上海市浦东新区2016-2017学年高一上学期期末考试数学试题-含答案

合集下载

(完整word版)上海市浦东新区2016-2017学年高一上学期期末考试数学试题Word版含答案

(完整word版)上海市浦东新区2016-2017学年高一上学期期末考试数学试题Word版含答案

浦东新区2016学年度第一学期教学质量检测高一数学试卷一、填空题:(本大题共12小题,每小题3分,共36分)1.函数y =a x( a 0且a = 1 )的图象均过定点__________ .2•请写出“好货不便宜”的等价命题:3. 若集合A d x|x乞1,B 4x|x _a:满足Ap] B」朮,则实数a=4. 不等式2 x-1 -1 cO的解集是.5 .若f x 1 =2x-1,贝U f 1 二___________ .6. 不等式□一0的解集为x_2 ------------------7. 若函数f x i=[x 1 x a为偶函数,贝U a =x2J x +18. 设f (x )=-j^,g(x) = ----------------- ,则f(x)g(x)=J x+1 x9. 设〉:x _ -5或x _1,:: 2m - 3乞x乞2m 1,若〉是:的必要条件,则实数m的取值范围为x2210.的值域是1 111. 已知ab 0,且a • 4b = 1,贝U 的最大值为___________ .a bx|(1-2a ) ,xc112. 已知函数f x = a在R上是增函数,则实数a的取值范围4,x -1、选择题(本大题共4小题,每题3分,共12分,每题都给出代号为A,B,C,D的四个结论,其中有且只有一个结论是正确的,每题答对得 3分,否则一律得零15.证券公司提示:股市有风险,入市需谨慎。

小强买股票A 连续4个跌停(个跌停:比前一天收市价下跌10%),则至少需要几个涨停,才能不亏损(一个 涨 停:比前一天收市价上涨10%).A. 3B. 4C. 5D. 616.给定实数x ,定义lx 1为不大于x 的最大整数,则下列结论中正确的是()A. x - lx 1 一 0B. x - lx I 1C. 令f x = x - lx 1,对任意实数x , f x • 1二f x 恒成立.D. 令f x \ = x - lx 1,对任意实数x , f -x ju f x 恒成立.三、解答题:本大题共 5小题,共52分.解答应写出必要的文字说明或推理、验算过程17. (本题满分8分)33已知m 2• m 5乞3「m 5,求实数m 的取值范围.18. (本题满分10分)分)4A. -x-1B. x 1C. -X 1D. x-1fx二如图,矩形草坪AMPN中,点C在对角线MN上,CD垂直AN于点D,CB垂直CD = AB =3米,AD = BC =2米,设 DN =x 米,BM = y 米,19. (本题满分10分,第1小题4分,第2小题6分)2设a 是实数,函数f x 二a-歹台x ・R .(1)若已知1,2为该函数图象上一点,求a 的值; (2)证明:对任意a ,f x 在R 上为增函数.20. (本题满分12分,第1小题3分,第2小题4分,第3小题5分) 已知函数f x =x 2-2ax ,a.(1 )若对任意的实数x 都有f 1 x =f 1 -x 成立,求实数a 的值; (2) 若f x 在区间1, •::上为单调增函数,求实数a 的取值范围; (3) 当x " 1,11时,求函数f x 的最大值.21. (本题满分12分,第1小题3分,第2小题4分,第3小题5分) 在区间D 上,如果函数f x 为减函数,而xf x 为增函数,则称f x 为D 上的于AM 于点B , 求这块矩形草坪AMPN 面积的最小值.1弱减函数,若f .X(1)判断f x在区间〔0,亠「]上是否是弱减函数;(2)当x・1,3 1时,不等式-< ^1_亠上恒成立,求实数a的取值范围;x J l+x 2x(3)若函数g(x)= f(x)+k x -1在[0,3]上有两个不同的零点,求实数k的取值范围•浦东新区2016学年度第一学期期末质量测试高一数学参考答案一、填空题I. (0,1) 2. 便宜没好货3. 1 4.(丄3) 5. -1 6.2 2(」:,2)一[3,二)7. -1 8. x,x (-1,0)(0,- : :)9. m_-3 或m_2 10. (0,4]II. 912. [-1,0)二、选择题13. A 14. B 15. C 16. D三、解答题17.(本题满分8分)3解:(1)设函数y二x5,函数为R上的单调递增函数............... 2•分•得, m _ -m 3 ............ 2•分.即,m22m - 3 乞0 ............. 2•分.得,(m - 1)( m 3)乞0所以,m的取值范围为:m,[_3,1]18 .(本题满分10分)—x 2 —解:. NCD "CMB xy=6 ................. 2•分3 yS AMPN -(x 2)(y 3)=Xy 3< 2y 6=12 3x 2 y ............. .3••分-12 2 3 x2 y 24 ...................... .2••分当且仅当3x=2y,即x=2,y=3时取得等号。

2016-2017学年上海市浦东新区建平中学高一(上)期末数学试卷含答案

2016-2017学年上海市浦东新区建平中学高一(上)期末数学试卷含答案

2016-2017学年上海市浦东新区建平中学高一(上)期末数学试卷一、填空题:(每小题3分,共36分)1.(3分)集合A={﹣1,a},B={4,a2},若 A U B={0,﹣1,4},则 a 的值为.2.(3分)函数f (x )=,g (x )=,则f (x)⋅g (x )=.3.(3分)全集U=R,且A={x|﹣x2+x+6≥0},B={x||x﹣3|﹣4>0},则∁U(A∩B)=.4.(3分)函数g (x)=1﹣2x,f[g(x)]=则,f ()=.5.(3分)不等式x﹣1>x4的解集是.6.(3分)命题“若一个函数定义域不对称,则该函数不是偶函数.”的逆否命题是.7.(3分)函数y=x2+3(x≤0)的反函数是.8.(3分)若f (x)=(m﹣1)x2﹣mx+3(x∈R)是偶函数,则函数g (x )=的零点是.9.(3分)函数y=的值域是.10.(3分)函数y=|(log2|x﹣1|)|(x<1)的单调递增区间是.11.(3分)已知关于x 的不等式在[2,5]有实数解,则实数a的取值范围为.12.(3分)把指数函数y=2x图像向下平移1个单位得到函数y=h (x)的图像,函数+a(m>0,m≠1)满足g (7)﹣g (1)=若函数f (x )=在(﹣∞,+∞)上是减函数,则实数a 的取值范围是.二、选择题:(每小题3分,共12分)13.(3分)如果x<0<y,则下列各式中成立的是()14.(3分)设p,q 是两个命题:p:log(|x|﹣1)>0,q:22+x﹣22﹣x≤15,则p 是q 的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件15.(3分)设函数f (x )=,g (x)=ax2+bx (a,b∈R,a≠0),若y=f (x)的图象与y=g (x)图象有且仅有两个不同的公共点A(x1,y1),B (x2,y2),则下列判断正确的是()A.当a<0 时,x1+x2<0,y1+y2>0B.当a<0 时,x1+x2<0,y1+y2<0C.当a>0 时,x1+x2<0,y1+y2>0D.当a>0 时,x1+x2>0,y11+y2>016.(3分)学生李明用手机加了一个有关高中数学学习的微信群,群里面许多数学爱好者经常发一些有关高中数学学习的心得和经验,但是,这些心得和经验的正确性无法保证,下面是李明搜集到的有关函数的一些结论:(1)若函数y=f (﹣x)有反函数,则其反函数可表示为y=f﹣1(﹣x);(2)函数y=f (x )在其定义域内的最大值为M,最小值为m,则其值域为[m,M];(3)定义在R 上的函数y=f (x),若对任意的实数x,y 等式 f (x)﹣f (y)=均成立,则函数y=f (x)一定是奇函数;(4)定义在R 上的函数y=f (x),若对任意的实数x 都有 f (x)﹣f (|x|)=0,则函数y=f (x)一定没有反函数.李明的同学们对以上四个结论有以下不同判断,其中判断正确的是()A.都是错误的B.只有一个是正确的C.两对两错D.只有一个是错误的三、解答题(10+10+10+12,共52分)17.(10分)解下列不等式或方程(1)18.(10分)已知m 为实常数,求函数y=log22x﹣2m log2x﹣3的最小值.19.(10分)已知函数y=.(1)判断该函数奇偶性并证明;(2)利用函数单调性定义证明该函数在(﹣∞,+∞)上为增函数.20.(10分)已知某市最低工资标准为每月1800 元,为了解决该市房价过高的问题,政府计划对低收入的本市户籍居民购买第一套住房的,每月提供一定金额的贷款补贴,补贴规则:个人每月收入不高于6000 元的,对贷款进行补贴,补贴标准为:贷款月还款额×,其中k 是一个与月工资收入有关的常数,且贷款月还款额不得高于5000 元,贷款月还款额高于5000 元的,只对5000 元部分进行补贴.高于5000 元部分不予补贴,已知月工资收入不高于3000 元时k=1000.(1)若某人工资为2000 元,贷款月还款额为5000 元,则他每月获得的贷款补贴是多少元?(2)对于月工资收入不高于3000 元的贷款买房的居民中.若贷款月还款额均为5000 元,则实际月收入最高为多少元?(结果均保留整数位,均不考虑扣税问题)21.(12分)对于函数y=f (x)和y=g (x ),若存在区间A,使|f(x)﹣g(x)|≤1 在区间 A 上恒成立,则称区间 A 是函数y=f (x)和y=g (x )的“公共邻域”.设函数f (x)=a x+3a (a>0,a≠1)的反函数为y=f﹣1(x),函数y=g (x )的图象与函数y=f﹣1(x)的图象关于点(a,0)对称.(1)求函数y=f﹣1(x)和y=g (x )的解析式;(2)若a=2,求函数y=g (﹣x)+f﹣1(x)的定义域;(3)是否存在实数a,使得区间[a+2,a+3]是y=f﹣1(x)和y=g (﹣x)的“公共邻域”,若存在,求出a 的取值范围;若不存在,说明理由.2016-2017学年上海市浦东新区建平中学高一(上)期末数学试卷参考答案与试题解析一、填空题:(每小题3分,共36分)1.(3分)集合A={﹣1,a},B={4,a2},若A U B={0,﹣1,4},则a 的值为0.【解答】解:集合A={﹣1,a},B={4,a2},若AUB={0,﹣1,4},则a=a2=0,∴a的值为0.故答案为:0.2.(3分)函数f (x )=,g (x )=,则f (x)⋅g (x )= 2(x﹣1)(x≠﹣3,x≠0).【解答】解:f (x )=,g (x )=,∴f (x)⋅g (x )=•=2(x﹣1),故答案为:2(x﹣1).,(x≠﹣3,x≠0).3.(3分)全集U=R,且A={x|﹣x2+x+6≥0},B={x||x﹣3|﹣4>0},则∁U(A∩B)={x|x<﹣2或x≥﹣1} .【解答】解:全集U=R,A={x|﹣x2+x+6≥0}={x|x2﹣x﹣6≤0}={x|﹣2≤x≤3},B={x||x﹣3|﹣4>0}={x||x﹣3|>4}={x|x>7或x<﹣1},A∩B={x|﹣2≤x<﹣1},∴∁U(A∩B)={x|x<﹣2或x≥﹣1}.故答案为:{x|x<﹣2或x≥﹣1}.【解答】解:∵函数g (x)=1﹣2x,f[g(x)]=,∴f ()=f[g()]==﹣1.故答案为:﹣1.5.(3分)不等式x﹣1>x4的解集是∅.【解答】解:根据题意,令g(x)=x4﹣x+1,x﹣1>x4⇒x4﹣x+1<0⇒g(x)<0,则g(x)的导数为g′(x)=4x3﹣1,令g′(x)=4x3﹣1=0,解可得x=,分析可得:当x<,有g′(x)=4x3﹣1<0,即函数g(x)在(﹣∞,)为减函数,当x>,有g′(x)=4x3﹣1>0,即函数g(x)在(,+∞)为增函数,则函数g(x)在最小值为g()=﹣+1>1,则有g(x)>0恒成立,不等式x﹣1>x4的解集为∅;故答案为:∅6.(3分)命题“若一个函数定义域不对称,则该函数不是偶函数.”的逆否命题是若一个函数是偶函数,则该函数的定义域对称..【解答】解:命题的逆否命题为:若一个函数是偶函数,则该函数的定义域对称.故答案为:若一个函数是偶函数,则该函数的定义域对称.7.(3分)函数y=x2+3(x≤0)的反函数是y=﹣(x≥3).【解答】解:∵y=x2+3(x≤0),∴x=﹣,y≥3,故反函数为y=﹣(x≥3),8.(3分)若f (x)=(m﹣1)x2﹣mx+3(x∈R)是偶函数,则函数g (x )=的零点是﹣1.【解答】解:若函数f(x)是偶函数,则f(﹣x)=f(x),即(m﹣1)x2+mx+3=(m﹣1)x2﹣mx+3,则mx=﹣mx,即m=﹣m,得m=0,则g(x)==x+1,(x≠1),由g(x)=0得x=﹣1,则为函数g(x)的零点是﹣1,故答案为:﹣19.(3分)函数y=的值域是(0,1] .【解答】解:由f(x)=x2+2x+2=(x+1)2+1,可得f(x)的最小值为1,∴y=的值域为(0,1].故答案为:(0,1].10.(3分)函数y=|(log2|x﹣1|)|(x<1)的单调递增区间是(0,1).【解答】解:函数y=|(log2|x﹣1|)|(x<1)=|log2(1﹣x)|,令t=log2(1﹣x),则y=|t|,t<0,解得0<x<1,由t在(0,1)递减,y在(﹣∞,0)递减,由复合函数的单调性:同增异减,可得所求增区间为(0,1).故答案为:(0,1).11.(3分)已知关于x 的不等式在[2,5]有实数解,则实数a的取值【解答】解:根据题意,⇒>0⇒[(a﹣1)x﹣(a+1)](x+1)>0,分5种情况讨论:①,当a=1时,不等式可以变形为x+1<0,即x<﹣1,在[2,5]无解,不合题意,②,当a>1或时,不等式变形为(x﹣)(x+1)>0,其解集为{x|x<﹣1或x>},若不等式即(x﹣)(x+1)>0在[2,5]有实数解,则有<5,解可得:a>,③,当0<a<1时,有不等式变形为(x﹣)(x+1)<0,其解集为{x|x<或x>﹣1},不等式即(x﹣)(x+1)>0在[2,5]有实数解,④,当a=0时,不等式可以变形为0>1,无解,不符合题意;⑤,当a<0时,不等式变形为(x﹣)(x+1)<0,其解集为{x|x<﹣1或x >},若不等式即(x﹣)(x+1)>0在[2,5]有实数解,则有<5,解可得:a>,又由a<0,则a存在,综合可得:a的取值范围是{a|a>或0<a<1}.12.(3分)把指数函数y=2x图像向下平移1个单位得到函数y=h (x)的图像,函数+a(m>0,m≠1)满足g (7)﹣g (1)=若函数f (x )=在(﹣∞,+∞)上是减函数,则实数a由+a,且g (7)﹣g (1)=,得=,∴m=.则g(x)=.由f (x )=在(﹣∞,+∞)上是减函数,得f (x )=在(﹣∞,+∞)上是减函数,∴,解得a≤0.∴实数 a 的取值范围是(﹣∞,0].故答案为:(﹣∞,0].二、选择题:(每小题3分,共12分)13.(3分)如果x<0<y,则下列各式中成立的是()A.|x|<|y|B.|x\>|y|C.|x|=|y| D.以上都有可能【解答】解:由x<0<y,可得:|x|<|y|,|x|>|y|,|x|=|y|,因此以上都有可能.故选:D.14.(3分)设p,q 是两个命题:p:log(|x|﹣1)>0,q:22+x﹣22﹣x≤15,则p 是q 的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解答】解:由log(|x|﹣1)>0得0<|x|﹣1<1,即1<|x|<2,得1<x <2或﹣2<x<﹣1,由22+x﹣22﹣x≤15得4•2x﹣≤15,即4(2x)2﹣15•2x﹣4≤0,即(2x﹣4)(4•2x+1)≤0,得2x≤4,则x≤2,则p 是q 的充分不必要条件,15.(3分)设函数f (x )=,g (x)=ax2+bx (a,b∈R,a≠0),若y=f (x)的图象与y=g (x)图象有且仅有两个不同的公共点A(x1,y1),B (x2,y2),则下列判断正确的是()A.当a<0 时,x1+x2<0,y1+y2>0B.当a<0 时,x1+x2<0,y1+y2<0C.当a>0 时,x1+x2<0,y1+y2>0D.当a>0 时,x1+x2>0,y11+y2>0【解答】解:当a<0时,作出两个函数的图象,若y=f(x)的图象与y=g(x)图象有且仅有两个不同的公共点,必然是如图的情况,因为函数f(x)=是奇函数,所以A与A′关于原点对称,显然x2>﹣x1>0,即x1+x2>0,﹣y1>y2,即y1+y2<0,同理,当a>0时,有x1+x2<0,y1+y2>0故选:C.16.(3分)学生李明用手机加了一个有关高中数学学习的微信群,群里面许多数学爱好者经常发一些有关高中数学学习的心得和经验,但是,这些心得和经验的正确性无法保证,下面是李明搜集到的有关函数的一些结论:(1)若函数y=f (﹣x)有反函数,则其反函数可表示为y=f﹣1(﹣x);(2)函数y=f (x )在其定义域内的最大值为M,最小值为m,则其值域(3)定义在R 上的函数y=f (x),若对任意的实数x,y 等式 f (x)﹣f (y)=均成立,则函数y=f (x)一定是奇函数;(4)定义在R 上的函数y=f (x),若对任意的实数x 都有 f (x)﹣f (|x|)=0,则函数y=f (x)一定没有反函数.李明的同学们对以上四个结论有以下不同判断,其中判断正确的是()A.都是错误的B.只有一个是正确的C.两对两错D.只有一个是错误的【解答】解:对于(1),设(x,y)是f(﹣x)的任意一点,则y=f(﹣x),∴﹣x=f﹣1(y),即x=﹣f﹣1(y),∴y=f(﹣x)的反函数为y=﹣f﹣1(x).故(1)错误.对于(2),若f(x)在定义域上不连续,则结论不成立,故(2)错误.对于(3),令y=x,可得f (x)﹣f (x)==0,∴f(0)=0,再令x=0可得:0﹣f(y)=,即f(﹣y)=﹣f(y)恒成立,∴f(x)是奇函数,故(3)正确.对于(4),若f (x)﹣f (|x|)=0,即f(|x|)=f(x),∴f(x)是偶函数,∴f(x)没有反函数,故(4)正确.故选:C.三、解答题(10+10+10+12,共52分)17.(10分)解下列不等式或方程(1)(2).【解答】解:(1)可化为,整理可得,即(x﹣1)(x﹣2)<0,解得1<x<2,不等式解集为{x|1<x<2};∴x2﹣3x﹣6=4,解得x=5或x=﹣2.18.(10分)已知m 为实常数,求函数y=log22x﹣2m log2x﹣3的最小值.【解答】解:令t=log2x,由,知t≥﹣1.∴y=log22x﹣2m log2x﹣3化为y=t2﹣2m t﹣3,其对称轴方程为t=>0.∴当t=2m﹣1时,y有最小值为(2m﹣1)2﹣2m•2m﹣1﹣3=﹣22m﹣2﹣3.19.(10分)已知函数y=.(1)判断该函数奇偶性并证明;(2)利用函数单调性定义证明该函数在(﹣∞,+∞)上为增函数.【解答】解:函数的定义域是R,令y=f(x),(1)f(﹣x)==﹣=﹣f(x),故函数y=f(x)是奇函数;(2)设x1<x2,则f(x1)﹣f(x2)=﹣=∵x1<x2,∴x1﹣x2<0,x2﹣x1>0,∴<a0=1,>a0=1,故﹣<0,故f(x1)﹣f(x2)<0,故f(x)在R递增.20.(10分)已知某市最低工资标准为每月1800 元,为了解决该市房价过高的问题,政府计划对低收入的本市户籍居民购买第一套住房的,每月提供一定金额的贷款补贴,补贴规则:个人每月收入不高于6000 元的,对贷款进行补贴,补贴标准为:贷款月还款额×,其中k 是一个与月工资收入有关的常数,且贷款月还款额不得高于5000 元,贷款月还款额高于5000 元的,只对5000 元部分进行补贴.高于5000 元部分不予补贴,已知月工资收入不高于3000 元时k=1000.(1)若某人工资为2000 元,贷款月还款额为5000 元,则他每月获得的贷款补贴是多少元?(2)对于月工资收入不高于3000 元的贷款买房的居民中.若贷款月还款额均为5000 元,则实际月收入最高为多少元?(结果均保留整数位,均不考虑扣税问题)【解答】解:(1)∵个人每月收入不高于6000 元的,对贷款进行补贴,补贴标准为:贷款月还款额×,其中k 是一个与月工资收入有关的常数,且贷款月还款额不得高于5000 元,贷款月还款额高于5000 元的,只对5000 元部分进行补贴.高于5000 元部分不予补贴,月工资收入不高于3000 元时k=1000.某人工资为2000 元,贷款月还款额为5000 元,∴他每月获得的贷款补贴是:5000×=2500.(2)设月工资收入为x元,(1800≤x≤3000),则实际月收入:y=x+5000×≥2=4472元,当且仅当x=2236元时等号成立,∴当x=3000时,实际月收入最高为4667元.21.(12分)对于函数y=f (x)和y=g (x ),若存在区间A,使|f(x)﹣g(x)|≤1 在区间 A 上恒成立,则称区间 A 是函数y=f (x)和y=g (x )的“公共邻域”.设函数f (x)=a x+3a (a>0,a≠1)的反函数为y=f﹣1(x),函数y=g (x )的图象与函数y=f﹣1(x)的图象关于点(a,0)对称.(1)求函数y=f﹣1(x)和y=g (x )的解析式;(2)若a=2,求函数y=g (﹣x)+f﹣1(x)的定义域;(3)是否存在实数a,使得区间[a+2,a+3]是y=f﹣1(x)和y=g (﹣x)的“公共邻域”,若存在,求出a 的取值范围;若不存在,说明理由.【解答】解:(1)设y=a x+3a,则a x=y﹣3a,两边取对数得:x=log a(y﹣3a),所以f﹣1(x)=log a(x﹣3a);由函数y=g (x )的图象与函数y=f﹣1(x)的图象关于点(a,0)对称,可得g(x)=﹣log a(2a﹣x﹣3a),即为g(x)=﹣log a(﹣x﹣a);(2)a=2,函数y=g (﹣x)+f﹣1(x)=﹣log2(x﹣2)+log2(x﹣6),由x﹣2>0,且x﹣6>0,可得x>6,则函数的定义域为(6,+∞);(3)假设存在实数a,使得区间[a+2,a+3]是y=f﹣1(x)和y=g (﹣x)的“公共邻域”,因为x∈[a+2,a+3]时,函数有意义,所以(a+2)﹣3a=2﹣2a>0,所以0<a<1,由区间[a+2,a+3]是y=f﹣1(x)和y=g (﹣x)的“公共邻域”,可得|log a(x﹣3a)+log a(x﹣a)|≤1,设h(x)=log a(x﹣3a)+log a(x﹣a)=log a(x2﹣4ax+3a2),二次函数u=x2﹣4ax+3a2的对称轴为x=2a<2,所以u=x2﹣4ax+3a2在x∈[a+2,a+3]上为增函数,当x=a+2时,取得最小值4(1﹣a),当x=a+3时取得最大值3(3﹣2a),从而可得y=h(x)在闭区间[a+2,a+3]上的最小值与最大值分别为:log a3(3﹣2a),log a4(1﹣a),当x∈[a+2,a+3]时,恒有|log a(x﹣3a)+log a(x﹣a)|≤1成立的充要条件为:,即为,解得0<a≤.则存在实数a,且0<a≤,使得区间[a+2,a+3]是y=f﹣1(x)和y=g (﹣x)的“公共邻域”.。

