1全等三角形的概念和性质

合集下载

八年级课1--全等三角形的概念及性质

八年级课1--全等三角形的概念及性质

全等三角形的概念与性质一、 全等形及全等三角形概念及性质下面的图形中,形状和大小完全相同的图形有哪几对?下面的图形中,形状和大小完全相同的图形有哪几对?答:①和⑥,③和⑦,④和⑨答:①和⑥,③和⑦,④和⑨判断两个图形的形状和大小是否完全相同,可以通过运动把两个图形叠在一起,看它们是否重合起,看它们是否重合. .图1 图2 图3 1.全等形的概念:能够重合的两个图形叫做全等形.全等形的概念:能够重合的两个图形叫做全等形. .两个三角形是全等形,就说它们是全等..三角形....两个全等三角形,经过运动后一定重合,后一定重合,互相重合的顶点叫做对应顶点互相重合的顶点叫做对应顶点....;互相重合的边叫做对应边...;互相重合的角叫做对应角.... 上图1中△中△ABC ABC 和△和△A A 1B 1C 1是全等三角形,记作△是全等三角形,记作△ABC ABC ABC≌△≌△≌△A A 1B 1C 1,符号“≌”表示全等,读作“全等于”表示全等,读作“全等于”..其中A 和A 1、B 和B 1、C 和C 1分别是对应顶点;AB 和A 1 B 1、AC 和A 1C 1、BC 和B 1C 1分别是对应边;∠分别是对应边;∠A A 和∠和∠A A 1 、∠、∠B B 和∠和∠B B 1、∠C 和∠和∠C C 1分别是对应角分别是对应角..让学生用自己的语言叙述图2,图3:全等三角形、对应顶点、对应角以及有关数学符号有关数学符号. .2、全等三角形性质:两个三角形的三组对应边相等、三组对应角相等、全等三角形性质:两个三角形的三组对应边相等、三组对应角相等. .123456 78910C B A B1C 1A 1 E D A B C B C E D A 3.找对应边、对应角的方法:①大对大,小对小,②公共的边是对应边,公共的角是对应角,③对顶角是对应角,③对顶角是对应角,④对应边的对角是对应角,④对应边的对角是对应角,④对应边的对角是对应角,对应角对应角的对边是对应边。

全等三角形的概念、性质与判定

全等三角形的概念、性质与判定

1. 能够完全重合的两个三角形叫做全等三角形。

重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。

2. 全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等。

3. 全等三角形的判定(1)三边对应相等的两个三角形全等(简记为:“边边边”或“SSS”);(2)两边和它们的夹角对应相等的两个三角形全等(简记为“边角边”或“SAS”);(3)两角和它们的夹边对应相等的两个三角形全等(简记为“角边角”或“ASA”);(4)两个角和其中一个角的对边对应相等的两个三角形全等(简记为:“角角边”或“AAS”);(5)斜边和一条直角边对应相等的两个直角三角形全等(简记为:“斜边、直角边”或“HL”)。

4. 常见的一个三角形经过变换得到另一个全等三角形。

(1)平移(2)翻折(3)旋转5. 判定两个三角形全等所需条件:(1)需要三个条件;(2)至少有一个条件为边。

注意:“边边角”不一定成立。

反例:如图,△ABC与△ABC'中,AB=AB,AC=AC',∠ABC=∠ABC',但△ABC与△ABC'不全等。

【解题方法指导】例1. (2005年安徽)如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形?并任选其中一对给予证明。

分析:由AB∥DE,可以得到∠A=∠D;由AF=DC,可以得到AC=DF;由AB=DE,由“SAS”可以得到△BAF≌△EDC,及△BAC≌△EDF由此又可以得到BF=EC,BC=EF,FC又是公共边,可证△BFC≌△EFC证明:在△BAF与△EDC中,∵AB∥DE∴∠A=∠D又AB=DE,AF=DC∴△BAF≌△EDC(SAS)评析:判断两个三角形全等,设法找齐三个条件,至少有一个条件是边,因此先找出给出的条件(如AB=DE,AF=DC);然后发展条件,继续得到有关信息(如由AB∥DE⇒∠A=∠D;由AF=DC⇒AC=DF)例2. 如图,B是AC上一点,DA⊥AC,EC⊥AC,DB=BE。

初中数学《全等三角形的概念和性质》教案

初中数学《全等三角形的概念和性质》教案

教学设计深入探究活动1:利用全等变换,介绍对应元素.(1).多媒体演示三种全等变换(平移、翻折、旋转)并提出问题: 平移、翻折、旋转前后的两个三角形全等吗?(2).再让学生用课前自制的模型(全等三角形)亲自动手尝试图形全等变换的过程,进而得出图形变换的本质.(3).介绍全等三角形的对应元素(对应顶点、对应边、对应角)及全等三角形的表示方法.活动2:探究全等三角形对应元素的寻找规律.继续应用平移、翻折、旋转的三组图形并另加一组,然后提出问题:在操作实践的过程中建立对应的概念.①讲练结合,及时巩固所学新知(对应元素),同时培养学生把文字语言转化为图形语言的能力.②复习巩固对应边、对应角的概念.③培养学生的观察、概括能力和初步辨析图形的能力.巩固概念①教师引导学生在图1中找出对应元素并用图形语言(不同对应元素画上不同标记)标示出来.②图2至图4让学生自主完成(标记法)并口答相应的对应元素.③师生、生生合作交流, 共同探究、归纳、总结出寻找对应元素的方法和规律.活动3:例题教学, 强化应用【例1】如图所示, 已知△ABC≌△DCB, AB和DC, AC和DB是对应边, 请找出其他对应边及对应角.【例2】如图所示, 已知△ABC≌△CDA, AB和CD是对应边, 请找出其他对应边及对应角.活动4:合作交流, 归纳发现1.动画演示平移变换(或让学生将两个全等三角形模型重合在一起),让学生观察全等三角形对应边和对应角的关系.进而得出全等三角形的性质:全等三角形的对应边相等, 全等三角形的对应角相等2.让学生把全等三角形的性质由文字语言转化为符号语言.通过动画演示全等变换的过程及学生动手实践, 让学生形成直观感觉,从而分析总结出图形变换的本质,进一步加深对图形变换的理解,培养学生动态研究几何图形的意识.并由该组图形引出全等三角形对应元素及全等三角形的表示方法.练习巩固深化理解如图: 已知△ABC≌△DEF, A和D, B和E是对应顶点.①若AB=8, EF=5, 则DE= ;②若∠A=70°, ∠B=30°, 则∠DEF= ,∠F= .③请结合题目和所学知识自已设计一道题.运用全等三角形的性质对较复杂图形进行探究,初步培养学生综合运用知识的能力。

