初中数学全等三角形的概念和性质基础知识解析

合集下载

初中数学全等三角形知识点

初中数学全等三角形知识点

初中数学全等三角形知识点(一)、基本概念1、“全等”的理解全等的图形需要满意:(1)外形相同的图形;(2)大小相等的图形; 即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的'性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)敏捷运用定理证明两个三角形全等,需要依据已知条件与结论,仔细分析图形,精确无误的确定对应边及对应角;去分析已具有的条件和还缺少的条件,并会将其他一些条件转化为所需的条件,从而使问题得到解决。

运用定理证明三角形全等时要留意以下几点。

1、判定两个三角形全等的定理中,需要具备三个条件,且至少要有一组边对应相等,因此在查找全等的条件时,总是先查找边相等的可能性。

2、要擅长发觉和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要擅长敏捷选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)三、疑点、易错点1、对全等三角形书写的错误在书写全等三角形时肯定要把表示对应顶点的字母写在对应的位置上。

切记不要弄错。

2、对全等三角形判定方法理解错误;3、利用角平分线的性质证题时,要克服多数同学习惯于用全等证明的思维定势的消极影响。

初中数学 全等三角形的定义是什么

初中数学 全等三角形的定义是什么

初中数学全等三角形的定义是什么
全等三角形是指具有相等的对应边长和对应角度的两个三角形。

当两个三角形的所有对应边长和对应角度都相等时,我们可以说这两个三角形是全等的。

全等三角形的定义可以更具体地描述为以下条件之一:
1. SSS准则(边边边):如果两个三角形的三条边分别相等,则这两个三角形是全等的。

2. SAS准则(边角边):如果两个三角形的两条边和夹角分别相等,则这两个三角形是全等的。

3. ASA准则(角边角):如果两个三角形的两个角和夹边分别相等,则这两个三角形是全等的。

4. AAS准则(角角边):如果两个三角形的两个角和非夹边分别相等,则这两个三角形是全等的。

5. RHS准则(直角边斜边):如果两个直角三角形的一个直角边和斜边分别相等,则这两个三角形是全等的。

全等三角形的定义给出了判断两个三角形是否全等的方法。

通过使用这些准则,我们可以确定两个给定的三角形是否全等,从而解决与全等三角形相关的几何问题。

在实际应用中,全等三角形的概念在建筑、工程、导航、图形设计等领域起着重要的作用。

通过了解全等三角形的定义和性质,我们可以在实际问题中应用几何知识,计算未知的边长和角度,进行测量和设计工作。

总结起来,全等三角形是指具有相等的对应边长和对应角度的两个三角形。

全等三角形的定义包括SSS准则、SAS准则、ASA准则、AAS准则和RHS准则。

了解全等三角形的定义和性质可以帮助我们解决与几何相关的问题,并在实际应用中进行测量、设计和计算工作。

全等三角形的概念和性质(基础)知识讲解

全等三角形的概念和性质(基础)知识讲解

全等三角形的概念和性质(基础)【学习目标】1.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素. 2.掌握全等三角形的性质;会用全等三角形的性质进行简单的推理和计算,解决某些实际问题.【要点梳理】要点一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.要点二、全等三角形能够完全重合的两个三角形叫全等三角形.要点三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(3)有公共边的,公共边是对应边;(4)有公共角的,公共角是对应角;(5)有对顶角的,对顶角一定是对应角;(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.要点四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等.要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【典型例题】类型一、全等形和全等三角形的概念1、下列每组中的两个图形,是全等图形的为()A. B.C.D.