2016-2017学年上海市浦东新区高一上期末数学试卷含答案解析

2016-2017学年上海市浦东新区高一上期末数学试卷含答案解析

2016-2017学年上海市浦东新区高一(上)期末数学试卷一、填空题(本大题满分36分)本大题共有12题,只要求直接填写结果,每个空格填对得3分,否则一律得零分.1.(3分)函数y=a x(a>0且a≠1)的图象均过定点.2.(3分)请写出“好货不便宜”的等价命题:.3.(3分)若集合A={x|x≤1},B={x|x≥a}满足A∩B={1},则实数a=.4.(3分)不等式2|x﹣1|﹣1<0的解集是.5.(3分)若f(x+1)=2x﹣1,则f(1)=.6.(3分)不等式的解集为.7.(3分)设函数f(x)=(x+1)(x+a)为偶函数,则a=.8.(3分)已知函数f(x)=,g(x)=,则f(x)•g(x)=.9.(3分)设α:x≤﹣5或x≥1,β:2m﹣3≤x≤2m+1,若α是β的必要条件,求实数m的取值范围.10.(3分)函数的值域是.11.(3分)已知ab>0,且a+4b=1,则的最小值为.12.(3分)已知函数f(x)=是R上的增函数,则a的取值范围是.二、选择题(本大题满分12分)本大题共有4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,每题答对得3分,否则一律得零分.13.(3分)函数y=x的大致图象是()A. B.C.D.14.(3分)已知f(x)是R上的奇函数,且当x>0时,f(x)=x﹣1,则x<0时f(x)=()A.﹣x﹣1 B.x+1 C.﹣x+1 D.x﹣115.(3分)证券公司提示:股市有风险,入市需谨慎.小强买的股票A连续4个跌停(一个跌停:比前一天收市价下跌10%),则至少需要几个涨停,才能不亏损(一个涨停:比前一天收市价上涨10%).()A.3 B.4 C.5 D.616.(3分)给定实数x,定义[x]为不大于x的最大整数,则下列结论中不正确的是()A.x﹣[x]≥0B.x﹣[x]<1C.令f(x)=x﹣[x],对任意实数x,f(x+1)=f(x)恒成立D.令f(x)=x﹣[x],对任意实数x,f(﹣x)=f(x)恒成立三、解答题(本大题满分52分)本大题共有5题,解答下列各题必须写出必要的步骤. 17.(8分)已知,求实数m的取值范围.18.(10分)如图,矩形草坪AMPN中,点C在对角线MN上.CD垂直于AN于点D,CB垂直于AM于点B,|CD|=|AB|=3米,|AD|=|BC|=2米,设|DN|=x米,|BM|=y米.求这块矩形草坪AMPN面积的最小值.19.(10分)设a是实数,函数f(x)=a﹣(x∈R),(1)若已知(1,2)为该函数图象上一点,求a的值.(2)证明:对于任意a,f(x)在R上为增函数.20.(12分)已知函数f(x)=x2﹣2ax+1.(1)若对任意的实数x都有f(1+x)=f(1﹣x)成立,求实数a的值;(2)若f(x)在区间[1,+∞)上为单调递增函数,求实数a的取值范围;(3)当x∈[﹣1,1]时,求函数f(x)的最大值.21.(12分)在区间D上,如果函数f(x)为减函数,而xf(x)为增函数,则称f(x)为D上的弱减函数.若f(x)=(1)判断f(x)在区间[0,+∞)上是否为弱减函数;(2)当x∈[1,3]时,不等式恒成立,求实数a的取值范围;(3)若函数g(x)=f(x)+k|x|﹣1在[0,3]上有两个不同的零点,求实数k的取值范围.2016-2017学年上海市浦东新区高一(上)期末数学试卷参考答案与试题解析一、填空题(本大题满分36分)本大题共有12题,只要求直接填写结果,每个空格填对得3分,否则一律得零分.1.(3分)函数y=a x(a>0且a≠1)的图象均过定点(0,1).【解答】解:∵a0=1,a>0且a≠1,∴函数y=a x(a>0且a≠1)的图象均过定点(0,1),故答案为:(0,1).2.(3分)请写出“好货不便宜”的等价命题:便宜没好货.【解答】解:“好货不便宜”即“如果货物为好货,则价格不便宜”,其逆否命题为:“如果价格便宜,则货物不是好货”,即“便宜没好货”,故答案为:便宜没好货3.(3分)若集合A={x|x≤1},B={x|x≥a}满足A∩B={1},则实数a=1.【解答】解:∵A={x|x≤1},B={x|x≥a},且A∩B={1},∴a=1,故答案为:14.(3分)不等式2|x﹣1|﹣1<0的解集是.【解答】解:①若x≥1,∴2(x﹣1)﹣1<0,∴x<;②若x<1,∴2(1﹣x)﹣1<0,∴x>;综上<x<.故答案为:<x<.5.(3分)若f(x+1)=2x﹣1,则f(1)=﹣1.【解答】解:∵f(x+1)=2x﹣1,∴f(1)=f(0+1)=2×0﹣1=﹣1.故答案为:﹣1.6.(3分)不等式的解集为(﹣∞,2)∪[3,+∞).【解答】解:原不等式等价于(x﹣3)(x﹣2)≥0且x﹣2≠0,所以不等式的解集为(﹣∞,2)∪[3,+∞);故答案为:(﹣∞,2)∪[3,+∞)7.(3分)设函数f(x)=(x+1)(x+a)为偶函数,则a=﹣1.【解答】解:∵函数为偶函数得f(1)=f(﹣1)得:2(1+a)=0∴a=﹣1.故答案为:﹣1.8.(3分)已知函数f(x)=,g(x)=,则f(x)•g(x)=x,x∈(﹣1,0)∪(0,+∞).【解答】解:∵函数f(x)=,g(x)=,∴f(x)•g(x)=x,x∈(﹣1,0)∪(0,+∞),故答案为:x,x∈(﹣1,0)∪(0,+∞).9.(3分)设α:x≤﹣5或x≥1,β:2m﹣3≤x≤2m+1,若α是β的必要条件,求实数m的取值范围m≤﹣3或m≥2.【解答】解:α:x≤﹣5或x≥1,β:2m﹣3≤x≤2m+1,若α是β的必要条件,则2m﹣3≥1或2m+1≤﹣5,故m≥2或m≤﹣3,故答案为:m≥2或m≤﹣3.10.(3分)函数的值域是(0,4] .【解答】解:设t=x2﹣2≥﹣2,∵y=()t为减函数,∴0<()t≤()﹣2=4,故函数的值域是(0,4],故答案为:(0,4].11.(3分)已知ab>0,且a+4b=1,则的最小值为9.【解答】解:∵ab>0,且a+4b=1,∴=()(a+4b)=1+4++≥5+2=9,当且仅当a=,b=时取等号,∴的最小值为9,故答案为:9.12.(3分)已知函数f(x)=是R上的增函数,则a的取值范围是[﹣1,0).【解答】解:由于函数f(x)=是R上的增函数,∴,求得﹣1≤a<0,故答案为:[﹣1,0).二、选择题(本大题满分12分)本大题共有4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,每题答对得3分,否则一律得零分.13.(3分)函数y=x的大致图象是()A. B.C.D.【解答】解:y=f(﹣x)===f(x),∴函数y=x为偶函数,∴图象关于y轴对称,故排除C,D,∵>1,∴当x>0时,y=x的变化是越来越快,故排除B故选:A14.(3分)已知f(x)是R上的奇函数,且当x>0时,f(x)=x﹣1,则x<0时f(x)=()A.﹣x﹣1 B.x+1 C.﹣x+1 D.x﹣1【解答】解:设x<0,则﹣x>0,∵当x>0时,f(x)=x﹣1,∴当x<0时,f(﹣x)=﹣x﹣1,又∵f(x)是R上的奇函数,∴f(x)=﹣f(﹣x),∴当x<0时,f(x)=﹣f(﹣x)=x+1,故选B.15.(3分)证券公司提示:股市有风险,入市需谨慎.小强买的股票A连续4个跌停(一个跌停:比前一天收市价下跌10%),则至少需要几个涨停,才能不亏损(一个涨停:比前一天收市价上涨10%).()A.3 B.4 C.5 D.6【解答】解:设小强买的股票A时买入价格为a,连续4个跌停后价格为a(1﹣10%)4=0.6561a,设至少需要x个涨停,才能不亏损,则0.6564a(1+10%)x≥a,整理得:1.1x≥1.5235,∵1.15=1.6105,1.14=1.4641.∴至少需要5个涨停,才能不亏损.故选:C.16.(3分)给定实数x,定义[x]为不大于x的最大整数,则下列结论中不正确的是()A.x﹣[x]≥0B.x﹣[x]<1C.令f(x)=x﹣[x],对任意实数x,f(x+1)=f(x)恒成立D.令f(x)=x﹣[x],对任意实数x,f(﹣x)=f(x)恒成立【解答】解:在A中,∵[x]为不大于x的最大整数,∴x﹣[x]≥0,故A正确;在B中,∵[x]为不大于x的最大整数,∴x﹣[x]<1,故B正确;在C中,∵[x]为不大于x的最大整数,f(x)=x﹣[x],∴对任意实数x,f(x+1)=f(x)恒成立,故C正确;在D中,∵[x]为不大于x的最大整数,f(x)=x﹣[x],∴f(﹣3.2)=﹣3.2﹣[﹣3.2]=﹣3.2+4=0.8,f(3.2)=3.2﹣[3.2]=3.2﹣3=0.2,∴对任意实数x,f(x+1)=f(x)不成立,故D错误.故选:D.三、解答题(本大题满分52分)本大题共有5题,解答下列各题必须写出必要的步骤. 17.(8分)已知,求实数m的取值范围.【解答】解:(1)设函数,函数为R上的单调递增函数…(2分)得,m2+m≤﹣m+3…(2分)即,m2+2m﹣3≤0…(2分)得,(m﹣1)(m+3)≤0所以,m的取值范围为:m∈[﹣3,1]…(2分)18.(10分)如图,矩形草坪AMPN中,点C在对角线MN上.CD垂直于AN于点D,CB垂直于AM于点B,|CD|=|AB|=3米,|AD|=|BC|=2米,设|DN|=x米,|BM|=y米.求这块矩形草坪AMPN面积的最小值.【解答】解:由题意….(2分)S AMPN=(x+2)(y+3)=xy+3x+2y+6=12+3x+2y….(5分)….(2分)当且仅当3x=2y,即x=2,y=3时取得等号.….(7分)面积的最小值为24平方米.….(8分)19.(10分)设a是实数,函数f(x)=a﹣(x∈R),(1)若已知(1,2)为该函数图象上一点,求a的值.(2)证明:对于任意a,f(x)在R上为增函数.【解答】解:(1).(2)证明:设任意x1,x2∈R,x1<x2,则f(x1)﹣f(x2)===,由于指数函数y=2x在R上是增函数,且x1<x2,所以即,又由2x>0,得,,∴f(x1)﹣f(x2)<0即f(x1)<f(x2),所以,对于任意a,f(x)在R上为增函数.20.(12分)已知函数f(x)=x2﹣2ax+1.(1)若对任意的实数x都有f(1+x)=f(1﹣x)成立,求实数a的值;(2)若f(x)在区间[1,+∞)上为单调递增函数,求实数a的取值范围;(3)当x∈[﹣1,1]时,求函数f(x)的最大值.【解答】解:(1)由对任意的实数x都有f(1+x)=f(1﹣x)成立,知函数f(x)=x2﹣2ax+1的对称轴为x=a,即a=1;(2)函数f(x)=x2﹣2ax+1的图象的对称轴为直线x=a,由f(x)在[a,+∞)上为单调递增函数,y=f(x)在区间[1,+∞)上为单调递增函数,得,a≤1;(3)函数图象开口向上,对称轴x=a,可得最大值只能在端点处取得.当a<0时,x=1时,函数取得最大值为:2﹣2a;当a>0时,x=﹣1时,函数取得最大值为:2+2a;当a=0时,x=1或﹣1时,函数取得最大值为:2.21.(12分)在区间D上,如果函数f(x)为减函数,而xf(x)为增函数,则称f(x)为D 上的弱减函数.若f(x)=(1)判断f(x)在区间[0,+∞)上是否为弱减函数;(2)当x∈[1,3]时,不等式恒成立,求实数a的取值范围;(3)若函数g(x)=f(x)+k|x|﹣1在[0,3]上有两个不同的零点,求实数k的取值范围.【解答】解:(1)由初等函数性质知,在[0,+∞)上单调递减,而在[0,+∞)上单调递增,所以是[0,+∞)上的弱减函数.(2)不等式化为在x∈[1,3]上恒成立,则,而在[1,3]单调递增,∴的最小值为,的最大值为,∴,∴a∈[﹣1,].(3)由题意知方程在[0,3]上有两个不同根,①当x=0时,上式恒成立;②当x ∈(0,3]时,则由题意可得方程只有一解,根据,令,则t ∈(1,2], 方程化为在t ∈(1,2]上只有一解,所以.。