全等三角形的性质

全等三角形的性质

全等三角形的性质一、知识回顾1、全等形的概念:能够完全重合的两个图形叫做全等形。

2、全等三角形的概念:能够完全重合的两个三角形叫做全等三角形。

用符号“≌”表示,读作:全等。

4、全等三角形的性质:(1)全等三角形的对应边相等;全等三角形的对应角相等.(2)全等三角形的周长、面积相等.5、全等三角形的表示:△ABC和△A'B'C'全等,记作△ABC≌△A'B'C'.通常对应顶点字母写在对应位置上.二、典型例题例1:下列判断正确的是()A.形状相同的图形叫全等形B.图形的面积相等的图形叫全等形C.部分重合的两个图形全等D.两个能完全重合的图形是全等形分析:要判断选项的正误,要以全等形的概念为依据,结合各选项认真验证,与之相符和是正确的,反之,是错误的.解答:A、如果形状相同而面积不同,则不是全等形,错;B、如果面积相等,而形状不同,则不是全等形,错;C、根据全等形概念,强调是完全重合,错.D、正确.故选D.______________________________________________________ _______________________________例2:在下列各组图形中,是全等的图形是()分析:能够完全重合的两个图形叫做全等形.只有选项C能够完全重合,A 中大小不一致,B,D中形状不同.解答:由全等形的概念可以判断:C中图形完全相同,符合全等形的要求,而A、B、D中图形很明显不相同,A中大小不一致,B,D中形状不同.故选C.______________________________________________________ _______________________________例3:下列说法中,错误的是()A.全等三角形的面积相等B.全等三角形的周长相等C.面积相等的三角形全等D.面积不等的三角形不全等分析:判断选项是否正确,要根据全等三角形的性质,全等三角形的周长、面积分别相等;而面积相等的三角形不一定重合,即不一定全等,可得选项C 是错误的.解答:全等的三角形一定是能够互相重合的三角形,故全等的三角形面积相等,周长相等,而面积相同的两个三角形不一定能重合,即不一定全等,面积不等的三角形一定不会重合,不会全等.∴根据全等三角形的定义可知A、B、D均正确,C不正确.故选C.______________________________________________________ _______________________________例4:已知△ABC≌△A′B′C′,若∠A=50°,∠B′=80°,则∠C的度数是()A.30°B.40°C.50°D.60°分析:根据全等三角形的对应角相等,可求得∠B=∠B′=80°;根据三角形内角和定理,即可求得∠C的度数.解答:∵△ABC≌△A′B′C′∴∠B=∠B′=180°∴∠C=180°-∠A-∠B=50°故选C.______________________________________________________ _______________________________例5:如图,△ABC≌△BAD,A和B,C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为()A.4cm B.5cm C.6cmD.以上都不对分析:由△ABC≌△BAD,A和B,C和D分别是对应顶点,知AD和BC 是对应边,全等三角形的对应边相等即可得.解答:∵△ABC≌△BAD,A和B,C和D分别是对应顶点∴AD=BC=5cm.故选B.______________________________________________________ _______________________________例6:如图△ABC≌△BAD,若AB=9,BD=8,AD=7,则BC的长为()A.9 B.8 C.7 D.6分析:观察图形根据已知找出对应边,运用两三角形全等的性质得对应边相等可求解.解答:∵△ABC≌△BAD,∴BC=AD=7.故选C______________________________________________________ _______________________________例7:(2003·海南)如图所示,△ABC≌△AEF,AB=AE,∠B=∠E,有以下结论:①AC=AE;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC,其中正确的个数是()A.1个B.2个C.3个D.4个分析:根据已知找准对应关系,运用三角形全等的性质“全等三角形的对应角相等,对应边相等”求解即可.解答:∵△ABC≌△AEF,AB=AE,∠B=∠E∴EF=BC,∠EAF=∠BAC∴∠EAB+∠BAF=∠FAC+∠BAF即∠EAB=∠FACAC与AE不是对应边,不能求出二者相等,也不能求出∠FAB=∠EAB∴①、②错误,③、④正确故选B.______________________________________________________ _______________________________例8:如图,在△ABC中,D、E分别是AB,BC上的点,若△ACE≌△ADE≌△BDE,则∠ABC=()A.30°B.35°C.45°D.60°分析:运用全等三角形的性质可得出∠C=∠EDA=∠EDB=90°和∠B=∠BAE=∠CAE,从而求出∠B.解答:∵△ADE≌△BDE则∠ADE=∠BDE又∵∠ADE+∠BDE=180°∴∠ADE=∠BDE=90°∵△ACE≌△ADE∴∠C=∠ADE=90°∴∠CAB+∠B=90°又∵△ACE≌△ADE≌△BDE∴∠CAE=∠EAD=∠B=90°/3 =30°故选A.三、解题经验全等形的概念:两个能完全重合的图形是全等形,做题时要严格按照定义去判断。

全等三角形的性质及判定(经典讲义)

全等三角形的性质及判定(经典讲义)

全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等, 对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS )(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA ) (3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS) (4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS )专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是( )A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形 例题2:如图1,折叠长方形ABCD ,使顶点D 与BC 边上的N 点重合,如果AD=7cm ,DM=5cm ,∠DAM=39°,则AN =____cm ,NM =____cm ,NAB ∠= .【仿练1】如图2,已知ABC ADE ∆≅∆,AB AD =,BC DE =,那么与BAE ∠相等的角是 . 【仿练2】如图3,ABC ADE ∆≅∆,则AB= ,∠E= _.若∠BAE=120°,∠BAD=40°,则∠BAC= .、图4EDCB A图2 图3M DA NBC 图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF ∵CM 是△的中线∴_____________( )∴____________________∴__________( ) 或 ∵AC=EF∴____________________∴__________( )AB=AB ( )在△ABC 和△DEF 中∵⎪⎩⎪⎨⎧___________________________ ∴△ABC ≌△DEF ( )例1.如图,AB =AD ,CB =CD .△ABC 与△ADC 全等吗?为什么?例2.如图,C 是AB 的中点,AD =CE ,CD =BE .求证△ACD ≌△CBE .BFECAFE DCB ACMBA B A例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD2、如图所示,在△ABC中,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACD B.△BDE≌△CDEC.△ABE≌△ACE D.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSS B.SAS C.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。

全等三角形概念与性质

全等三角形概念与性质

全等三角形概念与性质三角形是几何学中的基本图形之一,最常见的是直角三角形、等腰三角形和等边三角形。

除了这些特殊的三角形,还有一种特殊的三角形被称为“全等三角形”。

本文将讨论全等三角形的概念和性质。

概念:全等三角形是指具有相同的形状和大小的两个三角形。

换句话说,如果两个三角形的对应边长相等,对应角度相等,则这两个三角形是全等三角形。

全等三角形可以通过平移、旋转和翻转来重合。

性质一:对应边长相等全等三角形的对应边长相等。

如果两个三角形ABC和DEF是全等三角形,那么AB = DE,BC = EF,AC = DF。

性质二:对应角度相等全等三角形的对应角度相等。

如果两个三角形ABC和DEF是全等三角形,那么∠A = ∠D,∠B = ∠E,∠C = ∠F。

性质三:对应的高、中线、角平分线相等在全等三角形中,对应的高、中线和角平分线也相等。

也就是说,如果两个三角形ABC和DEF是全等三角形,那么它们的对应的高H1H2,中线M1M2和角平分线L1L2分别相等。

性质四:面积相等全等三角形的面积也相等。

如果两个三角形ABC和DEF是全等三角形,那么它们的面积相等,可以用面积公式S = 1/2 * 底边长 * 高。

性质五:全等三角形可以证明其他形状的相等如果两个三角形是全等三角形,那么它们的其他对应部分也相等。

通过证明两个三角形全等,可以得出更多的相等关系,这对于解决几何问题非常有用。

应用:全等三角形在实际生活和几何学中有广泛的应用。

下面列举几个例子:1. 结构物的设计:在建筑、桥梁和其他结构物的设计中,确定三角形的相等性对保证结构的稳定性和均衡性非常重要。

通过利用全等三角形的性质,工程师可以设计出不同部分相等的结构,从而增强结构的强度和稳定性。

2. 地图和导航:地图和导航系统依赖于准确的测量和定位,而全等三角形的性质提供了一种测量和定位的方法。

通过测量两个地点和一个共同的角度,可以确定两个地点之间的距离和方向。

3. 几何证明:在几何学的证明过程中,利用全等三角形的性质可以简化证明过程。

1.1全等三角形概念和性质

1.1全等三角形概念和性质

全等三角形概念和性质1、知识与能力:理解全等三角形及相关概念,能够从图形中寻找全等三角形,探索并掌握全等三角形的性质,能够利用性质解决简单的问题。

2、过程与方法:在探索全等三角形性质的过程中,体会研究问题的方法,感受图形变化途径。

3、情感、态度与价值观:培养学生的识图能力、归纳总结能力和应用意识。

1.全等形(1)定义:能够的两个图形叫做全等形。

理解要点:图形的全等与他们的位置无关,只要满足能够完全重合即可;而完全重合包含两层意思:图形的、;全等形的周长、面积分别相等,但周长或面积相等的两个图形不一定全等。

