).【解析】【分析】(1)根据已知条件证得OD BC 即可得到结论;(2)如图,过点O 作OH BF ⊥于点H ,则90ODE DEH OHE ∠=∠=∠=°,构建矩形ODEH ,根据矩形的性质和勾股定理即可得到结论.【小问1详解】证明:OA OD = ,BAC ODA ∴∠=∠,AB BC = ,BAC ACB ∴∠=∠,ODA ACB ∴∠=∠,OD BC ∴ .DE BC ⊥ ,DE OD ∴⊥,OD 是O 的半径,DE ∴是O 的切线;【小问2详解】解:如图,过点O 作OH BF ⊥于点H ,则90ODE DEH OHE ∠=∠=∠=°,∴四边形ODEH 是矩形,OD EH ∴=,OH DE =,OH BF ⊥ ,2BF =,112BH FH BF ∴===, 2OD EH BH BE ∴==+=,24AB OD ∴==,OH ==DE OH ∴==2BD ∴=,AD ∴【点睛】本题考查了切线的判定,勾股定理,矩形的判定与性质,垂径定理,等腰三角形的性质.解题的关键:(1)熟练掌握切线的判定;(2)利用勾股定理和垂径定理求长度.20. 2024年龙年春晚吉祥物形象“龙辰辰”正式发布亮相,作为中华民族重要的精神象征和文化符号,千百年来,龙的形象贯穿文学、艺术、民俗、服饰、绘画等各个领域,也呈现了吉祥如意、平安幸福的美好寓意.吉祥物“龙辰辰”的产生受到众人的热捧.某工厂计划加急生产一批该吉祥物,决定选择使用A 、B 两种材料生产吉祥物.已知使用B 材料的吉祥物比A 材料每个贵50元,用3000元购买用A 材料生产吉祥物的数量是用1500元购买B 材料生产吉祥物数量的4倍.(1)求售卖一个A 材料、一个B 材料的吉祥物各需多少元?(2)一所中学为了激励学生奋发向上,准备用不超过3000元购买A 、B 两种材料的吉祥物共50个,来奖励学生.恰逢工厂对两种材料吉祥物的价格进行了调整:使用A 材料的吉祥物的价格按售价的九折出售,使用B 材料的吉祥物比售价提高了20%,那么该学校此次最多可购买多少个用B 材料的吉祥物?【答案】(1)购买一个A 材料的吉祥物需50元,购买一个B 材料的吉祥物需100元(2)该学校此次最多可购买10个B 材料的吉祥物【解析】【分析】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.(1)设使用A 材料生产的吉祥物的单价为x 元/个,则使用B 材料生产的吉祥物的单价为(50)x +元/个,利用数量=总价÷单价,结合用3000元购买用A 材料生产吉祥物的数量是用1500元购买B 材料生产吉祥物数量的4倍,可列出关于x 的分式方程,解之经检验后,可得出使用A 材料生产的吉祥物的单价,再将其代入(50)x +中,即可求出使用B 材料生产的吉祥物的单价;(2)设该学校此次购买m 个使用B 材料生产的吉祥物,则购买()50m −个使用A 材料生产的吉祥物,利用总价=单价×数量,结合总价不超过3000元,可列出关于m 的一元一次不等式,解之取其中的最大值,即可得出结论.【小问1详解】解:设购买一个A 材料的吉祥物需x 元,则购买一个B 材料的吉祥物需()50x +元, 依题意,得:30001500450x x =×+, 解得:50x =,经检验,50x =是原方程的解,且符合题意,∴50100x ,答:购买一个A 材料的吉祥物需50元,购买一个B 材料的吉祥物需100元;【小问2详解】设该学校此次购买m 个B 材料的吉祥物,则购买()50m −个A 材料的吉祥物,依题意,得:()()5090%50100120%3000m m ×−+×+≤,解得:10m ≤.∴m 的最大值为10,答:该学校此次最多可购买10个B 材料的吉祥物.21. 【项目式学习】【项目主题】自动旋转式洒水喷头灌溉蔬菜【项目背景】寻找生活中的数学,九(1)班分四个小组,开展数学项目式实践活动,获取所有数据共享,对蔬菜喷水管建立数学模型,菜地装有1个自动旋转式洒水喷头,灌溉蔬菜,如图1所示,观察喷头可顺、逆时针往返喷洒.【项目素材】素材一:甲小组在图2中建立合适的直角坐标系,喷水口中心O 有一喷水管OA ,从A 点向外喷水,喷出的水柱最外层的形状为抛物线.以水平方向为x 轴,点O 为原点建立平面直角坐标系,点A (喷水口)在y 轴上,x 轴上的点D 为水柱的最外落水点.素材二:乙小组测得种植农民的身高为1.75米,他常常往返于菜地之间.素材三:丙小组了解到需要给蔬菜大鹏里拉一层塑料薄膜用来保温保湿,以便蔬菜更好地生长.【项目任务】任务一:丁小组测量得喷头的高OA =23米,喷水口中心点O 到水柱的最外落水点D 水平距离为8米,其中喷出的水正好经过一个直立木杆EF 的顶部F 处,木杆高3EF =米,距离喷水口4OE =米,求出水柱所在抛物线的函数解析式.任务二:乙小组发现这位农民在与喷水口水平距离是p 米时,不会被水淋到,求 p 的取值范围. 45°,截面如图3,求薄膜与地面接触点与喷水口的水平距离是多少米时,喷出的水与薄膜的距离至少是10厘米?(直接写出答案,精确到0.1米).【答案】任务一:2152643y x x =−++;任务二:1 6.5p <<;任务三:8.4米. 【解析】 【分析】任务一:运用待定系数法求解即可;任务二:求出当 1.75y =时x 的值,则p 的取值在这两根之间;(3)设这个到薄膜最近的点是G ,薄膜交x 轴于点P ,过点G 作GQ 垂直薄膜于点Q ,则10cm 0.1GQ m ==, 又过点G 作薄膜的平行线交x 轴于M ,过点M 作MN 垂直薄膜于点N ,则0.1MN GQ m ==,则直线GM 与直线y x =−平行,则MP =,直线GM 的解析式是:y x b =−+,联立方程组得到关于x 的一元二次方程,利用Δ0=求出b 的值,从而求出OM ,继而求出OP ,从而得解. 【详解】解:任务一:由题意得抛物线过点203A,,()80D ,,()43F ,, 设抛物线的解析式为2y ax bx c ++, 将点203A ,,()80D ,,()43F ,代入得:2364801643c a b c a b c = ++= ++=, 解得:165423a b c =− = =, ∴水柱所在抛物线的函数解析式为2152643y x x =−++;; 任务二:当 1.75y =时,2152 1.75643x x −++= 解得121 6.5x x ==, ∴ p 的取值范围是:1 6.5p <<;任务三:∵薄膜所在平面和地面的夹角是45°,∴薄膜所在的直线与直线y x =−平行,如下图所示:设这个到薄膜最近的点是G ,薄膜交x 轴于点P ,过点G 作GQ 垂直薄膜于点Q ,则10cm 0.1GQ m ==, 又过点G 作薄膜的平行线交x 轴于M ,过点M 作MN 垂直薄膜于点N ,则0.1MNGQ m ==,则直线GM 与直线y x =−平行.又∵薄膜所在平面和地面的夹角是45°,即45MPN ∠=°,∴MN NP =,MP =, 设直线GM 的解析式是:y x b =−+, 直线GM 的解析式与抛物线解析式联立得:2152643y x x y x b =−++ =−+∵这个到薄膜最近的点是G , ∴方程2152643x x x b −++=−+,即有20192643x x b −+=−两个相等得实数根, ∴2912Δ40463b =−−××−=, 解得:79396b =, ∴直线GM 的解析式是:79396y x =−+, 令793096y x =−=+, 解得: 79396x =∴793096M,,793m 96OM =,∴793968.4m OP OM MP =+=≈, 答:求薄膜与地面接触点与喷水口的水平距离是8.4米时,喷出的水与薄膜的距离至少是10厘米【点睛】本题考查待定系数法求二次函数解析式,二次函数的图象与性质,等腰直角三角形的判定与性质,二次函数与几何综合等知识,利用数形结合思想解题是关键.22. 【综合与实践】【问题背景】在四边形ABCD 中,E 是CD 边上一点,延长BC 至点F 使得CF CE =,连接DF ,延长BE 交DF 于点G .【特例感知】(1)如图1,若四边形ABCD 是正方形时.①求证:BCE DCF ≌;②当G 是DF 中点时,F ∠=__________度; 【深入探究】(2)如图2,若四边形ABCD 是菱形,2AB =,当G 为DF 的中点时,求CE 的长;【拓展提升】(3)如图3,若四边形ABCD 是矩形,3AB =,4AD =,点H 在BE 的延长线上且满足5BE EH =,当EFH 是直角三角形时,请直接写出CE 的长.【答案】(1)①见解析;②67.5;(2)2;(3)411,43或2. 【解析】【分析】(1)①运用正方形的性质和SAS 即可证明; ②连接BD ,则1452CBD ABC ∠=∠=°,运用全等三角形的性质和三角形的内角和推导90BGF ∠=°,从而得出BG 垂直平分DF ,继而求出CBE ∠,从而得解;(2)点G 作GM BC ∥交CD 于M ,设GM x =,则2CE CF x ==,12ME x =−,证明MGE CBE ∽得到MG ME CB CE=,从而列出方程求解即可; (3)说明90FEH ∠<°,从而分当90H ∠=°时和当90EFH ∠=°时两种情况,运用相似三角形对应边成比例列出方程求解即可.【详解】(1)①∵四边形ABCD 是正方形,∴BC DC =,90BCE DCF ∠=∠=°.又∵CE=CF ,∴()SAS BCE DCF ≌.②连接BD ,∵四边形ABCD 是正方形, ∴1452CBD ABC ∠=∠=°, 由①得:BCE DCF ≌,∴BEC F ∠=∠,又∴90CBE F CBE BEC ∠+∠=∠+∠=° ∴()18090BGFCBE F ∠=°−∠+∠=°, 又∵G 是DF 中点,∴BG 垂直平分DF ,∴BD BF =,∴BG 平分CBD ∠,122.52CBE CBD ∠=∠=°, ∴9067.5F CBE ∠=°−∠=°,故答案为:67.5;(2)过点G 作GM BC ∥交CD 于M ,∵DG FG =,∴1DM CM ==,12MG CF =. 设GM x =,则2CE CF x ==,12ME x =−.∵GM BC ∥,∴MGE CBE ∠=∠,GME BCE ∠=∠.∴MGE CBE ∽. ∴MG ME CB CE=.即1222x x x −=,解得11x =−,21x −(舍去).∴CE=2−.(3)CE 的长为411,43或2. 理由如下: ∵四边形ABCD 是矩形,3AB =,4AD =∴3AB CD ==,4AD BC ==,∴CE BC <,BEC CBE ∠>∠,∴45BEC ∠>°,又∵CE CF =,∴45FEC CFE ∠=∠=°,∴18090FEH FEC BEC ∠=°−∠−∠<°,当90H ∠=°时,如下图所示:设CE CF a ==,则BE ,4BF BC CF a =+=+, 又∵5BE EH =,∴65BH BE ==, ∵90H BCE ∠=∠=°,FBH EBC ∠=∠,∴BFH BEC △∽△, ∴BF BH BE BC == 解得:2a =或43,即2CE =或43当90EFH ∠=°时,过点H 作HN BC ⊥于M ,如下图所示:则CE HN ∥,∴BCE BNH △∽△ ∴56BCCE BE BN NH BH ===,即456CE BN NH ==, ∴245BN =,45CN BN BC =−=,65NH CE =,∵45CFE ∠=°,90EFH ∠=°,∴45HFN ∠=°,FN HN =, ∴6455CN CF FN CE CE =+=+=, ∴411CE =, 综上所述:CE 的长为411,43或2. 【点睛】本题考查正方形的性质,菱形的性质,矩形的性质,相似三角形的判定与性质,等腰三角形的判定与性质,直角三角形存在性问题等知识,灵活运用相似三角形的判定和性质解决问题是解题的关键.。

2023年广东省深圳市中考模拟数学试题(含答案解析)

2023年广东省深圳市中考模拟数学试题(含答案解析)

2023年广东省深圳市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________....A .B .C .D .7.如图,三角板的直角顶点落在矩形纸片的一边上.若250∠=︒,则1∠=()A .35°B .40°C .45°D .50°8.下列说法错误..的是()A .对角线垂直且互相平分的四边形是菱形B .同圆或等圆中,同弧对应的圆周角相等C .对角线相等的四边形是矩形D .对角线垂直且相等的平行四边形是正方形9.如图所示,小刚手拿20元钱正在和售货员对话,请你仔细看图,1听果奶、1听可乐的单价分别是()A .3元,3.5元B .3.5元,3元C .4元,4.5元D .4.5元,4元10.如图,AB 与O 相切于点F ,AC 与O 交于C D 、两点,45BAC ∠=︒,BE CD ⊥于点E ,且BE 经过圆心,连接OD ,若5OD =,8CD =,则BE 的长为()A .523+B .5二、填空题11.若226,3a b a b =--=-,则12.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有13.若1-是关于x 的一元二次方程14.在平面直角坐标系xOy 中,将一块含有的坐标为(1,0),AB =22析式______.三、解答题AB= 21.如图①,已知线段8半圆C上的一个动点(P与点(1)判断线段AP 与PD 的大小关系,并说明理由;(2)连接PC ,当60ACP ∠=︒时,求弧AD 的长;(3)过点D 作DE AB ⊥,垂足为E (如图②),设AP x OE y ==,,求y 与关系式,并写出x 的取值范围.22.如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,点E 是BC 点,连接DE ,交AC 于点F .(1)如图①,当13CE EB =时,求CEF CDF S S △△的值;(2)如图②当DE 平分∠CDB 时,求证:AF =2OA ;(3)如图③,当点E 是BC 的中点时,过点F 作FG ⊥BC 于点G ,求证:参考答案:【点睛】此题考查科学记数法,解题关键在于掌握科学记数法是指把一个数表示成a×10的n 次幂的形式(1≤a <10,n 为正整数.)5.B【分析】逐一进行判断即可得出答案.【详解】A.844a a a ÷=,故错误;B.326()a a =,故正确;C.235a a a ∙=,故错误;D.4442a a a +=,故错误;故选:B .【点睛】本题主要考查同底数幂的乘除法,幂的乘方,合并同类项,掌握同底数幂的乘除法,幂的乘方运算法则,合并同类项的法则是解题的关键.6.C【分析】根据一次函数交点与不等式关系直接求解即可得到答案;【详解】解:由图像可得,在P 点右侧3y ax =-的图像在3y x b =+的下方,∴不等式的解集为:2x >-,故选C .【点睛】本题考查一次函数交点与不等式的关系,解题的关键是看懂一次函数图像.7.B【分析】根据题意可知AB ∥CD ,∠FEG =90°,由平行线的性质可求解∠2=∠3,利用平角的定义可求解∠1的度数.【详解】解:如图,由题意知:AB ∥CD ,∠FEG =90°,∴∠2=∠3,∵∠2=50°,∴∠3=50°,∵∠1+∠3+90°=180°,∴∠1+∠3=90°,∴∠1=40°,故选:B .【点睛】本题主要考查平行线的性质,找到题目中的隐含条件是解题的关键.8.C【分析】根据平行四边形、矩形、菱形、正方形的判定方法及圆周角定理,分别分析得出答案.【详解】解:A .对角线垂直且互相平分的四边形是菱形,所以A 选项说法正确,故A 选项不符合题意;B .同圆或等圆中,同弧对应的圆周角相等,所以A 选项说法正确,故B 选项不符合题意;C .对角线相等的四边形是不一定是矩形,所以C 选项说法不正确,故C 选项符合题意;D .对角线垂直且相等的平行四边形是正方形,所以D 选项说法正确,故D 选项不符合题意.故选:C .【点睛】本题主要考查了圆周角定理,平行四边形的判定与性质,菱形的判定等知识,熟练掌握圆周角定理,平行四边形的判定与性质,菱形的判定方法等进行求解是解决本题的关键.9.A【分析】设1听果奶为x 元,1听可乐y 元,由题意可得等量关系:①1听果奶的费用+4听可乐的费用=17元,②1听可乐的费用﹣1听果奶的费用=0.5元,根据等量关系列出方程组,再解即可.【详解】设1听果奶为x 元,1听可乐y 元,由题意得:42030.5x y y x +=-⎧⎨-=⎩,解得:3y 3.5x =⎧⎨=⎩,故选A .【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量∵AB 与O 相切于点F ,∴OF AB ⊥,∵45BAC ∠=︒,BE CD ⊥,∴ABE 是等腰直角三角形,∴45B A ∠=∠=︒,∴OBF 是等腰直角三角形,∴5BF OF OD ===,∴252OB OF ==,∵OE CD ⊥,∴142DE CD ==,∴223OE OD DE =-=,∴523BE OB OE =+=+,故选:A .【点睛】本题主要考查了切线的性质、等腰直角三角形的判定和性质、垂径定理、勾股定理等知识,熟练掌握切线的性质是解题的关键.11.2-【详解】为正三角形,=︒,AB BE60==∠-∠=︒45ABE ABN是正方形ABCD的对角线,=︒45(4)由函数图象可得性质:①当0x<②该函数与x轴有唯一交点.【点睛】本题考查的是函数的自变量的取值范围,求解函数值,画函数图象,归纳函数图象的性质,掌握“画函数图象以及根据图象总结函数的性质=,理由见解析21.(1)AP PD∵OA 是半圆C 的直径,∴90APO ∠=︒,即OP 又∵AD 是圆O 的弦,∴AP PD =;(2)解:如图①,连接由(1)知,AP PD =.又∵AC OC =,∴.PC OD ∥∴60AOD ACP ∠=∠=︒∵8AB =,又∵A A ∠=∠,∴APO AED △∽△,∴AP AO AE AD=,∵4AP x AO AD ==,,∴442x xy =-,∴2142y x =-+,当点E 落在O 点时,AP 则x 的取值范围是0x <②当点E 落在线段OB 上时,如图③,连接OP ,同①可得,APO AED △∽△∴AP AO AE AD=,∵4AP x AO AD ==,,∴442x y x =+,∴2142y x =-,理解正方形的性质是关键.。