【答案】A【解析】B,C,D选项中形状相同,但大小不等.【总结升华】是不是全等形,既要看形状是否相同,还要看大小是否相等.举一反三:【变式】如图,在5个条形方格图中,图中由实线围成的图形与①全等的有______________.【答案】②、④;提示:找与①形状、大小相同的图形.类型二、全等三角形的对应边,对应角2、如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边和对应角.【答案与解析】对应边:AN与AM,BN与CM对应角:∠BAN与∠CAM,∠ANB与∠AMC【总结升华】全等三角形对应角所对的边是对应边;全等三角形对应边所对的角是对应角. 举一反三:【变式】如图,△ABD ≌△ACE ,AB =AC ,写出图中的对应边和对应角.【答案】AB 和AC 是对应边,AD 和AE 、BD 和CE 是对应边,∠A 和∠A 是对应角,∠B 和∠C ,∠ADB 和∠AEC 是对应角.类型三、全等三角形性质3、已知:如图所示,Rt △EBC 中,∠EBC =90°,∠E =35°.以B 为中心,将Rt △EBC绕点B 逆时针旋转90°得到△ABD ,求∠ADB 的度数.解:∵Rt △EBC 中,∠EBC =90°,∠E =35°,∴∠ECB =________°.∵将Rt △EBC 绕点B 逆时针旋转90°得到△ABD ,∴△________≌△_________.∴∠ADB =∠________=________°.【思路点拨】由旋转的定义,△ABD ≌△EBC ,∠ADB 与∠ECB 是对应角,通过计算得出结论.【答案】55;ABD ,EBC ;ECB ,55【解析】旋转得到的图形是全等形,全等三角形对应边相等,对应角相等.【总结升华】根据全等三角形的性质来解题.4、如图,把△ABC 绕C 点顺时针旋转35°,得到△A B C '',A B ''交AC 于点D ,则AB D '∠= °.【思路点拨】由旋转的定义,B C BC '=,A B C=ABC ''∠∠=∠BB C ',由平角的定义及三角形的内角和可知AB D '∠=旋转角度.【答案】35°;【解析】旋转得到的三角形和原三角形全等,所以B C BC '=,A B C=ABC ''∠∠,所以,AB D ='∠180°-∠BB C '-∠A B C ''=180°-(∠ABC +∠BB C ')=∠BCB '=35°.【总结升华】旋转得到的三角形与原三角形全等,并且对应边的夹角等于旋转角度.这道题要注意隐含条件B C BC '=,这是一对对应边.举一反三:【变式】如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位置,若AC A B ''⊥,则BAC ∠的度数是____________.【答案】70°;提示:BAC ∠=∠B A C ''=90°-20°=70°.。

全等三角形(知识点讲解)

全等三角形(知识点讲解)

全等三角形(知识点讲解)全等三角形(知识点讲解)全等三角形是初中数学中的重要概念,也是几何学中的核心内容之一。

在这篇文章中,我们将从定义、判定全等三角形的条件以及全等三角形的性质等方面进行讲解。

一、全等三角形的定义全等三角形指的是具有完全相同的三边和三角的三角形。

简而言之,在几何学中,当两个三角形的对应边长相等、对应角度相等时,我们称这两个三角形是全等的。

二、全等三角形的判定条件为了判断两个三角形是否全等,我们有以下几个常用的判定条件:1. SSS判定法:即边-边-边判定法。

当两个三角形的三条边分别相等时,它们就是全等的。

2. SAS判定法:即边-角-边判定法。

当两个三角形的一对夹角和夹角两边分别相等时,它们就是全等的。

3. ASA判定法:即角-边-角判定法。

当两个三角形的一对夹角和夹角对边分别相等时,它们就是全等的。

4. AAS判定法:即角-角-边判定法。

当两个三角形的两对夹角和一个非夹角边分别相等时,它们就是全等的。

需要注意的是,这些判定条件是相互独立的,即只要满足其中一种条件,就可以判定两个三角形是全等的。

三、全等三角形的性质全等三角形具有以下重要性质:1. 对应边对应角相等性质:全等三角形的对应边对应角相等。

即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF,并且∠A = ∠D,∠B = ∠E, ∠C = ∠F。