(2)几种常用全等变换的方式:平移、翻折、旋转。

2.全等三角形及相关的概念(1)全等三角形的定义:能够的两个三角形叫做全等三角形。

(2)全等三角形对应元素:把两个全等的三角形重合到一起,①对应顶点:重合的顶点;②对应边:重合的边;③对应角:重合的角。

(3)全等三角形的表示方法:两个三角形全等用符号来表示,如图所示^ ABe ADEF:o符号“0”的含义:“s”表示,“一表示,合起来就是形状相同,大小也相等,这就是全等。

(4)全等三角形的书写:①字母顺序确定法:根据书写规范,按照对应顶点确定对应边,对应角,如△CAB^FDE,则AB与__、AC与__、BC与—是对应边,/ A和/ D、/ B和/ E、/C和/F时对应角;②图形位置确定法:公共边一定是对应边,公共角一定是对应角,对顶角一定是对应角;③图形大小确定法:两个全等三角形的最大的边(角)是, 最小的边(角)是对应边(角)。

(5)对应边(角)与对边(角)的区别:对应边、对应角是对两个三角形而言的,指两条边,两个角的关系;而对边、对角是指一个三角形的边和角的。

对边是与对角相对的边,对角是与边相对的角。

易错提示:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,字母顺序不能随意书写。

3.全等三角形的性质性质:全等三角形的对应边相等,对应角相等。

第1讲 全等三角形的性质

第1讲  全等三角形的性质

全等三角形的性质1. 全等图形:能够完全重合的两个图形就是全等图形.2. 全等多边形:能够完全重合的多边形就是全等多边形.相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角.全等多边形的对应边、对应角分别相等.如下图,两个全等的五边形,记作:五边形ABCDE ≌五边形'''''A B C D E . 这里符号“≌”表示全等,读作“全等于”.3.全等三角形:能够完全重合的三角形就是全等三角形. 对应顶点:完全重合时,互相重合的顶点为对应顶点. 对应角:完全重合时,互相重合的角为对应角. 对应边:完全重合时,互相重合的边为对应边.如图,若ABC △与A B C '''△全等,记作“ABC A B C '''△≌△”,其中顶点A 、B 、C 分别与顶点A '、B '、C '对应. 4. 全等三角形的性质 (1)全等三角形的对应边相等 (2)全等三角形的对应角相等(3)对应边上的中线相等,对应边上的高相等,对应角的角平分线相等 (4)全等三角形的周长相等,面积相等 5. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角.CBA B'A'(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.类型一、全等图形的概念【例1】全等图形是指两个图形()A.大小相等B.形状相同C.完全重合D.以上都不对【变式1】下列说法中,正确的是()A.全等图形是形状相同的两个图形B.全等三角形是指面积相同的两个三角形C.等边三角形都是全等三角形D.全等图形的周长、面积都相等【变式2】下列说法正确的是()A.形状相同的两个图形一定全等B.两个长方形是全等图形C.两个全等图形面积一定相等D.两个正方形一定是全等图形【例2】下列各组图案中,不是全等形的是()A. B.C. D.【变式1】下列各组的两个图形属于全等图形的是()A.B.C.D.【变式2】在下列各组图形中,是全等的图形是()A B C D 【例3】如图(1)~(12)中全等的图形是和;和;和;和;和;和;(填图形的序号)【变式1】如图是淮口工业集中发展区中某厂房的平面图,请你指出,其中全等的有组.【变式2】观察如图图形的特点:有几组全等图形?请一一指出:.类型二、全等三角形的性质:对应角相等【例4】如图,ABC DEF∠的度数是()B∠=︒,则FA∆≅∆,50∠=︒,100A.30︒B.50︒C.60︒D.100︒【变式1】已知ABC DEF∠的度数为()∠=︒,则FE∆≅∆,80∠=︒,50AA.30︒B.50︒C.80︒D.100︒【变式2】如图,已知ABC EFG∠等于()∆≅∆,则αA.72︒B.60︒C.58︒D.50︒【例5】已知图中的两个三角形全等,则1∠等于()A.70︒B.50︒C.60︒D.120︒【变式1】如图是两个全等三角形,图中字母表示三角形的边长,则α∠的度数为( )A .50︒B .58︒C .60︒D .62︒【变式2】已知图中的两个三角形全等,则x ∠的度数是( )A .38︒B .82︒C .60︒D .62︒【例6】如图,ABC ADE ∆≅∆,25B ∠=︒,105E ∠=︒,10EAB ∠=︒,则BAD ∠为()A .50︒B .60︒C .80︒D .120︒11. 如图,ACB ∆≅△A CB ',点A 和点A ',点B 和点B '是对应点,30BCB ∠'=︒,则ACA ∠'的度数为( )A .20︒B .30︒C .35︒D .40︒12. 如图,ABC ADC ∆≅∆,40BCA ∠=︒,80B ∠=︒,则BAD ∠的度数为 .类型三、全等三角形的性质:对应边相等【例7】如图,ABC DCB ∆≅∆,点A 和点D 是对应点,若6AB cm =,8BC cm =,7AC cm =,则DB 的长为( )A .6cmB .8cmC .7cmD .5cm【变式1】如图,ABC CDA ∆≅∆,7AC cm =,5AB cm =,8BC cm =,则AD 的长是( )A .5cmB .6cmC .7cmD .8cm【例8】如图,已知ABC DAE ∆≅∆,2BC =,5DE =,则CE 的长为( )A .2B .2.5C .3D .3.5【变式1】如图,ABC BDE ∆≅∆,若12AB =,5ED =,则CD 的长为( )A .5B .6C .7D .8【变式2】如图,OCA OBD ∆≅∆,3AO =,2CO =,则AB 的长为( )A .1B .3C .4D .5【例9】已知,ABC DEF ∆≅∆,且ABC ∆的周长为20,8AB =,3BC =,则DF 等于( ) A .3B .5C .9D .11【变式1】已知ABC DEF ∆≅∆,2AB =,4AC =,DEF ∆的周长为10,则BC 的值为 .