2022年广东省深圳市新中考数学模拟试卷(10)学生版+解析版

2022年广东省深圳市新中考数学模拟试卷(10)学生版+解析版

2022年广东省深圳市新中考数学模拟试卷(10)一.选择题(共10题,每题3分,共30分)1.(3分)﹣2021的相反数是( )A .﹣2021B .−12021C .12021D .20212.(3分)下列图形中,是中心对称但不是轴对称又图形的是( )A .B .C .D .3.(3分)港珠澳大桥是目前世界上最长的跨海大桥,工程造价约1100亿元,1100亿元用科学记数法表示为( )A .1100×108元B .11×1010元C .1.1×1011元D .1.1×1012元4.(3分)数据2、5、6、7、x 的平均数是5,则这组数据的中位数是( )A .4B .4.5C .5D .65.(3分)下列各式中,计算正确的是( )A .a 3+a 2=a 5B .a 3﹣a 2=aC .(a 2)3=a 5D .a 2•a 3=a 56.(3分)如图,m ∥n ,直角三角尺ABC 的直角顶点C 在两直线之间,两直角边与两直线相交所形成的锐角分别为α,β.若α=35°,则β的值为( )A .55°B .35°C .45°D .50°7.(3分)如图,在△ABC 中,∠C =90°,以A 为圆心,任意长为半径画弧,分别交AB ,AC 于点M 、N ,再分别以M 、N 为圆心,大于12MN 为半径画弧,两弧交于点G ,作射线AG 交BC 于点D .已知BD =5,CD =3,P 为AB 上一动点,则PD 的最小值为( )A.2B.3C.5D.8 8.(3分)以下说法正确的是()A.经过直径的一端且垂直于这条直径的直线是圆的切线B.圆周角等于圆心角的一半C.分式方程1x−2=x−1x−2−2的解为x=2D.反比例函数y=3x,y随x增大而减小9.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AD与AB的长度之比为()A.tanαtanβB.tanβtanαC.sinαsinβD.cosβcosα10.(3分)如图,已知四边形ABCD是边长为4的正方形,F为射线DC上一动点,过点D 作DE⊥AF于点P,交直线BC于点E.连接CP、BP,则下列结论中:①AF=DE;②△ADP的面积和以P、F、C、E为顶点的四边形面积始终相等;③当F为CD中点时,AB=BP;④BP+√55CP的最小值为4,其中正确的有()A.1个B.2个C.3个D.4个二.填空题(共5小题,每题3分,共15分)11.(3分)因式分解:3x 2﹣12= .12.(3分)在一个不透明的盒子里装有除颜色外其余均相同的3个黄色乒乓球和若干个白色乒乓球,从盒子里随机摸出一个乒乓球,摸到黄色乒乓球的概率为13,那么盒子内白色乒乓球的个数为 .13.(3分)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点(4,0),其对称轴为直线x=1,结合图象直接写出不等式ax 2+bx +c ≥0的解集为 .14.(3分)定义新运算:对于任意实数a ,b ,都有a *b =ma +b m (m 是常数),已知1*(﹣2)=1,2*(﹣1)=﹣1,则(﹣4)*3= .15.(3分)如图,Rt △ABC 中,∠ACB =90°,AD 平分∠CAB ,E 为AC 中点,连接BE交AD 于点F ,若cos ∠CAB =23,求S △AEFS △BDF = .三.解答题(共7小题,共55分)16.(5分)计算:|1−√2|﹣2sin45°+(3.14﹣π)0﹣(12)﹣2. 17.(6分)化简,求值:x−1x 2+2x+1÷(1−2x+1),其中x =3. 18.(7分)某校课外兴趣小组在本校学生中开展“垃圾分类”知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A 、B 、C 、D 四类,其中,A 类表示“非常了解”,B 类表示“比较了解”,C 类表示“基本了解”,D 类表示“不太了解”,学生可根据自己的情况任选其中一类,学校根据调查情况进行了统计,并制成了不完整的条形统计图和扇形统计图:(1)本次共调查了学生人,被调查的学生中,类别为C的学生有人;(2)求类别为A的学生数,并补全条形统计图;(3)求扇形统计图中类别为D的学生数所对应的圆心角的度数;(4)若该校有学生1000名,根据调查结果估计该校学生中对“垃圾分类”知识“非常了解”和“比较了解”的人数一共约为多少人?19.(8分)如图所示,在△ABC中,以AB为直径的⊙O交BC于点P,PD⊥AC于点D,且AB=AC;(1)求证:PD与⊙O相切.(2)若BC=12,AB=8,求CD的值.20.(9分)某科技公司研发出一款多型号的智能手表,一家代理商出售该公司的A型智能手表,去年销售总额为80000元,今年A型智能手表的售价每只比去年降了400元,若售出的数量与去年相同,销售总额将比去年减少25%.(1)请问今年A型智能手表每只售价多少元?(2)今年这家代理商准备新进一批A型智能手表和B型智能手表共100只,它们的进货价与销售价格如表,若B型智能手表进货量不超过A型智能手表数量的3倍,所进智能手表可全部售完,请你设计出进货方案,使这批智能手表获利最多,并求出最大利润是多少元?A型智能手表B型智能手表进价800元/只1000元/只售价今年的售价1500元/只21.(10分)(1)如图,正方形ABCD中,AC、BD交于点O,点F为边CD上一动点,作∠FOE=90°OE交BC于点E,若正方形ABCD的面积为16,则四边形ECFO的面积为;(2)若将正方形改为矩形,且AB=4,BC=6,其他条件不变,试探究OE:OF的值是否发生改变,若不变,请求出该值,若变化,请说明理由;(3)若将正方形改为菱形,且∠BAD=60°,∠EOF=120°,其他条件不变,试探究CE、CF与BC之间的数量关系,请写出你的结论并证明.22.(10分)(1)已知二次函数经过点A(﹣3,0)、B(1,0)、C(0,3),请求该抛物线解析式;(2)点M为抛物线上第二象限内一动点,BM交y轴于点N,当BM将四边形ABCM的面积分为1:2两部分时,求点M的坐标;(3)点P为对称轴上D点下方一动点,点Q为直线y=x第一象限上的动点,且DP=√2OQ,求BP+√2BQ的最小值并求此时点P的坐标.2022年广东省深圳市新中考数学模拟试卷(10)参考答案与试题解析一.选择题(共10题,每题3分,共30分)1.(3分)﹣2021的相反数是()A.﹣2021B.−12021C.12021D.2021【解答】解:﹣2021的相反数是:2021.故选:D.2.(3分)下列图形中,是中心对称但不是轴对称又图形的是()A.B.C.D.【解答】解:A.是轴对称图形,不是中心对称图形,故本选项不符合题意;B.是中心对称图形,也是轴对称图形,故本选项不合题意;C.是中心对称图形但不是轴对称图形,故本选项符合题意;D.是轴对称图形,不是中心对称图形,故本选项不符合题意;故选:C.3.(3分)港珠澳大桥是目前世界上最长的跨海大桥,工程造价约1100亿元,1100亿元用科学记数法表示为()A.1100×108元B.11×1010元C.1.1×1011元D.1.1×1012元【解答】解:1100亿=110000000000=1.1×1011,故选:C.4.(3分)数据2、5、6、7、x的平均数是5,则这组数据的中位数是()A.4B.4.5C.5D.6【解答】解:∵数据2、5、6、7、x的平均数是5,∴(2+5+6+7+x)÷5=5,解得:x=5,把这些数从小到大排列为:2、5、5、6、7,最中间的数是5,∴这组数据的中位数是5;故选:C.5.(3分)下列各式中,计算正确的是( )A .a 3+a 2=a 5B .a 3﹣a 2=aC .(a 2)3=a 5D .a 2•a 3=a 5【解答】解:a 3与a 5不是同类项,它是一个多项式,因此A 选项不符合题意;同上可得,选项B 不符合题意;(a 2)3=a 2×3=a 6,因此选项C 不符合题意; a 2•a 3=a 2+3=a 5,因此选项D 符合题意;故选:D .6.(3分)如图,m ∥n ,直角三角尺ABC 的直角顶点C 在两直线之间,两直角边与两直线相交所形成的锐角分别为α,β.若α=35°,则β的值为( )A .55°B .35°C .45°D .50°【解答】解:如图,过点C 作CD ∥m ,交AB 与点D .∵m ∥n ,CD ∥m ,∴m ∥n ∥CD .∴∠ACD =∠α=35°,∠DCB =∠β.∵∠ACD +∠DCB =90°,∴∠α+∠β=90°.∴∠β=55°.故选:A .7.(3分)如图,在△ABC 中,∠C =90°,以A 为圆心,任意长为半径画弧,分别交AB ,AC 于点M 、N ,再分别以M 、N 为圆心,大于12MN 为半径画弧,两弧交于点G ,作射线AG交BC于点D.已知BD=5,CD=3,P为AB上一动点,则PD的最小值为()A.2B.3C.5D.8【解答】解:由作法得AD平分∠BAC,∴点D到AB的距离=CD=3,∴PD的最小值为3.故选:B.8.(3分)以下说法正确的是()A.经过直径的一端且垂直于这条直径的直线是圆的切线B.圆周角等于圆心角的一半C.分式方程1x−2=x−1x−2−2的解为x=2D.反比例函数y=3x,y随x增大而减小【解答】解:A.经过直径的一端且垂直于这条直径的直线是圆的切线,故正确;B.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,故错误;C.分式方程1x−2=x−1x−2−2无解,故错误;D.反比例函数y=3x,在每一象限内,y随x增大而减小,故错误;故选:A.9.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AD与AB的长度之比为()A .tanαtanβB .tanβtanαC .sinαsinβD .cosβcosα【解答】解:在Rt △ABC 中,∵sin ∠ABC =AC AB ,即sin α=AC AB , ∴AB =AC sinα,在Rt △ADC 中,∵sin ∠ADC =AC AD ,即sin β=AC AD , ∴AD =AC sinβ,∴AD AB =AC sinβAC sinα=sinαsinβ,故选:C .10.(3分)如图,已知四边形ABCD 是边长为4的正方形,F 为射线DC 上一动点,过点D作DE ⊥AF 于点P ,交直线BC 于点E .连接CP 、BP ,则下列结论中:①AF =DE ;②△ADP 的面积和以P 、F 、C 、E 为顶点的四边形面积始终相等;③当F 为CD 中点时,AB =BP ;④BP +√55CP 的最小值为4,其中正确的有( )A .1个B .2个C .3个D .4个【解答】解:过点F 作FH ⊥AB ,垂足为H ,由题意知FH =BC ,∵FH =CD ,∴FH =CD ,∵AF ⊥DE ,∴∠CDE +∠DFP =∠AFH +∠DFP =90°,∴∠CDE=∠AFH,∵∠DCE=∠ABC=90°,∴∠CDE+∠DEC=∠AFH+∠F AH=90°,∵∠CDE=∠AFH,∴∠DEC=∠F AH,∴△DCE≌△FHA(AAS),∴DE=AF,故①正确;∵△DCE≌△FHA,∴S△DCE=S△FHA,∵S△ADF=S△AFH,∴S△DCE=S△ADF,S ADP=S△ADF﹣S△DEP,S四边形PFCE=S△DCE﹣S△DPF,∴∴S△ADP=S四边形PFCE,故②正确;∵DE⊥AF,∴∠APE=90°,∴∠APB+∠EPB=90°,∵∠DAF+∠P AB=90°,F为CD中点,∴CF=DF=2,∵∠EPB≠∠DAF,∴AB≠PB,故③错误;若BP+√55CP有最小值,则只需求BP和CP有最小值,BP的最小值为3,CP的最小值为√5,∴BP+√55CP=3+√55×√5=4,所以BP+√55CP的最小值为4,故④正确.正确的结论共有3个,故选:C.二.填空题(共5小题,每题3分,共15分)11.(3分)因式分解:3x2﹣12=3(x+2)(x﹣2).【解答】解:原式=3(x2﹣4)=3(x+2)(x﹣2).故答案为:3(x +2)(x ﹣2).12.(3分)在一个不透明的盒子里装有除颜色外其余均相同的3个黄色乒乓球和若干个白色乒乓球,从盒子里随机摸出一个乒乓球,摸到黄色乒乓球的概率为13,那么盒子内白色乒乓球的个数为 6 .【解答】解:设盒子中白色乒乓球的个数为x ,∵从盒子里随机摸出一个乒乓球,摸到黄色乒乓球的概率为13, ∴33+x =13, 解得x =6,经检验:x =6是分式方程的解,所以盒子内白色乒乓球的个数为6,故答案为:6.13.(3分)如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点(4,0),其对称轴为直线x=1,结合图象直接写出不等式ax 2+bx +c ≥0的解集为 x ≤﹣2或x ≥4 .【解答】解:函数的对称轴为直线x =1,与x 轴一个交点是(4,0),则另一个交点为(﹣2,0),观察函数图象知,不等式ax 2+bx +c ≥0的解集为x ≤﹣2或x ≥4,故答案为:x ≤﹣2或x ≥4.14.(3分)定义新运算:对于任意实数a ,b ,都有a *b =ma +b m (m 是常数),已知1*(﹣2)=1,2*(﹣1)=﹣1,则(﹣4)*3= 1 .【解答】解:由题意得{m +−2m =12m +−1m =−1, 解得,m =﹣1,经检验,m=﹣1是原方程组的解,∴(﹣4)*3=﹣4m+3m=−4×(﹣1)+3−1=4﹣3=1,故答案为:1.15.(3分)如图,Rt△ABC中,∠ACB=90°,AD平分∠CAB,E为AC中点,连接BE交AD于点F,若cos∠CAB=23,求S△AEFS△BDF=59.【解答】解:如图,以C为原点建立平面直角坐标系,设AE=CE=a,∴AC=2a,∵cos∠CAB=ACAB=23=2a AB,∴AB=3a,在Rt△ABC中,由勾股定理得BC2+AC2=AB2,∴BC=√AB2−AC2=√5a,∵AD平分∠CAB,∴∠CAB=12∠CAD=12∠BAD,过D作DQ⊥AB,垂足为Q,∵AD是∠CAB的角平分线,∴CD=DQ,∴DQ+DB=CD+DB=BC=√5a,cos∠ABC=BC=√5a=√5,即cos ∠QBD =√53,∴sin ∠QBD =1−(√53)2=23, ∴sin ∠QBD =QD BD =CD BD =23,又∵CD +BD =√5a ,∴解得:CD =2√55a ,BD =3√55a ,∴A (0,2a )、D (2√55a ,0)、B (√5a ,0)、E (0,a ), 设l AD :y =k 1x +b 1,l BE :y =k 2x +b 2, ∴{2a =b 10=2√55ak 1+b 1,{0=√5ak 2+b 2a =b 2,解得:{k 1=−√5b 1=2a ,{k 2=−√55b 2=a , ∴l AD :y =−√5x +2a ,l BE :y =−√55x +a ,联立{y =−√5x +2a y =−√55x +a , 解得:{x =√5a 4y =3a 4, ∴F (√54a ,3a 4), ∴S △AEF =12a ×√54a =√58a 2, S △BDF =12×3√55a ×3a 4=9√540a 2, ∴S △AEFS △BDF =√58×9√5=59. 解法二:由DQ =DC ,根据同高(等高),面积比=底的比,可得CD :DB =AC :AB =2:3,连接CF ,设S △CEF =x ,S △CDF =2y ,∴S △AEF =x ,S △BDF =3y ,S △ABF =3x ,利用E 为中点,得x +3x =x +5y ,∴x =53y ,∴S △AEF :S △BDF =x :3y =5:9.三.解答题(共7小题,共55分)16.(5分)计算:|1−√2|﹣2sin45°+(3.14﹣π)0﹣(12)﹣2. 【解答】解:原式=√2−1﹣2×√22+1﹣4=√2−1−√2+1﹣4=﹣4.17.(6分)化简,求值:x−1x 2+2x+1÷(1−2x+1),其中x =3. 【解答】解:原式=x−1(x+1)2÷x−1x+1 =x−1(x+1)2×x+1x−1 =1x+1. 当x =3时,原式=13+1=14.18.(7分)某校课外兴趣小组在本校学生中开展“垃圾分类”知晓情况专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为A 、B 、C 、D 四类,其中,A 类表示“非常了解”,B 类表示“比较了解”,C 类表示“基本了解”,D 类表示“不太了解”,学生可根据自己的情况任选其中一类,学校根据调查情况进行了统计,并制成了不完整的条形统计图和扇形统计图:(1)本次共调查了学生 200 人,被调查的学生中,类别为C 的学生有 28 人;(2)求类别为A 的学生数,并补全条形统计图;(3)求扇形统计图中类别为D 的学生数所对应的圆心角的度数;(4)若该校有学生1000名,根据调查结果估计该校学生中对“垃圾分类”知识“非常了解”和“比较了解”的人数一共约为多少人?【解答】解:(1)本次共调查了学生100÷50%=200(人),被调查的学生中,类别为C的学生有200×14%=28(人),故答案为:200,28;(2)类别为A的学生有:200﹣100﹣28﹣12=60(人),补充完整的条形统计图如右图所示;(3)扇形统计图中类别为D的学生数所对应的圆心角的度数为:360°×12200=21.6°;(4)1000×60+100200=800(人),即该校学生中对“垃圾分类”知识“非常了解”和“比较了解”的人数一共约为800人.19.(8分)如图所示,在△ABC中,以AB为直径的⊙O交BC于点P,PD⊥AC于点D,且AB=AC;(1)求证:PD与⊙O相切.(2)若BC=12,AB=8,求CD的值.【解答】(1)证明:∵AB=AC,∴∠B=∠C,∵OP=OB,∴∠B =∠OPB ,∴∠OPB =∠C ,∴OP ∥AC ,∵PD ⊥AC ,∴OP ⊥PD ,∴PD 是⊙O 的切线;(2)解:连接AP ,如图,∵AB 为直径,∴∠APB =90°,∴BP =CP =6,∵PD ⊥AC ,∴∠PDC =∠APB =90°,∵∠C =∠C ,∴△PCD ∽△ACP ,∴CD PC =PC AC ,即CD 6=68, ∴CD =4.5.20.(9分)某科技公司研发出一款多型号的智能手表,一家代理商出售该公司的A 型智能手表,去年销售总额为80000元,今年A 型智能手表的售价每只比去年降了400元,若售出的数量与去年相同,销售总额将比去年减少25%.(1)请问今年A 型智能手表每只售价多少元?(2)今年这家代理商准备新进一批A 型智能手表和B 型智能手表共100只,它们的进货价与销售价格如表,若B 型智能手表进货量不超过A 型智能手表数量的3倍,所进智能手表可全部售完,请你设计出进货方案,使这批智能手表获利最多,并求出最大利润是多少元?A型智能手表B型智能手表进价800元/只1000元/只售价今年的售价1500元/只【解答】解:(1)今年A型智能手表每只售价x元,去年售价每只为(x+400)元,根据题意得80000x+400=80000×(1−25%)x,解得:x=1200,经检验,x=1200是原方程的根,答:今年A型智能手表每只售价1200元;(2)设新进A型手表a只,全部售完利润是W元,则新进B型手表(100﹣a)只,根据题意得,W=(1200﹣800)a+(1500﹣1000)(100﹣a)=﹣100a+50000,∵100﹣a≤3a,∴a≥25,∵﹣100<0,W随a的增大而减小,∴当a=25时,W增大=﹣100×25+50000=47500元,此时,进货方案为新进A型手表25只,新进B型手表75只,答:进货方案为新进A型手表25只,新进B型手表75只,这批智能手表获利最多,并求出最大利润是47500元.21.(10分)(1)如图,正方形ABCD中,AC、BD交于点O,点F为边CD上一动点,作∠FOE=90°OE交BC于点E,若正方形ABCD的面积为16,则四边形ECFO的面积为4;(2)若将正方形改为矩形,且AB=4,BC=6,其他条件不变,试探究OE:OF的值是否发生改变,若不变,请求出该值,若变化,请说明理由;(3)若将正方形改为菱形,且∠BAD=60°,∠EOF=120°,其他条件不变,试探究CE、CF与BC之间的数量关系,请写出你的结论并证明.【解答】解:(1)∵正方形的对角线AC,BD相交于点O,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∵∠FOE=90°=∠BOC,∴∠FOE﹣∠COE=∠BOC﹣∠COE,∴∠BOE=∠COF,∴△BOE≌△COF(ASA),∴S△BOE=S△COF,∵正方形的对角线AC,BD相交于点O,∴S△BOC=14S正方形ABCD,∵正方形ABCD的面积为16,∴S△BOC=4,∴S四边形ECFO=S△COF+S△COE=S△BOE+S△COE=S△BOC=4,故答案为4;(2)OE:OF的值是不发生改变,其值为2:3,理由:如图1,过点O作OM⊥BC于M,ON⊥CD于N,∴∠OME=∠ONF=90°,∵四边形ABCD是矩形,∴∠BCD=90°=∠OME=∠ONF,∴四边形OMCN是矩形,∴∠MON=90°,∵∠FOE=90°,∴∠MON=∠FOE,∴∠MOE =∠NOF ,∴△MOE ∽△NOF ,∴OE OF =OM ON ,∵四边形ABCD 是矩形,∴∠ABC =90°,∵∠OMC =90°,∴∠ABC =∠OMC ,∴OM ∥AB ,∵O 是矩形ABCD 的对角线的交点,∴OC =OA ,∴OM 是△ABC 的中位线,∴OM =12AB =2,同理:ON =3,∴OE OF =23;(3)CE +CF =2CG =32BC ,证明:如图2,过点O 作OG ⊥BC 于G ,OH ⊥CD 于H ,∵四边形ABCD 是菱形,∠BAD =60°,∴∠BCD =60°,∵AC 是菱形ABCD 的对角线,∴∠ACB =∠ACD =30°,∴OG =OH ,∵OG ⊥BC ,OH ⊥CD ,∴∠OGC =∠OHC =90°,在四边形OGCH 中,∠GOH =360°﹣∠OGC ﹣∠OHC ﹣∠BCD =120°, ∵∠EOF =120°,∴∠EOF =∠GOH ,∴∠EOF ﹣∠EOH =∠GOH ﹣∠EOH ,∴∠GOE=∠HOF,∴△OGE≌△OHF(ASA),∴EG=FH,∴CE+CF=CG﹣EG+CH+FH=CG+CH,在Rt△OCG和Rt△COH中,{OC=OCOG=OG,∴Rt△OCG≌Rt△COH(HL),∴CG=CH,∴CE+CF=2CG,在Rt△BOC中,OC=BC•cos∠ACB=BC•cos30°=√32BC,在Rt△OGC中,CG=OC•cos30°=√32OC,∴CG=√32×√32BC=34BC,∴CE+CF=2CG=32BC.22.(10分)(1)已知二次函数经过点A(﹣3,0)、B(1,0)、C(0,3),请求该抛物线解析式;(2)点M 为抛物线上第二象限内一动点,BM 交y 轴于点N ,当BM 将四边形ABCM 的面积分为1:2两部分时,求点M 的坐标;(3)点P 为对称轴上D 点下方一动点,点Q 为直线y =x 第一象限上的动点,且DP =√2OQ ,求BP +√2BQ 的最小值并求此时点P 的坐标.【解答】解:(1)∵二次函数经过点A (﹣3,0)、B (1,0),∴设抛物线的解析式为y =a (x +3)(x ﹣1),∵点C (0,3)在抛物线上,∴﹣3a =3,∴a =﹣1,∴抛物线的解析式为y =﹣(x +3)(x ﹣1)=﹣x 2﹣2x +3;(2)如图1,过点A 作AG ⊥x 轴交BM 的延长线于G ,由(1)知,抛物线的解析式为y =﹣x 2﹣2x +3,设点M (m ,﹣m 2﹣2m +3)(﹣3<m <0),∴S △BCM =12CN (1﹣m ),S △ABM =S △ABG ﹣S △AMG =12AG [(1+3)﹣(m +3)]=12AG (1﹣m ),∴S △BCMS △ABM =12CN(1−m)12AG(1−m)=CN AG ,∵ON ∥AG ,∴ON AG =OB AB =14, 设ON =t ,则AG =4t ,CN =3﹣t ,∵BM 将四边形ABCM 的面积分为1:2两部分时,∴S △BCM S △ABM =12或2, ∴CN AG =14, ∴3−t 4t =12或2,∴t =1或t =13,∴N (0,1)或N (0,13), 当N (0,1)时,∵B (1,0),∴直线BM 的解析式为y =﹣x +1①,由(1)知,抛物线的解析式为y =﹣(x +3)(x ﹣1)②,联立①②解得,{x =−2y =3或{x =1y =0, ∴M (﹣2,3);当N (0,13)时,, ∵B (1,0),∴直线BM 的解析式为y =−13x +13③,联立②③解得,{x =−83y =119或{x =1y =0, ∴M (−83,118);即M (﹣2,3)或(−83,119);(3)如图2,连接PC ,CD ,过点C 作CH ⊥DP 于H ,由(1)知,抛物线的解析式为y =﹣x 2﹣2m +3=﹣(m ﹣1)2+4, ∴D (﹣1,4),∵C (0,3),∴CD =√2,DH =1,CH =1,∴DH =CH ,∴∠CDP =45°,∵点Q 为直线y =x 第一象限上的动点,∴∠BOQ=45°=∠CDP,∵DP=√2OQ,∴DPOQ=√2,∵CDOB=√2,∴DPOQ =CDOB=√2,∴△PCD∽△OBQ,∴PCBQ =PDOQ=√2,∴PC=√2OQ,∴BP+√2OQ=BP+PC,连接AP,∵点P是抛物线的对称轴上的点,∴PC=P A,∴BP+√2OQ=BP+PC=BP+P A,∴当点A,P,C在同一条直线上时,BP+√2OQ最小,最小值为AC=√32+32=3√2,∵A(﹣3,0),C(0,3),∴直线AC的解析式为y=x+3,当x=﹣1时,y=2,∴点P(﹣1,2).。