2016-2017学年上海市青浦区高一上期末

2016-2017学年上海市青浦区高一上期末

2016-2017学年上海市青浦区高一(上)期末数学试卷一、填空题(共12小题,每小题3分,满分36分)1.(3分)若集合A={x|x=2n,n∈Z},B={x|2<x≤6,x∈R},则A∩B=.2.(3分)“若A∩B=B,则A⊊B”是(真或假)命题.3.(3分)设函数f(x)=的反函数是f﹣1(x),则f﹣1(4)=.4.(3分)若函数f(x)=,则f()=.5.(3分)已知log163=m,则用m表示log916=.6.(3分)已知函数f(x)=的图象关于点P中心对称,则点P的坐标是.7.(3分)方程:22x+1﹣2x﹣3=0的解为.8.(3分)已知f(x)是定义在D={x|x≠0}上的奇函数,当x>0时,f(x)=x2﹣x,则当x<0时,f(x)=.9.(3分)函数y=的定义域为A,值域为B,则A∩B=.10.(3分)函数f(x)=的零点个数是.11.(3分)对于任意集合X与Y,定义:①X﹣Y={x|x∈X且x∉Y},②X△Y=(X ﹣Y)∪(Y﹣X),(X△Y称为X与Y的对称差).已知A={y|y=2x﹣1,x∈R},B={x|x2﹣9≤0},则A△B=.12.(3分)已知Rt△ABC的周长为定值l,则它的面积最大值为.二、选择题(共4小题,每小题3分,满分12分)13.(3分)命题“若a>b,则ac>bc”(a,b,c都是实数)与它的逆命题、否命题和逆否命题中,真命题的个数是()A.4 B.3 C.2 D.014.(3分)下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的是()A.y= B.y=2|x|C.y=ln D.y=x215.(3分)设x∈R,“x>1“的一个充分条件是()A.x>﹣1 B.x≥0 C.x≥1 D.x>216.(3分)已知函数f(x)=lg(a x﹣b x),(a,b为常数,a>1>b>0),若x∈(2,+∞)时,f(x)>0恒成立,则()A.a2﹣b2>1 B.a2﹣b2≥1 C.a2﹣b2<1 D.a2﹣b2≤1三、解答题(共5小题,满分52分)17.(10分)已知A={x|x2+x>0},B={x|x2+ax+b≤0},且A∩B={x|0<x≤2},A ∪B=R,求a、b的值.18.(8分)试写出函数f(x)=x的性质,并作出它的大致图象.19.(10分)已知f(x)=x(+),(1)试判断f(x)的奇偶性,(2)求证f(x)>0.20.(12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度υ(千米/小时)之间的函数关系为:y=(υ>0).(1)在该时段内,当汽车的平均速度υ为多少时,车流量最大?最大车流量为多少?(保留分数形式)(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?21.(12分)已知A、B是函数y=f(x),x∈[a,b]图象的两个端点,M(x,y)是f(x)上任意一点,过M(x,y)作MN⊥x轴交直线AB于N,若不等式|MN|≤k恒成立,则称函数f(x)在[a,b]上“k阶线性近似”.(1)若f(x)=x+,x∈[,2],证明:f(x)在[,2]上“阶线性近似”;(2)若f(x)=x2在[﹣1,2]上“k阶线性近似”,求实数k的最小值.2016-2017学年上海市青浦区高一(上)期末数学试卷参考答案与试题解析一、填空题(共12小题,每小题3分,满分36分)1.(3分)若集合A={x|x=2n,n∈Z},B={x|2<x≤6,x∈R},则A∩B={4,6} .【解答】解:A={x|x=2n,n∈Z},B={x|2<x≤6,x∈R},则A∩B={4,6},故答案为:{4,6},2.(3分)“若A∩B=B,则A⊊B”是假(真或假)命题.【解答】解:若A∩B=B,则B⊊A”,∴若A∩B=B,则A⊊B”是假命题,故答案为:假.3.(3分)设函数f(x)=的反函数是f﹣1(x),则f﹣1(4)=16.【解答】解:∵函数f(x)=y=的反函数是f﹣1(x),∴x=y2,y≥0,互换x,y,得f﹣1(x)=x2,x≥0,∴f﹣1(4)=42=16.故答案为:16.4.(3分)若函数f(x)=,则f()=0.【解答】解:∵函数f(x)=,∴f()=0,故答案为:05.(3分)已知log163=m,则用m表示log916=.【解答】解:∵log163=m,∴log 916===.故答案为:.6.(3分)已知函数f(x)=的图象关于点P中心对称,则点P的坐标是(﹣1,2).【解答】解:f(x)==2+,∵函数f(x)=的图象关于点P中心对称,∴点P的坐标是(﹣1,2),故答案为(﹣1,2).7.(3分)方程:22x+1﹣2x﹣3=0的解为.【解答】解:令2x=t>0,则方程22x+1﹣2x﹣3=0即2•t2﹣t﹣3=0,解得t=或t=﹣1(舍去),即2x=,解得x=.故方程22x+1﹣2x﹣3=0的解集为{},故答案为:.8.(3分)已知f(x)是定义在D={x|x≠0}上的奇函数,当x>0时,f(x)=x2﹣x,则当x<0时,f(x)=﹣x2﹣x.【解答】解:令x<0,则﹣x>0,∴f(x)=(﹣x)2﹣(﹣x)=x2+x,∵函数f(x)是定义在D上的奇函数,∴f(﹣x)=﹣f(x),∴﹣f(x)=x2+x,∴f(x)=﹣x2﹣x,故答案为:﹣x2﹣x.9.(3分)函数y=的定义域为A,值域为B,则A∩B=[0,2] .【解答】解:要使函数有意义,则﹣x2﹣2x+8≥0,即x2+2x﹣8≤0,解得﹣4≤x≤2,即函数的定义域A=[﹣4,2].y==,∵﹣4≤x≤2,∴0≤,即0≤x≤3,即函数的值域B=[0,3],∴A∩B=[﹣4,2]∩[0,3]=[0,2].故答案为:[0,2].10.(3分)函数f(x)=的零点个数是2.【解答】解:当x>0时,log2(x+1)=0,解得x+1=1,x=0舍去.当x≤0时,﹣x2﹣2x=0,解得x=﹣2或x=0,函数f(x)=的零点个数是2个.故答案为:2.11.(3分)对于任意集合X与Y,定义:①X﹣Y={x|x∈X且x∉Y},②X△Y=(X ﹣Y)∪(Y﹣X),(X△Y称为X与Y的对称差).已知A={y|y=2x﹣1,x∈R},B={x|x2﹣9≤0},则A△B=[﹣3,﹣1)∪(3,+∞).【解答】解:∵A={y|y=2x﹣1,x∈R}={y|y>﹣1},B={x|x2﹣9≤0}={y|﹣3≤y ≤3},∴A﹣B={y|y>3},B﹣A={y|﹣3≤y<﹣1},∴A△B={y|y>3}∪{y|﹣3≤y<﹣1},故答案为:[﹣3,﹣1)∪(3,+∞).12.(3分)已知Rt△ABC的周长为定值l,则它的面积最大值为.【解答】解:设三边为a,b,c,c为斜边,则c2=a2+b2.∵a+b+c=1,∴a2+b2=(1﹣a﹣b)2,化为:1﹣2a﹣2b+2ab=0,∴1+2ab=2(a+b)≥4,化为:﹣4+1≥0,解得≥,(舍去),或≤,即ab≤=.当且仅当a=b=时取等号.∴它的面积最大值=ab=.故答案为:.二、选择题(共4小题,每小题3分,满分12分)13.(3分)命题“若a>b,则ac>bc”(a,b,c都是实数)与它的逆命题、否命题和逆否命题中,真命题的个数是()A.4 B.3 C.2 D.0【解答】解:若a>b,c=0,则ac=bc.∴原命题为假;∵逆否命题与原命题等价∴逆否命题也为假其逆命题为:若ac>bc,则a>b.若c<0时,则a<b,∴逆命题为假;又∵逆命题与否命题等价,∴否命题也为假;综上,四个命题中,真命题的个数为0.故选:D.14.(3分)下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的是()A.y= B.y=2|x|C.y=ln D.y=x2【解答】解:A.是奇函数,∴该选项错误;B.x>0时,y=2|x|=2x单调递增,∴该选项错误;C.为偶函数;x>0时,单调递减;即在区间(0,+∞)上单调递减,∴该选项正确;D.y=x2在区间(0,+∞)上单调递增,∴该选项错误.故选C.15.(3分)设x∈R,“x>1“的一个充分条件是()A.x>﹣1 B.x≥0 C.x≥1 D.x>2【解答】解:满足,“x>1“的一个充分条件应该是{x|x>1}的子集,则只有x>2满足条件.,故选:D16.(3分)已知函数f(x)=lg(a x﹣b x),(a,b为常数,a>1>b>0),若x∈(2,+∞)时,f(x)>0恒成立,则()A.a2﹣b2>1 B.a2﹣b2≥1 C.a2﹣b2<1 D.a2﹣b2≤1【解答】解:∵a>1>b>0,∴y=a x为R上的增函数,y=﹣b x为R上的增函数,∴y=a x﹣b x为R上的增函数,又y=lgx为(0,+∞)上的增函数,由复合函数的单调性知,f(x)=lg(a x﹣b x)为定义域上的增函数,又x∈(2,+∞)时,f(x)>0恒成立,∴a2﹣b2≥1,故选:B.三、解答题(共5小题,满分52分)17.(10分)已知A={x|x2+x>0},B={x|x2+ax+b≤0},且A∩B={x|0<x≤2},A ∪B=R,求a、b的值.【解答】解:集合A={x|x2+x>0}={x|x<﹣1或x>0}∵A∪B=R∴B中的元素至少有{x|﹣1≤x≤0}∵A∩B={x|0<x≤2},∴B={x|﹣1≤x≤2}∴﹣1,2是方程x2+ax+b=0的两个根,∴a=﹣1,b=﹣2即a,b的值分别是﹣1,﹣2.18.(8分)试写出函数f(x)=x的性质,并作出它的大致图象.【解答】解:函数f(x)=x的定义域为[0,+∞),值域为[0,+∞),在区间[0,+∞)上函数为增函数,函数f(x)=x的图象如下图所示:19.(10分)已知f(x)=x(+),(1)试判断f(x)的奇偶性,(2)求证f(x)>0.【解答】(1)解:由f(x)=x(+)=x由2x﹣1≠0,可得x≠0,则定义域关于原点对称,f(﹣x)=﹣x=﹣x•=x=f(x),则f(x)为偶函数;(2)证明:当x>0时,2x>1,即2x﹣1>0,2x+1>0,则f(x)=x(+)>0,由f(x)为偶函数,即有f(﹣x)=f(x),则x<0时,f(x)>0成立.则对于x≠0的任何实数,都有f(x)>0.20.(12分)经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y(千辆/小时)与汽车的平均速度υ(千米/小时)之间的函数关系为:y=(υ>0).(1)在该时段内,当汽车的平均速度υ为多少时,车流量最大?最大车流量为多少?(保留分数形式)(2)若要求在该时段内车流量超过10千辆/小时,则汽车的平均速度应在什么范围内?【解答】解:(1)依题意,y==≤,当且仅当v=,即v=40时,上式等号成立,∴y max=(千辆/时).∴如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25km/h 且小于64km/h.当v=40km/h时,车流量最大,最大车流量约为千辆/时;(2)由条件得>10,整理得v2﹣89v+1600<0,即(v﹣25)(v﹣64)<0.解得25<v<64.21.(12分)已知A、B是函数y=f(x),x∈[a,b]图象的两个端点,M(x,y)是f(x)上任意一点,过M(x,y)作MN⊥x轴交直线AB于N,若不等式|MN|≤k恒成立,则称函数f(x)在[a,b]上“k阶线性近似”.(1)若f(x)=x+,x∈[,2],证明:f(x)在[,2]上“阶线性近似”;(2)若f(x)=x2在[﹣1,2]上“k阶线性近似”,求实数k的最小值.【解答】证明:(1)若f(x)=x+,x∈[,2],则A(,)、B(2,),故直线AB的方程为:y=,则由|MN|=﹣(x+),∴|MN|∈[0,],故|MN|≤,故f(x)在[,2]上“阶线性近似”;解:(2)由MN⊥x交直线AB于N,得N 和M的横坐标相同.对于区间[﹣1,2]上的函数f(x)=x2 ,A(﹣1,1)、B(2,4),则直线AB的方程为:y=x+2,则有|MN|=x+2﹣x2=﹣(x﹣)2+,∴|MN|∈[0,].再由|MN|≤k恒成立,可得k≥.故实数k的最小值为.。

上海市浦东新区2016-2017学年高一上学期期中考试数学试卷(解析版)

上海市浦东新区2016-2017学年高一上学期期中考试数学试卷(解析版)