【变式2】已知ABC DEF ∆≅∆,ABC ∆的周长为100cm ,30DE cm =,25DF cm =,那么BC = cm .【例10】已知ABC ∆三边长分别为3,5,7,DEF ∆三边长分别为3,32x -,21x -,若这两个三角形全等,则x 为 .【变式1】已知有两个三角形全等,若一个三角形三边的长分别为3、5、7,另一个三角形三边的长分别为3、32a b -、2a b +,则a b += .类型四、全等三角形性质定理的综合运用【例11】如图,ACF ADE ∆≅∆,12AD =,5AE =,求DF 的长.【变式1】如图,ADE BCF ∆≅∆,8AD cm =,5CD cm =,试求BD 的长.【变式2】如图,ABC DEF ∆≅∆,3BF =,2EF =. 求FC 的长 .【例12】如图,已知ABC DEC ∆≅∆,120∠=︒,求2∠的度数.【变式1】如图,ABC ADE ∆≅∆,88BAE ∠=︒,26CAD ∠=︒,求DAE ∠的度数.【变式2】如图,已知ADE ABC∠的度数.D∠=︒,求C∆≅∆,110DAE∠=︒,20【例13】已知,如图,ABC DEFAC DF.∆≅∆,求证://【变式1】如图,A、B、C、D在同一直线上,且ABF DCE∆≅∆,那么AF DE、AC BD=吗?为什么?//【变式2】已知ABF DCE∆≅∆,E与F是对应顶点.证明//AF DE.【例14】如图所示,A ,D ,E 三点在同一直线上,且BAD ACE ∆≅∆,求证:BD CE DE =+.【变式1】如图,E 为线段AB 上一点,AC AB ⊥,DB AB ⊥,ACE BED ∆≅∆. (1)试猜想线段CE 与DE 的位置关系,并证明你的结论; (2)求证:AB AC BD =+.【变式2】如图,在ABC ∆中,90ACB ∠=︒,ABC DFC ∆≅∆,你能判断DE 与AB 是否互相垂直吗?为什么?【例15】如图,已知ABC DEFEH=.AB=,2∆≅∆,80∠=︒,9B∠=︒,60A(1)求F∠的度数;(2)求DH的长.【变式1】如图,ACF DBE∆≅∆,其中点A、B、C、D在一条直线上(1)若BE AD∠的大小;⊥,62F∠=︒,求A(2)若9=,求AB的长.BC cm=,5AD cm【变式2】如图,CD AB∠=︒,C⊥于点D,BE AC∆≅∆,42⊥于点E,ABE ACDAB=,6AD=,G为AB延长线上一点.9(1)求EBG∠的度数.(2)求CE的长.【例16】如图,已知ABF CDE∆≅∆.(1)若30∠的度数;∠=︒,求EFCB∠=︒,40DCF(2)若10EF=,求BF的长.BD=,2【变式1】如图,已知ABC DEB∆≅∆,点E在AB上,AC与BD交于点F,C∠=︒.D∠=︒,256AB=,3BC=,55(1)求AE的长度;(2)求AED∠的度数.【变式2】如图所示,D,A,E在同一条直线上,BD DE⊥于D,CE DE⊥于E,且ABD CAE=,求=,4BD cm∆≅∆,2AD cm(1)DE的长;(2)BAC∠的度数.知识模块一全等图形【演练1】如果两个图形全等,那么这两个图形必定是()A.形状大小均相同B.形状相同,但大小不同C.大小相同,但形状不同D.形状大小均不相同【演练2】如图所示的图形是全等图形的是()A. B.C. D.【演练3】下列图形中全等图形是(填标号).【演练4】从同一张底片上冲出来的两张五寸照片全等图形,从同一张底片上冲出来的一张一寸照片和一张两寸照片全等图形(填“是”或“不是”).知识模块二全等三角形的性质【演练1】如图,ABC DEF∠=︒.∠=︒,则DFB∆≅∆,120∠=︒,20【演练2】若ABC DEF∆≅∆,则根据图中提供的信息,可得出x的值为()A.30 B.27 C.35 D.40【演练3】如图,ABC DEC∠=︒,则BCE∠的度数为(DCB∠=︒,20∆≅∆,90ACB)A .20︒B .40︒C .70︒D .90︒【演练4】如图,若ABC DEF ∆≅∆,四个点B 、E 、C 、F 在同一直线上,7BC =,5EC =,则CF 的长是( )A .2B .3C .5D .7【演练5】已知ABC ∆≅△A B C ''',△A B C '''的周长为32cm ,9A B cm ''=,12B C cm ''=,则AC = .【演练6】已知ABC ∆的三边分别是6,8,10,DEF ∆的三边分别是6,64x -,42x +,若两个三角形全等,则x 的值为 .【演练7】如图,已知EFG NMH ∆≅∆,F ∠与M ∠是对应角,若 2.1EF cm =,1.1FH cm =, 3.3HM cm =,求MN 和HG 的长度.【演练8】如图,已知ABC DBE ∆≅∆,点D 在AC 上,BC 与DE 交于点P ,若160ABE ∠=︒,30DBC ∠=︒,求CBE ∠的度数;【演练9】如图,点A,O,B在同一直线上,且ACO BDO∆≅∆.证明:(1)点C,O,D在同一直线上;(2)//AC BD.【演练10】如图,已知ABC DEC-=.BD AE EC∆≅∆,求证:2【演练11】如图,已知ABC DEB∆≅∆,点E在AB上,DE与AC相交于点F,若C∠=︒D∠=︒,607DE=,4BC=,35(1)求线段AE的长.(2)求DFA∠的度数.【演练12】如图,已知在四边形中ABCD,//⊥于点AD BC,过点A作AE BC∆≅∆.E,连接DE,46∠=︒,且ABE EDABAE(1)求ADE∠的度数;(2)若EDA DEC∆≅∆,试判断AE与CD之间的数量关系和位置关系,并说明理由.。