深圳市福田区达标名校2023-2024学年中考数学考试模拟冲刺卷含解析

深圳市福田区达标名校2023-2024学年中考数学考试模拟冲刺卷含解析

2024年中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数3y=x的图象上,且x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y32.如图,已知△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2-2B.32C.3-1D.13.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80°B.90°C.100°D.102°4.(3分)如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是()A.10B41C.2D515.下列运算结果正确的是()A.x2+2x2=3x4B.(﹣2x2)3=8x6C.x2•(﹣x3)=﹣x5D.2x2÷x2=x6.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6 B.8 C.10 D.127.如图,已知△ABC,△DCE,△FEG,△HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1.连接AI,交FG于点Q,则QI=()A.1 B.616C.666D.438.从1、2、3、4、5、6这六个数中随机取出一个数,取出的数是3的倍数的概率是()A.16B.13C.12D.239.下面四个几何体:其中,俯视图是四边形的几何体个数是()A.1 B.2 C.3 D.410.如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②-1≤a≤-;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n-1有两个不相等的实数根.其中结论正确的个数为( )A.1个B.2个C.3个D.4个二、填空题(共7小题,每小题3分,满分21分)11.从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,这个数恰好是合数的概率是__________. 12.将数字37000000用科学记数法表示为_____.13.对于二次函数y =x 2﹣4x+4,当自变量x 满足a≤x≤3时,函数值y 的取值范围为0≤y≤1,则a 的取值范围为__. 14.如图,Rt △ABC 纸片中,∠C=90°,AC=6,BC=8,点D 在边BC 上,以AD 为折痕将△ABD 折叠得到△AB′D,AB′与边BC 交于点E .若△DEB′为直角三角形,则BD 的长是_______.15.已知扇形的弧长为2,圆心角为60°,则它的半径为________. 16.如图,已知,第一象限内的点A 在反比例函数y =2x的图象上,第四象限内的点B 在反比例函数y =k x 的图象上.且OA ⊥OB ,∠OAB =60°,则k 的值为_________.17.已知一组数据3-,x ,﹣2,3,1,6的中位数为1,则其方差为____. 三、解答题(共7小题,满分69分)18.(10分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A ,B 两种不同款型,其中A 型车单价400元,B 型车单价320元.今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A ,B 两种款型的单车共100辆,总价值36800元.试问本次试点投放的A 型车与B 型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A ,B 两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A 型车与B 型车各多少辆?19.(5分)如图,已知O 是ABC ∆的外接圆,圆心O 在ABC ∆的外部,4AB AC ==,43BC =O 的半径.20.(8分)在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)中的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.21.(10分)如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O 重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G.(1)求四边形OEBF的面积;(2)求证:OG•BD=EF2;(3)在旋转过程中,当△BEF与△COF的面积之和最大时,求AE的长.22.(10分)如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB2,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.23.(12分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:时间(第x天) 1 2 3 10 …日销售量(n件)198 196 194 ? …②该产品90天内每天的销售价格与时间(第x天)的关系如下表:时间(第x天)1≤x<50 50≤x≤90销售价格(元/件)x+60 100(1)求出第10天日销售量;(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.24.(14分)计算:sin30°4+(π﹣4)0+|﹣12|.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】作出反比例函数3y=x的图象(如图),即可作出判断:∵-3<1,∴反比例函数3y=x的图象在二、四象限,y随x的增大而增大,且当x<1时,y>1;当x>1时,y<1.∴当x1<x2<1<x3时,y3<y1<y2.故选A.2、C【解析】延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.【详解】解:延长BC′交AB′于D,连接BB',如图,在Rt△AC′B′中,2,∵BC′垂直平分AB′,∴C′D=12AB=1,∵BD为等边三角形△ABB′的高,∴33∴BC′=BD-3.故本题选择C.【点睛】熟练掌握勾股定理以及由旋转60°得到△ABB′是等边三角形是解本题的关键. 3、A 【解析】分析:根据平行线性质求出∠A ,根据三角形内角和定理得出∠2=180°-∠1−∠A ,代入求出即可. 详解:∵AB ∥CD. ∴∠A =∠3=40°, ∵∠1=60°,∴∠2=180°-∠1−∠A =80°,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°. 4、B 【解析】根据三角形数列的特点,归纳出每一行第一个数的通用公式,即可求出第9行从左至右第5个数. 【详解】根据三角形数列的特点,归纳出每n 行第一个数的通用公式是()112n n -+,所以,第9行从左至右第5个数是()9911(51)2-++-=41.故选B 【点睛】本题主要考查归纳推理的应用,根据每一行第一个数的取值规律,利用累加法求出第9行第五个数的数值是解决本题的关键,考查学生的推理能力. 5、C 【解析】直接利用整式的除法运算以及积的乘方运算法则、合并同类项法则分别化简得出答案. 【详解】A 选项:x 2+2x 2=3x 2,故此选项错误;B 选项:(﹣2x 2)3=﹣8x 6,故此选项错误;C 选项:x 2•(﹣x 3)=﹣x 5,故此选项正确;D 选项:2x 2÷x 2=2,故此选项错误. 故选C .【点睛】考查了整式的除法运算以及积的乘方运算、合并同类项,正确掌握运算法则是解题关键. 6、B 【解析】分析:过点D 作DE ⊥AB 于E ,先求出CD 的长,再根据角平分线上的点到角的两边的距离相等可得DE =CD =2,然后根据三角形的面积公式列式计算即可得解. 详解:如图,过点D 作DE ⊥AB 于E ,∵AB =8,CD =2,∵AD 是∠BAC 的角平分线,90C ,∠=︒ ∴DE =CD =2, ∴△ABD 的面积11828.22AB DE =⋅=⨯⨯= 故选B.点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等. 7、D 【解析】解:∵△ABC 、△DCE 、△FEG 是三个全等的等腰三角形,∴HI =AB =2,GI =BC =1,BI =2BC =2,∴AB BI =24=12BC AB ,=12,∴AB BI =BC AB .∵∠ABI =∠ABC ,∴△ABI ∽△CBA ,∴AC AI =ABBI.∵AB =AC ,∴AI =BI =2.∵∠ACB =∠FGE ,∴AC ∥FG ,∴QI AI =GI CI =13,∴QI =13AI =43.故选D .点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB ∥CD ∥EF ,AC ∥DE ∥FG 是解题的关键. 8、B 【解析】 考点:概率公式. 专题:计算题.分析:根据概率的求法,找准两点: ①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:从1、2、3、4、5、6这六个数中随机取出一个数,共有6种情况,取出的数是3的倍数的可能有3和6两种,故概率为2/ 6 ="1/" 3 .故选B.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)="m" /n .9、B【解析】试题分析:根据俯视图是分别从物体上面看,所得到的俯视图是四边形的几何体有正方体和三棱柱,故选B.考点:简单几何体的三视图10、D【解析】利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=-3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对④进行判断.【详解】∵抛物线开口向下,∴a<0,而抛物线的对称轴为直线x=-=1,即b=-2a,∴3a+b=3a-2a=a<0,所以①正确;∵2≤c≤3,而c=-3a,∴2≤-3a≤3,∴-1≤a≤-,所以②正确;∵抛物线的顶点坐标(1,n),∴x=1时,二次函数值有最大值n,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,所以③正确;∵抛物线的顶点坐标(1,n),∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.故选D.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.二、填空题(共7小题,每小题3分,满分21分)11、38.【解析】根据合数定义,用合数的个数除以数的总数即为所求的概率.【详解】∵在1,2,3,4,5,6,7,8这八个数中,合数有4、6、8这3个,∴这个数恰好是合数的概率是38.故答案为:38.【点睛】本题考查了概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)mn;找到合数的个数是解题的关键.12、3.7×107【解析】根据科学记数法即可得到答案.【详解】数字37000000用科学记数法表示为3.7×107.【点睛】本题主要考查了科学记数法的基本概念,解本题的要点在于熟知科学记数法的相关知识.13、1≤a≤1【解析】根据y的取值范围可以求得相应的x的取值范围.【详解】解:∵二次函数y=x1﹣4x+4=(x﹣1)1,∴该函数的顶点坐标为(1,0),对称轴为:x=﹣42 22ba-=-=,把y=0代入解析式可得:x=1,把y=1代入解析式可得:x1=3,x1=1,所以函数值y的取值范围为0≤y≤1时,自变量x的范围为1≤x≤3,故可得:1≤a≤1,故答案为:1≤a≤1.【点睛】此题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.14、5或1.【解析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=5,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可.【详解】∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8,∴AB=5,∵以AD为折痕△ABD折叠得到△AB′D,∴BD=DB′,AB′=AB=5.如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F.设BD=DB′=x,则AF=6+x,FB′=8-x.在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.解得:x1=5,x5=0(舍去).∴BD=5.如图5所示:当∠B′ED=90°时,C与点E重合.∵AB′=5,AC=6,∴B′E=5.设BD=DB′=x,则CD=8-x.在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.解得:x=1.∴BD=1.综上所述,BD的长为5或1.15、6.【解析】分析: 设扇形的半径为r,根据扇形的面积公式及扇形的面积列出方程,求解即可. 详解: 设扇形的半径为r,根据题意得:,解得:r=6故答案为6.点睛: 此题考查弧长公式,关键是根据弧长公式解答.16、-6【解析】如图,作AC⊥x轴,BD⊥x轴,∵OA⊥OB,∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△ACO∽△ODB,∴OA OC AC OB BD OD==,∵∠OAB=60°,∴33 OAOB=,设A(x,2x ),∴BD=3OC=3x,OD=3AC=23x,∴B(3x,-23x),把点B代入y=kx得,-23x=3kx,解得k=-6,故答案为-6.17、3【解析】试题分析:∵数据﹣3,x,﹣3,3,3,6的中位数为3,∴112x+=,解得x=3,∴数据的平均数=16(﹣3﹣3+3+3+3+6)=3,∴方差=16[(﹣3﹣3)3+(﹣3﹣3)3+(3﹣3)3+(3﹣3)3+(3﹣3)3+(6﹣3)3]=3.故答案为3.考点:3.方差;3.中位数.三、解答题(共7小题,满分69分)18、(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆【解析】分析:(1)设本次试点投放的A型车x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得.详解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:10040032036800x y x y +=⎧⎨+=⎩,解得:6040x y =⎧⎨=⎩,答:本次试点投放的A 型车60辆、B 型车40辆; (2)由(1)知A 、B 型车辆的数量比为3:2,设整个城区全面铺开时投放的A 型车3a 辆、B 型车2a 辆, 根据题意,得:3a×400+2a×320≥1840000, 解得:a≥1000,即整个城区全面铺开时投放的A 型车至少3000辆、B 型车至少2000辆, 则城区10万人口平均每100人至少享有A 型车3000×100100000=3辆、至少享有B 型车2000×100100000=2辆.点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组. 19、4 【解析】已知△ABC 是等腰三角形,根据等腰三角形的性质,作AH BC ⊥于点H ,则直线AH 为BC 的中垂线,直线AH 过O 点,在Rt △OBH 中,用半径表示出OH 的长,即可用勾股定理求得半径的长.【详解】作AH BC ⊥于点H ,则直线AH 为BC 的中垂线,直线AH 过O 点,2OH OA AH r =-=-,3BH =222OH BH OB +=,即()(22223r r -+=,4r =.【点睛】考查垂径定理以及勾股定理,掌握垂径定理是解题的关键.20、(1)作图见解析;(2)如图所示,点A 的坐标为(0,1),点C 的坐标为(-3,1);(3)如图所示,点B 2的坐标为(3,-5),点C 2的坐标为(3,-1). 【解析】(1)分别作出点B 个点C 旋转后的点,然后顺次连接可以得到; (2)根据点B 的坐标画出平面直角坐标系;(3)分别作出点A 、点B 、点C 关于原点对称的点,然后顺次连接可以得到. 【详解】(1)△A 11B C 如图所示;(2)如图所示,A (0,1),C (﹣3,1);(3)△222A B C 如图所示,2B (3,﹣5),(3,﹣1).21、(1)14;(2)详见解析;(3)AE=14. 【解析】(1)由四边形ABCD 是正方形,直角∠MPN ,易证得△BOE ≌△COF (ASA ),则可证得S 四边形OEBF =S △BOC =14S 正方形ABCD;(2)易证得△OEG ∽△OBE ,然后由相似三角形的对应边成比例,证得OG•OB =OE 2,再利用OB 与BD 的关系,OE 与EF 的关系,即可证得结论;(3)首先设AE=x ,则BE=CF=1﹣x ,BF=x ,继而表示出△BEF 与△COF 的面积之和,然后利用二次函数的最值问题,求得AE 的长. 【详解】(1)∵四边形ABCD 是正方形,∴OB=OC ,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°, ∵∠EOF=90°, ∴∠BOF+∠COE=90°, ∴∠BOE=∠COF , 在△BOE 和△COF 中,,BOE COF OB OCOBE OCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△COF (ASA ),∴S 四边形OEBF =S △BOE +S △BOE =S △BOE +S △COF =S △BOC =14S 正方形ABCD 111144=⨯⨯=;(2)证明:∵∠EOG=∠BOE ,∠OEG=∠OBE=45°, ∴△OEG ∽△OBE , ∴OE :OB=OG :OE , ∴OG•OB=OE 2,∵122OB BD OE EF ==,,∴OG•BD=EF 2;(3)如图,过点O 作OH ⊥BC , ∵BC=1, ∴1122OH BC ==, 设AE=x ,则BE=CF=1﹣x ,BF=x ,∴S △BEF +S △COF =12BE•BF+12CF•OH ()()21111911222432x x x x ⎛⎫=-+-⨯=--+ ⎪⎝⎭,∵102a =-<, ∴当14x =时,S △BEF +S △COF 最大; 即在旋转过程中,当△BEF 与△COF 的面积之和最大时,14AE =.【点睛】本题属于四边形的综合题,主要考查了正方形的性质,旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及二次函数的最值问题.注意掌握转化思想的应用是解此题的关键. 22、(1)2142y x =-+;(2)2<m <22(1)m =6或m 17﹣1.【解析】(1)由题意抛物线的顶点C (0,4),A (20),设抛物线的解析式为24y ax =+,把A (20)代入可得a =12-,由此即可解决问题; (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题; (1)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题. 【详解】(1)由题意抛物线的顶点C (0,4),A (20),设抛物线的解析式为24y ax =+,把A (20)代入可得a =12-, ∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--, 由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩, 消去y 得到222280x mx m -+-= ,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解得2<m <22,∴满足条件的m 的取值范围为2<m <22. (1)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m 17﹣117﹣1(舍弃),∴m 17﹣1时,四边形PMP ′N 是正方形. 情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m=6或m171时,四边形PMP′N是正方形.23、(1)1件;(2)第40天,利润最大7200元;(3)46天【解析】试题分析:(1)根据待定系数法解出一次函数解析式,然后把x=10代入即可;(2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.试题解析:解:(1)∵n与x成一次函数,∴设n=kx+b,将x=1,m=198,x=3,m=194代入,得:198 3194k bk b+=⎧⎨+=⎩,解得:2200 kb=-⎧⎨=⎩,所以n关于x的一次函数表达式为n=-2x+200;当x=10时,n=-2×10+200=1.(2)设销售该产品每天利润为y元,y关于x的函数表达式为:221604000150120120005090y x x xy x x⎧=-++≤⎨=-+≤≤⎩(<)()当1≤x<50时,y=-2x2+160x+4000=-2(x-40)2+7200,∵-2<0,∴当x=40时,y有最大值,最大值是7200;当50≤x≤90时,y=-120x+12000,∵-120<0,∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;综上所述:当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;(3)在该产品销售的过程中,共有46天销售利润不低于5400元.24、1.【解析】分析:原式利用特殊角角的三角函数值,平方根定义,零指数幂法则,以及绝对值的代数意义化简,计算即可求出值.详解:原式=12﹣2+1+12=1.点睛:本题考查了实数的运算,熟练掌握运算法则是解答本题的关键.。