2016-2017学年上海市浦东新区高一(上)期中数学试卷一. 填空题1. 用∈或∉填空:0 ∅2. {|1,}A x x x R =≤∈,则R C A =3. 满足条件M {1,2}的集合M 有 个4. 不等式2(1)4x ->的解集是5. 不等式2210x mx -+≥对一切实数x 都成立,则实数m 的取值范围是6. 集合{|1}A x x =≤,{|}B x x a =≥,AB R =,则a 的取值范围是 7. 若1x >,92x x+-取到的最小值是 8. 如果0x <,01y <<,那么2y x ,y x ,1x 从小到大的顺序是 9. 一元二次不等式20x bx c ++≤的解集为[2,5]-,则bc =10. 全集为R ,已知数集A 、B 在数轴上表示如下图,那么“x B ∉”是“x A ∈”的 条件11. 已知U 是全集,A 、B 是U 的两个子集,用交、并、补关系将右图中的阴影部分表示出来12. 若规定集合12{,,,}n M a a a =⋅⋅⋅*()n N ∈的子集12{,,,}m i i i a a a ⋅⋅⋅*()m N ∈为M 的第k 个子集,其中12111222m i i i k ---=++⋅⋅⋅+,则M 的第25个子集是二. 选择题13. 集合{,,}A a b c =中的三个元素是△ABC 的三边长,则△ABC 一定不是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形14. 已知0a ≠,下列各不等式恒成立的是( ) A. 12a a +> B. 12a a +≥ C. 12a a +≤- D. 1||2a a+≥15. 集合*1{|,}2m A x x m N ==∈,若1x A ∈,2x A ∈,则( ) A. 12()x x A +∈ B. 12()x x A -∈ C. 12()x x A ∈ D.12x A x ∈ 16. 设,,x y a R +∈,且当21x y +=时,3a x y +的最小值为,则当121x y+=时,3x ay + 的最小值是( )A. 6 C. 12D.三. 解答题17. 已知实数a 、b ,原命题:“如果2a <,那么24a <”,写出它的逆命题、否命题、逆 否命题;并分别判断四个命题的真假性;18. 集合2{|0,}2x A x x R x +=≤∈-,{||1|2,}B x x x R =-<∈; (1)求A 、B ;(2)求()U BC A ;19. 设:127m x m α+≤≤+()m R ∈,:13x β≤≤,若α是β的必要不充分条件,求实 数m 的取值范围;20. 某农户计划建造一个室内面积为2800m 的矩形蔬菜温室,在温室外,沿左、右两侧与后侧各保留1m 宽的通道,沿前侧保留3m 宽的空地(如图所示),当矩形温室的长和宽分别为多少时,总占地面积最小?并求出最小值;21. 集合{||1|4}A x x =+<,{|(1)(2)0}B x x x a =--<;(1)求A 、B ;(2)若A B B =,求实数a 的取值范围;2016-2017学年上海市浦东新区高一(上)期中数学试卷参考答案与试题解析一、填空题1.(2016秋•浦东新区期中)用∈或∉填空:0∉∅.【考点】元素与集合关系的判断.【专题】转化思想;集合.【分析】根据元素与集合的关系进行判断解:∵0是一个元素,∅是一个集合,表示空集,里面没有任何元素.∴0∉∅故答案为:∉.【点评】本题主要考查元素与集合的关系,属于基础题2.(2016秋•浦东新区期中)A={x|x≤1,x∈R},则∁R A={x|x>1} .【考点】补集及其运算.【专题】计算题;集合思想;定义法;集合.【分析】根据集合A,以及全集R,求出A的补集即可.解:∵A={x|x≤1,x∈R},∴∁R A={x|x>1}.故答案为:{x|x>1}.【点评】此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.3.(2016秋•浦东新区期中)满足条件M⊊{1,2}的集合M有3个.【考点】子集与真子集.【专题】综合题;综合法;集合.【分析】根据题意判断出M是集合{1,2}的真子集,写出所有满足条件的集合M,可得答案.解:由M⊊{1,2}得,M是集合{1,2}的真子集,所以M可以是∅,{1},{2},共3个,故答案为:3.【点评】本题考查子集与真子集的定义,写子集时注意按一定的顺序,做到不重不漏,属于基础题.4.(2016秋•浦东新区期中)不等式(x﹣1)2>4的解集是{x|x<﹣1或x>3} .【考点】一元二次不等式的解法.【专题】对应思想;定义法;不等式的解法及应用.【分析】根据平方数的定义,把不等式化为x﹣1<﹣2或x﹣1>2,求出解集即可.解:不等式(x﹣1)2>4可化为:x﹣1<﹣2或x﹣1>2,解得x<﹣1或x>3,所以该不等式的解集是{x|x<﹣1或x>3}.故答案为:{x|x<﹣1或x>3}.【点评】本题考查了一元二次不等式的解法与应用问题,是基础题目.5.(2016秋•浦东新区期中)不等式x2﹣2mx+1≥0对一切实数x都成立,则实数m的取值范围是﹣1≤m≤1.【考点】一元二次不等式的解法.【专题】对应思想;定义法;不等式的解法及应用.【分析】根据不等式x2﹣2mx+1≥0对一切实数x都成立,△≤0,列出不等式求出解集即可.解:不等式x2﹣2mx+1≥0对一切实数x都成立,则△≤0,即4m2﹣4≤0,解得﹣1≤m≤1;所以实数m的取值范围是﹣1≤m≤1.故答案为:﹣1≤m≤1.【点评】本题考查了一元二次不等式恒成立的应用问题,是基础题目.6.(2016秋•浦东新区期中)集合A={x|x≤1},B={x|x≥a},A∪B=R,则a的取值范围是a≤1.【考点】并集及其运算;集合的包含关系判断及应用.【专题】计算题;集合思想;定义法;集合.【分析】利用数轴,在数轴上画出集合,数形结合求得两集合的并集.利用数轴,在数轴上画出集合,数形结合求得两集合的并集.解:∵A={x|x≤1},B={x|x≥a},且A∪B=R,如图,故当a≤1时,命题成立.故答案为:a≤1.【点评】本题考查集合关系中的参数问题,属于以数轴为工具,求集合的并集的基础题,本题解题的关键是借助于数轴完成题目.7.(2016秋•浦东新区期中)若x>1,x+﹣2取到的最小值是4.【考点】基本不等式.【专题】转化思想;分析法;不等式的解法及应用.【分析】由x>1,运用基本不等式可得最小值,注意等号成立的条件.解:由x>1,可得x+﹣2≥2﹣2=4.当且仅当x=,即x=3时,取得最小值4.故答案为:4.【点评】本题考查基本不等式的运用:求最值,注意一正二定三等的条件,考查运算能力,属于基础题.8.(2016秋•浦东新区期中)如果x<0,0<y<1,那么,,从小到大的顺序是<<.【考点】不等式的基本性质.【专题】转化思想;不等式的解法及应用.【分析】由0<y<1,可得0<y2<y<1,由x<0,即可得出大小关系.解:∵0<y<1,∴0<y2<y<1,∵x<0,∴<<.故答案为:<<.【点评】本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.9.(2016秋•浦东新区期中)一元二次不等式x2+bx+c≤0的解集为[﹣2,5],则bc=30.【考点】一元二次不等式的解法.【专题】对应思想;定义法;不等式的解法及应用.【分析】根据一元二次不等式与对应方程的关系,利用根与系数的关系即可求出b、c的值.解:一元二次不等式x2+bx+c≤0的解集为[﹣2,5],所以对应一元二次方程x2+bx+c=0的实数根为﹣2和5,由根与系数的关系得,解得b=﹣3,c=﹣10;所以bc=30.故答案为:30.【点评】本题考查了一元二次不等式与对应方程的关系以及根与系数的关系的应用问题,是基础题目.10.(2016秋•浦东新区期中)全集为R,已知数集A、B在数轴上表示如图所示,那么“x∉B”是“x ∈A”的充分不必要条件.【考点】必要条件、充分条件与充要条件的判断.【专题】转化思想;定义法;简易逻辑.【分析】根据数轴结合充分条件和必要条件的定义进行判断即可.解:由数轴得A={x|x≥1或x≤﹣1},B={x|﹣2≤x≤1},则∁R B={x|x>1或x<﹣2},则∁R B⊊A,即“x∉B”是“x∈A”的充分不必要条件,故答案为:充分不必要.【点评】本题主要考查充分条件和必要条件的判断,根据数轴关系求出对应的集合,根据集合关系进行判断是解决本题的关键.11.(2016秋•浦东新区期中)已知U是全集,A、B是U的两个子集,用交、并、补关系将图中的阴影部分表示出来B∩(∁U A)【考点】Venn图表达集合的关系及运算.【专题】对应思想;待定系数法;集合.【分析】根据Venn图和集合之间的关系进行判断.解:由Venn图可知,阴影部分的元素为属于B当不属于A的元素构成,所以用集合表示为B∩(∁U A).故答案为:B∩(∁U A).【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.12.(2016秋•浦东新区期中)若规定集合M={a1,a2,…,a n}(n∈N*)的子集{a,a,…a}(m∈N*)为M的第k个子集,其中k=2+2+…+2,则M的第25个子集是{a1,a4,a5} .【考点】子集与真子集.【专题】新定义;综合法;集合.【分析】根据定义将25表示成2n和的形式,由新定义求出M的第25个子集.解:由题意得,M的第k个子集,且k=2+2+ (2)又25=20+23+24=21﹣1+24﹣1+25﹣1,所以M的第25个子集是{a1,a4,a5},故答案为:{a1,a4,a5}.【点评】本小题主要考查子集与真子集、新定义的应用,考查分析问题、解决问题的能力,属于基础题.二、选做题13.(2014•万州区校级模拟)若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【考点】集合的确定性、互异性、无序性.【分析】根据集合元素的互异性,在集合M={a,b,c}中,必有a、b、c互不相等,则△ABC不会是等腰三角形.解:根据集合元素的互异性,在集合M={a,b,c}中,必有a、b、c互不相等,故△ABC一定不是等腰三角形;选D.【点评】本题较简单,注意到集合的元素特征即可.14.(2016秋•浦东新区期中)已知a≠0,下列各不等式恒成立的是()A.a+>2 B.a+≥2 C.a+≤﹣2 D.|a+|≥2【考点】基本不等式.【专题】转化思想;分析法;不等式的解法及应用.【分析】可取a<0,否定A,B;a>0,否定C;运用|a+|=|a|+,由基本不等式即可得到结论.解:取a<0,则选项A,B均不恒成立;取a>0,则选项C不恒成立;对于D,|a+|=|a|+≥2=2,当且仅当|a|=1时,等号成立.故选:D.【点评】本题考查不等式恒成立问题的解法,注意运用反例法和基本不等式,属于基础题.15.(2016秋•浦东新区期中)设集合A={x|x=,m∈N*},若x1∈A,x2∈A,则()A.(x1+x2)∈A B.(x1﹣x2)∈A C.(x1x2)∈A D.∈A【考点】元素与集合关系的判断.【专题】集合.【分析】利用元素与集合的关系的进行判定解:设x1=,x2=,x1x2=•=,p、q∈N,x1x2∈A,故选:B【点评】本题主要考查元素与集合的关系的判定,属于基础题.16.(2016秋•浦东新区期中)设x,y,a∈R*,且当x+2y=1时,+的最小值为6,则当+ =1时,3x+ay的最小值是()A.6 B.6 C.12 D.12【考点】基本不等式.【专题】转化思想;分析法;不等式的解法及应用.【分析】由题设条件,可在+上乘以x+2y构造出积为定值的形式,由基本不等式求得+的最小值为3+2a+2,从而得到3+2a+2=6,同理可得当+=1时,3x+ay 的最小值是3+2a+2,即可求得3x+ay 的最小值是6.解:由题意x,y,a∈R+,且当x+2y=1 时,+的最小值为6,由于+=(+)(x+2y)=3+2a++≥3+2a+2,等号当=时取到.故有3+2a+2=6,∴3x+ay=(3x+ay )(+)=3+2a++≥3+2a+2=6,等号当=时取到.故选A.【点评】本题考查基本不等式在最值问题中的应用,及构造出积为定值的技巧,解题的关键是由题设条件构造出积为定值的技巧,从而得出3+2a+2=6,本题中有一疑点,即两次利用基本不等式时,等号成立的条件可能不一样,此点不影响利用3+2a+2求出3x+ay 的最小值是6,这是因为3+2a+2是一个常数,本题是一个中档题目.三、解答题17.(2016秋•浦东新区期中)已知实数a、b,原命题:“如果a<2,那么a2<4”,写出它的逆命题、否命题、逆否命题;并分别判断四个命题的真假性.【考点】四种命题.【专题】对应思想;定义法;简易逻辑.【分析】根据四种命题的形式与之间的关系,分别写出原命题的逆命题、否命题和逆否命题;并判断这四个命题的真假性即可.解:原命题:“如果a<2,那么a2<4”,是假命题;逆命题:“如果a2<4,那么a<2”,是真命题;否命题:“如果a≥2,那么a2≥4”,是真命题;逆否命题:“如果a2≥4,那么a≥2”,是假命题.【点评】本题考查了四种命题之间的关系以及命题真假性的判断问题,是基础题目.18.(2016秋•浦东新区期中)集合A={x|≤0,x∈R},B={x||x﹣1|<2,x∈R}.(1)求A、B;(2)求B∩(∁U A).【考点】交、并、补集的混合运算;集合的表示法.【专题】对应思想;定义法;集合.【分析】化简集合A、B,根据补集与交集的定义计算即可.解:(1)A={x|≤0,x∈R}={x|(x+2)(x﹣2)≤0,且x﹣2≠0}={x|﹣2≤x<2},B={x||x﹣1|<2,x∈R}={x|﹣2<x﹣1<2}={x|﹣1<x<3};(2)∁U A={x|x<﹣2或x≥2},∴B∩(∁U A)={x|2≤x<3}.【点评】本题考查了集合的化简与运算问题,是基础题目.19.(2016秋•浦东新区期中)设α:m+1≤x≤2m+7(m∈R),β:1≤x≤3,若α是β的必要不充分条件,求实数m的取值范围.【考点】必要条件、充分条件与充要条件的判断.【专题】转化思想;定义法;简易逻辑.【分析】根据必要不充分条件的定义建立不等式关系进行求解即可.解:设α对应的集合为A,β对应的集合为B,若α是β的必要不充分条件,则B⊊A,则,即,得﹣2≤m≤0.【点评】本题主要考查充分条件和必要条件的应用,根据充分条件和必要条件的定义建立不等式关系是解决本题的关键.20.(2016秋•浦东新区期中)某农户计划建造一个室内面积为800m2的矩形蔬菜温室,在温室外,沿左、右两侧与后侧各保留1m宽的通道,沿前侧保留3m的空地(如图所示),当矩形温室的长和宽分别为多少时,总占地面积最大?并求出最大值.【考点】基本不等式在最值问题中的应用.【专题】应用题;转化思想;综合法;函数的性质及应用.【分析】设出矩形的长为a与宽b,建立蔬菜面积关于矩形边长的函数关系式S=(a﹣4)(b﹣2)=ab﹣4b﹣2a+8=800﹣2(a+2b).利用基本不等式变形求解.解:设矩形温室的左侧边长为am,后侧边长为bm,则ab=800.蔬菜的种植面积S=(a﹣4)(b﹣2)=ab﹣4b﹣2a+8=808﹣2(a+2b).=648(m2).所以S≤808﹣4=648(m2),当且仅当a=2b,即a=40(m),b=20(m)时,S最大值答:当矩形温室的左侧边长为40m,后侧边长为20m时,蔬菜的种植面积最大,最大种植面积为648m2.【点评】本题考查函数的模型的选择与应用,基本不等式的应用,基本知识的考查.21.(2016秋•浦东新区期中)集合A={x||x+1|<4},B={x|(x﹣1)(x﹣2a)<0}.(1)求A、B;(2)若A∩B=B,求实数a的取值范围.【考点】集合的包含关系判断及应用.【专题】计算题;分类讨论;集合.【分析】(1)通过解绝对值不等式得到集合A,对于集合B,需要对a的取值进行分类讨论:(2)A∩B=B,则B是A的子集,据此求实数a的取值范围.解:(1)A={x||x+1|<4}={x|﹣5<x<3},当a>0.5时,B={x|1<x<2a}.当a=0.5时,B=∅.当a<0.5时,B={x|2a<x<1}.(2)由(1)知,A={x|﹣5<x<3},∵A∩B=B,∴B⊆A,①当a>0.5时,B={x|1<x<2a}.此时,,则<a≤1.5;②当a=0.5时,B=∅.满足题意;③当a<0.5时,B={x|2a<x<1}.此时,则﹣2.5≤a<0.5.综上所述,实数a的取值范围是[﹣2.5,1.5].。