知识点1、全等三角形的性质

知识点1、全等三角形的性质

知识点1、全等三角形的性质
(1)性质:全等三角形中,对应边相等,对应角相等。

(对边、对角的区别)(2)全等三角形的对应线段(对应边上的中线,对应边上的高,对应角的平分线)相等。

(3)全等三角形的周长相等,面积相等。

知识点2、全等三角形的判定
(1)“边边边”(SSS):三边对应相等的两个三角形全等。

(2)“边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。

(3)“角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。

(4)“角角边”(AAS):两个角和其中一个角的对边对应相等的两个三角形全等。

(5)“斜边,直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。

注意问题:
(1)在判定两个三角形全等时,至少有一边对应相等;
(2)不能证明两个三角形全等的是:①三个角对应相等,即AAA;②有两边和其中一角对应相等,即SSA。

知识点3、全等三角形的证明思路。

全等三角形及其性质

全等三角形及其性质

【要点分析】一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.二、全等三角形能够完全重合的两个三角形叫全等三角形.三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是研究其它全等图形的重要工具.【典型例题】类型一、全等形和全等三角形的概念1、下列每组中的两个图形,是全等图形的为()A. B.C.D.【变式】如图,在5个条形方格图中,图中由实线围成的图形与①全等的有______________.类型二、全等三角形的对应边,对应角2、如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.【变式】如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角.类型三、全等三角形性质3、已知:如图所示,Rt△EBC中,∠EBC=90°,∠E=35°.以B为中心,将Rt△EBC绕点B逆时针旋转90°得到△ABD,求∠ADB的度数.解:∵Rt△EBC中,∠EBC=90°,∠E=35°,∴∠ECB=________°.∵将Rt△EBC绕点B逆时针旋转90°得到△ABD,∴△________≌△_________.∴∠ADB =∠________=________°.4、如图,把△ABC 绕C 点顺时针旋转35°,得到△A B C '',A B ''交AC 于点D ,则AB D '∠= °.【变式】如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位置,若A C AB ''⊥,则BAC ∠的度数是____________.5、如图,已知△ABE ≌△ACD,AB=AC ,BE=CD, ∠B=50°,∠AEC=120°,则∠DAC=( )A 120°B 60°C 50°D 70°6、 △''OA B 是由△OAB 绕点O 逆时针旋转60°得到的,那么△''OA B 与△OAB 是什么关系?若∠AOB=40°,∠B=30°,则∠'A 与'AOB 是多少度?【巩固提升】1.如图,△ABN ≌△ACM ,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.EDCBA A 'B 'BAO2.如图:△ABF≌△DCE,写出相等的线段.3.如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.4.如图,△ABC≌△DEF,BF=3,EF=2.求FC的长5.已知如图,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=105°,求∠BAC的度数.∠BAC= .6.如图,△ABC≌△ADE中,BA⊥AE,∠BAC=30°,AD=5,求BD的长.7.如图,△ABC≌△DEF,△ABC的周长是40cm,AB=10cm,BC=16cm,求△DEF中,边DF的长度.8.如图,在△ABC中,BE,CF分别是AC,AB边上的高线,BE,CF相交于O,连接AO交BC 于D,且△BCF≌△CBE,∠ABC=70°,求∠1和∠2的度数.9.如图,已知△ABC≌△EFC,且CF=5,AC=12,∠EFC=50°,求∠E的度数和AB的长9.10.如图,A、D、E三点在同一直线上,且△BAD≌△ACE,试说明:(1)BD=DE+CE;(2)△ABD满足什么条件时,BD∥CE?11.如图,四边形ABCD的对角线AC、BD相交于点O,△ABC≌△BAD.求证:(1)OA=OB;(2)AB∥CD.12.已知:△DEF≌△MNP,且EF=NP,∠F=∠P,∠D=48°,∠E=52°,MN=12cm,则∠P= 度,DE= cm.13.如图,A、E、F、C在一条直线上,△AED≌△CFB,你能得出哪些结论?(答出5个即可,不需证明)14.如图,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.15.如图△ABC≌△DBC,∠A=110°,则∠D= .16..如图,△AOC≌△BOD,试证明AC∥BD.17.如图,已知△ABD≌△ACE.求证:BE=CD.18.如图,Rt△ABC≌Rt△FDE,AB=8cm,BC=6cm,将△ABC沿射线DE的方向以2cm/秒的速度平移,在平移过程中,是否存在某个时刻t,使△AEF成为等腰三角形,若存在,请求出t值;若不存在,请说明理由.一、选择题1. 如图,△ABC≌△ECD,AB和EC是对应边,C和D是对应顶点,则下列结论中错误的是()A. AB=CEB. ∠A=∠EC. AC=DED. ∠B=∠D2. 如图,△ABC≌△BAD,A和B,C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为()A. 4cmB. 5cmC. 6cmD. 以上C——都不对3. 下列说法中正确的有()①形状相同的两个图形是全等图形②对应角相等的两个三角形是全等三角形③全等三角形的面积相等④若△ABC≌△DEF,△DEF ≌△MNP,△ABC≌△MNP.A.0个B.1个C.2个D.3个4. 如图,△ABE≌△ACD,∠B=50°,∠AEC=120°,则∠DAC的度数等于()A.120°B.70°C.60°D.50°5. 已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是()A.6cmB.7cmC.8cmD.9cm6. 将一张长方形纸片按如图所示的方式折叠,BC、BD分别为折痕,则∠CBD的度数为()A.60° B.75°C.90°D.95°二、填空题7. 如图,在△ABC中,AC>BC>AB,且△ABC≌△DEF,则在△DEF中,______<______<_______(填边).FE DCBA8. 如图,△ABC ≌△AED ,AB =AE ,∠1=27°,则∠2=___________.9. 已知△DEF ≌△ABC ,AB =AC ,且△ABC 的周长为23cm ,BC =4cm ,则△DEF 的边中必有一条边等于______.10. 如图,如果将△ABC 向右平移CF 的长度,则与△DEF 重合,那么图中相等的线段有__________;若∠A =46°,则∠D =________.11.已知△ABC ≌△'''A B C ,若△ABC 的面积为10 2cm ,则△'''A B C 的面积为________ 2cm ,若△'''A B C 的周长为16cm ,则△ABC 的周长为________cm .12. △ABC 中,∠A ∶∠C ∶∠B =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______ .三、解答题13.如图,已知△ABC ≌△DEF ,∠A =30°,∠B =50°,BF =2,求∠DFE 的度数与EC 的长.14.已知:如图,△ABC ≌△DEF ,且B ,E ,C ,F 四点在一条直线上,∠A =85°,∠B =60°,AB =8,EH =2. (1)求∠F 的度数与DH 的长; (2)求证:AB ∥DE.15. 如图,E 为线段BC 上一点,AB ⊥BC ,△ABE ≌△ECD.判断AE 与DE 的关系,并证明你的结论.() (2分钟)一. 选择题1. 下列说法正确的是( )A. 全等三角形是指形状相同的三角形B. 全等三角形是指面积相等的三角形C. 全等三角形的周长和面积都相等T ——回顾小结D. 所有的等边三角形都全等2. 如图所示,若△ABC ≌△DEF ,则∠E 等于( )AB C D EF30°50°第2题A. 30°B. 50°C. 60°D. 100°3. (2006年黑龙江)如图所示,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为( )A. 15°B. 20°C. 25°D. 30°4. 已知△ABC ≌△A ´B ´C ´,且△ABC 的周长为20,AB =8,BC =5,则A ´C ´等于( ) A. 5 B. 6 C. 7 D. 85. 如图所示,△ABC ≌△CDA ,且AB =CD ,则下列结论错误的是( )12ABCD第5题A. ∠1=∠2B. AC =CAC. ∠B =∠DD. AC =BC6. 如图所示,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿AD 对折,使点C 落在点C ´的位置,则图中的一个等腰直角三角形是( )ABCD C'第6题A. △ADCB. △BDC ´C. △ADC ´D. 不存在7. 下图中,全等的图形有( )第7题A BCD E 第3题A. 2组B. 3组C. 4组D. 5组 8. △ABC 与△DFE 是全等三角形,A 与D 对应,B 与F 对应,则按标有字母的线段计算,图中相等的线段有( )第8题A BCDE FA. 1组B. 2组C. 3组D. 4组二. 填空题9. 已知△ABC ≌△DEF ,AB =DE ,BC =EF ,则AC 的对应边是__________,∠ACB 的对应角是__________.10. 如图所示,把△ABC 沿直线BC 翻折180°到△DBC ,那么△ABC 和△DBC______全等图形(填“是”或“不是”);若△ABC 的面积为2,那么△BDC 的面积为__________.A BCD第10题 11. 如图所示,△ABE ≌△ACD ,∠B =70°,∠AEB =75°,则∠CAE =__________°.ABC DE 第11题 12. 如图所示,△AOB ≌△COD ,∠AOB =∠COD ,∠A =∠C ,则∠D的对应角是__________,图中相等的线段有__________.AB CDO第12题13. 如图所示,△APB 与△CPD 全等.A B C D P 第13题(1)相等的边是:AB =CD ,__________,__________; (2)相等的角是:∠A =∠C ,__________,__________; (3)△APB 如何变换得到△CPD ?________________________________________. 14. 下图是由全等的图形组成的,其中AB =3cm ,CD =2AB ,则AF =__________.A BCD EF三. 解答题15. 如图所示,已知△ABD ≌△ACE ,∠B =∠C ,试指出这两个三角形的对应边和对应角.ABCDEO16. 如图所示,已知△ABC ≌△FED ,且BC =ED ,那么AB 与EF 平行吗?为什么?AB CD EF17. 如图所示,△ABC ≌△AEC ,B 和E 是对应顶点,∠B =30°,∠ACB =85°,求△AEC 各内角的度数.ABCE18. (实际应用题)如图所示,用同样粗细,同种材料的金属构制两个全等三角形,△ABC和△DEF,已知∠B=∠E,∠C=∠F,AC的质量为25克,EF的质量为30克,求金属丝AB的质量的取值范围.AB CDE F19. (探究题)如图所示,△ABC绕顶点A顺时针旋转,若∠B=40°,∠C=30°.(1)顺时针旋转多少度时,旋转后的△AB'C'的顶点C'与原三角形的顶点B 和A在同一直线上?(原△ABC是指开始位置)(2)再继续旋转多少度时,点C、A、C'在同一直线上?A BC B'C'20. (阅读与探究)如图(1)所示,把△ABC沿直线BC移动线段BC那样长的距离可以变到△ECD的位置;如图(2)所示,以BC为轴把△ABC翻折180°,可以变到△DBC的位置;如图(3)所示,以点A为中心,把△ABC旋转180°,可以变到△AED的位置,像这样,只改变图形的位置,而不改变其形状大小的图形变换叫做全等变换. 在全等变换中可以清楚地识别全等三角形的对应元素,以上的三种全等变换分别叫平移变换、翻折变换和旋转变换.问题:如图(4),△ABC≌△DEF,B和E、C和F是对应顶点,问通过怎样的全等变换可以使它们重合,并指出它们相等的边和角.ABC DE(1)AB CD(2)AB CD E(3)AB C(4)DE F。