广东省深圳市2023-2024学年九年级中考适应性考试数学试题(含解析)

广东省深圳市2023-2024学年九年级中考适应性考试数学试题(含解析)

2024年广东省深圳市中考数学适应性试卷一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.(3分)围棋在古代被列为“琴棋书画”四大文化之一,蕴含着中华文化的丰富内涵,如图所示是一个无盖的围棋罐,其主视图为( )A .B .C .D .2.(3分)已知x =1是关于x 的一元二次方程x 2+kx ﹣6=0的一个根,则k 的值为( )A .﹣5B .﹣7C .5D .73.(3分)如图,在菱形ABCD 中,∠B =60°,连接AC ,若AC =6,则菱形ABCD 的周长为( )A .24B .30C .D .4.(3分)用配方法解方程x 2+2x =3时,配方后正确的是( )A .(x +2)2=7B .(x +2)2=5C .(x +1)2=4D .(x +1)2=25.(3分)如图,在由大小相同的小正方形组成的网格中有一条“心形线”.数学小组为了探究随机投放一个点恰好落在“心形线”内部的概率,进行了计算机模拟试验,得到如下数据:试验总次数100200300500150020003000落在“心形线”内部的次数61931652467599961503落在“心形线”内部的频率0.6100.4650.5500.4920.5060.4980.501根据表中的数据,估计随机投放一点落在“心形线”内部的概率为( )A.0.46B.0.50C.0.55D.0.616.(3分)一段加固后的护栏如图所示,该护栏竖直部分是由等距(任意相邻两根木条之间的距离相等)且平行的木条构成.已知AC=50cm,则BC的长度为( )A.20cm B.25cm C.30cm D.7.(3分)击地传球是篮球运动中的一种传球方式,利用击地传球可以有效地躲避对手的拦截.传球选手从点A处将球传出,经地面点O处反弹后被接球选手在点C处接住,将球所经过的路径视为直线,此时∠AOB=∠COD.若点A距地面的高度AB为1.5m,点C距地面的高度CD为1m,传球选手与接球选手之间的距离BD为5m,则OB的长度为( )A.m B.2m C.2.5m D.3m8.(3分)据报道,2020年至2022年深圳市居民年人均可支配收入由6.49万元增长至7.27万元,设这两年人均可支配收入的年平均增长率为x,可列方程为( )A.6.49(1+x)2=7.27B.6.49(1+2x)=7.27C.6.49(1+x2)=7.27D.7.27(1﹣x)2=6.499.(3分)如图是凸透镜成像示意图,CD是蜡烛AB通过凸透镜MN所成的虚像.已知蜡烛的高AB为5.4cm,蜡烛AB离凸透镜MN的水平距离OB为6cm,该凸透镜的焦距OF为10cm,AE∥OF,则像CD的高为( )A.15cm B.14.4cm C.13.5cm D.9cm10.(3分)如图,在菱形ABCD中,对角线AC与BD相交于点O,过点D作DF⊥AB于点F,交AC于点E.已知AE=4,EC=6,则的值为( )A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)已知5a=2b,则a:b= .12.(3分)为测量广场上一棵树的高度,数学小组在阳光下测得广场上一根6m高的灯柱的影长为3m,在同一时刻,他们测得树的影长为2m,则该树的高度为 m.13.(3分)深圳某校举办了“博古通今,学史明智”的历史事件讲述大赛,选题有“鸦片战争”“香港回归”“改革开放”.八、九年级分别从中随机选择一个不同事件进行比赛,则八、九年级所选的历史事件都发生于新中国成立以后的概率为 .14.(3分)如图,在平面直角坐标系中,点A在第一象限,点B在x轴的正半轴,AO=AB=2,将△OAB沿OA所在的直线翻折后,点B落在点C处,且CA∥y轴,反比例函数的图象经过点C,则k的值为 .15.(3分)如图,在四边形ABCD中,AB=BC=6,∠ABC=60°,∠ADC=90°,对角线AC与BD相交于点E,若BE=3DE,则BD= .三、解答题(本题共7小题,共55分)16.(5分)解方程:x2﹣4x+3=0.17.(7分)深圳蕴藏丰富的旅游文化资源.为促进深港两地学生交流,某校开展“美丽深圳,深港同行”主题活动,景点有三个:A.梧桐烟云,B.莲花春早,C.梅沙踏浪.每位参加交流的学生都可以从中随机选择一个景点.(1)参加此次交流活动的小军选择的景点为“梧桐烟云”的概率是 ;(2)请用列表或画树状图的方法,求小明和小颖选择的景点都是“莲花春早”的概率.18.(8分)已知一个矩形的面积为6,长为x,宽为y.(1)y与x之间的函数表达式为 ;(2)在图中画出该函数的图象;列表:x…12346…y…63m 1.51…上面表格中m的值是 ;描点:在如图所示的平面直角坐标系中描出相应的点;连线:用光滑的曲线顺次连接各点,即可得到该函数的图象.(3)若点A(a,b)与点B(a+1,c)是该函数图象上的两点,试比较b和c的大小.19.(8分)某品牌画册每本成本为40元,当售价为60元时,平均每天的销售量为100本.为了吸引消费者,商家决定采取降价措施.经试销统计发现,如果画册售价每降低1元时,那么平均每天就能多售出10本.设这种画册每本降价x元.(1)平均每天的销售量为 本(用含x的代数式表示);(2)商家想要使这种画册的销售利润平均每天达到2240元,且要求每本售价不低于55元,求每本画册应降价多少元?20.(8分)如图,点O是矩形ABCD的对角线AC上一点,过点O作EF⊥AC,交BC于点E,交AD于点F.(1)在不添加新的点和线的前提下,请增加一个条件: ,使得OE=OF,并说明理由;(2)若OE=OF,AB=6,BC=8,求EF的长.21.(9分)【项目式学习】项目主题:守护生命,“数”说安全.项目背景:随着社会的发展,安全问题变得日益重要.某校为了提高学生的安全意识,开展以“守护生命,'数'说安全”为主题的项目式学习活动.创新小组通过考察测量、模拟探究和成果迁移等环节,开展地下弯道对通行车辆长度的限制研究.任务一:考察测量(1)如图1,创新小组所选取弯道的内、外侧均为直角,道路宽均为4m,则AB= m;任务二:模拟探究如果汽车在行驶中与弯道内、外侧均无接触,则可安全通过.(2)创新小组用线段模拟汽车通过宽度相同的直角弯道,探究发现:①当CD<2AB时(如图1),线段CD能通过直角弯道;②当CD=2AB时,必然存在线段CD的中点E与点B重合的情况,线段CD恰好不能通过直角弯道(如图2).此时,∠ADC的度数是 ;③当CD>2AB时,线段CD不能通过直角弯道.(3)如图3,创新小组用矩形PQMN模拟汽车通过宽均为4m的直角弯道,发现当PQ的中点E与点B重合,且PQ⊥AB时,矩形PQMN恰好不能通过该弯道.若PQ=am,PN=2m,且矩形PQMN能通过该直角弯道,求a的最大整数值.任务三:成果迁移(4)如图4,某弯道外侧形状可近似看成反比例函数y=(x>0)的图象,其对称轴交图象于点A.弯道内侧的顶点B在射线OA上,两边分别与x轴,y轴平行,OA=2m,AB=4m.创新小组探究发现通过该弯道的原理与通过直角弯道类似.有一辆长为bm,宽为2m的汽车需要安全通过该弯道,则b的最大整数值为 .(参考数据:≈1.4,≈1.7,≈2.2,≈2.6)22.(10分)已知点E是正方形ABCD内部一点,且∠BEC=90°.【初步探究】(1)如图1,延长CE交AD于点P.求证:△BEC∽△CDP;【深入探究】(2)如图2,连接DE并延长交BC于点F,当点F是BC的中点时,求的值;【延伸探究】(3)连接DE并延长交BC于点F,DF把∠BEC分成两个角,当这两个角的度数之比为1:2时,请直接写出的值.2024年广东省深圳市中考数学适应性试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.(3分)围棋在古代被列为“琴棋书画”四大文化之一,蕴含着中华文化的丰富内涵,如图所示是一个无盖的围棋罐,其主视图为( )A.B.C.D.【解答】解:这个立体图形的主视图为:故选:D.2.(3分)已知x=1是关于x的一元二次方程x2+kx﹣6=0的一个根,则k的值为( )A.﹣5B.﹣7C.5D.7【解答】解:把x=1代入关于x的一元二次方程x2+kx﹣6=0得:1+k﹣6=0,k=5,故选:C.3.(3分)如图,在菱形ABCD中,∠B=60°,连接AC,若AC=6,则菱形ABCD的周长为( )A.24B.30C.D.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵∠B=60°,∴△ABC是等边三角形,∴AB=BC=AC=6,∴AB=BC=CD=AD=6,∴菱形ABCD的周长为:AB+BC+CD+AD=6+6+6+6=24,故选:A.4.(3分)用配方法解方程x2+2x=3时,配方后正确的是( )A.(x+2)2=7B.(x+2)2=5C.(x+1)2=4D.(x+1)2=2【解答】解:x2+2x=3,两边同时加1,得:x2+2x+1=3+1,即(x+1)2=4.故选:C .5.(3分)如图,在由大小相同的小正方形组成的网格中有一条“心形线”.数学小组为了探究随机投放一个点恰好落在“心形线”内部的概率,进行了计算机模拟试验,得到如下数据:试验总次数100200300500150020003000落在“心形线”内部的次数61931652467599961503落在“心形线”内部的频率0.6100.4650.5500.4920.5060.4980.501根据表中的数据,估计随机投放一点落在“心形线”内部的概率为( )A .0.46B .0.50C .0.55D .0.61【解答】解:当试验次数逐渐增大时,落在“心形线”内部的频率稳定在0.50附近,则估计随机投放一点落在“心形线”内部的概率为0.50.故选:B .6.(3分)一段加固后的护栏如图所示,该护栏竖直部分是由等距(任意相邻两根木条之间的距离相等)且平行的木条构成.已知AC=50cm ,则BC 的长度为( )A .20cmB .25cmC .30cmD .【解答】解:过点C 作CD ⊥AM 交AM 于点D ,交BN 于点E ,∵BE ∥AD ,∴,∵AC =50cm ,∴BC =30cm .故选:C .7.(3分)击地传球是篮球运动中的一种传球方式,利用击地传球可以有效地躲避对手的拦截.传球选手从点A处将球传出,经地面点O处反弹后被接球选手在点C处接住,将球所经过的路径视为直线,此时∠AOB=∠COD.若点A距地面的高度AB为1.5m,点C距地面的高度CD为1m,传球选手与接球选手之间的距离BD为5m,则OB的长度为( )A.m B.2m C.2.5m D.3m【解答】解:由题意得∠ABO=∠CDO,∠AOB=∠COD,∴△ABO∽△CDO,∴,设OB=x m,则OD=(5﹣x)m,∴,∴x=3,即OB=3m,故选:D.8.(3分)据报道,2020年至2022年深圳市居民年人均可支配收入由6.49万元增长至7.27万元,设这两年人均可支配收入的年平均增长率为x,可列方程为( )A.6.49(1+x)2=7.27B.6.49(1+2x)=7.27C.6.49(1+x2)=7.27D.7.27(1﹣x)2=6.49【解答】解:设这两年人均可支配收入的年平均增长率为x,根据题意得,6.49(1+x)2=7.27,故选:A.9.(3分)如图是凸透镜成像示意图,CD是蜡烛AB通过凸透镜MN所成的虚像.已知蜡烛的高AB为5.4cm,蜡烛AB离凸透镜MN的水平距离OB为6cm,该凸透镜的焦距OF为10cm,AE∥OF,则像CD的高为( )A.15cm B.14.4cm C.13.5cm D.9cm【解答】解:由题意得,AB∥MN,AE∥OF,AB∥CD,∴四边形ABOE是平行四边形,∴AE=OB=6cm,∵AE∥OF,∴△CAE∽△COF,∴,∴,∴,∵AB∥CD,∴△OAB∽△OCD,∴,∴,∴CD=13.5cm,故选:C.10.(3分)如图,在菱形ABCD中,对角线AC与BD相交于点O,过点D作DF⊥AB于点F,交AC于点E.已知AE=4,EC=6,则的值为( )A.B.C.D.【解答】解:∵四边形ABCD为菱形,∴AC⊥BD,AB∥CD,AB=CD,AO=CO,∴∠AFD=∠CDF,∵DF⊥AB,∴∠AFD=90°,∴∠CDF=90°,∴∠CDE=∠COD=90°,又∵∠DCE=∠OCD,∴△CDE∽△COD,∴,即CD2=CO•CE,∵AE=4,EC=6,∴AC=AE+CE=4+6=10,∴AO=CO=5,∴OE=AO﹣AE=5﹣4=1,∴CD2=5×6=30,即,∴,∵AB∥CD,∴△AFE∽△CDE,∴,∴,∴,∴,∴,故选:B.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)已知5a=2b,则a:b= 2:5 .【解答】解:∵5a=2b,∴a:b=2:5.故答案为:2:5.12.(3分)为测量广场上一棵树的高度,数学小组在阳光下测得广场上一根6m高的灯柱的影长为3m,在同一时刻,他们测得树的影长为2m,则该树的高度为 4 m.【解答】解:设该树的高度为x m,依题意得:x:2=6:3,解得:x=4.答:该树的高度为4m.故答案为:4.13.(3分)深圳某校举办了“博古通今,学史明智”的历史事件讲述大赛,选题有“鸦片战争”“香港回归”“改革开放”.八、九年级分别从中随机选择一个不同事件进行比赛,则八、九年级所选的历史事件都发生于新中国成立以后的概率为 .【解答】解:“香港回归”和“改革开放”发生于新中国成立以后.将“鸦片战争”“香港回归”“改革开放”分别记为A,B,C,列表如下:A B CA(A,B)(A,C)B(B,A)(B,C)C(C,A)(C,B)共有6种等可能的结果,其中八、九年级所选的历史事件都发生于新中国成立以后的结果有:(B,C),(C,B),共2种,∴八、九年级所选的历史事件都发生于新中国成立以后的概率为=.故答案为:.14.(3分)如图,在平面直角坐标系中,点A在第一象限,点B在x轴的正半轴,AO=AB=2,将△OAB沿OA所在的直线翻折后,点B落在点C处,且CA∥y轴,反比例函数的图象经过点C,则k的值为 3 .【解答】解:延长CA交x轴于点D,如图所示:设OD=a,则a≠0,∵CA∥y轴,∴CD⊥OB,∴AO=AB=2,∴OD=BD=2a,由翻折的性质得:OC=OB=2a,AC=AB=2,在Rt△OCD中,OD=a,OC=2a,由勾股定理得:CD==,∴点C的坐标为,∵点C在反比例函数y=k/x的图象上,∴k==√3a2,∴AD=CD﹣AC=,在Rt△OAD中,AD=,OD=a,OA=2,由勾股定理得:AD2+OD2=OA2,∴,解得:a=,或a=0(不合题意,舍去),∴k==3.故答案为:3.15.(3分)如图,在四边形ABCD中,AB=BC=6,∠ABC=60°,∠ADC=90°,对角线AC与BD相交于点E,若BE=3DE,则BD= 3 .【解答】解:过点B作BM⊥AC于点M,过点D作DN⊥BM于点N,连接DM.∴∠BMC=∠BND=90°,∴CM∥DN.∵BE=3DE,∴BM=3MN.∵AB=BC=6,∠ABC=60°,∴△ABC为等边三角形,∴AC=6.∵BM⊥AC,∴CM=AC=3.∴BM====3.∴MN=.∴BN=4.∵∠ADC=90°,∴DM=AC=3.∴DN==.∴BD====3.故答案为:3.三、解答题(本题共7小题,共55分)16.(5分)解方程:x2﹣4x+3=0.【解答】解:x2﹣4x+3=0(x﹣1)(x﹣3)=0x﹣1=0或x﹣3=0x1=1,x2=3.17.(7分)深圳蕴藏丰富的旅游文化资源.为促进深港两地学生交流,某校开展“美丽深圳,深港同行”主题活动,景点有三个:A.梧桐烟云,B.莲花春早,C.梅沙踏浪.每位参加交流的学生都可以从中随机选择一个景点.(1)参加此次交流活动的小军选择的景点为“梧桐烟云”的概率是 ;(2)请用列表或画树状图的方法,求小明和小颖选择的景点都是“莲花春早”的概率.【解答】解:(1)∵有A.梧桐烟云,B.莲花春早,C.梅沙踏浪三个选项,∴小军选择的景点为“梧桐烟云”的概率为,故答案为:.(2)根据题意画树状图如图所示,共有9种等可能的结果,其中小明和小颖选择的景点都是“莲花春早”的结果有1种,∴P(小明和小颖选择的景点都是“莲花春早”)=,∴小明和小颖选择的景点都是“莲花春早”的概率为.18.(8分)已知一个矩形的面积为6,长为x,宽为y.(1)y与x之间的函数表达式为 y= ;(2)在图中画出该函数的图象;列表:x…12346…y…63m 1.51…上面表格中m的值是 2 ;描点:在如图所示的平面直角坐标系中描出相应的点;连线:用光滑的曲线顺次连接各点,即可得到该函数的图象.(3)若点A(a,b)与点B(a+1,c)是该函数图象上的两点,试比较b和c的大小.【解答】解:(1)根据题意得:xy=6,所以y=,则y与x之间的函数表达式为y=.故答案为:y=.(2)(3)由图象可知,在第一象限内y随着x的增大而减小,∵a+1>a,∴b>c.19.(8分)某品牌画册每本成本为40元,当售价为60元时,平均每天的销售量为100本.为了吸引消费者,商家决定采取降价措施.经试销统计发现,如果画册售价每降低1元时,那么平均每天就能多售出10本.设这种画册每本降价x元.(1)平均每天的销售量为 (100+10x) 本(用含x的代数式表示);(2)商家想要使这种画册的销售利润平均每天达到2240元,且要求每本售价不低于55元,求每本画册应降价多少元?【解答】解:(1)由题意可知,每天的销售量为(100+10x)本.故答案为:(100+10x).(2)由题意可得,(60﹣40﹣x)(100+10x)=2240,整理得x2﹣10x+24=0,解得x1=4,x2=6,∵要求每本售价不低于55元,∴x=4符合题意.故每本画册应降价4元.20.(8分)如图,点O是矩形ABCD的对角线AC上一点,过点O作EF⊥AC,交BC于点E,交AD于点F.(1)在不添加新的点和线的前提下,请增加一个条件: AO=CO ,使得OE=OF,并说明理由;(2)若OE=OF,AB=6,BC=8,求EF的长.【解答】解:(1)AO=CO;理由如下:∵AD∥BC,∴∠FAO=∠ECO,∵EF⊥AC,∴∠AOF=∠COE,又∵AO=CO,∴△AOF≌COE(ASA),∴OE=OF.(2)∵∠B=90°,AB=6,BC=8,∴AC==10,∵EF⊥AC,∴∠AOF=∠COE,∵AD∥BC,∴∠FAO=∠ECO,又∵EO=FO,∴△AOF≌COE(AAS),∴AO=CO=5,在Rt△COE中,tan∠OCE==,在Rt△ACB中,tan∠ACB==,∴,∴,∴EF=.21.(9分)【项目式学习】项目主题:守护生命,“数”说安全.项目背景:随着社会的发展,安全问题变得日益重要.某校为了提高学生的安全意识,开展以“守护生命,'数'说安全”为主题的项目式学习活动.创新小组通过考察测量、模拟探究和成果迁移等环节,开展地下弯道对通行车辆长度的限制研究.任务一:考察测量(1)如图1,创新小组所选取弯道的内、外侧均为直角,道路宽均为4m,则AB= 4 m;任务二:模拟探究如果汽车在行驶中与弯道内、外侧均无接触,则可安全通过.(2)创新小组用线段模拟汽车通过宽度相同的直角弯道,探究发现:①当CD<2AB时(如图1),线段CD能通过直角弯道;②当CD=2AB时,必然存在线段CD的中点E与点B重合的情况,线段CD恰好不能通过直角弯道(如图2).此时,∠ADC的度数是 45° ;③当CD>2AB时,线段CD不能通过直角弯道.(3)如图3,创新小组用矩形PQMN模拟汽车通过宽均为4m的直角弯道,发现当PQ的中点E与点B重合,且PQ⊥AB时,矩形PQMN恰好不能通过该弯道.若PQ=am,PN=2m,且矩形PQMN能通过该直角弯道,求a的最大整数值.任务三:成果迁移(4)如图4,某弯道外侧形状可近似看成反比例函数y=(x>0)的图象,其对称轴交图象于点A.弯道内侧的顶点B在射线OA上,两边分别与x轴,y轴平行,OA=2m,AB=4m.创新小组探究发现通过该弯道的原理与通过直角弯道类似.有一辆长为bm,宽为2m的汽车需要安全通过该弯道,则b的最大整数值为 10 .(参考数据:≈1.4,≈1.7,≈2.2,≈2.6)【解答】解:(1)如图1,延长内侧交外侧于点B′,则BB′⊥AB′,∴AB′=BB′=4,∴AB==4,故答案为:4;(2)由图形可知△ACD是等腰直角三角形,则∠ADC=45°,故答案为:45°;(3)解法一、如图3(1),设AB与MN相交于点G,根据题意得:∠ANM=∠NAG=45°,∴∠AGN=∠AGM=90°,又∵AG=AG,∠MAG=∠NAG=45°,∴△AGM≌△AGN(ASA),∴GM=GN,∴MN=2AG,又∵AB=4,NP=BG=2,∴MN=2AG=2(AB﹣BG)=8﹣4∵≈1.4,∴8﹣4=7.2,∴根据实际情况可得:a的最大整数值为7.解法二:如图3(2),设直线PQ分别与直线AM,AN相交于点I,H,根据题意得:∵NPQM为矩形,∴PQ∥MN,∴∠IHA=∠MNA=45°,又∵∠MAN=90°,∴IH=2AB=8,IQ=MQ=2,PH=PN=2,∴PQ=HI﹣IQ﹣PH=8﹣4,∵≈1.4,∴8﹣4=7.2,∴根据实际情况可得:a的最大整数值为7m.(4)如图4,过点A作AA′⊥x轴于点A′,由勾股定理可得OA′=AA′=,∴A(,),∴反比例函数的解析式为y=;设直线AB与MN的交点为P,则BP=2,过点P作PP′⊥x轴于点P′,则OP=OA+AB=BP=4,∴PP′=OP′=4,∴P(4,4),∴直线MN的解析式为:y=﹣x+8;令=﹣x+8,解得x=4±,∴M(4﹣,4+),N(4+,4﹣,∴MN==,∵10<<11,∴b=MN的最大整数值为10.故答案为:10.22.(10分)已知点E是正方形ABCD内部一点,且∠BEC=90°.【初步探究】(1)如图1,延长CE交AD于点P.求证:△BEC∽△CDP;【深入探究】(2)如图2,连接DE并延长交BC于点F,当点F是BC的中点时,求的值;【延伸探究】(3)连接DE并延长交BC于点F,DF把∠BEC分成两个角,当这两个角的度数之比为1:2时,请直接写出的值.【解答】(1)证明:∵四边形ABCD是正方形,∴∠D=90°,AD∥BC,∴∠CPD=∠BCE,∵∠BEC=90°,∴∠BEC=∠D,∴△BEC∽△CDP;作EG⊥BC于G,∴∠BGE=90°,∵四边形ABCD是正方形,∴∠BCD=90°,CD=BC,∴△FGE∽△FCD,∴,∵∠BEC=90°,点F是BC的中点,∴EF=BF=CF=BC,不妨设EF=BF=CF=1,则CD=BC=2,DF=,∴,∴EG=,FG=,∴CG=CF﹣FG=1﹣=,∵∠EGB=∠EGC=90°,∴∠CEG+∠ECG=90°,∵∠BEC=90°,∴∠CEG+∠BEG=90°,∴∠BEG=∠ECG,∴△BGE∽△EGC,=;当∠BEF:∠CEF=1:2时,即∠CEF=60°,∴∠DEC=120°,以BC所在的直线为x轴,CD所在的直线为y轴建立坐标系,设BC=CD=6,E(x,y),以BC的中点W为圆心,BC为直径作圆W,∵∠BEC=90°,∴点E在⊙W上,则W(﹣3,0),B(﹣6,0),∴(x+3)2+y2=32①,作等边三角形CDG,作△CDG的外接圆V,则点E⊙V上,则V(,3),CV=2,∴(x﹣)2+(y﹣3)2=(2)2②,由①②得,x=﹣,x+y=﹣6x,∴,如图3,当∠BEF:∠CEF=2:1时,即∠BEF=60°,∠CEF=30°,则∠DEC=150°,同上作⊙W,作等边三角形CDV,设BC=CD=2,则W(﹣1.0),B(﹣2,0),V(,1),以V为圆心,2为半径作⊙V,则点E在⊙V上,同理上可得:,∴x2+y2=﹣2x,x=﹣,∴=,综上所述:=或.。