2017-2018学年上海市浦东新区高一(上)期末数学试卷

2017-2018学年上海市浦东新区高一(上)期末数学试卷

2017-2018学年上海市浦东新区高一(上)期末数学试卷一、填空题(共12小题,每小题3分,满分36分)1.(3.00分)设A={﹣2,﹣1,0,1,2},B={x|x2+x=0},则集合A∩B=.2.(3.00分)不等式|x﹣1|<2的解集为.3.(3.00分)已知函数f(x)=2x+m,其反函数y=f﹣1(x)图象经过点(3,1),则实数m的值为.4.(3.00分)命题“若A∩B=B,则B⊆A”是(真或假)命题.5.(3.00分)已知x>1,则y=x+的最小值为.6.(3.00分)已知log32=a,则log324=(结果用a表示)7.(3.00分)已知函数f(x)=,则f[f()]=.8.(3.00分)已知函数f(x)=,g(x)=x﹣1,若F(x)=f(x)•g(x),则F(x)的值域是.9.(3.00分)已知函数,且f(2)<f(3),则实数k取值范围是.10.(3.00分)已知偶函数y=f(x)在区间[0,+∞)上的解析式为f(x)=x2﹣2x,则y=f(x)在区间(﹣∞,0)上的解析式f(x)=.11.(3.00分)已知函数f(x)=|x2﹣2|﹣a有4个零点,则实数a的取值范围是.12.(3.00分)若函数y=f(x)的图象是折线段ABC,其中A(0,0),B(1,1),C(2,0),则函数y=x•f(x)(0≤x≤2)的图象与x轴围成的图形的面积为.二、选择题(共4小题,每小题3分,满分12分)13.(3.00分)已知实数a、b,且a>b,下列结论中一定成立的是()A.a2>b2B.<1C.2a>2b D.14.(3.00分)函数的图象是()A.B.C.D.15.(3.00分)函数f(x)=x2+2(a﹣1)x+2在(﹣∞,4]上是减函数,则实数a的取值范围是()A.a=5B.a≥5C.a=﹣3D.a≤﹣316.(3.00分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N为1080,则下列各数中与最接近的是()A.1033B.1053C.1073D.1093三、解答题(共5小题,满分52分)17.(8.00分)已知a>0,试比较与的值的大小.18.(10.00分)已知集合A={x|+1≤0},B={x|()a•2x=4},若A∪B=A,求实数a的取值范围.19.(10.00分)判断并证明函数f(x)=在区间(﹣1,0)上的单调性.20.(10.00分)如图,在半径为40cm的半圆(O为圆心)形铁皮上截取一块矩形材料ABCD,其中A,B在直径上,C,D在圆周上.(1)设AD=x,将矩形ABCD的面积y表示为x的函数,并写出定义域(2)应怎样截取,才能使矩形ABCD的面积最大?最大面积是多少?21.(14.00分)已知函数f(x)=log a x+b(a>0,a≠1)的图象经过点(8,2)和(1,﹣1)(1)求f(x)的解析式(2)若[f(x)]2=3f(x),求实数x的值(3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值,及取最小值时x的值.2017-2018学年上海市浦东新区高一(上)期末数学试卷参考答案与试题解析一、填空题(共12小题,每小题3分,满分36分)1.(3.00分)设A={﹣2,﹣1,0,1,2},B={x|x2+x=0},则集合A∩B={﹣1,0}.【分析】解不等式得出集合B,再求A∩B.【解答】解:A={﹣2,﹣1,0,1,2},B={x|x2+x=0}={x|x=0或x=﹣1}={﹣1,0},则集合A∩B={﹣1,0}.故答案为:{﹣1,0}.【点评】本题考查了集合的化简与运算问题,是基础题.2.(3.00分)不等式|x﹣1|<2的解集为(﹣1,3).【分析】由不等式|x﹣1|<2,可得﹣2<x﹣1<2,解得﹣1<x<3.【解答】解:由不等式|x﹣1|<2可得﹣2<x﹣1<2,∴﹣1<x<3,故不等式|x﹣1|<2的解集为(﹣1,3),故答案为:(﹣1,3).【点评】本题考查查绝对值不等式的解法,关键是去掉绝对值,化为与之等价的不等式来解.3.(3.00分)已知函数f(x)=2x+m,其反函数y=f﹣1(x)图象经过点(3,1),则实数m的值为1.【分析】由题意得,函数f(x)=2x+m经过点(1,3),从而得出关于m的方程,解此方程即可得答案.【解答】解:∵其反函数y=f﹣1(x)的图象经过点(3,1),∴函数f(x)=2x+m经过点(1,3),∴2+m=3∴m=1,故答案为:1.【点评】反函数是函数知识中重要的一部分内容.对函数的反函数的研究,我们应从函数的角度去理解反函数的概念,从中发现反函数的本质,并能顺利地应用函数与其反函数间的关系去解决相关问题.4.(3.00分)命题“若A∩B=B,则B⊆A”是真(真或假)命题.【分析】由A∩B=B,得B⊆A.【解答】解:∵A∩B=B,∴B⊆A,∴命题“若A∩B=B,则B⊆A”是真命题.故答案为:真.【点评】本题考查命题的真假判断,考查交集、子集等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(3.00分)已知x>1,则y=x+的最小值为3.【分析】变形利用基本不等式的性质即可得出.【解答】解:∵x>1,∴x﹣1>0,∴y=x+=(x﹣1)++1+1=3,当且仅当x=2时取等号.则y=x+的最小值为3.故答案为:3.【点评】本题考查了变形利用基本不等式的性质,属于基础题.6.(3.00分)已知log32=a,则log324=1+3a(结果用a表示)【分析】利用对数运算性质即可得出.【解答】解:log32=a,则log324==1+3log32=1+3a.故答案为:1+3a.【点评】本题考查了对数运算性质,考查了推理能力与计算能力,属于基础题.7.(3.00分)已知函数f(x)=,则f[f()]=﹣7.【分析】根据分段函数的表达式,利用代入法进行求解即可.【解答】解:由分段函数的表达式得f()=log3=﹣2,则f(﹣2)=(﹣2)3+1=﹣8+1=﹣7,故答案为:﹣7【点评】本题主要考查函数值的计算,根据分段函数的表达式利用代入法是解决本题的关键.8.(3.00分)已知函数f(x)=,g(x)=x﹣1,若F(x)=f(x)•g(x),则F(x)的值域是[0,)∪(,+∞).【分析】求出函数的定义域并化简,然后求出x+2的范围,开方得答案.【解答】解:F(x)=f(x)•g(x)=(x﹣1)=(x≠1),由,解得x≥﹣2且x≠1.∴F(x)的定义域为{x|x≥﹣2且x≠1},则x+2≥0且x+2≠3,∴F(x)的值域是[0,)∪(,+∞).故答案为:[0,)∪(,+∞).【点评】本题考查函数值域的求法,解答此题的关键是明确函数定义域,是基础题.9.(3.00分)已知函数,且f(2)<f(3),则实数k取值范围是(﹣1,2).【分析】由于给出的函数是幂函数,且f(2)<f(3),所以其在(0,+∞)上是增函数,其指数为正,求解一元二次方程得k取值范围.【解答】解:因为函数是幂函数,且f(2)<f(3),所以其在(0,+∞)上是增函数,所以根据幂函数的性质,有﹣k2+k+2>0,即k2﹣k﹣2<0,所以﹣1<k<2.故答案为(﹣1,2).【点评】本题考查了幂函数的概念,解答的关键是熟记幂函数的定义及性质,此题是基础题.10.(3.00分)已知偶函数y=f(x)在区间[0,+∞)上的解析式为f(x)=x2﹣2x,则y=f(x)在区间(﹣∞,0)上的解析式f(x)=.【分析】通过设x<0,利用﹣x>0及已知在区间[0,+∞)上偶函数y=f(x)的解析式可得结论.【解答】解:设x<0,则﹣x>0,因为y=f(x)在区间[0,+∞)上的解析式为f(x)=x2﹣2x,所以f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x,又因为y=f(x)为偶函数,所以f(x)=f(﹣x)=x2+2x,综上所述,f(x)=,故答案为:.【点评】本题考查函数解析式的求解及常用方法,涉及函数的奇偶性,考查分类讨论的思想,注意解题方法的积累,属于中档题.11.(3.00分)已知函数f(x)=|x2﹣2|﹣a有4个零点,则实数a的取值范围是(0,2).【分析】作出y=|x2﹣2|的函数图象,令y=a与函数图象有4个交点得出a的范围.【解答】解:令f(x)=0得|x2﹣2|=a,作出y=|x2﹣2|的函数图象如图所示:∵f(x)=|x2﹣2|﹣a有4个零点,∴直线y=a与y=|x2﹣2|的图象有4个交点,∴0<a<2.故答案为:(0,2).【点评】本题考查了函数零点与函数图象的关系,考查数形结合的应用,属于基础题.12.(3.00分)若函数y=f(x)的图象是折线段ABC,其中A(0,0),B(1,1),C(2,0),则函数y=x•f(x)(0≤x≤2)的图象与x轴围成的图形的面积为1.【分析】先求出函数的解析式y=x•f(x)=,再利用定积分可求得函数y=xf(x)(0≤x≤2)的图象与x轴围成的图形的面积.【解答】解:当函数y=f(x)的图象是折线段ABC,其中A(0,0),B(1,1),C(2,0),当经过点A,B时,即为f(x)=x,0≤x<1,当经过点B,C时,即为f(x)=﹣x+2,1≤x<2,∴y=x•f(x)=,设函数y=xf(x)(0≤x≤2)的图象与x轴围成的图形的面积为S,∴S=x2dx+(﹣x2+2x)dx=x3|+(﹣x3+x2)|=+(﹣+4)﹣(﹣+1)=1,故答案为:1【点评】本题考查函数的图象,着重考查分段函数的解析式的求法与定积分的应用,考查分析运算能力,属于中档题.二、选择题(共4小题,每小题3分,满分12分)13.(3.00分)已知实数a、b,且a>b,下列结论中一定成立的是()A.a2>b2B.<1C.2a>2b D.【分析】利用函数y=2x在R上单调性即可得出.【解答】解:∵函数y=2x在R上单调递增,又a>b,∴2a>2b.故选:C.【点评】熟练掌握指数函数的单调性是解题的关键.14.(3.00分)函数的图象是()A.B.C.D.【分析】先利用函数图象过点(0,1),排除选项CD,再利用当x=1时,函数值小于1的特点,排除A,从而选B【解答】解:令x=0,则=1,即图象过(0,1)点,排除C、D;令x=1,则=<1,故排除A故选:B.【点评】本题主要考查了指数函数的图象和性质,利用特殊性质、特殊值,通过排除法解图象选择题的方法和技巧,属基础题15.(3.00分)函数f(x)=x2+2(a﹣1)x+2在(﹣∞,4]上是减函数,则实数a的取值范围是()A.a=5B.a≥5C.a=﹣3D.a≤﹣3【分析】判断函数的对称轴在(﹣∞,4]的右侧,推出1﹣a≥4,解不等式求得实数a的取值范围.【解答】解:由题意可得函数的对称轴x=1﹣a在(﹣∞,4]的右侧,1﹣a≥4,解得a≤3.故选:D.【点评】本题主要考查二次函数的性质的应用,得到a﹣1≥4是解题的关键,属于基础题.16.(3.00分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N为1080,则下列各数中与最接近的是()A.1033B.1053C.1073D.1093【分析】根据对数的性质得:3=10lg3≈100.48,将M化为以10为底的指数形式,计算即可.【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴≈=1093.故选:D.【点评】本题考查了指数形式与对数形式的互化问题,是基础题.三、解答题(共5小题,满分52分)17.(8.00分)已知a>0,试比较与的值的大小.【分析】运用作差法,再对a讨论,a>1,0<a<1,判断差的符号,即可得到所求大小关系.【解答】解:﹣==,当a>1时,﹣2a<0,a2﹣1>0,则<0,即<;当0<a<1时,﹣2a<0,a2﹣1<0,则>0,即>.综上可得a>1时,<;0<a<1时,>.【点评】本题考查两式的大小比较,注意运用作差法,考查分类讨论思想方法,以及运算能力,属于基础题.18.(10.00分)已知集合A={x|+1≤0},B={x|()a•2x=4},若A∪B=A,求实数a的取值范围.【分析】由分式不等式的解法和指数方程化简集合A,B,再由集合的包含关系,可得a的范围.【解答】解:集合A={x|+1≤0}={x|≤0}={x|1≤x<2},B={x|()a•2x=4}={x|2x﹣a=4}={x|x=a+2},由A∪B=A,可得B⊆A,即有1≤a+2<2,解得﹣1≤a<0.则a的取值范围是[﹣1,0).【点评】本题考查集合的化简和运算,注意运用分式不等式的解法和指数方程的解法,考查集合并集的性质,以及运算能力,属于中档题.19.(10.00分)判断并证明函数f(x)=在区间(﹣1,0)上的单调性.【分析】根据题意,设﹣1<x1<x2<0,作差分析可得f(x1)﹣f(x2)=,结合﹣1<x1<x2<0,分析可得f(x1)﹣f(x2)<0,由函数单调性的定义,分析可得答案.【解答】解:根据题意,函数f(x)=在区间(﹣1,0)上单调递增,证明如下:设﹣1<x1<x2<0,则f(x1)﹣f(x2)=﹣=,又由﹣1<x1<x2<0,则x2﹣x1>0,x2+x1<0,x12﹣1<0,x22﹣1<0,则有f(x1)﹣f(x2)<0,则函数f(x)=在区间(﹣1,0)上单调递增.【点评】本题考查函数单调性的判断,关键是掌握定义法证明函数单调性的步骤.20.(10.00分)如图,在半径为40cm的半圆(O为圆心)形铁皮上截取一块矩形材料ABCD,其中A,B在直径上,C,D在圆周上.(1)设AD=x,将矩形ABCD的面积y表示为x的函数,并写出定义域(2)应怎样截取,才能使矩形ABCD的面积最大?最大面积是多少?【分析】(1)AB=2OA=2,可得y=f(x)的解析式.(2)平方利用基本不等式的性质即可得出.【解答】解:(1)AB=2OA=2=2,∴y=f(x)=2x,x∈(0,40).(2)y2=4x2(1600﹣x2)≤4×()2=16002,即y≤1600,当且仅当x=20时取等号.∴截取AD=20时,才能使矩形材料ABCD的面积最大,最大面积为1600cm2.【点评】本题考查了函数的性质、矩形的面积计算公式、基本不等式的性质,考查了推理能力与计算能力,属于中档题.21.(14.00分)已知函数f(x)=log a x+b(a>0,a≠1)的图象经过点(8,2)和(1,﹣1)(1)求f(x)的解析式(2)若[f(x)]2=3f(x),求实数x的值(3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值,及取最小值时x的值.【分析】(1)联立f(8)=log a8+b=2与f(1)=log a1+b=﹣1,从而可求出参数a、b的值;(2)利用f(x)=0或f(x)=3,结合f(x)的解析式即可求出实数x的值;(3)化简y=g(x)的解析式,结合基本不等式可得结论.【解答】解:(1)由题可知:f(8)=log a8+b=2,f(1)=log a1+b=﹣1,解得:a=2,b=﹣1,所以f(x)=log2x﹣1,x>0;(2)由[f(x)]2=3f(x)可知f(x)=0或f(x)=3,又由(1)可知log2x﹣1=0或log2x﹣1=3,解得:x=2或x=16;(3)由(1)可知y=g(x)=2f(x+1)﹣f(x)=2[log2(x+1)﹣1]﹣(log2x﹣1)=﹣1≥log2(2+2)﹣1=1,当且仅当即x=1时取等号,所以,当x=1时g(x)取得最小值1.【点评】本题考查考查了的对数的运算及对数函数的应用,同时还考查了基本不等式的应用,注意解题方法的积累,属于中档题.。