全等三角形的性质及判定

全等三角形的性质及判定

全等三角形的性质及判定知识要点1、全等三角形概念:两个能完全重合的三角形叫做全等三角形.2、全等三角形性质:(1)两全等三角形的对应边相等,对应角相等.(2)全等三角形的对应边上的高相等,对应边上的中线相等,对应角的平分线相等.(3)全等三角形的周长、面积相等.3、全等三角形判定方法:(1)全等判定一:三条边对应相等的两个三角形全等(SSS)(2)全等判定二:两角和它们的夹边对应相等的两个三角形全等(ASA)(3)全等判定三:两角及其中一个角的对边对应相等的两个三角形全等(AAS)(4)全等判定四:两边和它们的夹角对应相等的两个三角形全等(SAS)专题一、全等图形的性质——全等图形的对应边(对应中线、角平分线、高线)、对应角、对应周长、对应面积相等例题1:下列说法,正确的是()A.全等图形的面积相等B.面积相等的两个图形是全等形C.形状相同的两个图形是全等形D.周长相等的两个图形是全等形例题2:如图1,折叠长方形,使顶点与边上的点重合,如果AD=7,DM=5,∠DAM=39°,则=____,=____,= .【仿练1】如图2,已知,,,那么与相等的角是.【仿练2】如图3,,则AB=,∠E=_.若∠BAE=120°,∠BAD=40°,则∠BAC=.、图4EDCBA图2 图3MDN BC图1三角形全等的判定一(SSS )相关几何语言考点∵AE=CF∵CM 是△的中线∴_____________()∴____________________ ∴__________() 或 ∵AC=EF∴____________________ ∴__________() AB=AB ()FECACMBA在△ABC和△DEFxx∵∴△ABC≌△DEF()例1.如图,AB=AD,CB=CD.△ABC与△ADC全等吗?为什么?例2.如图,C是AB的中点,AD=CE,CD=BE.求证△ACD≌△CBE.例3.如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF.求证∠A=∠D.练习1..如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠CB.AB=ADC.AD∥BCD.AB∥CD2、如图所示,在△ABCxx,AB=AC,BE=CE,则由“SSS”可以判定()A.△ABD≌△ACDB.△BDE≌△CDEC.△ABE≌△ACED.以上都不对3.如图,AB=AC,BD=CD,则△ABD≌△ACD的依据是()A.SSSB.SASC.AASD.HL4.如图,AB=AC,D为BC的中点,则△ABD≌_________.5.如图,已知AB=DE,BC=EF,若要使△ABC≌△DEF,那么还要需要一个条件,这个条件可以是:.6.如图,AB=AC,BD=DC,∠BAC=36°,则∠BAD的度数是°.7、.如图,AB=AE,AC=AD,BD=CE,求证:△ABC≌ADE。

全等三角形的定义和性质

全等三角形的定义和性质
定义
两个三角形的三个内角分别对应相等 ,且三边对应成比例,则这两个三角 形相似。
性质
相似三角形的对应角相等,对应边成 比例,对应高、中线、角平分线也成 比例,周长之比等于相似比,面积之 比等于相似比的平方。
相似三角形与全等三角形联系与区别
联系
全等三角形是相似三角形的特例,当相似比为1时,相似三角 形即为全等三角形。因此,全等三角形具有相似三角形的所 有性质。
的两个基本条件。
在解决与角度有关的问题时, 可以利用全等三角形的对应角
相等这一性质来求解。
性质应用举例
1
利用全等三角形的性质可以证明线段相等、角相 等以及求解一些与三角形有关的问题。
2
例如,在证明两个三角形全等后,可以利用对应 边相等或对应角相等的性质来证明其他线段或角 的相等关系。
3
又如,在求解一些与三角形有关的问题时,可以 通过构造全等三角形来利用全等三角形的性质求 解。
根据题目给出的条件,我们可以 按照ASA判定方法来证明两个三 角形全等。首先,由已知条件可 得AB = DE,∠B = ∠E,BC = EF。因此,根据ASA判定方法, 我们可以得出△ABC ≌ △DEF。
03 2. 题目
已知△ABC中,∠C = 90°,AD平 分∠BAC交BC于点D,DE⊥AB于 点E。求证:△ACD ≌ △AED。
THANKS FOR WATCHING
感谢您的观看
解析
该命题不正确。根据相似三角形的判定定理,若两个三角形有两边对应成比例,且夹角相等, 则这两个三角形相似。但此命题中说的是“有一个角相等”,并未指明是夹角,因此不能判 定两个三角形相似。
06 总结回顾与课堂练习
关键知识点总结
• 全等三角形的定义:两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。

人教版数学八年级上册 全等三角形的概念和性质

人教版数学八年级上册   全等三角形的概念和性质

全等三角形的概念和性质(基础)【要点梳理】要点一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.要点二、全等三角形能够完全重合的两个三角形叫全等三角形.要点三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.要点四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【典型例题】类型一、全等形和全等三角形的概念1、下列每组中的两个图形,是全等图形的为()A. B.C.D.举一反三:【变式】(2014秋•岱岳区期末)下列各组图形中,一定全等的是()A.各有一个角是45°的两个等腰三角形B.两个等边三角形C.各有一个角是40°,腰长3cm的两个等腰三角形D.腰和顶角对应相等的两个等腰三角形类型二、全等三角形的对应边,对应角2、如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.举一反三:【变式】如图,△ABD≌△ACE,AB=AC,写出图中的对应边和对应角.类型三、全等三角形性质3、已知:如图所示,Rt△EBC中,∠EBC=90°,∠E=35°.以B为中心,将Rt△EBC绕点B逆时针旋转90°得到△ABD,求∠ADB的度数.解:∵Rt△EBC中,∠EBC=90°,∠E=35°,∴∠ECB=________°.∵将Rt△EBC绕点B逆时针旋转90°得到△ABD,∴△________≌△_________.∴∠ADB =∠________=________°.4、(2014秋•青山区期中)如图,△ABC ≌△DEC ,点E 在AB 上,∠DCA=40°,请写出AB 的对应边并求∠BCE 的度数..举一反三: 【变式】如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在位置,A 点落在位置,若,则的度数是____________.【巩固练习】一、选择题1. 如图,△ABC ≌△ECD ,AB 和EC 是对应边,C 和D 是对应顶点,则下列结论中错误的是( )A. AB =CEB. ∠A =∠EC. AC =DED. ∠B =∠D2. 如图,△ABC ≌△BAD ,A 和B ,C 和D 分别是对应顶点,若AB =6,AC =4,BC =5,则AD 的长为( )A. 4B. 5C. 6D. 以上都不对3. 下列说法中正确的有( )①形状相同的两个图形是全等图形 ②对应角相等的两个三角形是全等三角形 ③全等三角形的面积相等 ④若△ABC ≌△DEF ,△DEF ≌△MNP ,△ABC ≌△MNP.B 'A 'AC A B ''⊥BAC∠cm cm cm cm cmcmA.0个B.1个C.2个D.3个4. (2014秋•庆阳期末)如图,△ABC ≌△A ′B ′C ,∠ACB=90°,∠A ′CB=20°,则∠BCB ′的度数为( )A.20°B.40°C.70°D.90°5. 已知△ABC≌△DEF,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是( )A.6cmB.7cmC.8cmD.9cm6. 将一张长方形纸片按如图所示的方式折叠,BC 、BD 分别为折痕,则∠CBD 的度数为( )A .60°B .75°C .90°D .95°二、填空题7.(2014秋•安阳县校级期末)如图所示,△AOB ≌△COD ,∠AOB=∠COD ,∠A=∠C ,则∠D 的对应角是___________,图中相等的线段有____________________________.8. 如图,△ABC ≌△AED ,AB =AE ,∠1=27°,则∠2=___________.9. 已知△DEF ≌△ABC ,AB =AC ,且△ABC 的周长为23,BC =4,则△DEF 的边中必有一条边等于______.10. 如图,如果将△ABC 向右平移CF 的长度,则与△DEF 重合,那么图中相等的线段有__________;若∠A =46°,则∠D =________.cm cm11.已知△ABC ≌△,若△ABC 的面积为10 ,则△的面积为________ ,若△的周长为16,则△ABC 的周长为________.12. △ABC 中,∠A ∶∠C ∶∠B =4∶3∶2,且△ABC ≌△DEF ,则∠DEF =______ .三、解答题13.如图,已知△ABC ≌△DEF ,∠A =30°,∠B =50°,BF =2,求∠DFE 的度数与EC 的长.14. (2014秋•射阳县校级月考)如图,在图中的两个三角形是全等三角形,其中A 和D 、B 和E 是对应点.(1)用符号“≌“表示这两个三角形全等(要求对应顶点写在对应位置上);(2)写出图中相等的线段和相等的角;(3)写出图中互相平行的线段,并说明理由.15. 如图,E 为线段BC 上一点,AB ⊥BC ,△ABE ≌△ECD.判断AE 与DE 的关系,并证明你的结论.'''A B C 2cm '''A B C 2cm '''A B C cmcm。