2023年广东省深圳市高级中学10校联考中考模拟数学试卷(含答案解析)

2023年广东省深圳市高级中学10校联考中考模拟数学试卷(含答案解析)

2023年广东省深圳市高级中学10校联考中考模拟数学试卷学校:___________姓名:___________班级:___________考号:___________....“五一”长假期间,淄博烧烤火爆出圈,根据淄博旅游局之前统计,预计将接待万游客,请将800万用科学记数法可以表示为().80010000⨯5810⨯D .8.如图是5个大小相同的正方体搭成的几何体,把小正方体B 放到小正方体方,则它的()A .主视图与俯视图一样.主视图与左视图一样C .左视图与俯视图一样.三种视图都一样5.下列运算结果正确的是(A .23325a a a ⋅=()23324a a -=-C .2632a a a -÷=-.()222b a b a -=-6.每年的4月7日是世界健康日,强调健康对于劳动创造和幸福生活的重要性,而血糖值(单位:mmol/L )对于治疗疾病和观察疾病都有指导意义.某人在每天的早晨空腹自测血糖值,并将一周的数据绘制成如图所示的折线统计图,众数分别是()A .4.3mmol/L ,4.3mmol/LB .4.7mmol/L ,4.0mmol/LC .4.5mmol/L ,4.3mmol/LD .4.7mmol/L ,4.3mmol/L7.如图,四边形ABCD 中,其中AD BC ∥,下列尺规作图不能得到等腰ABE 的是()A .B .C .D .8.程大位的《算法统宗》是我国古代数学名著,其中有一道这样的题目“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.问房客各几何?”题目大意是:一些客人到李三公的店中住宿,若每间房里住7人,就会有7人没地方住;若每间房住9人,则空出一间房.问有多少房间,多少客人?如果设房间有x 间,客人y 人,由题意可列方程组()A .()7791y x y x =-⎧⎨=+⎩B .()7791y x y x =+⎧⎨=-⎩C .()7791x y x y =-⎧⎨=-⎩D .7997y x y x =-⎧⎨=-⎩9.如图,O 为ABC 的外接圆,BD 与O 相切于点B ,连接CO 并延长,交BD 于点D .若40D ∠=︒,则BAC ∠的度数为()A .50︒B .55︒C .60︒D .65︒10.如图,正方形ABCD 中,E 是AD 中点,连接AC ,CE ,作DF CE ⊥交AB 于F ,A .14B .12二、填空题11.若二次根式3x -有意义,则12.如图所示的电路中,当随机闭合开关为_________.13.20世纪70年代,数学家罗杰如下图,使用了A ,B 两种菱形进行了密铺,则菱形14.如图,已知点()20A ,,()01B ,,O 为坐标原点,点落在反比例函数()0ky x x=>的图象上,则k =15.如图,已知Rt ABC △三、解答题16.化简:22961693x x x x -⎛⎫÷- ⎪+++⎝⎭17.为提高学生身体素质,初中生每天参加体育锻炼的时间应不少于解该校学生平均每周(7天)体育锻炼时间,从该校学生中随机抽取若干名学生平均每周体育锻炼时间进行调查,并根据调查结果将学生平均每周的体育锻炼时间分为五组:①45x ≤<;②56x ≤<;③6≤后将调查结果用频数分布直方图和扇形统计图描述如下:根据以上信息,解答下列问题:(1)本次抽样测试的学生人数是______人;(2)⑤在扇形统计图中对应的圆心角度数是______°,并补全频数分布直方图;(3)该校有学生3000名,估计该校平均每天运动达1小时的人数为______;(4)请对该校学生体育锻炼时间的情况作出评价,并提出一条合理化建议.18.如图所示,无人机在生活中的使用越来越广泛,小明用无人机测量大楼的高度.无(1)求楼CD 的高;(2)小明发现无人机电量不足,仅能维持站在A 点的小明马上控制无人机从E 安全返航吗?19.在我市“青山绿水”行动中,某社区计划对面积为由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,如果两队各自独立完成面积为(1)求甲、乙两工程队每天各能完成多少面积的绿化;(2)若甲队每天绿化费用是1.2万元,乙队每天绿化费用为的总费用不超过40万元,则至少应安排乙工程队绿化多少天?20.如图,在ABCD Y 中,对角线AC 连接BE ,ED ,DF ,FB .(1)小明添加了一个条件OE OD =,则可证明四边形BEDF (2)在(1)条件下,且60AOD ∠=︒,24AE OE ==21.【定义】定义1:在平面直角坐标系中,过一点作某一直线的垂线,称为这个点到这条直线的垂直距离.定义2:在平面直角坐标系中,过一点作y 轴的平行线,与某一直线交于一点,两点之间连线的长度称为这个点到直线的竖直距离.【探索】当1l 与x 轴平行时,AB AC =,当1l 与x 轴不平行,且直线确定的时候,点到直线的垂直距离离AC 存在一定的数量关系,当直线【应用】如图2所示,公园有一斜坡草坪,其倾斜角为面),树高2m ,现给该草坪洒水,已知小树的底端点建立如图3所示的平面直角坐标系,在喷水过程中,水运行的路线是抛物线212y x bx =-+,且恰好经过小树的顶端点(1)b =______.(2)如图3,现决定在山上种另一棵树水路线,为了加固树,沿斜坡垂直的方向加一根支架【拓展】(3)如图4,原有斜坡不变,通过改造喷水枪,使得喷出的水的路径近似可以看成圆弧,此时,圆弧与y 轴相切,若此时OC 面),为了保证灌溉,MN 最高应为多少?22.问题背景:(1)如图1,点E 是ABC 内一点,且ABC DEC ∽△△,连接AD ,BE ,求证:ADC BEC ∽.(2)如图2,点C 是线段AB 垂直平分线上位于AB 上方的一动点,PCB 是位于方的等腰直角三角形,且PB BC =,则,①PAPC CB+______1(填一个合适的不等号)②PAPB的最大值为______,此时∠问题组合与迁移:(3)如图3,AD是等腰ABC底边的上方,且△∽△ABC PEC,若cos参考答案:【分析】根据三视图的定义判断即可.【详解】把小正方体B 放到小正方体A 的正前方,则三视图为所以主视图与左视图一样.故选:B【点睛】本题考查小正方体的组合体的三视图,掌握三视图的概念是解题的关键.5.C【分析】按照单项式与单项式的乘除法则、积的乘方、完全平方公式计算即可作出判断.【详解】解:A 、2333265a a a a ⋅=≠,故计算错误,不符合题意;B 、()2363244a a a -=≠-,故计算错误,不符合题意;C 、2632a a a -÷=-,故计算正确,符合题意;D 、()222222b ab b b a a a =---+≠,故计算错误,不符合题意;故选:C .【点睛】本题考查了积的乘方,单项式与单项式的乘除运算,完全平方公式,熟悉这些知识是关键.6.D【分析】根据中位数和众数的定义进行解答即可.【详解】解:把统计图中的7个数按从大到小排列得:4.0、4.3、4.3、4.7、5.3、5.9、6.0,∴中位数为4.7/L mmol ,∵4.3出现得次数最多,∴众数为4.3/L mmol ,故选:D .【点睛】本题考查中位数和众数的定义,熟练掌握数据的个数是奇数,则处于中间位置的数是这组数据的中位数;数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数是解题的关键.7.D【分析】由AD BC ∥可得AEB CBE ∠=∠,由作图痕迹可知:BE 是ABC ∠的平分线,可得ABE CBE ∠=∠,从而得到ABE AEB ∠=∠,即可判断A ;由作图痕迹可知:AB AE =,即可判断B ;由作图痕迹可知:AF 是BAD ∠的角平分线,BE 是AF 的垂直平分线,则可得到BAF AFB ∠=∠,从而得到AB BF =,再由BE AF ⊥,得到ABE CBE ∠=∠,进而得到AEB ABE ∠=∠,即可判断C ;由作图痕迹可知:E 点是AD 的垂直平分线与AD 的交点,即E 点是AD 的中点,即可判断D .【详解】解:A. AD BC ∥,AEB CBE ∴∠=∠,由作图痕迹可知:BE 是ABC ∠的平分线,ABE CBE ∴∠=∠,ABE AEB ∴∠=∠,AB AE =∴,ABE ∴ 为等腰三角形,故A 正确,不符合题意;B.由作图痕迹可知:AB AE =,ABE ∴ 为等腰三角形,故B 正确,不符合题意;C.设AF 交BC 于F ,由作图痕迹可知:AF 是BAD ∠的角平分线,BE 是AF 的垂直平分线,BAF DAF ∴∠=∠,AD BC ,AFB DAF AEB CBE ∴∠=∠∠=∠,,BAF AFB ∴∠=∠,AB BF ∴=,BE AF ⊥Q ,ABE CBE ∴∠=∠,AEB ABE ∴∠=∠,AB AE =∴,ABE ∴ 为等腰三角形,故C 正确,不符合题意;D.由作图痕迹可知:E 点是AD 的垂直平分线与AD 的交点,即E 点是AD 的中点,∴不能得出AB AE =,ABE ∴ 为不一定为等腰三角形,故D 错误,符合题意;故选:D .【点睛】本题主要考查了角平分线的性质、平行线的性质、垂直平分线的性质、等腰三角形的判定,熟练掌握角平分线的性质、平行线的性质、垂直平分线的性质、等腰三角形的判定,是解题的关键.8.B【分析】根据:每间房里住7人,就会有7人没地方住;若每间房住9人,则空出一间房,即可求解.【详解】解:设房间有x 间,客人y 人,由题意可列方程组为:()7791y x y x =+⎧⎨=-⎩,故选:B .【点睛】本题考查了二元一次方程组的应用,正确理解题意、找准相等关系是解题的关键.9.D【分析】连接OB ,根据切线的性质可得90OBD ∠=︒,从而得到50BOD ∠=︒,进而得到130BOC ∠=︒,再由圆周角定理,即可求解.【详解】解:如图,连接OB ,∵BD 与O 相切于点B ,∴OB BD ⊥,即90OBD ∠=︒,∵40D ∠=︒,∴50BOD ∠=︒,∴130BOC ∠=︒,【点睛】本题常考了密铺问题,涉及了菱形的性质、多边形的内角和、三元一次方程组等知识,正确理解题意、得出方程组是解题的关键.32点()20A ,,()01B ,,12OB OA ∴==,,221AB OA OB ∴=+= 点O 关于直线AB 的对称点为点AB OC ∴⊥,122AOB OACB S S ∴== 四边形【点睛】本题考查了全等三角形的判定与性质,平行四边形的判定与性质,勾股定理,等腰三角形的性质等知识,构造一线三垂直辅助线,证明三角形全等是解题的关键.故答案为:90;(3)解:平均每天运动1小时及以上的学生人数分布在④占被调查人数的百分比为:100125100%45%500+⨯=,所以该校平均每天运动达1小时的人数为:300045%⨯故答案为:1350人;(4)解:达到每天1小时以上的不足50%,学校需要加强体育锻炼时间的安排.【点睛】本题主要考查的是频数分布直方图和扇形统计图的知识,用统计图获取信息是解题的关键.18.(1)110m(2)无人机能安全返航【分析】(1)过点A 做AF BD ∥,交CD 于点F ,则AFC ∠然后解直角三角形ACF 即可求出CD 的长,进一步即可求出结果;(2)根据图中的角度转换可得到200AE AC ==,然后计算出无人机返回时可飞行的路程,比较即可得出结论.【详解】(1)如图所示,【点睛】本题考查了平行四边形的性质和判定、矩形的判定以及解直角三角形等知识,掌握相关图形的判定和性质是解题的关键.21.【探索】255;【应用】(1)332;(2)PN的最大值为49348;【拓展】(3)23m【探索】:延长AC交x轴于D,设直线1l交x轴于点标,从而得CD,由直线解析式可求得点E的坐标,则可得的关系,由勾股定理即可求得AC AB、的关系;【应用】(1)延长BA交x轴于点F,则可求得点B中即可求得b的值;5故答案为:255;【应用】解:(1)如图,延长BA 交由题意知:112AF OA ==,由勾股定理得:∴123FB AF AB =+=+=,(3,3)B 由于点B 在抛物线212y x bx =-+,∴13332b -⨯+=,∴332b =;故答案为:33 2;(2)由(1)知:(3,1)A,设直线OA∴33k=,即直线OA的解析式为33y x =;由于点M在直线33y x=,点N在抛物线故设3,3M a a⎛⎫⎪⎪⎝⎭,2133,22N a a a⎛-+⎝21333172232MN a a a a⎛∴=-+-=--⎝即MN的最大值为49 24,∵32 PNMN=,∴3493MNPN==;【点睛】本题是函数与几何的综合,考查了一次函数与二次函数的图象与性质,垂径定理,相似三角形的判定与性质,解直角三角形等知识,综合运用这些知识是解题的关键.22.(1)详见解析;(2)①<;②21+【分析】(1)由ABC DEC∽△△,得到AC BCBCE BCA ECA ACD DCE∠=∠-∠∠=∠,ADC BEC∽;(2)①连接AC,由点C是线段AB垂直平分线上位于得到PA PAPC BC PC AC=++,根据三角形三边关系可得②由题意可得PB BC AC==,从而得到点C在AP上时,此时AP最大,为AC+分线的性质以及等腰直角三角形的性质即可求得角度;点C 是线段AB 垂直平分线上位于AC BC ∴=,PA PA PC BC PC AC∴=++,AC PC PA +> ,1PA PC BC∴<+,故答案为:<;②由①得AC BC =,AC PC +> PB BC =,PB BC AC ∴==,1PA PA AC PC PC PB AC AC AC +∴=<=+=∴当点C 在AP 上时,此时AP 最大,为,点C 是线段AB 垂直平分线上位于AC BC ∴=,CAB CBA ∴∠=∠,PCB 是等腰直角三角形,45BCP ∴∠=︒,BCP CAB CBA ∠=∠+∠ ,AD 是等腰ABC 底边上的高,2BC BD BE EC ∴==,,2cos 5ABC ∠=,25BD AB ∴=,2AB AC BC BD == ,,54AC BC ∴=,ABC PEC ∽,AC PC BC EC ∴=,BCA ∠=∠BCE BCA ECA ∠=∠-∠ BCE ACP ∴∠=∠,APC BEC ∴ ∽,54AP AC BE BC ∴==,得:45BE EC AP ==,54PE AB EC BC == ,PE AP ∴=,PE BE PB +≥ ,4955AP AP AP PB ∴+=≥。

2024年广东省深圳市中考数学模拟考试卷及答案

2024年广东省深圳市中考数学模拟考试卷及答案

2024年中考数学模拟卷数学说明:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡指定的位置上,并将条形码粘贴好。

2.全卷共6页。

考试时间90分钟,满分100分。

3.作答选择题1-10,选出每题答案后,用2B铅笔把答题卡上对应题目答案标号的信息点框涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案。

作答非选择题11-22,用黑色字迹的钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内。

写在本试卷或草稿纸上,其答案一律无效。

4.考试结束后,请将答题卡交回。