2016-2017学年上海市浦东新区高一(上)期末数学试卷

2016-2017学年上海市浦东新区高一(上)期末数学试卷

2016-2017学年上海市浦东新区高一(上)期末数学试卷一、填空题(本大题满分36分)本大题共有12题,只要求直接填写结果,每个空格填对得3分,否则一律得零分.1.(3.00分)函数y=a x(a>0且a≠1)的图象均过定点.2.(3.00分)请写出“好货不便宜”的等价命题:.3.(3.00分)若集合A={x|x≤1},B={x|x≥a}满足A∩B={1},则实数a=.4.(3.00分)不等式2|x﹣1|﹣1<0的解集是.5.(3.00分)若f(x+1)=2x﹣1,则f(1)=.6.(3.00分)不等式的解集为.7.(3.00分)设函数f(x)=(x+1)(x+a)为偶函数,则a=.8.(3.00分)已知函数f(x)=,g(x)=,则f(x)•g(x)=.9.(3.00分)设α:x≤﹣5或x≥1,β:2m﹣3≤x≤2m+1,若α是β的必要条件,求实数m的取值范围.10.(3.00分)函数的值域是.11.(3.00分)已知ab>0,且a+4b=1,则的最小值为.12.(3.00分)已知函数f(x)=是R上的增函数,则a的取值范围是.二、选择题(本大题满分12分)本大题共有4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,每题答对得3分,否则一律得零分.13.(3.00分)函数y=x的大致图象是()A.B.C.D.14.(3.00分)已知f(x)是R上的奇函数,且当x>0时,f(x)=x﹣1,则x <0时f(x)=()A.﹣x﹣1B.x+1C.﹣x+1D.x﹣115.(3.00分)证券公司提示:股市有风险,入市需谨慎.小强买的股票A连续4个跌停(一个跌停:比前一天收市价下跌10%),则至少需要几个涨停,才能不亏损(一个涨停:比前一天收市价上涨10%).()A.3B.4C.5D.616.(3.00分)给定实数x,定义[x]为不大于x的最大整数,则下列结论中不正确的是()A.x﹣[x]≥0B.x﹣[x]<1C.令f(x)=x﹣[x],对任意实数x,f(x+1)=f(x)恒成立D.令f(x)=x﹣[x],对任意实数x,f(﹣x)=f(x)恒成立三、解答题(本大题满分52分)本大题共有5题,解答下列各题必须写出必要的步骤.17.(8.00分)已知,求实数m的取值范围.18.(10.00分)如图,矩形草坪AMPN中,点C在对角线MN上.CD垂直于AN 于点D,CB垂直于AM于点B,|CD|=|AB|=3米,|AD|=|BC|=2米,设|DN|=x 米,|BM|=y米.求这块矩形草坪AMPN面积的最小值.19.(10.00分)设a是实数,函数f(x)=a﹣(x∈R),(1)若已知(1,2)为该函数图象上一点,求a的值.(2)证明:对于任意a,f(x)在R上为增函数.20.(12.00分)已知函数f(x)=x2﹣2ax+1.(1)若对任意的实数x都有f(1+x)=f(1﹣x)成立,求实数a的值;(2)若f(x)在区间[1,+∞)上为单调递增函数,求实数a的取值范围;(3)当x∈[﹣1,1]时,求函数f(x)的最大值.21.(12.00分)在区间D上,如果函数f(x)为减函数,而xf(x)为增函数,则称f(x)为D上的弱减函数.若f(x)=(1)判断f(x)在区间[0,+∞)上是否为弱减函数;(2)当x∈[1,3]时,不等式恒成立,求实数a的取值范围;(3)若函数g(x)=f(x)+k|x|﹣1在[0,3]上有两个不同的零点,求实数k 的取值范围.2016-2017学年上海市浦东新区高一(上)期末数学试卷参考答案与试题解析一、填空题(本大题满分36分)本大题共有12题,只要求直接填写结果,每个空格填对得3分,否则一律得零分.1.(3.00分)函数y=a x(a>0且a≠1)的图象均过定点(0,1).【分析】根据指数函数的性质判断即可.【解答】解:∵a0=1,a>0且a≠1,∴函数y=a x(a>0且a≠1)的图象均过定点(0,1),故答案为:(0,1).【点评】本题考查了指数函数的性质,是一道基础题.2.(3.00分)请写出“好货不便宜”的等价命题:便宜没好货.【分析】写出原命题的逆否命题,可得答案.【解答】解:“好货不便宜”即“如果货物为好货,则价格不便宜”,其逆否命题为:“如果价格便宜,则货物不是好货”,即“便宜没好货”,故答案为:便宜没好货【点评】本题考查的知识点是四种命题,难度不大,属于基础题.3.(3.00分)若集合A={x|x≤1},B={x|x≥a}满足A∩B={1},则实数a=1.【分析】由A,B,以及两集合的交集,确定出a的值即可.【解答】解:∵A={x|x≤1},B={x|x≥a},且A∩B={1},∴a=1,故答案为:1【点评】此题考查了交集以及运算,熟练掌握交集的定义是解本题的关键.4.(3.00分)不等式2|x﹣1|﹣1<0的解集是.【分析】先去掉绝对值然后再根据绝对值不等式的解法进行求解.【解答】解:①若x≥1,∴2(x﹣1)﹣1<0,∴x<;②若x<1,∴2(1﹣x)﹣1<0,∴x>;综上<x<.故答案为:<x<.【点评】此题考查绝对值不等式的解法,运用了分类讨论的思想,解题的关键是去掉绝对值,此类题目是高考常见的题型.5.(3.00分)若f(x+1)=2x﹣1,则f(1)=﹣1.【分析】f(1)=f(0+1),由此利用f(x+1)=2x﹣1,能求出结果.【解答】解:∵f(x+1)=2x﹣1,∴f(1)=f(0+1)=2×0﹣1=﹣1.故答案为:﹣1.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.6.(3.00分)不等式的解集为(﹣∞,2)∪[3,+∞).【分析】首先将不等式化为整式不等式,然后求解集.【解答】解:原不等式等价于(x﹣3)(x﹣2)≥0且x﹣2≠0,所以不等式的解集为(﹣∞,2)∪[3,+∞);故答案为:(﹣∞,2)∪[3,+∞)【点评】本题考查了分式不等式的解法;关键是正确等价转化为整式不等式.7.(3.00分)设函数f(x)=(x+1)(x+a)为偶函数,则a=﹣1.【分析】因为函数为偶函数,则根据偶函数定义f(﹣x)=f(x)得到等式解出a 即可.【解答】解:∵函数为偶函数得f(1)=f(﹣1)得:2(1+a)=0∴a=﹣1.故答案为:﹣1.【点评】此题考查学生应用函数奇偶性的能力.8.(3.00分)已知函数f(x)=,g(x)=,则f(x)•g(x)=x,x ∈(﹣1,0)∪(0,+∞).【分析】直接将f(x),g(x)代入约分即可.【解答】解:∵函数f(x)=,g(x)=,∴f(x)•g(x)=x,x∈(﹣1,0)∪(0,+∞),故答案为:x,x∈(﹣1,0)∪(0,+∞).【点评】本题考查了求函数的解析式问题,考查函数的定义域问题,是一道基础题.9.(3.00分)设α:x≤﹣5或x≥1,β:2m﹣3≤x≤2m+1,若α是β的必要条件,求实数m的取值范围m≤﹣3或m≥2.【分析】根据充分必要条件的定义以及集合的包含关系求出m的范围即可.【解答】解:α:x≤﹣5或x≥1,β:2m﹣3≤x≤2m+1,若α是β的必要条件,则2m﹣3≥1或2m+1≤﹣5,故m≥2或m≤﹣3,故答案为:m≥2或m≤﹣3.【点评】本题考查了充分必要条件,考查集合的包含关系,是一道基础题.10.(3.00分)函数的值域是(0,4].【分析】换元得出设t=x2﹣2≥﹣2,y=()t,求解即可得出答案.【解答】解:设t=x2﹣2≥﹣2,∵y=()t为减函数,∴0<()t≤()﹣2=4,故函数的值域是(0,4],故答案为:(0,4].【点评】本题简单的考察了指数函数的单调性的运用,属于容易题.11.(3.00分)已知ab>0,且a+4b=1,则的最小值为9.【分析】把“1”换成4a+b,整理后积为定值,然后用基本不等式求最小值【解答】解:∵ab>0,且a+4b=1,∴=()(a+4b)=1+4++≥5+2=9,当且仅当a=,b=时取等号,∴的最小值为9,故答案为:9.【点评】本题考查了基本不等式在求最值中的应用,解决本题的关键是“1”的代换.12.(3.00分)已知函数f(x)=是R上的增函数,则a的取值范围是[﹣1,0).【分析】由条件利用函数的单调性的性质,可得1﹣2a>1,且a<0,由此求得a的取值范围.【解答】解:由于函数f(x)=是R上的增函数,∴,求得﹣1≤a<0,故答案为:[﹣1,0).【点评】本题主要考查函数的单调性的性质,属于基础题.二、选择题(本大题满分12分)本大题共有4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,每题答对得3分,否则一律得零分.13.(3.00分)函数y=x的大致图象是()A.B.C.D.【分析】根据函数的奇偶性和函数值得变化趋势即可判断.【解答】解:y=f(﹣x)===f(x),∴函数y=x为偶函数,∴图象关于y轴对称,故排除C,D,∵>1,∴当x>0时,y=x的变化是越来越快,故排除B故选:A.【点评】本题考查了函数图象的识别,属于基础题.14.(3.00分)已知f(x)是R上的奇函数,且当x>0时,f(x)=x﹣1,则x <0时f(x)=()A.﹣x﹣1B.x+1C.﹣x+1D.x﹣1【分析】根据x>0时函数的表达式,可得x<0时f(﹣x)=﹣x﹣1,再利用奇函数的定义,即可算出当x<0时函数f(x)的表达式.【解答】解:设x<0,则﹣x>0,∵当x>0时,f(x)=x﹣1,∴当x<0时,f(﹣x)=﹣x﹣1,又∵f(x)是R上的奇函数,∴f(x)=﹣f(﹣x),∴当x<0时,f(x)=﹣f(﹣x)=x+1,故选:B.【点评】本题考查了函数求解析式和函数的奇偶性,一般将变量设在所要求解的范围内,利用奇偶性转化为已知范围进行求解.属于基础题.15.(3.00分)证券公司提示:股市有风险,入市需谨慎.小强买的股票A连续4个跌停(一个跌停:比前一天收市价下跌10%),则至少需要几个涨停,才能不亏损(一个涨停:比前一天收市价上涨10%).()A.3B.4C.5D.6【分析】设小强买的股票A时买入价格为a,连续4个跌停后价格为a(1﹣10%)4=0.6561a,设至少需要x个涨停,才能不亏损,则0.6564a(1+10%)x≥a,由此能求出结果.【解答】解:设小强买的股票A时买入价格为a,连续4个跌停后价格为a(1﹣10%)4=0.6561a,设至少需要x个涨停,才能不亏损,则0.6564a(1+10%)x≥a,整理得:1.1x≥1.5235,∵1.15=1.6105,1.14=1.4641.∴至少需要5个涨停,才能不亏损.故选:C.【点评】本题考查函数在生产生活中的应用,是基础题,解题时要认真审题,注意函数性质的合理运用.16.(3.00分)给定实数x,定义[x]为不大于x的最大整数,则下列结论中不正确的是()A.x﹣[x]≥0B.x﹣[x]<1C.令f(x)=x﹣[x],对任意实数x,f(x+1)=f(x)恒成立D.令f(x)=x﹣[x],对任意实数x,f(﹣x)=f(x)恒成立【分析】利用[x]为不大于x的最大整数,结合函数性质求解.【解答】解:在A中,∵[x]为不大于x的最大整数,∴x﹣[x]≥0,故A正确;在B中,∵[x]为不大于x的最大整数,∴x﹣[x]<1,故B正确;在C中,∵[x]为不大于x的最大整数,f(x)=x﹣[x],∴对任意实数x,f(x+1)=f(x)恒成立,故C正确;在D中,∵[x]为不大于x的最大整数,f(x)=x﹣[x],∴f(﹣3.2)=﹣3.2﹣[﹣3.2]=﹣3.2+4=0.8,f(3.2)=3.2﹣[3.2]=3.2﹣3=0.2,∴对任意实数x,f(x+1)=f(x)不成立,故D错误.故选:D.【点评】本题考查命题真假的判断,是基础题,解题时要认真审题,注意函数性质的合理运用.三、解答题(本大题满分52分)本大题共有5题,解答下列各题必须写出必要的步骤.17.(8.00分)已知,求实数m的取值范围.【分析】根据函数的单调性得到关于m的不等式,解出即可.【解答】解:(1)设函数,函数为R上的单调递增函数…(2分)得,m2+m≤﹣m+3…(2分)即,m2+2m﹣3≤0…(2分)得,(m﹣1)(m+3)≤0所以,m的取值范围为:m∈[﹣3,1]…(2分)【点评】本题考查了幂函数的单调性问题,考查不等式问题,是一道基础题.18.(10.00分)如图,矩形草坪AMPN中,点C在对角线MN上.CD垂直于AN于点D,CB垂直于AM于点B,|CD|=|AB|=3米,|AD|=|BC|=2米,设|DN|=x 米,|BM|=y米.求这块矩形草坪AMPN面积的最小值.【分析】由题意,表示出矩形的面积,利用基本不等式,即可求得结论.【解答】解:由题意….(2分)S AMPN=(x+2)(y+3)=xy+3x+2y+6=12+3x+2y….(5分)….(2分)当且仅当3x=2y,即x=2,y=3时取得等号.….(7分)面积的最小值为24平方米.….(8分)【点评】本题考查根据题设关系列出函数关系式,考查利用基本不等式求最值,解题的关键是确定矩形的面积.19.(10.00分)设a是实数,函数f(x)=a﹣(x∈R),(1)若已知(1,2)为该函数图象上一点,求a的值.(2)证明:对于任意a,f(x)在R上为增函数.【分析】(1)代值计算即可求出a(2)运用函数的定义判断证明函数的单调性,先在取两个值x1,x2后进行作差变形,确定符号,最后下结论即可.【解答】解:(1).(2)证明:设任意x1,x2∈R,x1<x2,则f(x1)﹣f(x2)===,由于指数函数y=2x在R上是增函数,且x1<x2,所以即,又由2x>0,得,,∴f(x1)﹣f(x2)<0即f(x1)<f(x2),所以,对于任意a,f(x)在R上为增函数.【点评】本题考查了函数值,通过证明一个函数在给定区间上为增函数,考查了用定义证明函数单调性的知识,属于基础题20.(12.00分)已知函数f(x)=x2﹣2ax+1.(1)若对任意的实数x都有f(1+x)=f(1﹣x)成立,求实数a的值;(2)若f(x)在区间[1,+∞)上为单调递增函数,求实数a的取值范围;(3)当x∈[﹣1,1]时,求函数f(x)的最大值.【分析】(1)由题意可得x=1为对称轴,求得f(x)的对称轴方程,即可得到a;(2)求得f(x)的递增区间,[1,+∞)为它的子区间,可得a的范围;(3)由函数图象开口向上,对称轴x=a,可得最大值只能在端点处取得,讨论a=0,a>0,a<0,即可得到所求最大值.【解答】解:(1)由对任意的实数x都有f(1+x)=f(1﹣x)成立,知函数f(x)=x2﹣2ax+1的对称轴为x=a,即a=1;(2)函数f(x)=x2﹣2ax+1的图象的对称轴为直线x=a,由f(x)在[a,+∞)上为单调递增函数,y=f(x)在区间[1,+∞)上为单调递增函数,得,a≤1;(3)函数图象开口向上,对称轴x=a,可得最大值只能在端点处取得.当a<0时,x=1时,函数取得最大值为:2﹣2a;当a>0时,x=﹣1时,函数取得最大值为:2+2a;当a=0时,x=1或﹣1时,函数取得最大值为:2.【点评】本题考查二次函数的图象和性质的运用,主要是单调性和最值,注意运用分类讨论的思想方法,考查运算能力,属于中档题.21.(12.00分)在区间D上,如果函数f(x)为减函数,而xf(x)为增函数,则称f(x)为D上的弱减函数.若f(x)=(1)判断f(x)在区间[0,+∞)上是否为弱减函数;(2)当x∈[1,3]时,不等式恒成立,求实数a的取值范围;(3)若函数g(x)=f(x)+k|x|﹣1在[0,3]上有两个不同的零点,求实数k 的取值范围.【分析】(1)利用初等函数的性质、弱减函数的定义,判断是[0,+∞)上的弱减函数.(2)根据题意可得,再利用函数的单调性求得函数的最值,可得a的范围.(3)根据题意,当x∈(0,3]时,方程只有一解,分离参数k,换元利用二次函数的性质,求得k的范围.【解答】解:(1)由初等函数性质知,在[0,+∞)上单调递减,而在[0,+∞)上单调递增,所以是[0,+∞)上的弱减函数.(2)不等式化为在x∈[1,3]上恒成立,则,而在[1,3]单调递增,∴的最小值为,的最大值为,∴,∴a∈[﹣1,].(3)由题意知方程在[0,3]上有两个不同根,①当x=0时,上式恒成立;②当x∈(0,3]时,则由题意可得方程只有一解,根据,令,则t∈(1,2],方程化为在t∈(1,2]上只有一解,所以.【点评】本题主要考查新定义,函数的单调性的应用,函数的零点与方程根的关系,属于中档题.。

2016-2017上海浦东新区高一上期末考试

2016-2017上海浦东新区高一上期末考试

浦东新区2016 学年度第一学期教学质量检测高一英语试卷(本试卷满分100分,考试时间90分钟)(考生注意:请按照要求把答案分别做在答题卡或答题纸上)II. Grammar and VocabularySection ADirections: After reading the passage below, fill in the blanks to make the passage coherent and grammatically correct. For the blanks with a given word, fill in each blank with the proper form of the given word; for the other blanks, use one world that best fits each other.Anvitha Vijay is the Apple’s youngest app developer. When you were 9 years old, what were you busy (16)_____ ___(do)? There were a whole lot of things you did but coding was definitely not one of them. However, this small girl (17)__________is aged 9 is the star of Apple’s Worldwide Developers Conference (WWDC). She developed an iPad/iPhone app about animals in Melboume, Australia and (18)__________ (apply) for one of the popular scholarships to attend Apple’s annual developer conference.(19)__________ the youngest developer to attend Apple’s WWDC, Vijay is among one of 350 mostly high school and college students invited by Apple to attend the conference for free. Vijay did not join any classes but learned coding all by (20)________ by following online guides and YouTube tutorials.She showed interest in apps and coding after her younger sister (21)________( bear) . (22)_________ she would see the little one learning new words daily, she decided to come up with apps for children. She’s developed multiple apps, the most popular of (23)________is just Smartkins Animals.Vijay works in the WWDC room like other people by walking up to developers at WWDC and handing out her business card, which has her name and a motto: “ I want to make a difference in people’s lives through technology”. Back home , she used her mom’s iPhone ( under her mom’s name) because you have to wait (24)________you are 13 to get an iTunes account.Asked to name her favourite app beside the ones she developed , she cites the White Tiles 4 app, which was developed in China in 2014. What does she want to be when she grows up? “ I want to be an innovator, (25)_________(build) things that people will love and benefit from,” she said.The lives of rich people seem to be getting better and better. Rich people ____26___have better homes than poor people. Now, a new study finds that the rich may even have better stress than poor people. The American Psychological Association says it is part of our body's fight-or-flight _____27____. When faced with danger, stress can create ____28_____ to fight off an attacker.Many problems with life or work can cause stress. Stressors are the bills that you can't pay; the childcare that falls through at the last minute; or the car that won't start. These stressors add to what _____29____ call chronic(长期的) stress. According to a new survey, this is the stress facing many poor people in the United States. The APA website notes that chronic stress can affect a person's mental and physical health. And chronic stress is poor people stress. Poor people often ____30_____ stressful conditions beyond their control.For some people, there is often no light at the end of tunnel. The day-to-day stress never lets up. And it is wears down the body. It harms the _____31____ defenses against disease, puts pressure on the heart, makes muscles tired and can cause depression. It is difficult to plan for tomorrow when you can barely make ends meet today. Poorpeople often do not have time, energy or _____32____ to plan and successfully complete long-term goals.Rich people also have stress and face difficulties. But their situations are very different. Of course, rich people can have terrible things happen to them. But they are usually better prepared. They may have more ___33______ contacts that often reach far back to college and even high school. The rich also have ____34_____ to support. This can greatly reduce stress.III. Reading ComprehensionSection AChinese emojis(表情符号) In Everyday Use AbroadThis is not the first time the Chinese emoji takes the world stage. Earlier this year, one emoji from the Chinese basketball celebrity Yao Ming has been ____35___ through the Middle East region. In Luxor, a city in southern Egypt, Yao's smiling emoji has emerged ___36____ in local traffic signs to remind people the road ahead is one-way.And you may be surprised to find that many locals do not know Yao Ming but are ____37__ with his emoji and nickname "Chinese Funny Face". ____38___, the emoji has been picked up by the Egyptian English-language daily newspaper Egyptian Gazette as the title picture for its humorous column Serious but Funny.What's more, due to the huge ____39___ of Chinese Sina Weibo, the Chinese version of Twitter, many renowned western celebrities like Leonardo DiCaprio and Madonna have ___40____ their personal accounts on the platform.Many Chinese fans are excited about this and now choose to greet them with their own funny pictures, a behavior arousing the ___41____ of foreign media. American private Internet media company BuzzFeed reported on the cultural phenomenon.As a newly emerging online language, emojis have risen to become an ___42____ part of people's daily life. Emojis are able to help people ___43___ their views in a more vivid and precise fashion. Also, it can help foreigners learn about Chinese culture and learn the language.As Chinese emojis have slowly entered the world stage, how to properly use "the fifth innovation in China", a humorous name for emojis, ___44____ hurting others and how to turn them into commercial advantages still need answers.35. A. spread B. explored C. experienced D. examined36.A. fortunately B. adequately C. frequently D. properly37. A. patient B. familiar C. popular D. strict38.A. By contrast B. In conclusion C. What’s more D. For example39.A. problem B. variety C. influence D. profit40.A. opened B. bought C. shared D. linked41.A. awareness B. complaint C. responsibility D. attention42.A. subtle B. mixed C. usual D. essential43.A. create B. express C. accept D. test44.A. without B. except C. by D. inSection B( A )Growing up, I was always totally in love with fashion. I’m the type of girl who follows Fashion Weck trends and spends much money on clothes. And while I have dreamed about building a career in fashion, I’m well aware that it’s not easy to make a name for yourself in the field. Despite this, I decided against studying medicine to followmy dream and went to West Virginia University for Fashion Design.When I got a part-time job at Girl’s Lift last summer holiday. I was excited to be able to write articles for the website, sit in on editorial meetings and help pick the cover for the August/ September issue. But when GL editor-in-chief Karen asked if anyone wanted to help out in the fashion room for all the clothes, accessories ,shoes and beauty products used for shoots(拍摄). I jumped at the opportunity. After spending so much time with the clothes, I knew I just had to go onsite for the shoot. My parents always told me to speak up when I want something, so I gathered up the courage to ask Karen if I could help out on the shoot. Not only did she say yes, but she told me that I could help out at another the following week.The next day , when the photographer asked me to help him test the lightning for a few shoots, I was super excited. When one of the two models didn’t show up , I was asked to step in for her. Before I knew it, I was sitting in hair and makeup , being fitted for my clothes for the rest of my life. Never in a million years did I think I would be in a magazine. Let alone on four pages of a major fashion magazine. I am really grateful for this opportunity, but it would never have happened if I didn’t speak up and ask to be a part of it.45. The writer’s dream is to ___________.A. become a model for Fashion WeekB. take up a job in fashionC. study in West Virginal UniversityD. be an expert on medicine46. The underlined word “ issue” in paragraph two means ________.A. problemB. subjectC. magazineD. newspaper47. We can infer from the passage that _______ encourage the writer a lot in her life.A. her parentsB. the modelsC. the photographerD. Karen48. What does the passage intend to tell us?A. It’s amazing to appear in a fashion magazine.B. It’s not easy to become famous in one’s career.C. Speak up for what you want and you will get it soon.D. Stick to your dream and try everything you can for it.BPollution is a disaster for the soil. When chemicals go into the ground, they slowly reduce the fertility of the soil and make it unsuitable for farming. They may also change the structure of the soil , which gets more easily destroyed by water and air.For ordinary consumers, the influence of soil pollution can be felt most strongly in the supermarket. Exposure(暴露) to soil pollution can pollute foods grown in the field, harming people’s health.One example of this is the “ poisonous rice event” that surfaced in 2013. Some rice from Hunan province was found to contain higher levels of cadmium(镉), a kind of metal likely to cause cancer, because Hunan has some of the worst soil pollution in China, according to CBC News. All the samples collected from this area were heavily polluted by cadmium. Sometimes, the cadmium level is 20 times higher than the national standard.According to scientists, high levels of cadmium have been linked to organ(器官) failure, weakening of bones and cancer. “ Cadmium is likely to store up in the kidney and liver,” Chen Nengchang, a scholar at the Guangdong Institute of Eco-environment and Soil Sciences, told The New York Times. “ When the amount reaches a certain point, it will cause a serious health risk for the organs.”Unfortunately, fixing the problem was not as simple as destroying a few piles of rice. Since the outer covering of rice are often used to feed farm animals, the meat we eat and the milk we drink may both be at risk.Luckily both the government and Chinese consumers have becomes more and more aware of this kind of pollutions, and aim to fight the situation with combined effort. There are many things we, as individual, can do tohelp. Eating organic foods are one of them.Organic food is not only better for our health but also for our environment, especially the soil. To grow organic food, farmers stop using all artificial chemicals------including fertilizers, and pesticides. This production method does not cause any risk of soil pollution, unlike traditional farming, which uses tons of artificial chemicals. By consuming organic foods, we support healthier soil.49. Which of the following is NOT mentioned about the influence of soil pollution?A. The production of the crops will decrease greatly.B. The soil will be poor in quality and improper for farming.C. The foods grown in the polluted field harm people’s health.D. The soil will become more easily destroyed by water and air.50. What happened to the rice from Hunan province in 2013?A. It caused cancer or death.B. Some contained more vitamins.C. It was reported as an advertisement.D. Some had higher levels of cadmium.51. The underlined “ the problem” in paragraph 5 refers to _________.A. the polluted soilB. the failing organC. the poisonous riceD. the sick farm animals.52. What can be learned about organic food according to the text?A. The government has realized the importance of it.B. It is good for both our health and the environment.C. Its production method is easier than the traditional one.D. Farmers used fewer fertilizers and pesticides when growing it.Section CEach week, the BBC Autos editors select their favourite transport-related news stories, features and videos from around the web. This week, we noticed a trend toward offering creative solutions to global transportation problems.______________53__ _____________.Carry on without your carry-onIn an effort to save money and increase customer spending, United Airlines will restrict some passengers’ access to overhead compartments. The Huffington Post reports that United will be the first US airline to limit “basic economy” flyers to a single free carry-on bag that can fit under a seat. _______54 __. In addition, customers buying these low-fare tickets will be unable to accrue airline miles and will be randomly assigned seating the day of the flight.______55. _____. As BBC Autos reported back in October, airlines are struggling with reducing cargo weight.Because heavier bags — and heavier passengers — result in significantly higher fuel bills, airlines such as Samoa Air have implemented a “fat tax” that means overweight passengers have to pay more for a ticket.Grandad’s Coke pool rust-removal stunt goes wrongNot only are fizzy drinks(起泡饮料) capable of rotting teeth, they can also remove rust(锈). One Latvian grandfather decided to put cola to the ultimate rust-removal test by submerging his car in a pool of Coca-Cola. In a video posted online, the unnamed daredevil grandad fills a lined pit with 6,000 two-litre bottles of Coke. He then settles into the driver’s seat and speeds into the hole, smashing the front of his red Audi. Whether or not the rust was removed is unknown, but the Daily Mail contends that “_____56. ________”第II 卷I. Translation1. 他因为各种各样的原因错过了那次考试。