2. 全等三角形的任意一角都与对应角相等:即若∆ABC≌∆DEF,那么∠A = ∠D, ∠B = ∠E, ∠C = ∠F。

3. 全等三角形的任意一边都与对应边相等:即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF。

4. 全等三角形的外角相等:即若∆ABC≌∆DEF,那么∠BAC =∠EDF, ∠ABC = ∠DEF, ∠ACB = ∠DFE。

通过以上性质,我们可以进行全等三角形的各种推理和计算。

四、全等三角形的应用全等三角形在几何学的应用非常广泛。

全等三角形知识点总结

全等三角形知识点总结

全等三角形知识点总结全等三角形是初中数学中的重要概念,也是几何学中的基础知识之一。

全等三角形指的是具有相同形状和大小的三角形,它们的对应边和对应角分别相等。

全等三角形的性质和判定方法对于解题和证明都有很大的帮助。

下面我们来总结一下全等三角形的知识点。

1. 全等三角形的性质。

全等三角形的性质包括以下几点:(1)对应边相等,如果两个三角形全等,则它们的对应边相等。

(2)对应角相等,如果两个三角形全等,则它们的对应角相等。

(3)全等三角形的面积相等,如果两个三角形全等,则它们的面积相等。

2. 全等三角形的判定方法。

判定两个三角形是否全等有以下几种方法:(1)SSS判定法,如果两个三角形的三条边分别相等,则这两个三角形全等。

(2)SAS判定法,如果两个三角形的一条边和夹角分别相等,则这两个三角形全等。

(3)ASA判定法,如果两个三角形的一对角和夹边分别相等,则这两个三角形全等。

(4)AAS判定法,如果两个三角形的两对角和一条边分别相等,则这两个三角形全等。

3. 全等三角形的应用。

全等三角形的性质和判定方法在解题和证明中有着广泛的应用,特别是在几何证明中常常会用到全等三角形的知识。

例如,通过证明两个三角形全等,可以推导出它们的其他性质,进而解决一些几何问题。

此外,在实际生活中,全等三角形的知识也有着一定的应用。

例如在建筑、工程等领域,利用全等三角形的性质可以进行测量、设计和施工等工作。

总之,全等三角形是几何学中的重要概念,掌握全等三角形的性质和判定方法对于学习和应用几何知识都具有重要意义。

希望通过本文的总结,能够帮助大家更好地理解和运用全等三角形的知识。

全等三角形角平分线的判定

全等三角形角平分线的判定

全等三角形角平分线的判定一、引言全等三角形是初中数学中的重要概念,而角平分线则是全等三角形的判定条件之一。

本文将详细介绍全等三角形和角平分线的相关概念,并阐述如何通过判定角平分线来确定两个三角形是否全等。

二、全等三角形的定义在平面几何中,如果两个三角形的对应边长相等,对应角度相等,则称这两个三角形是全等的。

记作ΔABC≌ΔDEF。

其中,ΔABC和ΔDEF分别为两个三角形,A、B、C和D、E、F分别为它们对应的顶点。

三、全等三角形的性质1. 全等三角形对应边长相等。

2. 全等三角形对应内角度数相等。

3. 全等三角形对应外角度数相等。

4. 全等三角形面积相等。

5. 全等三角形高线(从顶点所在的顶点所在边上作垂线到对边)长度相同。

6. 全等三角形中任意一条边上的中线(连接该边中点与另外一个顶点)长度相同。

7. 全等三角形任意一条高线与底边所成锐(钝)夹角相等。

四、角平分线的定义在一个三角形中,如果一条线段从某个顶点出发,将与该顶点相邻的两个角分成相等的两部分,则称这条线段为该三角形的角平分线。

五、角平分线的性质1. 角平分线将对应顶点所在边上的角度数相等的两个内角平分为两个度数相等的内角。

2. 角平分线所在直线与对应边所成锐(钝)夹角相等。

3. 三角形中任意一条边上的中线与该边所对应的内角平分线重合。

六、全等三角形判定条件之一:角平分线定理当两个三角形中有一组对应内角被它们各自的一条公共边上的直线所平分时,这两个三角形是全等的。

即:若AD为ΔABC中∠BAC的内角平分线,BE为ΔDEF中∠EDF的内角平分线,并且AD=BE,则ΔABC≌ΔDEF。

其中,A、B、C和D、E、F依次为ΔABC和ΔDEF对应顶点。

七、证明1. 因为AD是∠B AC 的内角平分线,所以∠BAD=∠CAD。

2. 同理,因为BE是∠EDF的内角平分线,所以∠BFE=∠DFE。

3. 又因为AD=BE,所以三角形ABD≌三角形EBF(SAS)。

全等三角形知识点

全等三角形知识点

全等三角形知识点摘要:全等三角形是初中数学中的一个重要概念,它指的是两个三角形在形状和大小完全相同的情况下,它们的对应边和对应角完全相等。

本文将详细介绍全等三角形的定义、性质、判定条件以及在几何题中的应用。

关键词:全等三角形、对应边、对应角、判定条件、几何应用1. 全等三角形的定义全等三角形(Congruent Triangles)指的是两个三角形在几何形状和大小上完全相同,即它们的所有对应边和对应角都相等。