第一部分选择题一.选择题(共10小题,满分30分,每小题3分)1.(3分)北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的从正面、左面、上面三个不同的方向观察看到的平面图形,下列说法正确的是()A.从正面看与从左面看到的图形相同B.从正面看与从上面看到的图形相同C.从左面看与从上面看到的图形相同D.从正面、左面、上面看到的图形都相同2.(3分)若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=3,则m的值是()A.﹣6B.﹣3C.3D.63.(3分)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.23B.20C.15D.104.(3分)将方程x2﹣4x﹣3=0化成(x﹣m)2=n(m、n为常数)的形式,则m、n的值分别为()A.m=2,n=7B.m=﹣2,n=1C.m=2,n=4D.m=﹣2,n=45.(3分)近几年,二维码逐渐进入了人们的生活,成为广大民众生活中不可或缺的一部分.小刚将二维码打印在面积为20的正方形纸片上,如图,为了估计黑色阴影部分的面积,他在纸内随机掷点,经过大量重复实验,发现点落在黑色阴影的频率稳定在0.6左右,则据此估计此二维码中黑色阴影的面积为()A.8B.12C.0.4D.0.66.(3分)如图,AB∥CD,AC,BD相交于点E,AE=1,EC=2,DE=3,则BE的长为()A.B.4C.D.67.(3分)如图是小明实验小组成员在小孔成像实验中的影像,蜡烛在刻度尺50cm处,遮光板在刻度尺70cm处,光屏在刻度尺80cm处,量得像高3cm,则蜡烛的长为()A.5cm B.6cm C.4cm D.4.5cm8.(3分)某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元,设平均每月降低的百分率为x,根据题意列出的方程是()A.2500(1+x)2=3200B.2500(1﹣x)2=3200C.3200(1﹣x)2=2500D.3200(1+x)2=25009.(3分)喜迎二十大,“龙舟故里”赛龙舟,小亮在龙舟竞渡中心广场点P处观看400米直道竞速赛,如图所示,赛道AB为东西方向,赛道起点A位于点P的北偏西30°方向上,终点B位于点P的北偏东60°方向上,AB=400米,求点P到赛道AB的距离()(结果保留整数,参考数据:)A.B.C.87D.17310.(3分)如图,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△F AB:S四边形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ•AC,其中正确的结论的个数是()A.1B.2C.3D.4第二部分非选择题二.填空题(共5小题,满分15分,每小题3分)11.(3分)若3m=7n,则=.12.(3分)2011年3月11日13:46日本发生了震惊世界的大地震,近期国际机构将日本核电事故等级上调至国际核能事件分级表(INES)中最严重的7级,据估算其向大气排放的放射性物质量约为630000太贝克,用科学记数法表示为:.13.(3分)五一期间,小明和小亮分别从三部影片《飞驰人生2》、《热辣滚烫》、《九龙城寨之围城》、《维和防暴队》中随机选择一部观看,则他们选择的影片相同的概率为.14.(3分)如图,在平面直角坐标系中,直线AB与x轴交于点A(﹣4,0),与x轴夹角为30°,将△ABO沿直线AB翻折,点O的对应点C恰好落在双曲线y=(k≠0)上,则k的值为.15.(3分)如图,OA在x轴上,OB在y轴上,OA=8,AB=10,点C在边OA上,AC=2,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k=.第14题第15题三.解答题(共7小题,满分55分)16.(5分)解方程:x2+2x﹣8=0.17.(7分)班级开展迎新年联欢晚会时,在教室悬挂了如图所示的四个福袋A,B,C,D.在抽奖时,每次随机取下一个福袋,且取A之前需先取下B,取C之前需先取下D,直到4个福袋都被取下.(1)第一个取下的是D福袋的概率为;(2)请用画树状图或列表的方法,求第二个取下的是A福袋的概率.18.(8分)家庭过期药品属于“国家危险废物“处理不当将污染环境,危害健康.某市药监部门为了了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调查本次抽样调查发现,接受调查的家庭都有过期药品,现将有关数据呈现如图:(1)求m、n的值;(2)补全条形统计图;(3)家庭过期药品的正确处理方式是送回收站,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收站.19.(8分)某景区在2024年“五一”小长假期间,接待游客达2万人次,预计在2022年“五一”小长假期间,接待游客2.88万人次,该景区一家特色小面店希望在“五一”小长假期间获得好的收益,经测算知,该小面成本价为每碗10元,借鉴以往经验,若每碗卖15元,平均每天将销售120碗,若价格每提高0.5元,则平均每天少销售4碗,每天店面所需其他各种费用为168元.(1)求出2020至2022年“五一”小长假期间游客人次的年平均增长率;(2)为了更好地维护景区形象,物价局规定每碗售价不得超过20元,当每碗售价定为多少元时,店家才能实现每天净利润600元?(净利润=总收入﹣总成本﹣其它各种费用)20.(8分)如图,点E是矩形ABCD对角线AC上的点(不与A,C重合),连接BE,过点E作EF⊥BE交CD于点F.连接BF交AC于点G,BE=AD.(1)求证:∠FEC=∠FCE;(2)试判断线段BF与AC的位置关系,并说明理由.21.(9分)【建立模型】(1)在数学课上,老师出示这样一个问题:如图1,在Rt△ABC中,∠ACB=90°,AC=BC,直线l经过点C,AD⊥l,BE⊥l,垂足分别为点D和点E,求证:△ADC≌△CEB,请你写出证明过程:【类比迁移】(2)勤奋小组在这个模型的基础上,继续进行探究问题;如图2,在平面直角坐标系中,直线y=﹣3x+3的图象与y轴交于点A,与x轴交于点C,将线段AC绕点C顺时针旋转90°得到线段CB,反比例函数的图象经过点B,请你求出反比例函数的解析式;【拓展延伸】(3)创新小组受到勤奋小组的启发,结合抛物线的图象继续深入探究:如图3,一次函数y=﹣3x+3的图象与y轴交于点A,与x轴交于点C,创新小组的同学发现在第一象限的抛物线y=﹣x2+2x+3的图象上存在一点P,连接PA,当∠PAC=45°时,请你和创新小组的同学一起求出点P的坐标.22.(10分)如图①,点D为△ABC上方一动点,且∠BDC=60°.(1)在BD左侧构造△BDE∽△BCA,连接AE,请证明△BAE∽△BCD;(2)如图②,在BD左侧构造△BDE∽△BCA,在CD右侧构造△CDF∽△CBA,连接AF,AE,求证:四边形AFDE是平行四边形;(3)如图③,当△ABC满足∠A=150°,,AC=2.运用(2)中的构造图形的方法画出四边形AFDE;(Ⅰ)求证:四边形AFDE是矩形;(Ⅱ)直接写出在点D运动过程中线段EF的最大值.2024年中考模拟考试参考答案及评分标准一、选择题题号12345678910答案A D B A B A B C D D 二、填空题题号1112131415答案 6.3×10514﹣4﹣5 16.解:x2+2x﹣8=0(x﹣2)(x+4)=0-------------------------------------------------------------------------------3分x﹣2=0或x+4=0x1=2,x2=﹣4-----------------------------------------------------------------------------------5分17.解:(1);-----------------------------------------------------------------------------------2分(2)由题意,画树状图为:---------------------------------------------------------------------------------5分共有4种等可能的结果,其中第二个取下的是A福袋的结果数有1种,∴第二个摘下A灯笼的概率为.------------------------------------------------------------------7分18.(8分)解:(1)∵抽样调查的家庭总户数为:80÷8%=1000(户),-----------1分∴m%==20%,m=20,---------------------------------------------------------------------2分n%==6%,n=6.----------------------------------------------------------------------------3分(2)C类户数为:1000﹣(80+510+200+60+50)=100,-----------------------------------4分条形统计图补充如下:--------------------------------6分(3)180×10%=18(万户)若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收点.----8分19.(8分)解:(1)可设年平均增长率为x,依题意有2(1+x)2=2.88,--------------------------------------------2分解得:x1=0.2=20%,x2=﹣2.2(舍去).-------------------3分答:年平均增长率为20%;--------------------------------------4分(2)设每碗售价定为y元时,店家才能实现每天利润600元,依题意得:(y﹣10)[120﹣(y﹣15)]﹣168=600,----------------------6分解得y1=18,y2=22,----------------------------------------------7分∵每碗售价不得超过20元,∴y=18.答:当每碗售价定为18元时,店家才能实现每天利润600元-----------------8分.20.(8分)(1)证明:∵四边形ABCD是矩形,∴AD=BC,∠DCB=90°,----------------------------------------------------------------------1分∵BE=AD,∴BC=BE,∴∠BEC=∠BCE,-----------------------------------------------------------------------------------2分∵EF⊥BE,∴∠BEF=∠DCB=90°,∴∠FEC=∠FCE;------------------------------------------------------------------------------------4分(2)解:BF⊥AC.------------------------------------------------------------------------------------5分理由:∵∠FEC=∠FCE,∴EF=CF,--------------------------------------------------------------------------------------------6分∵BE=BC,∴BF垂直平分CE,即BF⊥AC.--------------------------------------------------------------------------------------------8分21.(9分)(1)证明:如图1,∵AD⊥l,BE⊥l,∴∠ADC=∠CEB=90°,∴∠ACD+∠CAD=90°,---------------------------------------------------------1分∵∠ACB=90°,AC=BC,∴∠ACD+∠BCE=90°,∴∠CAD=∠BCE,---------------------------------------------------------------------2分∴△ACD≌△CBE(AAS);---------------------------------------------------------3分(2)如图2,过点B作BG⊥x轴于点G,则∠CGB=∠AOC=90°,∴∠ACO+∠CAO=90°,∵将线段AC绕点C顺时针旋转90°得到线段CB,∴AC=CB,∠ACB=90°,∴∠ACO+∠BCG=90°,∴∠CAO=∠BCG,∴△ACO≌△CBG(AAS),----------------------------------------------------------------------4分∴OA=CG,OC=BG,∵直线y=﹣3x+3与y轴交于点A,与x轴交于点C,∴A(0,3),C(1,0),∴OA=3,OC=1,∴CG=3,BG=1,∴OG=OC+CG=1+3=4,∴B(4,1),---------------------------------------------------------------------------------------5分将B(4,1)代入y=,得1=,∴k=4,∴反比例函数的解析式为y=;-------------------------------------------------------------------6分(3)如图3,过点C作CE⊥AC,且CE=AC,连接AE交抛物线于P,过点E作EF⊥x轴于点F,则∠CFE=∠ACE=∠AOC=90°,∴∠ACO+∠CAO=∠ACO+∠ECF=90°,∴∠CAO=∠ECF,∴△ACO≌△CEF(AAS),------------------------------------------------------------------------7分∴OA=CF=3,OC=EF=1,∴OF=OC+CF=1+3=4,∴E(4,1),设直线AE的解析式为y=kx+b,将E(4,1),A(0,3)代入得:,解得:,∴直线AE的解析式为y=﹣x+3,----------------------------------------------------------------8分联立方程组得,解得:(舍去),,∴点P的坐标为(,).------------------------------------------------------------------------9分22.(10分)(1)证明:∵△EBD∽△ABC,∴∠EBD=∠ABC,,-----------------------------------------------------------------1分∴∠EBD+∠ABD=∠ABC+∠ABD,∴∠EBA=∠DBC,∴△BAE∽△BCD;----------------------------------------------------------------------------------2分(2)证明:由(1)得:△BAE∽△BCD,∴,∵△CDF∽△CBA,∴,∴,∴AE=DF,-----------------------------------------------------------------------------------------3分同理(1)可得△CFA∽△CDB,∴,∵△BDE∽△BAC,∴∴∴DE=AF,---------------------------------------------------------------------------------------------4分∴四边形AFDE是平行四边形;---------------------------------------------------------------------5分(3)(Ⅰ)证明:由(1)知:△BAE∽△BCD,∴∠AEB=∠BDC=60°,---------------------------------------------------------------------------6分∵△EBD∽△ABC,∴∠BED=∠BAC=150°,∴∠AED=∠BED﹣∠AEB=150°﹣60°=90°,-------------------------------------------7分∴▱AFDE是矩形;-------------------------------------------------------------------------------------8分(Ⅱ)解:如图,EF的最大值为:,-------------------------------------------------------10分理由如下:作△BCD的外接圆,圆心为O,连接OA并延长交⊙O于D,此时AD最大,作BG⊥AC,交CA的延长线于G,∵∠BAC=150°,∴∠BAG=30°,∴BG=AB=,AG=AB=,∴CG=AC+AG=5,∴BC=,∴⊙O的直径为:,连接OB,OC,作OQ⊥BC于Q,作AT⊥OQ于T,∴OB=OC=,CQ=BQ=,∵∠CDB=60°∴∠BOC=2∠CDB=120°,∴∠OBC=∠OCB=30°,∴OQ=OB=,=,∵S△ABC∴AH=,∴CH===,∴AT=QH=CQ﹣CH==,∵OT=OQ﹣TQ=OQ﹣AH=﹣=,∴OA===,∴AD=OA+OD=,最大∵四边形AEDF是矩形,∴EF=AD=,∴EF的最大值为:.。