2017-2018学年上海市浦东新区高一(上)期末数学试卷

2017-2018学年上海市浦东新区高一(上)期末数学试卷

2017-2018学年上海市浦东新区高一(上)期末数学试卷一、填空题(共12小题,每小题3分,满分36分)1.(3分)设A={﹣2,﹣1,0,1,2},B={x|x2+x=0},则集合A∩B=.2.(3分)不等式|x﹣1|<2的解集为.3.(3分)已知函数f(x)=2x+m,其反函数y=f﹣1(x)图象经过点(3,1),则实数m的值为.4.(3分)命题“若A∩B=B,则B⊆A”是(真或假)命题.5.(3分)已知x>1,则y=x+的最小值为.6.(3分)已知log32=a,则log324=(结果用a表示)7.(3分)已知函数f(x)=,则f[f()]=.8.(3分)已知函数f(x)=,g(x)=x﹣1,若F(x)=f(x)•g(x),则F (x)的值域是.9.(3分)已知函数,且f(2)<f(3),则实数k取值范围是.10.(3分)已知偶函数y=f(x)在区间[0,+∞)上的解析式为f(x)=x2﹣2x,则y=f(x)在区间(﹣∞,0)上的解析式f(x)=.11.(3分)已知函数f(x)=|x2﹣2|﹣a有4个零点,则实数a的取值范围是.12.(3分)若函数y=f(x)的图象是折线段ABC,其中A(0,0),B(1,1),C (2,0),则函数y=x•f(x)(0≤x≤2)的图象与x轴围成的图形的面积为.二、选择题(共4小题,每小题3分,满分12分)13.(3分)已知实数a、b,且a>b,下列结论中一定成立的是()A.a2>b2B.<1C.2a>2b D.14.(3分)函数的图象是()A.B.C.D.15.(3分)函数f(x)=x2+2(a﹣1)x+2在(﹣∞,4]上是减函数,则实数a 的取值范围是()A.a=5B.a≥5C.a=﹣3D.a≤﹣3 16.(3分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N为1080,则下列各数中与最接近的是()A.1033B.1053C.1073D.1093三、解答题(共5小题,满分52分)17.(8分)已知a>0,试比较与的值的大小.18.(10分)已知集合A={x|+1≤0},B={x|()a•2x=4},若A∪B=A,求实数a的取值范围.19.(10分)判断并证明函数f(x)=在区间(﹣1,0)上的单调性.20.(10分)如图,在半径为40cm的半圆(O为圆心)形铁皮上截取一块矩形材料ABCD,其中A,B在直径上,C,D在圆周上.(1)设AD=x,将矩形ABCD的面积y表示为x的函数,并写出定义域(2)应怎样截取,才能使矩形ABCD的面积最大?最大面积是多少?21.(14分)已知函数f(x)=log a x+b(a>0,a≠1)的图象经过点(8,2)和(1,﹣1)(1)求f(x)的解析式(2)若[f(x)]2=3f(x),求实数x的值(3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值,及取最小值时x的值.2017-2018学年上海市浦东新区高一(上)期末数学试卷参考答案与试题解析一、填空题(共12小题,每小题3分,满分36分)1.(3分)设A={﹣2,﹣1,0,1,2},B={x|x2+x=0},则集合A∩B={﹣1,0} .【解答】解:A={﹣2,﹣1,0,1,2},B={x|x2+x=0}={x|x=0或x=﹣1}={﹣1,0},则集合A∩B={﹣1,0}.故答案为:{﹣1,0}.2.(3分)不等式|x﹣1|<2的解集为(﹣1,3).【解答】解:由不等式|x﹣1|<2可得﹣2<x﹣1<2,∴﹣1<x<3,故不等式|x﹣1|<2的解集为(﹣1,3),故答案为:(﹣1,3).3.(3分)已知函数f(x)=2x+m,其反函数y=f﹣1(x)图象经过点(3,1),则实数m的值为1.【解答】解:∵其反函数y=f﹣1(x)的图象经过点(3,1),∴函数f(x)=2x+m经过点(1,3),∴2+m=3∴m=1,故答案为:1.4.(3分)命题“若A∩B=B,则B⊆A”是真(真或假)命题.【解答】解:∵A∩B=B,∴B⊆A,∴命题“若A∩B=B,则B⊆A”是真命题.故答案为:真.5.(3分)已知x>1,则y=x+的最小值为3.【解答】解:∵x>1,∴x﹣1>0,∴y=x+=(x﹣1)++1+1=3,当且仅当x=2时取等号.则y=x+的最小值为3.故答案为:3.6.(3分)已知log32=a,则log324=1+3a(结果用a表示)【解答】解:log32=a,则log324==1+3log32=1+3a.故答案为:1+3a.7.(3分)已知函数f(x)=,则f[f()]=﹣7.【解答】解:由分段函数的表达式得f()=log3=﹣2,则f(﹣2)=(﹣2)3+1=﹣8+1=﹣7,故答案为:﹣78.(3分)已知函数f(x)=,g(x)=x﹣1,若F(x)=f(x)•g(x),则F (x)的值域是[0,)∪(,+∞).【解答】解:F(x)=f(x)•g(x)=(x﹣1)=(x≠1),由,解得x≥﹣2且x≠1.∴F(x)的定义域为{x|x≥﹣2且x≠1},则x+2≥0且x+2≠3,∴F(x)的值域是[0,)∪(,+∞).故答案为:[0,)∪(,+∞).9.(3分)已知函数,且f(2)<f(3),则实数k取值范围是(﹣1,2).【解答】解:因为函数是幂函数,且f(2)<f(3),所以其在(0,+∞)上是增函数,所以根据幂函数的性质,有﹣k2+k+2>0,即k2﹣k﹣2<0,所以﹣1<k<2.故答案为(﹣1,2).10.(3分)已知偶函数y=f(x)在区间[0,+∞)上的解析式为f(x)=x2﹣2x,则y=f(x)在区间(﹣∞,0)上的解析式f(x)=.【解答】解:设x<0,则﹣x>0,因为y=f(x)在区间[0,+∞)上的解析式为f(x)=x2﹣2x,所以f(﹣x)=(﹣x)2﹣2(﹣x)=x2+2x,又因为y=f(x)为偶函数,所以f(x)=f(﹣x)=x2+2x,综上所述,f(x)=,故答案为:.11.(3分)已知函数f(x)=|x2﹣2|﹣a有4个零点,则实数a的取值范围是(0,2).【解答】解:令f(x)=0得|x2﹣2|=a,作出y=|x2﹣2|的函数图象如图所示:∵f(x)=|x2﹣2|﹣a有4个零点,∴直线y=a与y=|x2﹣2|的图象有4个交点,∴0<a<2.故答案为:(0,2).12.(3分)若函数y=f(x)的图象是折线段ABC,其中A(0,0),B(1,1),C (2,0),则函数y=x•f(x)(0≤x≤2)的图象与x轴围成的图形的面积为1.【解答】解:当函数y=f(x)的图象是折线段ABC,其中A(0,0),B(1,1),C(2,0),当经过点A,B时,即为f(x)=x,0≤x<1,当经过点B,C时,即为f(x)=﹣x+2,1≤x<2,∴y=x•f(x)=,设函数y=xf(x)(0≤x≤2)的图象与x轴围成的图形的面积为S,∴S=x2dx+(﹣x2+2x)dx=x3|+(﹣x3+x2)|=+(﹣+4)﹣(﹣+1)=1,故答案为:1二、选择题(共4小题,每小题3分,满分12分)13.(3分)已知实数a、b,且a>b,下列结论中一定成立的是()A.a2>b2B.<1C.2a>2b D.【解答】解:∵函数y=2x在R上单调递增,又a>b,∴2a>2b.故选:C.14.(3分)函数的图象是()A.B.C.D.【解答】解:令x=0,则=1,即图象过(0,1)点,排除C、D;令x=1,则=<1,故排除A故选:B.15.(3分)函数f(x)=x2+2(a﹣1)x+2在(﹣∞,4]上是减函数,则实数a 的取值范围是()A.a=5B.a≥5C.a=﹣3D.a≤﹣3【解答】解:由题意可得函数的对称轴x=1﹣a在(﹣∞,4]的右侧,1﹣a≥4,解得a≤3.故选:D.16.(3分)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N为1080,则下列各数中与最接近的是()A.1033B.1053C.1073D.1093【解答】解:由题意:M≈3361,N≈1080,根据对数性质有:3=10lg3≈100.48,∴M≈3361≈(100.48)361≈10173,∴≈=1093.故选:D.三、解答题(共5小题,满分52分)17.(8分)已知a>0,试比较与的值的大小.【解答】解:﹣==,当a>1时,﹣2a<0,a2﹣1>0,则<0,即<;当0<a<1时,﹣2a<0,a2﹣1<0,则>0,即>.综上可得a>1时,<;0<a<1时,>.18.(10分)已知集合A={x|+1≤0},B={x|()a•2x=4},若A∪B=A,求实数a的取值范围.【解答】解:集合A={x|+1≤0}={x|≤0}={x|1≤x<2},B={x|()a•2x=4}={x|2x﹣a=4}={x|x=a+2},由A∪B=A,可得B⊆A,即有1≤a+2<2,解得﹣1≤a<0.则a的取值范围是[﹣1,0).19.(10分)判断并证明函数f(x)=在区间(﹣1,0)上的单调性.【解答】解:根据题意,函数f(x)=在区间(﹣1,0)上单调递增,证明如下:设﹣1<x1<x2<0,则f(x1)﹣f(x2)=﹣=,又由﹣1<x1<x2<0,则x2﹣x1>0,x2+x1<0,x12﹣1<0,x22﹣1<0,则有f(x1)﹣f(x2)<0,则函数f(x)=在区间(﹣1,0)上单调递增.20.(10分)如图,在半径为40cm的半圆(O为圆心)形铁皮上截取一块矩形材料ABCD,其中A,B在直径上,C,D在圆周上.(1)设AD=x,将矩形ABCD的面积y表示为x的函数,并写出定义域(2)应怎样截取,才能使矩形ABCD的面积最大?最大面积是多少?【解答】解:(1)AB=2OA=2=2,∴y=f(x)=2x,x∈(0,40).(2)y2=4x2(1600﹣x2)≤4×()2=16002,即y≤1600,当且仅当x=20时取等号.∴截取AD=20时,才能使矩形材料ABCD的面积最大,最大面积为1600cm2.21.(14分)已知函数f(x)=log a x+b(a>0,a≠1)的图象经过点(8,2)和(1,﹣1)(1)求f(x)的解析式(2)若[f(x)]2=3f(x),求实数x的值(3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值,及取最小值时x的值.【解答】解:(1)由题可知:f(8)=log a8+b=2,f(1)=log a1+b=﹣1,解得:a=2,b=﹣1,所以f(x)=log2x﹣1,x>0;(2)由[f(x)]2=3f(x)可知f(x)=0或f(x)=3,又由(1)可知log2x﹣1=0或log2x﹣1=3,解得:x=2或x=16;(3)由(1)可知y=g(x)=2f(x+1)﹣f(x)=2[log2(x+1)﹣1]﹣(log2x﹣1)=﹣1≥log2(2+2)﹣1=1,当且仅当即x=1时取等号,所以,当x=1时g(x)取得最小值1.。