在数学符号中,我们通常用“≌”来表示全等。

2. 全等三角形的性质全等三角形具有以下性质:- 对应边相等:两个全等三角形的对应边长度完全相同。

- 对应角相等:两个全等三角形的对应角度数完全相同。

- 对应边上的高相等:两个全等三角形对应边上的高(垂直于边的线段)长度也相等。

- 对应角的平分线相等:两个全等三角形对应角的角平分线长度相等。

- 对应边上的中线相等:两个全等三角形对应边上的中线(连接顶点和对边中点的线段)长度相等。

3. 全等三角形的判定条件要判定两个三角形是否全等,可以通过以下几种条件:- SSS(边边边):如果两个三角形的三边分别相等,那么这两个三角形全等。

- SAS(边角边):如果两个三角形有两边及它们的夹角分别相等,那么这两个三角形全等。

- ASA(角边角):如果两个三角形有两角及它们之间的边分别相等,那么这两个三角形全等。

- AAS(角角边):如果两个三角形有两角及其中一角的对边分别相等,那么这两个三角形全等。

- HL(直角边-直角边):对于直角三角形,如果斜边和一条直角边分别相等,那么这两个三角形全等。

4. 全等三角形在几何题中的应用全等三角形的概念在解决几何问题时非常有用,尤其是在涉及角度和长度计算的问题中。

通过识别和证明三角形全等,我们可以得出隐藏的边长和角度关系,从而解决复杂的几何构造问题。

5. 结论全等三角形是几何学中的一个基础概念,它在解决几何问题中扮演着关键角色。

八年级上册数学全等三角形洋葱数学

八年级上册数学全等三角形洋葱数学

八年级上册数学全等三角形洋葱数学八年级上册数学全等三角形洋葱数学全等三角形是初中数学学习过程中非常重要的一个部分,它可以帮助我们更好地理解几何基础知识,为以后的学习打下坚实的基础。

在学习全等三角形这个知识点时,我们需要了解一些基本的概念和定理,下面将对此进行详细的介绍。

一、基本概念1.全等三角形:两个三角形的对应边长相等,对应角度相等,那么这两个三角形就叫做全等三角形。

2.全等三角形的性质:对于全等三角形,其性质有以下三条:(1) 对应边长相等;(2) 对应角度相等;(3) 对应边和角的配对关系相等。

二、基本定理掌握了基本概念,了解基本定理就更容易了。

1.对称性:若三角形ABC和三角形DEF全等,那么它们的任意一条边都可以成为对应边。

2.三角形全等的条件:AA、SAS、SSS、ASA、AAS。

其中AA、SAS、SSS是最重要的三个条件,也是常用的三个条件。

三、实例应用现在我们来看一个例子,通过这个例子,大家可以更好地理解全等三角形的概念。

如图,已知三角形ABC和三角形DEFB E| || || |A -------------------- CD -------------------- F(1)AB=DE,BC=EF,∠BAC=∠EDF请用文字描述这两个三角形间的关系。

答:三角形ABC和三角形DEF全等。

(2)如果∠ABC=40°,AD=2cm,DE=x,则求x的值。

答:由于∠BAC=∠EDF,那么∠ABC=∠DEF=40°。

观察三角形ADE 和三角形ABC,我们知道它们是相似的。

∵ AD/AB=DE/BC∴ 2/(AB+BC) = x/BC∴ AB+BC = BC/(x/2)∴ AB+BC = 2x/BC∴ AB=2x/BC-BC(3)如果BD=2cm,则求DC的长度。