2023年广东省深圳市中考冲刺模拟数学试卷(含答案解析)

2023年广东省深圳市中考冲刺模拟数学试卷(含答案解析)

2023年广东省深圳市中考冲刺模拟数学试卷学校:___________姓名:___________班级:___________考号:___________【答案】A【分析】总体是调查对象的全体,据此求解即可.【详解】解:调查的是本班学生分别喜欢以上四种动物中的哪种动物,然后确定喜欢哪种动物的人数最多,所以是把本班全体学生作为调查对象,故A正确,故选A.【点睛】本题考查了调查的对象的选择,要读懂题意,解决本题的关键是要分清调查的内容所对应的调查对象,注意所选取的对象要具有代表性.4.下列标志的图形中,是轴对称图形的但不是中心对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称图形与中心对称图形的概念逐一进行判断即可得答案.【详解】A、不是轴对称图形,不是中心对称图形,不合题意;B、不是轴对称图形,不是中心对称图形,不合题意;C、不是轴对称图形,不是中心对称图形,不合题意;D、是轴对称图形,不是中心对称图形,符合题意,故选D.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.某地统计最近五年报名参加中考人数增长率分别为:3.9%,4.3%,3.7%,4.3%,4.7%,业内人士评论说:“这五年中考人数增长率相当平稳”,从统计角度看,“增长率相当平稳”说明这组数据()比较小A.方差B.平均数C.众数D.中位数【答案】A【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量,方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立,故从统计角度看,“增长率相当平稳”说明这组数据方差比较小.【详解】根据方差的意义知,数据越稳定,说明方差越小,故选:A.【点睛】本题考查方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.6.如图所示的尺规作图的痕迹表示的是()A.尺规作线段的垂直平分线B.尺规作一条线段等于已知线段C.尺规作一个角等于已知角D.尺规作角的平分线【答案】A【分析】利用线段垂直平分线的作法进而判断得出答案.【详解】如图所示:可得尺规作图的痕迹表示的是尺规作线段的垂直平分线.故选A.【点睛】此题主要考查了基本作图,正确把握作图方法是解题关键.A.(6,1)B.(0,1)C.【答案】B【详解】∵四边形ABCD先向左平移3个单位,再向上平移∴点A也先向左平移3个单位,再向上平移2个单位,∴由A(3,-1)可知,A′坐标为(0,1).故选9.如图,在平面直角坐标系x O y中,一次函数的图象与反比例函数象在第二象限交于A(﹣3,m),B(n,2)两点.若点A .2-B .53-【答案】B 【分析】过A 作AM x ⊥轴,过B 作BN x ⊥∴四边形AMNF 为矩形,∴FN AM =,AF MN =,A.5B.4【答案】C【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系逐一判断二、填空题11.0的相反数是___________.【答案】0【分析】只有符号不同的两个数互为相反数,注意规定0的相反数是0.【详解】解:0的相反数是0;【答案】29【分析】作M关于OB的对称点M于点P,交OA于点Q,则M N''的长度即为V为等边三角形,得出边三角形,OMM¢【详解】作M关于OB的对称点M则,MP M P NQ N Q ''==,∴MP PQ QN M P PQ QN '++=++∴M N ''的长即为MP PQ QN ++的最小值.根据轴对称的定义可知:N OQ '∠∴6,060ONN OMM ︒︒''∠=∠=∴ONN ¢V 为等边三角形,OMM V ∴90,2,N OM OM OM ON '''∠=︒==三、解答题(1)学校这次调查共抽取了名学生;(2)请补全条形统计图;(3)在扇形统计图中,羽毛球部分所占的圆心角是(4)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?【答案】(1)100(2)见解析(3)360°×20%=72°,故答案为:72°;(4)1200×20100=240(人)答;该校约有240人喜欢跳绳.【点睛】本题考查的是条形统计图,熟知从条形图可以很容易看出数据的大小,便于比(1)求证:直线FG【分析】(1)证明OE ∥AB ,由FG AB ⊥,一条直线垂直于两平行线的一条直线,则这条直线也垂直于另一条直线,可得OE GF ⊥,FG 与O 相切.(2)设O 的半径为r ,则==OE OC r ,在Rt OGE 中用勾股定理列出关于r 的方程,并求解即可.【详解】(1)证明:如图,连接OE .AB AC = ,B ACB ∴∠=∠.在O 中,OC OE =,OEC ACB ∴∠=∠.B OEC ∴∠=∠.OE AB ∴∥.又AB GF ⊥,OE GF ∴⊥.又OE 是O 的半径,FG ∴与O 相切.(2)设O 的半径为r ,则==OE OC r ,42GE CG ==, ,且90OEG ∠=︒,222OE GE OG +=即()22242r r +=+解得:3r =,即O 的半径为3.【点睛】本题考查了切线的判定、等腰三角形的性质、勾股定理,在圆中证明一条直线是圆的切线是常考题型,常运用的辅助线为:①判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;②有切线时,常常“遇到切点连圆心得半径”.24.某专卖店的新型节能产品,进价每件60元,售价每件129元,为了支持环保公益事业,每销售一件捐款3元.且未来40天,该产品将开展每天降价1元的促销活动,即从第一天起每天的单价均比前一天降1元,市场调查发现,设第x 天(140x ≤≤且x 为整数)的销量为y 件,y 与x 满足次函数的数量关系:当1x =时,35y =;当5x =时,55y =;(1)求y 与x 的函数关系式;(2)设第x 天去掉捐款后的利润为w 元,试求出w 与x 之间的函数关系式,并求出哪一天的利润最大,最大利润是多少元?[注:日销售利润=日销售量⨯(销售单价-进货单价-其他费用)]【答案】(1)530y x =+(2)函数关系式是253001980w x x =-++,第30天的利润最大,最大利润是6480元【分析】(1)设y 与x 满足的一次函数数关系式为y =kx +b (k ≠0),用待定系数法求解即可;(2)由题意得w 关于x 的二次函数,将其写成顶点式,根据二次函数的性质可得答案.【详解】(1)解:设一次函数关系式为()0y kx b k =+≠,把()1,35,()5,55代入解析式,得35555k b k b +=⎧⎨+=⎩,解得530k b =⎧⎨=⎩,所以y 与x 的函数关系式为530y x =+;(2)解:由题意,得()()()22530129603530019805306480w x x x x x =+---=-++=--+,∵50-<,140x ≤≤,∴当30x =时,w 有最大值,最大值为6480元,∴w 与x 之间的函数关系式是253001980w x x =-++,第30天的利润最大,最大利润是6480元.【点睛】本题考查了二次函数在实际问题中的应用、待定系数法求一次函数的解析式及二次函数的性质,理清题中的数量关系并熟练掌握二次函数的性质是解题的关键.25.如图,在平面直角坐标系中,∠ACO =90°,∠AOC =30°,分别以AO 、CO 为边向外作等边三角形△AOD 和等边三角形△COE ,DF ⊥AO 于F ,连DE 交AO 于G .(1)求证:△DFG ≌△EOG ;.(1)求抛物线的函数表达式和点C的坐标;∴AE DE ⊥,CF DF ^,∴90AED DFC ∠=∠=︒∵()1,1A -,()2,0C ,()0,1D -∴2AE =,1DE =,2DF =,1CF =∴AE DF =,DE CF=在AED △和DFC △中∵AE DF AED DFC DE CF =⎧⎪∠=∠⎨⎪=⎩。

【2022】广东省深圳市中考数学模拟试卷(及答案解析)

【2022】广东省深圳市中考数学模拟试卷(及答案解析)