全等三角形 知识点总结

全等三角形 知识点总结

全等三角形知识点总结在初中数学学习中,我们学习到了三角形的全等。

全等三角形是初中数学中一个非常重要的知识点,也是基础中的基础。

全等三角形的概念、性质和判定方法都是我们需要掌握的重点内容。

本文将对全等三角形的相关知识点进行总结,帮助大家更好地掌握和理解这一部分内容。

一、全等三角形的定义什么是全等三角形呢?全等三角形是指在三角形的三个对应角相等、三个对应边相等的情况下,我们就可以称这两个三角形是全等的。

用符号来表示的话,就是∆ABC≌∆DEF,其中A、B、C分别是∆ABC的三个顶点,D、E、F分别是∆DEF的三个顶点。

全等三角形的性质1、全等三角形的性质1:对应角相等如果两个三角形是全等的,那么它们的三个对应角分别相等。

也就是说,在全等三角形中,三个对应角是相等的。

2、全等三角形的性质2:对应边相等如果两个三角形是全等的,那么它们的三个对应边分别相等。

也就是说,在全等三角形中,三个对应边是相等的。

3、全等三角形的性质3:对应线段相等如果两个三角形是全等的,那么它们的对应线段(如中线、角平分线等)也相等。

二、全等三角形的判定方法全等三角形有几种判定方法,下面我们分别来看看。

1、全等三角形的判定方法一:SAS判定法SAS判定法是指边-角-边全等判定法。

也就是说,如果两个三角形的一个角和两个边分别相等,则这两个三角形是全等的。

判定条件:如果在两个三角形中,一对对应边相等,且夹在中间的对应角也相等,那么这两个三角形是全等的。

2、全等三角形的判定方法二:ASA判定法ASA判定法是指角-边-角全等判定法。

也就是说,如果两个三角形的两个角和一个夹在中间的边分别相等,则这两个三角形是全等的。

判定条件:如果在两个三角形中,一对对应角相等,且夹在中间的对应边也相等,那么这两个三角形是全等的。

3、全等三角形的判定方法三:SSS判定法SSS判定法是指边-边-边全等判定法。

也就是说,如果两个三角形的三条边分别相等,则这两个三角形是全等的。

全等三角形概念及其性质

全等三角形概念及其性质

全等三角形概念及其性质知识精要1.全等形能够重合的两个图形叫做全等形2.全等三角形(1)两个三角形是全等形,就说它们是全等三角形。

(2)两个全等三角形,经过运动后一定能够重合,相互重合的顶点叫做对应顶点;相互重合的边叫做对应边;相互重合的角叫做对应角。

注:(1)全等三角形并一定是两个图形之间的关系,还可能是多个图形之间的关系。

(2)全等图形也可以看作是把图形翻折,旋转、平移等变换而得到的图形,与原图形相比,它们只是位置发生了变化,而形状、大小都没有变;反过来说,两个全等图形经过这样的变换一定能够重合。

3.确定三角形形状和大小的三个元素有四种情况(1)两角及夹边(2)两边及其夹角(3)三边(4)两角及其中一角的对边注:知道两边及其中一边的对角时,一般不能确定三角形的形状,大小。

4.全等三角形的性质1、全等三角形的对应边相等,对应角相等。

2、全等三角形的周长和面积相等【例题与应用】1、图形的三种基本运动是翻折、旋转和平移.2、根据所给图形的信息,完成下列填空:(要求对应顶点字母写在对应的位置上)∆;(1)如图(1),△ABC≌DEF∆;(2)如图(2),△ABC≌DBC∆;(3)如图(3),△AOB≌DOC3、如图,已知△ABC≌△DEF,求图中x,y,z的值.解:060x =00220202z z z y =+==4、如图,在方格中各画一个与所给三角形全等的三角形,并用全等符号表示.5、如图,已知△ABD ≌△ACE ,AD =3cm ,BD =1cm ,BC =6cm ,求△ADE 的周长. 解:ABD ∆ ≌ACE ∆ 3AD AE cm ∴==1BD EC cm ==(全等三角形,对应边相等)6114DE BC BD EC cm ∴=--=--=33410ADE C AD AE DE ∆∴=++=+==6、如图,已知△ACF ≌△DBE ,∠E =∠F ,AD =9cm ,BC =5cm ,求AB 的长. 解:ACF ∆ ≌DBE ∆AC DBAB BC DC BC∴=∴+-+即11()(95)222AB CD AD BC cm ==-=⨯-= 7、画△ABC ,使∠A =60°,∠B =40°,AB =4.5cm.解:确定三角形的形状和大小,若两个三角形形状,大小完全相等,则称为全等三角形,因此为判定三角形全等的方法。

全等三角形全部概念

全等三角形全部概念

全等三角形全部概念全等三角形是指具有相同形状和大小的三角形,它们的所有对应边长度相等,所有对应角度相等。

全等三角形的性质和定理在几何学中起着重要作用,对于解决各种三角形相关的问题具有重要意义。

以下是关于全等三角形的全部概念、性质和定理的详细介绍:一、全等三角形的定义:1. 全等三角形定义:如果两个三角形的所有对应边相等,对应角相等,那么这两个三角形就是全等的。

2. 全等三角形的记法:当两个三角形全等时,通常用符号“≌”来表示,如三角形ABC≌三角形DEF。

3. 全等三角形的条件:两个三角形全等的条件是:对应的三边相等,对应的内角相等。

即两个三角形的任意两对边相等,夹角相等或对应角相等,则这两个三角形全等。

二、全等三角形的性质:1. 全等三角形的性质1:全等的三角形的对应边相等,对应角相等。

2. 全等三角形的性质2:全等的三角形的对应角的对边也相等。

3. 全等三角形的性质3:全等的三角形的各边都是对应边的相等。

4. 全等三角形的性质4:如果两个三角形全等,则它们的周长相等。

5. 全等三角形的性质5:如果两个三角形全等,则它们的面积也相等。

6. 全等三角形的性质6:如果三角形ABC≌三角形DEF,则三角形ABC的内角和等于三角形DEF的内角和。

7. 全等三角形的性质7:全等三角形对应边之间的比例相等,即对应边之比相等。

8. 全等三角形的性质8:全等的三角形的顶点到对边的距离相等。

三、全等三角形的定理:1. SSS全等定理:如果一个三角形的三条边分别等于另一三角形的三条边,那么这两个三角形全等。

2. SAS全等定理:如果一个三角形的两边和夹角分别等于另一个三角形的两边和夹角,那么这两个三角形全等。

3. ASA全等定理:如果一个三角形的两个角和夹边分别等于另一个三角形的两个角和夹边,那么这两个三角形全等。

4. RHS全等定理:如果一个直角三角形的斜边和一个锐角三角形的一个锐角以及两边分别等于另一个锐角三角形的一个锐角以及两边,则这两个三角形全等。

三角形全等概念

三角形全等概念

1. 全等三角形:能够完全重合的两个三角形叫做全等三角形。

2. 全等三角形的有关概念:两个全等三角形重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

3. 全等三角形的性质:全等三角形的对应边相等,对应角相等。

4. 三角形全等的判定定理:
(1)三边对应相等的两个三角形全等,简写成“边边边”或“SSS”;
(2)两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”;
(3)两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”;
(4)两个角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”。