答:根据题意可知,三角形ABC与三角形DEF全等,那么∠BCA=∠FED,∠BAC=∠EDF。

由于∠ABC=∠DEF=40°,∠FED+∠EDF=140°,那么∠BCA+∠ACB=40°+40°=80°,∠DCF+∠DCB=80°,∴ BD=DC=2cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学全等三角形的概念和性质(基础)
【学习目标】
1.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素. 2.掌握全等三角形的性质;会用全等三角形的性质进行简单的推理和计算,解决某些实际问题.
【要点梳理】
要点一、全等形
形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.
要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.
要点二、全等三角形
能够完全重合的两个三角形叫全等三角形.
要点三、对应顶点,对应边,对应角
1. 对应顶点,对应边,对应角定义
两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.
要点诠释:
在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如下图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.
2. 找对应边、对应角的方法
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;
(3)有公共边的,公共边是对应边;
(4)有公共角的,公共角是对应角;
(5)有对顶角的,对顶角一定是对应角;
(6)两个全等三角形中一对最长的边(或最大的角)是对应边(或角),一对最短的边(或最小的角)是对应边(或角),等等.
要点四、全等三角形的性质
全等三角形的对应边相等;
全等三角形的对应角相等.
要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.
【典型例题】
类型一、全等形和全等三角形的概念
1、下列每组中的两个图形,是全等图形的为()
A. B.
C.D.
【答案】A
【解析】B,C,D选项中形状相同,但大小不等.
【总结升华】是不是全等形,既要看形状是否相同,还要看大小是否相等.
举一反三:
【变式】如图,在5个条形方格图中,图中由实线围成的图形与①全等的有______________.
【答案】②、④;
提示:找与①形状、大小相同的图形.
类型二、全等三角形的对应边,对应角
2、如图,△ABN≌△ACM,∠B和∠C是对应角,AB与AC是对应边,写出其他对应边
和对应角.
【答案与解析】对应边:AN与AM,BN与CM
对应角:∠BAN与∠CAM,∠ANB与∠AMC
【总结升华】全等三角形对应角所对的边是对应边;全等三角形对应边所对的角是对应角. 举一反三:
【变式】如图,△ABD ≌△ACE ,AB =AC ,写出图中的对应边和对应角.
【答案】AB 和AC 是对应边,AD 和AE 、BD 和CE 是对应边,∠A 和∠A 是对应角,∠B 和∠C ,
∠ADB 和∠AEC 是对应角.
类型三、全等三角形性质
3、已知:如图所示,Rt △EBC 中,∠EBC =90°,∠E =35°.以B 为中心,将Rt △EBC
绕点B 逆时针旋转90°得到△ABD ,求∠ADB 的度数.
解:∵Rt △EBC 中,∠EBC =90°,∠E =35°,
∴∠ECB =________°.
∵将Rt △EBC 绕点B 逆时针旋转90°得到△ABD ,
∴△________≌△_________.
∴∠ADB =∠________=________°.
【思路点拨】由旋转的定义,△ABD ≌△EBC ,∠ADB 与∠ECB 是对应角,通过计算得出结论.
【答案】55;ABD ,EBC ;ECB ,55
【解析】旋转得到的图形是全等形,全等三角形对应边相等,对应角相等.
【总结升华】根据全等三角形的性质来解题.
4、如图,把△ABC 绕C 点顺时针旋转35°,得到△A B C '',A B ''交AC 于点D ,则
AB D '∠= °.
【思路点拨】由旋转的定义,B C BC '=,A B C=ABC ''∠∠=∠BB C ',由平角的定义及三角形的内角和可知AB D '∠=旋转角度.
【答案】35°;
【解析】旋转得到的三角形和原三角形全等,所以B C BC '=,A B C=ABC ''∠∠,所以,
AB D ='∠180°-∠BB C '-∠A B C ''=180°-(∠ABC +∠BB C ')=∠BCB '=35°.
【总结升华】旋转得到的三角形与原三角形全等,并且对应边的夹角等于旋转角度.这道题要注意隐含条件B C BC '=,这是一对对应边.
举一反三:
【变式】如图,将△ABC 绕着点C 按顺时针方向旋转20°,B 点落在B '位置,A 点落在A '位
置,若AC A B ''⊥,则BAC ∠的度数是____________.
【答案】70°;
提示:BAC ∠=∠B A C ''=90°-20°=70°.。

相关文档
最新文档