广东省深圳市中考数学模拟试卷(含答案)(时间120分钟满分:120分)一、选择题(本大题10小题,每小题3分,共30分)1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.2.(3分)作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.6.7×105B.6.7×106C.0.67×107D.67×1083.(3分)如图,直线l与直线a,b相交,且a∥b,∠1=110°,则∠2的度数是()A.20°B.70°C.90°D.110°4.(3分)若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解集是()A.x≤2 B.x>1 C.1≤x<2 D.1<x≤25.(3分)某校10名篮球运动员的年龄情况,统计如下表:则这10名篮球运动员年龄的中位数为()A.12 B.13 C.13. 5 D.14(3分)下列图形中,是轴对称图形但不是中心对称图形的是()6.A.等边三角形B.平行四边形C.正六边形 D.圆7.(3分)已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm8.(3分)下列运算正确的是()A.(a3)2=a5B.a2•a3=a5C.a6÷a2=a3D.3a2﹣2a2=19.(3分)如图,已知:在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC 的度数为()A.70°B.45°C.35°D.30°10.(3分)已知b<0时,二次函数y=ax2+bx+a2﹣1的图象如下列四个图之一所示.根据图象分析,a的值等于()A.﹣2 B.﹣1 C.1 D.2二、填空题(本大题6小题,每小题4分,共24分)11.(4分)分解因式:mn2﹣2mn+m= .12.(4分)一个正多边形的一个外角为30°,则它的内角和为.13.(4分)若2x﹣3y﹣1=0,则5﹣4x+6y的值为.14.(4分)某校共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是足球,则可估计该校学生中最喜欢的课外体育运动项目为足球的学生有人.15.(4分)已知扇形的圆心角为120°,弧长为6π,则扇形的面积是.16.(4分)如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为.三、解答题(一)(每小题6分,共18分)17.(6分)解不等式组:,并在所给的数轴上表示解集.18.(6分)先化简,再求值:(a﹣),其中a=﹣1,b=3.19.(6分)参加足球联赛的每两队之间都要进行一场比赛,共要比赛28场,共有多少个队参加足球联赛?四、解答题(二)(每小题7分,共21分)20.(7分)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.(1)求作∠ABC的平分线,分别交AD,AC于P,Q两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明AP=AQ.21.(7分)某市教育局在局属各初中学校设立“自主学习日”.规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表,针对以下六个项目(每人只能选一项):A.课外阅读;B.家务劳动;C.体育锻炼;D.学科学习;E.社会实践;F.其他项目进行调查,根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:(1)此次抽查的样本容量为,请补全条形统计图;(2)全市约有4万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人?(3)七年级(1)班从选择社会实践的2名女生和1名男生中选派2名参加校级社会实践活动,请你用树状图或列表法求出恰好选到1男1女的概率是多少?并列举出所有等可能的结果.22.(7分)如图,将△ABC沿着射线BC方向平移至△A′B′C′,使点A′落在∠ACB的外角平分线CD上,连结AA′.(1)判断四边形ACC′A′的形状,并说明理由;(2)在△ABC中,∠B=90°,AB=8,cos∠BAC=,求CB′的长.五、解答题(三)(每小题9分,共27分)23.(9分)如图,已知直线y=kx+b与反比例函数y=的图象交于A (1,m)、B两点,与x 轴、y轴分别相交于C(4,0)、D两点.(1)求直线y=kx+b的解析式;(2)连接OA、OB,求△AOB的面积;(3)直接写出关于x的不等式kx+b<的解集是.24.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC 交于点D,DE⊥AC,垂足为E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若∠C=60°,AC=12,求的长.(3)若tanC=2,AE=8,求BF的长.25.(9分)如图,在平面直角坐标系中,矩形OABC的两边分别在x 轴和y轴上,OA=cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动、设运动时间为t秒.(1)用t的式子表示△OPQ的面积S;(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;(3)当△OPQ与△PAB和△QPB相似时,抛物线y=x2+bx+c经过B、P两点,过线段BP上一动点M作y轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比.参考答案一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)﹣2的绝对值是()A.2 B.﹣2 C.D.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.2.(3分)作为世界文化遗产的长城,其总长大约为6700000m.将6700000用科学记数法表示为()A.6.7×105B.6.7×106C.0.67×107D.67×108【解答】解:6700000=6.7×106.故选:B.3.(3分)如图,直线l与直线a,b相交,且a∥b,∠1=110°,则∠2的度数是()A.20°B.70°C.90°D.110°【解答】解:∵直线a∥b,∠1=100°,∴∠2=180°﹣∠1=70°.故选:B.4.(3分)若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解集是()A.x≤2 B.x>1 C.1≤x<2 D.1<x≤2【解答】解:根据题意得:不等式组的解集为1<x≤2.故选:D.5.(3分)某校10名篮球运动员的年龄情况,统计如下表:则这10名篮球运动员年龄的中位数为()A.12 B.13 C.13.5 D.14【解答】解:10个数,处于中间位置的是13和13,因而中位数是:(13+13)÷2=13.故选:B.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()6.A.等边三角形B.平行四边形C.正六边形 D.圆【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、是轴对称图形,也是中心对称图形,不合题意;.故选:A.7.(3分)已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A.6cm B.4cm C.3cm D.2cm【解答】解:∵四边形ABCD是菱形,∴CD=AD=6cm,OB=OD,∵OE∥DC,∴BE:CE=BO:DO,∴BE=CE,即OE是△BCD的中位线,∴OE=CD=3cm.故选:C.8.(3分)下列运算正确的是()A.(a3)2=a5B.a2•a3=a5C.a6÷a2=a3D.3a2﹣2a2=1【解答】解:A、错误.(a3)2=a6.B、正确.a2•a3=a5.C、错误.a6÷a2=a4.D、错误.3a2﹣2a2=a2,故选:B.9.(3分)如图,已知:在⊙O中,OA⊥BC,∠AOB=70°,则∠ADC 的度数为()A.70°B.45°C.35°D.30°【解答】解:∵OA⊥BC,∠AOB=70°,∴=,∴∠ADC=∠AOB=35°.故选:C.10.(3分)已知b<0时,二次函数y=ax2+bx+a2﹣1的图象如下列四个图之一所示.根据图象分析,a的值等于()A.﹣2 B.﹣1 C.1 D.2【解答】解:由图可知,第1、2两个图形的对称轴为y轴,所以x=﹣=0,解得b=0,与b<0相矛盾;第3个图,抛物线开口向上,a>0,经过坐标原点,a2﹣1=0,解得a1=1,a2=﹣1(舍去),对称轴x=﹣=﹣>0,所以b<0,符合题意,故a=1,第4个图,抛物线开口向下,a<0,经过坐标原点,a2﹣1=0,解得a1=1(舍去),a2=﹣1,对称轴x=﹣=﹣>0,所以b>0,不符合题意,综上所述,a的值等于1.故选:C.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(4分)分解因式:mn2﹣2mn+m= m(n﹣1)2.【解答】解:原式=m(n2﹣2n+1)=m(n﹣1)2,故答案为:m(n﹣1)212.(4分)一个正多边形的一个外角为30°,则它的内角和为1800°.【解答】解:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.13.(4分)若2x﹣3y﹣1=0,则5﹣4x+6y的值为 3 .【解答】解:∵2x﹣3y﹣1=0,∴2x﹣3y=1,∴5﹣4x+6y=5﹣2(2x﹣3y)=5﹣2×1=3.故答案为:3.14.(4分)某校共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是足球,则可估计该校学生中最喜欢的课外体育运动项目为足球的学生有680 人.【解答】解:估计该校学生中最喜欢的课外体育运动项目为足球的学生有1600×=680人,故答案为:680.15.(4分)已知扇形的圆心角为120°,弧长为6π,则扇形的面积是27π.【解答】解:设扇形的半径为r.则=6π,解得r=9,∴扇形的面积==27π.故答案为:27π.16.(4分)如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为4.【解答】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠E AC=∠ACD=30°,∴AE=CE,在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,则S△AEC=EC•AD=4.故答案为:4.三、解答题(一)(每小题6分,共18分)17.(6分)解不等式组:,并在所给的数轴上表示解集.【解答】解:,由不等式①,得x≥﹣1,由不等式②,得x<3,故原不等式组的解集是﹣1≤x<3,在数轴表示如下图所示,.18.(6分)先化简,再求值:(a﹣),其中a=﹣1,b=3.【解答】解:原式=÷=×=a+b,当a=﹣1,b=3时,原式=﹣1+3=2.19.(6分)参加足球联赛的每两队之间都要进行一场比赛,共要比赛28场,共有多少个队参加足球联赛?【解答】解:设共有x个队参加比赛,则每队要参加(x﹣1)场比赛,根据题意得: =28,整理得:x2﹣x﹣56=0,解得:x1=8,x2=﹣7(不合题意,舍去).答:共有8个队参加足球联赛.四、解答题(二)(每小题7分,共21分)20.(7分)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.(1)求作∠ABC的平分线,分别交AD,AC于P,Q两点;(要求:尺规作图,保留作图痕迹,不写作法)(2)证明AP=AQ.【解答】(1)解:如图所示,BQ为所求作;(2)证明:∵BQ平分∠ABC,∴∠ABQ=∠CBQ,∵∠BAC=90°∴∠AQP+∠ABQ=90°,∵AD⊥BC,∴∠ADB=90°,∴∠CBQ+∠BPD=90°,∵∠ABQ=∠CBQ,∴∠AQP=∠BPD,又∵∠BPD=∠APQ,∴∠AQP=∠AQP,∴AP=AQ.21.(7分)某市教育局在局属各初中学校设立“自主学习日”.规定每周三学校不得以任何形式布置家庭作业,为了解各学校的落实情况,从七、八年级学生中随机抽取了部分学生的反馈表,针对以下六个项目(每人只能选一项):A.课外阅读;B.家务劳动;C.体育锻炼;D.学科学习;E.社会实践;F.其他项目进行调查,根据调查结果绘制了如下尚不完整的统计图,请你根据统计图解答下列问题:(1)此次抽查的样本容量为1000 ,请补全条形统计图;(2)全市约有4万名在校初中学生,试估计全市学生中选择体育锻炼的人数约有多少人?(3)七年级(1)班从选择社会实践的2名女生和1名男生中选派2名参加校级社会实践活动,请你用树状图或列表法求出恰好选到1男1女的概率是多少?并列举出所有等可能的结果.【解答】解:(1)总人数=200÷20%=1000,故答案为1000,B组人数=1000﹣200﹣400﹣200﹣50﹣50=100人,条形图如图所示:(2)参加体育锻炼的人数的百分比为40%,用样本估计总体:40%×40000=16000人,答:全市学生中选择体育锻炼的人数约有16000人.(3)设两名女生分别用A1,A2,一名男生用B表示,树状图如下:共有6种情形,恰好一男一女的有4种可能,所以恰好选到1男1女的概率是=.22.(7分)如图,将△ABC沿着射线BC方向平移至△A′B′C′,使点A′落在∠ACB的外角平分线CD上,连结AA′.(1)判断四边形ACC′A′的形状,并说明理由;(2)在△ABC中,∠B=90°,AB=8,cos∠BAC=,求CB′的长.【解答】解:(1)四边形ACC′A′是菱形,理由如下:由平移的性质可得:AA'=CC',且AA'∥CC'∴四边形ACC′A′是平行四边形,由AA'∥CC'得:∠AA'C=∠A'CB',由题意得:CD平分∠ACB',∴∠ACA'=∠A'CB',∴∠ACA'=∠AA'C,∴AA'=AC,∴平行四边形ACC′A′是菱形;(2)在Rt△ABC中,∠B=90°,AB=8,∴cos∠BAC==,∴AC=10,∴BC===6,由平移的性质可得:BC=B'C'=6,由(1)得四边形ACC′A′是菱形,∴AC=CC'=10,∴CB'=CC'﹣B'C'=10﹣6=4.五、解答题(三)(每小题9分,共27分)23.(9分)如图,已知直线y=kx+b与反比例函数y=的图象交于A (1,m)、B两点,与x 轴、y轴分别相交于C(4,0)、D两点.(1)求直线y=kx+b的解析式;(2)连接OA、OB,求△AOB的面积;(3)直接写出关于x的不等式kx+b<的解集是0<x<1或x>3..【解答】解:(1)将A(1,m)代入y=,得m=3,∴A(1,3),将A(1,3)和C(4,0)分别代入y+kx+b,得:,解得:k=﹣1,b=4,∴直线解析式为:y=﹣x+4.(2)联立,解得或,∵A(1,3),∴B(3,1),∴S△AOB=S△AOC﹣S△BOC=•OC•|y A|﹣•OC•|y B|=×4×3﹣×4×1=4,∴△AOB的面积为4.(3)观察图象可知:不等式kx+b<的解集是0<x<1或x>3.故答案为0<x<1或x>3.24.(9分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC 交于点D,DE⊥AC,垂足为E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)若∠C=60°,AC=12,求的长.(3)若tanC=2,AE=8,求BF的长.【解答】解:(1)连接OD,∵AB=AC,∴∠ABC=∠C,∵OD=OB,∴∠ABC=∠ODB,∴∠C=∠ODB,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,即OD⊥EF,∴EF是⊙O的切线;(2)∵AB=AC=12,∴OB=OD=AB=6,由(1)得:∠C=∠ODB=60°,∴△OBD是等边三角形,∴∠BOD=60°∴的长为=2π,即的长=2π;(3)连接AD,∵DE⊥AC∠DEC=∠DEA=900在Rt△DEC中,tanC==2,设CE=x,则DE=2x,∵AB是直径,∴∠ADB=∠ADC=90°,∴∠ADE+∠CDE=90°,在Rt△DEC中,∠C+∠CDE=90°,∴∠C=∠ADE,在Rt△ADE中,tan∠ADE==2,∵AE=8,∴DE=4,则CE=2,∴AC=AE+CE=10,即直径AB=AC=10,则OD=OB=5,∵OD∥AE,∴△ODF∽△AEF,∴=即: =,解得:BF=,即BF的长为.25.(9分)如图,在平面直角坐标系中,矩形OABC的两边分别在x 轴和y轴上,OA=cm,OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1cm的速度匀速运动、设运动时间为t秒.(1)用t的式子表示△OPQ的面积S;(2)求证:四边形OPBQ的面积是一个定值,并求出这个定值;(3)当△OPQ与△PAB和△QPB相似时,抛物线y=x2+bx+c经过B、P两点,过线段BP上一动点M作y轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比.【解答】(1)解:∵CQ=t,OP=t,CO=8,∴OQ=8﹣t.∴S△OPQ=(0<t<8);(2)证明:∵S四边形OPBQ=S矩形ABCO﹣S△CBQ﹣S△PAB==32;∴四边形OPBQ的面积为一个定值,且等于32;(3)解:当△OPQ与△PAB和△QPB相似时,△QPB必须是一个直角三角形,依题意只能是∠QPB=90°,又∵BQ与AO不平行,∴∠QPO不可能等于∠PQB,∠APB不可能等于∠PBQ,∴根据相似三角形的对应关系只能是△OPQ∽△PBQ∽△ABP,∴=,∴,解得:t1=4,t2=8经检验:t=4是方程的解且符合题意,t=8不是方程的解,舍去;(从边长关系和速度考虑),∴QO=4,∴直线QB的解析式为:y=x+4,此时P(,0);∵B(,8)且抛物线经过B、P两点,∴抛物线是,直线BP是:.设M(m,)、N(m,).∵M在BP上运动,∴∵与交于P、B两点且抛物线的顶点是P;∴当时,y1<y2∴MN=|y1﹣y2|=|m2﹣2m+8﹣(m﹣8)|=m﹣8﹣(m2﹣2m+8)=m﹣8﹣m2+2m﹣8=﹣m2+3m﹣16=,∴当时,MN有最大值是2;∴设MN与BQ交于H点则,;∴S△BHM==∴S△BHM:S五边形QOPMH==3:29∴当MN取最大值时两部分面积之比是3:29.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

深圳中考数学模拟考试十套————————————————————————————————作者:————————————————————————————————日期:中考数学模拟测试卷一一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.32-的倒数为 【 】 A . 23- B .23 C .32 D . 32-2.下面四个几何体中,同一几何体的主视图和俯视图相同的共有 【 】A 、1个B 、2个C 、3个D 、4个3.我国第六次人口普查显示,全国人口为1370536875人,将这个总人口数(保留三个有效数字)用科学计数法表示为 【 】 A 、 91037.1⨯B 、71037.1⨯ C 、81037.1⨯ D 、 101037.1⨯4、下列四个点,在正比例函数X Y 52-=的图像上的点是 【 】 A 、( 2, 5 ) B 、( 5, 2) C 、(2,-5)D 、 ( 5 , -2 )5.在△ABC 中,若三边BC ,CA,AB 满足 BC :CA :AB=5:12:13,则cosB= 【 】 A 、125B 、512 C 、135 D 、13126.某校男子男球队10名队员的身高(厘米)如下:179,182,170,174,188,172,180,195,185,182,则这组数据的中位数和众数分别是 【 】 A 、181,181 B 、182,181 C 、180,182 D 、181,1827.同一平面内的两个圆,他们的半径分别为2和3 ,圆心距为d,当51ππd 时,两圆的位置关系是 【 】 A 、外离 B 、相交 C 、内切或外切 D 、内含正方体 圆锥 球 圆柱 (第二题图)8.如图,过y轴上任意一点p,作x 轴的平行线,分别与反比例函数xyxy24=-=和的图像交于A点和B点,若C为x轴上任意一点,连接AC,BC则△ABC的面积为【】9、如图,在ABCDY中EF分别是AD、CD 边上的点,连接BE 、AF,他们相交于G,延长BE交CD的延长线于点H,则图中的相似三角形有【】A、2对B、3对C、4对D、5对10、若二次函数cxxy+-=62的图像过)321,23(),,2(),,1(YCYBYA+-,则321,,yyy的大小关系是第Ⅱ卷(非选择题共70分)二、填空题(共4小题,每小题3分,计12分)11.计算:23-= .(结果保留根号)12.如图,AC∥BD,AE平分∠BAC交BD于点E ,若0641=∠则=∠1.13、分解因式:=+-aabab442.14、如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,若AD=3,BC=7,则梯形ABCD面积的最大值三、解答题(共8小题,计58分.解答应写出过程)15.(本题满分5分)解分式方程:xxx-=--23124(第8题图)(第9题图)16.(本题满分6分)某校有三个年级,各年级的人数分别为七年级600人,八年级540人,九年级565人,学校为了解学生生活习惯是否符合低碳观念,在全校进行了一次问卷调查,若学生生活习惯符合低碳观念,则称其为“低碳族”;否则称其为“非低碳族”,经过统计,将全校的低碳族人数按照年级绘制成如下两幅统计图:(1)根据图①、图②,计算八年级“低碳族”人数,并补全上面两个统计图;(2)小丽依据图①、图②提供的信息通过计算认为,与其他两个年级相比,九年级的“低碳族”人数在本年级全体学生中所占的比例较大,你认为小丽的判断正确吗?说明理由。

17.(本题满分6分)在正方形ABCD中,点G是BC上任意一点,连接AG,过B,D两点分别作BE⊥AG,DF⊥AG,垂足分别为E,F两点,求证:△ADF≌△BAE18.(本题满分7分)一天,数学课外活动小组的同学们,带着皮尺去测量某河道因挖沙形成的“圆锥形坑”的深度,来评估这些坑道对河道的影响,如图是同学们选择(确保测量过程中无安全隐患)的测量对象,测量方案如下:①、先测出沙坑坑沿的圆周长34.54米;②、甲同学直立于沙坑坑沿的圆周所在的平面上,经过适当调整自己所处的位置,当他位于B时恰好他的视线经过沙坑坑沿圆周上一点A看到坑底S(甲同学的视线起点C与点A,点S三点共线),经测量:AB=1.2米,BC=1.6米根据以上测量数据,求圆锥形坑的深度(圆锥的高),(π取3.14,结果精确到0.1米)19.(本题满分7分)2011年4月28日,以“天人长安,创意自然-----------城市与自然和谐共生”为主题的世界园艺博览会在西安隆重开园,这次园艺会的门票分为个人票和团体票两大类,其中个人票设置有三种:票得种类夜票(A)平日普通票(B)指定日普通票(C)单价(元/张)60 100 150某社区居委会为奖励“和谐家庭”,欲购买个人票100张,其中B种票得张数是A种票张数的3倍还多8张,设购买A种票张数为x,C种票张树伟y(1)、写出Y与X 之间的函数关系式(2)、设购票总费用为W元,求出W(元)与X(张)之间的函数关系式(3)、若每种票至少购买1张,其中购买A种票不少于20张,则有几种购票方案?并求出购票总费用最少时,购买A,B,C三种票的张数。

20、(本题满分6分)七年级五班在课外活动时进行乒乓球练习,体育委员根据场地情况,将同学分成3人一组,每组用一个球台,甲乙丙三位同学用“手心,手背”游戏(游戏时,手心向上简称“手心”,手背向上简称“手背”)来决定那两个人首先打球,游戏规则是:每人每次随机伸出一只手,出手心或者手背,若出现“两同一异”(即两手心、一手背或者两手背一手心)的情况,则出手心或手背的两个人先打球,另一人裁判,否则继续进行,直到出现“两同一异”为止。

(1)、请你列出甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现的所有等可能的情况(用A 表示手心,B 表示手背); (2)、求甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现“两同一异”的概率。

21.(本题满分6分) 如图,在△ABC 中,060B =∠,⊙O 是△ABC 外接圆,过点A 作的切线,交CO 的延长线于P 点,CP 交⊙O 于D (1) 求证:AP=AC(2) 若AC=3,求PC 的长 22.(本题满分7分)如图,二次函数x x y 31322—=的图像经过△AOC 的三个顶点,其中A(-1,m),B(n,n) (1) 求A 、B 的坐标(2) 在坐标平面上找点C ,使以A 、O 、B 、C 为顶点的四边形是平行四边形①、这样的点C 有几个?②、能否将抛物线x x y 31322—=平移后经过A 、C 两点,若能求出平移后经过A 、C 两点的一条抛物线的解析式;若不能,说明理由。

23.(本题满分8分)如图①、在矩形ABCD 中,将矩形折叠,使B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或者边CD (含端点)交于F,然后展开铺平,则以B 、E 、F 为顶点的三角形△BEF 称为矩形ABCD 的“折痕三角形” (1)由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕△BEF ”是一个_________三角形(2)如图②、甲在矩形ABCD,当它的“折痕△BEF ”的顶点E 位于AD 的中点时,画出这个“折痕△BEF ”,并求出点F 的坐标; (3)、如图③,在矩形ABCD 中, AB=2,BC=4,该矩形是否存在面积最大的“折痕△BEF ”? 若存在,说明理由,并求出此时点E 的坐标?若不存在,为什么?中考数学模拟测试卷二(密卷)(总分100分,考试时间90分钟)一、选择题(本题有10小题,每题3分,共30分)1.观察面图案,在A、B、C、D四幅图案中,能通过图案(1)的平移得到的是2.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨3.从一幅扑克牌中抽出3张红桃,4张梅花,5张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情A.可能发生B.不可能发生C.很可能发生D.必然发生4.若函数922-+=bxy是正比例函数,则b的值()A. b=3B. b=9C. b=0D. b=±35.一个正方体的展开图不可能如图所示()(1 A B C D6.已知⊙O 1和⊙O 2的半径分别为2cm 和6cm ,两圆的圆心距是5cm ,则两圆的位置关系是(A )内含 (B )外离 (C )内切 (D )相交7.蜡是非晶体,在加热过程中先要变软,然后逐渐变稀,然后全部变为液态,整个过程温度不断上升,没有一定的熔化温度,如图所示,四个图象中表示蜡溶化的是(A ) (B ) (C ) (D )8.图3是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.如果一个球按图中所示的方向被击中(球可以经过多次反射),那么该球最后将落入T /t /T /t /T /t /T /t /图34号袋3号袋2号袋1号袋的球袋是( )A .1号袋B .2号袋C .3号袋D .4号袋9.三角形两边长分别为3和6,第三边是方程2680x x -+=的解,则这个三角形的周长是( )A.11B.13C.11或13D.11和13 10.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O ,作0º~90º的旋转,那么旋转时露出的△ABC 的面积(S )随着旋转角度(n )的变化而变化,下面表示S 与n 的关系的图像大致是( )二、填空题(本题有5小题,每题3分,共15分.)11.如图1,直线a ∥b ,则∠ACB = .D A F A 28aC A BC OBACAn S OBn S OCn S ODnSO12.如图2,菱形ABCD 的对角线的长分别为2和5,P 是对角线AC 上任一点(点P 不与点A 、C 重合),且PE ∥BC 交AB 于E ,PF ∥CD 交AD 于F ,则阴影部分的面积是 .13.如图3,在⊙O 中,弦AB =1.8cm ,圆周角∠ACB =30°,则⊙O 的直径等于 cm.14.一串有黑有白,其排列有一定规律的珠子,被盒子遮住一部分(如图4),则这串珠子被盒子遮住的部分有 颗.15. 如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O 在格点上,则∠AED 的正切值等于 .(E三、解答题(本部分共8分,第16、17题各4分)16.计算:30tan 332005)2(3221031⋅-⎪⎭⎫ ⎝⎛-+-÷+⎪⎭⎫ ⎝⎛-π17.解方程组:四、作图题(3分)18.分析图6①,②,④中阴影部分的分布规律,按此规律在图6③中画出其中的阴影部分.五、应用题:19.(本题满分8分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克. 经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克. 现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?六、开放性问题:20.如图,已知△ABC和△DEF,∠A=∠D=900,且△ABC与△DEF不相似,问是否存在某种直线分割,使△ABC所分割成的两个三角形与△DEF所分割成的两个三角形分别对应相似?(1)如果存在,请你设计出分割方案,并给出证明;如果不存在,请简要说明理由;(5分)(2) 这样的分割是唯一的吗?若还有,请再设计出一种。

相关文档
最新文档