5. 三角形的稳定性:
三角形的大小和形状是固定不变的,三角形的这个性质叫做三角形的稳定性。

6. 判定三角形全等的方法:
有SAS、ASA、AAS、SSS,HL全等三角形的定义五种方法。

7. 利用全等三角形证明线段相等或角相等的思路:
(1)观察线段或角在哪两个可能全等的三角形中;
(2)分析要证全等的两个三角形,已知什么条件,还缺什么条件;
(3)设法得证所缺条件;
(4)当待证线段和角不分布在两个三角形中,可考虑添加辅助线。

全等三角形的性质和判定

全等三角形的性质和判定

【知识要点】1.全等三角形的概念:经过平移、翻折、旋转能够重合的两个三角形叫做全等三角形。

【注意】互相重合的顶点叫做对应顶点;互相重合的边叫做对应边;互相重合的角叫做对应角。

2. 两个全等三角形的表示:∆ABC ≌∆DEF 【注意】把对应顶点的字母写在对应的位置上。

3. 全等三角形的性质:全等三角形对应边相等,对应角相等。

4. 全等三角形的判定(1)两边夹一角对应相等:S.A.S ; (2)两角夹一边对应相等:A.S.A ; (3)两角一对边对应相等:A.A.S ; (4)三边对应相等:S.S.S ;【典型例题】1.全等三角形的性质【例1】如图,AB=AD, AC=AE, 如果∆ABE ≌∆ACD 全等,∠BAD =90°,BE=10,∠CAE =_______,CD=____.【分析】利用全等三角形的性质:全等三角形对应边相等,对应角相等。

【解答】∆ABE ≌∆ACD ,则∠BAD =∠CAE =90°,BE CD 10==.2.全等三角形的判定【例1】如图,已知BAC DAE,ABD ACE, AD AE ∠∠∠∠=== , 求证:A B A C , B D ==【分析】只要证明∆ABD ≌∆ACE ,就可证明A B A C , B D C ==。

已知A B D A C E ∠∠=,ADAE =,如果能再找出一对角相等就可判定全等。

由已知BAC DAE ∠∠=,则BAC DAC DAE DAC ∠-∠∠-∠=,即BAD CAE ∠∠=【解答】ABD ACE,BAD CAE, AD AE ∠∠∠∠===()ABD ACE A.A.S ∴≌AB AC, BD CE ∴==【点评】从已知条件中获取足够信息证明两个三角形全等,进而证明对应边相等、对应角相等,是重点考察的内容。

而利用角和边的等量加减等量其和差相等,也是常用技巧。

【例2】如图,A 在OC 上, B 在OD 上, OA=OB, OC=OD, BC 与AD 相交于T ,求证:OT 平分COD ∠. 【分析】只要证明AOT BOT ∠∠=,就是OT 平分COD ∠, 可寻求证明COT DOT ∆∆≌, 为此要证CT=DT ,这样又要证 C D ∠=∠,那么可从判定COB DOA ∆∆≌入手。

全等三角形定义

全等三角形定义

全等三角形定义全等三角形是指具有相等的三边和相等的三个内角的两个三角形。

在几何学中,我们经常使用全等三角形来推导出其他定理和性质,因此对全等三角形的定义进行深入的探讨非常有价值。

1. 什么是全等三角形?全等三角形可以通过两个条件来定义:边边边(SSS)和角边角(ASA)。

如果两个三角形的三边分别相等,或者两个三角形的一个角和两个边分别相等,那么这两个三角形就是全等的。

2. 全等三角形的性质- 两个全等三角形的对应边相等:如果两个三角形是全等的,那么它们对应的边也是相等的。

简单地说,两个全等三角形的相似边是一一对应的。

- 两个全等三角形的对应角度相等:同样地,如果两个三角形是全等的,那么它们对应的角度也是相等的。

- 全等三角形的任意两个角之和相等于180度:这个性质被称为全等三角形的内角和定理(Angle Sum Theorem)。

无论三角形的形状如何,对应的角度的和总是相等于180度。

3. 全等三角形的应用全等三角形在几何学的证明中扮演了重要的角色。

我们可以利用全等三角形来推导其他定理和性质,如等腰三角形、正三角形、相似三角形等等。

全等三角形还广泛应用于解决实际问题中,如测量角度、距离、高度等。

在建筑、工程、地理和导航等领域,全等三角形的概念都有重要的应用。

在总结中,我们可以看到全等三角形的定义和性质对于几何学的学习和应用非常重要。

通过研究全等三角形,我们可以深入理解几何学中的许多定理和概念,并能够更好地解决相关问题。

全等三角形不仅在数学中有着重要的地位,同时也在实际生活中起到了很大的作用。

全等三角形的定义和性质(1-2)在几何学中,全等三角形是指具有相同边长和相同角度的两个三角形。

具体来说,如果两个三角形的对应边长和对应角度都相等,那么它们就是全等三角形。

全等三角形的定义为我们提供了一种比较和推导其他三角形性质的方法。

通过判断三角形是否全等,我们可以得出其他结论,例如等腰或等边三角形。

这些性质的推导和证明在几何学中起到了重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.1全等三角形1.下面的图形中,形状和大小完全相同的图形有哪几对?
2.确定对应顶点、对应边、对应顶点:
(1)若△AOC≌△BOD,AC的对应边是_________,角D的对应角是____________;
(2
)若△ABD≌△ACD,AB的对应边是__________,角B对应角是_____________;
(3)若△ABC≌△CDA,AD的对应边是__________,角B对应角是____________
3.一定是全等三角形的是( )
A.面积相等的三角形
B.周长相等的三角形
C.形状相同的三角形
D.能够完全重合的两个三角形
4.下列说法中正确的是( )
A.全等三角形的边相等
B.全等三角形的角相等
C.全等三角形的高相等
D.全等三角形等角的对边相等
5.如图,图中两个三角形能够完全重合,下面写法中正确的是( )
A.△ABE≌△AFB
B.△ABE≌△ABF
C.△ABE≌△FBA
D.△ABE≌△FAB
6.如图13-1-2所示,△ABC≌△CDA,AC=7 cm,AB=5 cm,BC=8 cm,则AD的长是( )
A.7 cm
B.5 cm
C.8 cm
D.无法确定
图13-1-2 图13-1-3
7.如图13-1-3所示,△ABC≌△CDA,并且AB=CD,下列结论中错误的是
A.∠1=∠2
B.AC=CA
C.∠D=∠B
D.AC=BC
8.如图△ABD≌△EBC,AB=3cm,AC=8cm,求DE的长.
1
2345
67
8
9
10
C
A B
题型一、利用全等求线段长和角度
1. 如图,ΔABD ≌ΔCDB ,且AB 、CD 是对应边;下面
四个结论中不正确的是:( )
A 、ΔABD 和ΔCD
B 的面积相等 B 、ΔABD 和ΔCDB 的周长相等
C 、∠A+∠AB
D =∠C+∠CBD D 、AD//BC ,且AD = BC
2.如图,△EFG ≌△NMH ,∠F 和∠M 是对应角,在△EFG 中,FG 是最长边. 在△NMH 中,MH 是最长边.EF=2.1cm ,EH=1.1cm ,HN=
3.3cm.
⑴写出其他对应边和对应角;
(2)
求线段NM 和线段HG 的长度.
3.如图,△ABC ≌△BAD ,A 和B 、C 和D 是对应顶点,如果 AB =5,BD =6,AD =4,那么BC 等于 ( )
A .6
B .5
C .4
D .无法确定
4.如图,△ABC ≌△AEF ,若∠ABC 和∠AEF 是对应角,则∠EAC 等于 ( )
A .∠AC
B B .∠CAF
C .∠BAF
D .∠BAC
5.如图,△ABC ≌ΔADE ,若∠B =80°,∠C =30°,
∠DAC =35°,则∠EAC 的度数为 ( )
A .40°
B .35°
C .30°
D .25° 6.如图,已知△AB
E ≌△ACD, ∠B=50°,∠AEC=120°,则∠DAC=( )
A 120°
B 60°
C 50°
D 70°
7.如图,△ABC ≌△CDA ,那么AB ∥CD 吗?试说明理由。

B。

相关文档
最新文档