上海市浦东新区2016-2017学年高一上学期数学期末考试试卷

上海市浦东新区2016-2017学年高一上学期数学期末考试试卷

上海市浦东新区2016-2017学年高一上学期数学期末考试试卷一、填空题1. ( 1分 ) 函数y=a x (a >0且a≠1)的图象均过定点________2. ( 1分 ) 请写出“好货不便宜”的等价命题:________.3. ( 1分 ) 若集合A={x|x≤1},B={x|x≥a}满足A∩B={1},则实数a=________.4. ( 1分 ) 不等式2|x ﹣1|﹣1<0的解集是________.5. ( 1分 ) 若f (x+1)=2x ﹣1,则f (1)=________.6. ( 1分 ) 不等式 的解集为________.7. ( 1分 ) 设函数f (x )=(x+1)(x+a )为偶函数,则a=________.8. ( 1分 ) 已知函数f (x )= ,g (x )= ,则f (x )•g (x )=________.9. ( 1分 ) 设α:x ≤﹣5或x ≥ 1,β:2m ﹣3 ≤ x ≤ 2m+1,若α是β的必要条件,求实数m 的取值范围________.10. ( 1分 ) 函数 的值域是________.11. ( 1分 ) 已知ab >0,且a+4b=1,则 的最小值为________. 12. ( 1分 ) 已知函数f (x )= 是R 上的增函数,则a 的取值范围是________.x −3x −2≥02y =12⎛⎝⎜⎞⎠⎟x 2−21a +1b{1−2a ()x (x <1)a x +4(x ≥1)二、选择题13. ( 2分 ) 函数的大致图象是( )A. B.C. D.14. ( 2分 ) 已知f (x )是R 上的奇函数,且当x >0时,f (x )=x ﹣1,则x <0时f (x )=( )A. ﹣x ﹣1B. x+1C. ﹣x+1 D. x ﹣115. ( 2分 ) 证券公司提示:股市有风险,入市需谨慎.小强买的股票A 连续4个跌停(一个跌停:比前一天收市价下跌10%),则至少需要几个涨停,才能不亏损(一个涨停:比前一天收市价上涨10%).( )A. 3B. 4C. 5D. 6y =x 4316. ( 2分 ) 给定实数x ,定义[x]为不大于x 的最大整数,则下列结论中不正确的是( )A. x ﹣[x]≥0B. x ﹣[x]<1C. 令f (x )=x ﹣[x],对任意实数x ,f (x+1)=f (x )恒成立D. 令f (x )=x ﹣[x],对任意实数x ,f (﹣x )=f (x )恒成立三、解答题17. ( 5分 ) 已知 ,求实数m 的取值范围.18. ( 5分 ) 如图,矩形草坪AMPN 中,点C 在对角线MN 上.CD 垂直于AN 于点D ,CB 垂直于AM 于点B ,|CD|=|AB|=3米,|AD|=|BC|=2米,设|DN|=x 米,|BM|=y 米.求这块矩形草坪AMPN 面积的最小值.m 2+m ()35≤3−m ()3519. ( 10分 ) 设a 是实数,函数f (x )=a ﹣ (x ∈ R ), (1)若已知(1,2)为该函数图象上一点,求a 的值.(2)证明:对于任意a ,f (x )在R 上为增函数.20. ( 15分 ) 已知函数f (x )=x 2﹣2ax+1.(1)若对任意的实数x 都有f (1+x )=f (1﹣x )成立,求实数 a 的值; (2)若f (x )在区间 [1,+∞]上为单调递增函数,求实数a 的取值范围; (3)当x ∈ [﹣1,1]时,求函数f (x )的最大值.22x +121. ( 15分 ) 在区间D 上,如果函数f (x )为减函数,而xf (x )为增函数,则称f (x )为D 上的弱减函数.若f (x )=(1)判断f (x )在区间[0,+∞)上是否为弱减函数;(2)当x ∈[1,3]时,不等式 恒成立,求实数a 的取值范围; (3)若函数g (x )=f (x )+k|x|﹣1在[0,3]上有两个不同的零点,求实数k 的取值范围.a x ≤≤a +42x答案解析部分一、<b >填空题</b>1.【答案】(0,1)【考点】指数函数的图像与性质【解析】【解答】解:∵a0=1,a>0且a≠1,∴函数y=a x(a>0且a≠1)的图象均过定点(0,1),故答案为:(0,1).【分析】根据指数函数的性质判断即可.2.【答案】便宜没好货【考点】四种命题【解析】【解答】解:“好货不便宜”即“如果货物为好货,则价格不便宜”,其逆否命题为:“如果价格便宜,则货物不是好货”,即“便宜没好货”,故答案为:便宜没好货【分析】写出原命题的逆否命题,可得答案.3.【答案】1【考点】交集及其运算【解析】【解答】解:∵A={x|x≤1},B={x|x≥a},且A∩B={1},∴a=1,故答案为:1【分析】由A,B,以及两集合的交集,确定出a的值即可.4.【答案】【考点】绝对值不等式的解法【解析】【解答】解:①若x≥1,∴2(x﹣1)﹣1<0,∴x<;②若x<1,∴2(1﹣x)﹣1<0,∴x>;综上<x<.故答案为:<x<.【分析】先去掉绝对值然后再根据绝对值不等式的解法进行求解.5.【答案】﹣1【考点】函数的值【解析】【解答】解:∵f(x+1)=2x﹣1,∴f(1)=f(0+1)=2×0﹣1=﹣1.故答案为:﹣1.【分析】f(1)=f(0+1),由此利用f(x+1)=2x﹣1,能求出结果.6.【答案】(﹣∞,2)∪[3,+∞)【考点】其他不等式的解法【解析】【解答】解:原不等式等价于(x﹣3)(x﹣2)≥0且x﹣2≠0,所以不等式的解集为(﹣∞,2)∪[3,+∞);故答案为:(﹣∞,2)∪[3,+∞)【分析】首先将不等式化为整式不等式,然后求解集.7.【答案】﹣1【考点】函数奇偶性的性质【解析】【解答】解:∵函数为偶函数得f(1)=f(﹣1)得:2(1+a)=0 ∴a=﹣1.故答案为:﹣1.【分析】因为函数为偶函数,则根据偶函数定义f(﹣x)=f(x)得到等式解出a即可.8.【答案】x,x∈(﹣1,0)∪(0,+∞)【考点】函数解析式的求解及常用方法【解析】【解答】解:∵函数f(x)= ,g(x)= ,∴f(x)•g(x)=x,x∈(﹣1,0)∪(0,+∞),故答案为:x,x∈(﹣1,0)∪(0,+∞).【分析】直接将f(x),g(x)代入约分即可.9.【答案】m≥2或m≤﹣3【考点】必要条件、充分条件与充要条件的判断【解析】【解答】解:α:x≤﹣5或x≥1,β:2m﹣3≤x≤2m+1,若α是β的必要条件,则2m﹣3≥1或2m+1≤﹣5,故m≥2或m≤﹣3,故答案为:m≥2或m≤﹣3.【分析】根据充分必要条件的定义以及集合的包含关系求出m的范围即可.10.【答案】(0,4].【考点】函数的值域【解析】【解答】解:设t=x2﹣2≥﹣2,∵y=()t为减函数,∴0<()t≤()﹣2=4,故函数的值域是(0,4],故答案为:(0,4].【分析】换元得出设t=x2﹣2≥﹣2,y=()t,求解即可得出答案.11.【答案】9【考点】基本不等式【解析】【解答】解:∵ab>0,且a+4b=1,∴=()(a+4b)=1+4+ + ≥5+2 =9,当且仅当a= ,b= 时取等号,∴的最小值为9,故答案为:9.【分析】把“1”换成4a+b,整理后积为定值,然后用基本不等式求最小值12.【答案】[﹣1,0)【考点】函数单调性的性质【解析】【解答】解:由于函数f(x)= 是R上的增函数,∴,求得﹣1≤a<0,故答案为:[﹣1,0).【分析】由条件利用函数的单调性的性质,可得1﹣2a>1,且a<0,由此求得a的取值范围.二、<b >选择题</b>13.【答案】A【考点】函数的图象【解析】【解答】解:y=f(﹣x)= = =f(x),∴函数y=x 为偶函数,∴图象关于y轴对称,故排除C,D,∵>1,∴当x>0时,y=x 的变化是越来越快,故排除B故选:A【分析】根据函数的奇偶性和函数值得变化趋势即可判断.14.【答案】B【考点】函数奇偶性的性质【解析】【解答】解:设x<0,则﹣x>0,∵当x>0时,f(x)=x﹣1,∴当x<0时,f(﹣x)=﹣x﹣1,又∵f(x)是R上的奇函数,∴f(x)=﹣f(﹣x),∴当x<0时,f(x)=﹣f(﹣x)=x+1,故选B.【分析】根据x>0时函数的表达式,可得x<0时f(﹣x)=﹣x﹣1,再利用奇函数的定义,即可算出当x<0时函数f(x)的表达式.15.【答案】C【考点】函数的值【解析】【解答】解:设小强买的股票A时买入价格为a,连续4个跌停后价格为a(1﹣10%)4=0.6561a,设至少需要x个涨停,才能不亏损,则0.6564a(1+10%)x≥a,整理得:1.1x≥1.5235,∵1.15=1.6105,1.14=1.4641.∴至少需要5个涨停,才能不亏损.故选:C.【分析】设小强买的股票A时买入价格为a,连续4个跌停后价格为a(1﹣10%)4=0.6561a,设至少需要x个涨停,才能不亏损,则0.6564a(1+10%)x≥a,由此能求出结果.16.【答案】D【考点】函数解析式的求解及常用方法,函数的值【解析】【解答】解:在A中,∵[x]为不大于x的最大整数,∴x﹣[x]≥0,故A正确;在B中,∵[x]为不大于x的最大整数,∴x﹣[x]<1,故B正确;在C中,∵[x]为不大于x的最大整数,f(x)=x﹣[x],∴对任意实数x,f(x+1)=f(x)恒成立,故C正确;在D中,∵[x]为不大于x的最大整数,f(x)=x﹣[x],∴f(﹣3.2)=﹣3.2﹣[﹣3.2]=﹣3.2+4=0.8,f(3.2)=3.2﹣[3.2]=3.2﹣3=0.2,∴对任意实数x,f(x+1)=f(x)不成立,故D错误.故选:D.【分析】利用[x]为不大于x的最大整数,结合函数性质求解.三、<b >解答题</b>17.【答案】解:设函数,函数为R上的单调递增函数得,m2+m≤﹣m+3即,m2+2m﹣3≤0得,(m﹣1)(m+3)≤0所以,m的取值范围为:m∈[﹣3,1]【考点】幂函数的性质【解析】【分析】根据函数的单调性得到关于m的不等式,解出即可.18.【答案】解:由题意.S AMPN=(x+2)(y+3)=xy+3x+2y+6=12+3x+2y..当且仅当3x=2y,即x=2,y=3时取得等号..面积的最小值为24平方米.【考点】基本不等式在最值问题中的应用【解析】【分析】由题意,表示出矩形的面积,利用基本不等式,即可求得结论.19.【答案】(1)解:.(2)证明:设任意x1,x2∈R,x1<x2,则f(x1)﹣f(x2)== = ,由于指数函数y=2x在R上是增函数,且x 1<x2,所以即,又由2x>0,得,,∴f(x1)﹣f(x2)<0即f(x1)<f(x2),所以,对于任意a,f(x)在R上为增函数.【考点】函数的图象【解析】【分析】(1)代值计算即可求出a(2)运用函数的定义判断证明函数的单调性,先在取两个值x1,x2后进行作差变形,确定符号,最后下结论即可.20.【答案】(1)解:由对任意的实数x都有f(1+x)=f(1﹣x)成立,知函数f(x)=x2﹣2ax+1的对称轴为x=a,即a=1;(2)解:函数f(x)=x2﹣2ax+1的图象的对称轴为直线x=a,由f(x)在[a,+∞)上为单调递增函数,y=f(x)在区间[1,+∞)上为单调递增函数,得,a≤1;(3)解:函数图象开口向上,对称轴x=a,可得最大值只能在端点处取得.当a<0时,x=1时,函数取得最大值为:2﹣2a;当a>0时,x=﹣1时,函数取得最大值为:2+2a;当a=0时,x=1或﹣1时,函数取得最大值为:2.【考点】函数的最值及其几何意义,二次函数的性质【解析】【分析】(1)由题意可得x=1为对称轴,求得f(x)的对称轴方程,即可得到a;(2)求得f(x)的递增区间,[1,+∞)为它的子区间,可得a的范围;(3)由函数图象开口向上,对称轴x=a,可得最大值只能在端点处取得,讨论a=0,a>0,a<0,即可得到所求最大值.21.【答案】(1)解:由初等函数性质知,在[0,+∞)上单调递减,而在[0,+∞)上单调递增,所以是[0,+∞)上的弱减函数.(2)解:不等式化为在x∈[1,3]上恒成立,则,而在[1,3]单调递增,∴的最小值为,的最大值为,∴,∴a∈[﹣1,].(3)解:由题意知方程在[0,3]上有两个不同根,①当x=0时,上式恒成立;②当x∈(0,3]时,则由题意可得方程只有一解,根据,令,则t∈(1,2],方程化为在t∈(1,2]上只有一解,所以.【考点】函数单调性的性质【解析】【分析】(1)利用初等函数的性质、弱减函数的定义,判断是[0,+∞)上的弱减函数.(2)根据题意可得,再利用函数的单调性求得函数的最值,可得a的范围.(3)根据题意,当x∈(0,3]时,方程只有一解,分离参数k,换元利用二次函数的性质,求得k的范围.。

上海市浦东新区-学年高一上学期期末考试数学试题-Word版含答案

上海市浦东新区-学年高一上学期期末考试数学试题-Word版含答案

浦东新区2016学年度第一学期教学质量检测高一数学试卷一、填空题:(本大题共12小题,每小题3分,共36分)1. 函数x y a =(0a >且1a ≠)的图象均过定点 .2. 请写出“好货不便宜”的等价命题: .3.若集合{}{}|1,|A x x B x x a =≤=≥满足{}1A B =,则实数a = .4.不等式2110x --<的解集是 .5.若()121f x x +=-,则()1f = .6.不等式302x x -≥-的解集为 . 7.若函数()()()1f x x x a =++为偶函数,则a = .8.设()()2f xg x x==,则()()f x g x ⋅= . 9.设:5x α≤-或1x ≥,:2321m x m β-≤≤+,若α是β的必要条件,则实数m 的取值范围为 .10.函数2212x y -⎛⎫= ⎪⎝⎭的值域是 .11.已知0ab >,且41a b +=,则11a b+的最大值为 . 12.已知函数()()12,14,1x a x f x a x x⎧-<⎪=⎨+≥⎪⎩在R上是增函数,则实数a 的取值范围为 .二、选择题(本大题共4小题,每题3分,共12分,每题都给出代号为A,B,C ,D 的四个结论,其中有且只有一个结论是正确的,每题答对得3分,否则一律得零分)13.函数43y x =的大致图象是( )14.已知()f x 是R 上的奇函数,且当0x >时,()1f x x =-,则0x <时,()f x =( )A.1x -- B. 1x + C. 1x -+ D. 1x -15.证券公司提示:股市有风险,入市需谨慎。

小强买股票A 连续4个跌停(一个跌停:比前一天收市价下跌10%),则至少需要几个涨停,才能不亏损(一个 涨停:比前一天收市价上涨10%).A. 3 B. 4 C . 5 D . 616.给定实数x ,定义[]x 为不大于x 的最大整数,则下列结论中正确的是( ) A. []0x x -≥B. []1x x -<C. 令()[]f x x x =-,对任意实数x ,()()1f x f x +=恒成立.D.令()[]f x x x =-,对任意实数x ,()()f x f x -=恒成立.三、解答题:本大题共5小题,共52分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分8分)已知()()332553m m m +≤-,求实数m 的取值范围.18.(本题满分10分)如图,矩形草坪AMPN 中,点C 在对角线MN 上,CD 垂直AN 于点D ,CB 垂直于AM 于点B ,3CD AB ==米,2AD BC ==米,设DN x =米,BM y=米,求这块矩形草坪AMPN 面积的最小值.19.(本题满分10分,第1小题4分,第2小题6分)设a 是实数,函数()()2.21x f x a x R =-∈+ (1)若已知()1,2为该函数图象上一点,求a 的值;(2)证明:对任意a ,()f x 在R 上为增函数.20.(本题满分12分,第1小题3分,第2小题4分,第3小题5分) 已知函数()22f x x ax a =-+.(1)若对任意的实数x 都有()()11f x f x +=-成立,求实数a 的值;(2)若()f x 在区间[)1,+∞上为单调增函数,求实数a 的取值范围; (3)当[]1,1x ∈-时,求函数()f x 的最大值.21.(本题满分12分,第1小题3分,第2小题4分,第3小题5分)在区间D 上,如果函数()f x 为减函数,而()xf x 为增函数,则称()f x 为D上的弱减函数,若()f x =. (1)判断()f x 在区间[)0,+∞上是否是弱减函数;(2)当[]1,3x ∈时,不等式42a a x x +≤≤恒成立,求实数a 的取值范围; (3)若函数()()1g x f x k x =+-在[]0,3上有两个不同的零点,求实数k 的取值范围.浦东新区2016学年度第一学期期末质量测试高一数学参考答案一、填空题1. (0,1) 2. 便宜没好货 3. 1 4. )23,21(5. 1- 6. ),3[)2,(+∞⋃-∞7. 1- 8. ) 0()0 1(∞+-∈,,, x x 9.3-≤m 或2≥m 10. (0,4] 11. 912. [1,0)-二、选择题13. A 14. B 15. C 16. D三、解答题17.(本题满分8分)解:(1)设函数53x y =,函数为R 上的单调递增函数 ………………2分 得,32+-≤+m m m ………………2分 即,03-22≤+m m ………………2分 得,0)3)(1(≤+-m m所以,m 的取值范围为:]1,3[-∈m ………………2分18.(本题满分10分) 解:263x NCD CMB xy y∠=∠⇒=⇒=………………….2分 (2)(3)AMPN S x y =++326xy x y =+++1232x y =++ ………………….3分1224≥+=………………….2分当且仅当32x y =,即2,3x y ==时取得等号。

2017-2018年上海市浦东新区高一上学期期末数学试卷和答案

2017-2018年上海市浦东新区高一上学期期末数学试卷和答案

本文为 word 版资料,可以任意编辑修改2017-2018 学年上海市浦东新区高一(上)期末数学试卷一、填空题(共 12小题,每小题 3分,满分 36 分)1.(3分)设 A={ ﹣2,﹣1,0,1,2} ,B={ x| x 2+x=0} ,则集合 A ∩B=. 2.(3分)不等式 | x ﹣1| <2的解集为 .3.(3 分)已知函数 f (x )=2x +m ,其反函数 y=f ﹣1(x )图象经过点( 3,1),则 实数 m 的值为 .4.(3分)命题“若A ∩B=B ,则 B? A ”是 (真或假)命题. 5.( 3 分)已知 x >1,则 y=x+ 的最小值为 .6.( 3 分)已知 log 32=a ,则 log 324= (结果用 a 表示)8.(3 分)已知函数 f (x ) = ,g ( x )=x ﹣1,若 F (x )=f (x )?g (x ),则 Fx )的值域是9.(3 分)已知函数 ,且 (f 2)<(f 3),则实数 k 取值范围是. 10.(3 分)已知偶函数 y=f (x )在区间 [ 0,+∞)上的解析式为 f (x )=x 2﹣2x , 则 y=f (x )在区间(﹣∞, 0)上的解析式 f ( x )=.11.(3分)已知函数(f x )=| x 2﹣2| ﹣a 有4个零点,则实数 a 的取值范围是. 12.(3分)若函数 y=f (x )的图象是折线段 ABC ,其中 A (0,0),B (1,1),C ( 2,0),则函数 y=x?(f x )(0≤x ≤2)的图象与 x7. 3 分) 已知函数 f ( x ) =, 则 f[f ( ) ] =轴围成的图形的面积为.二、选择题(共4小题,每小题 3 分,满分12分)13.(3分)已知实数a、b,且a>b,下列结论中一定成立的是()A.a2>b2 B. < 1 C.2a>2b D.14 .( 3 分)函数的图象是()16.(3 分)根据有关资料,围棋状态空间复杂度的上限 M 约为 3361,而可观测 宇宙中普通物质的原子总数 N 为 1080,则下列各数中与 最接近的是( ) A .1033 B .1053 C .1073 D .1093三、解答题(共 5 小题,满分 52 分)17.(8 分)已知 a >0,试比较 与 的值的大小.18.(10 分)已知集合 A={x| +1≤0} ,B={ x| ( )a ?2x =4} ,若 A ∪B=A ,求实数 a 的取值范围.19.(10 分)判断并证明函数 f (x )= 在区间(﹣ 1,0)上的单调性.20.(10 分)如图,在半径为 40cm 的半圆( O 为圆心)形铁皮上截取一块矩形 材料 ABCD ,其中 A ,B 在直径上, C ,D 在圆周上. (1)设 AD=x ,将矩形 ABCD 的面积 y 表示为 x 的函数,并写出定义域( 2)应怎样截取,才能使矩形 ABCD 的面积最大?最大面积是多少?15.( 3 分)函数 f的取值范围是(x )=x 2+2 a ﹣1)x+2 在(﹣∞, 4] 上是减函数,则实数a A . a=5 B . a ≥ 5 C . a=﹣3 D . a ≤﹣3C21.(14 分)已知函数f(x)=log a x+b(a>0,a≠1)的图象经过点(8,2)和第 2 页(共13 页)(1,﹣1)(1)求 f (x)的解析式(2)若[ f(x)]2=3f(x),求实数x的值(3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值,及取最小值时x 的值.2017-2018 学年上海市浦东新区高一(上)期末数学试卷参考答案与试题解析一、填空题(共12小题,每小题3分,满分36 分)1.(3 分)设A={﹣2,﹣1,0,1,2},B={x| x2+x=0} ,则集合A∩B= {﹣1,0} .【解答】解:A={﹣2,﹣1,0,1,2} ,B={ x| x2+x=0} ={ x| x=0或x=﹣1}={﹣1,0},则集合A∩B={ ﹣1,0}.故答案为:{ ﹣1,0} .2.(3分)不等式| x﹣1| <2的解集为(﹣1,3).【解答】解:由不等式| x﹣1|<2 可得﹣2<x﹣1<2,∴﹣1<x< 3,故不等式|x﹣1|<2 的解集为(﹣1,3),故答案为:(﹣1,3).3.(3 分)已知函数f(x)=2x+m,其反函数y=f﹣1(x)图象经过点(3,1),则实数m 的值为 1 .【解答】解:∵其反函数y=f﹣1(x)的图象经过点(3,1),∴函数 f (x)=2x+m 经过点(1,3),∴ 2+m=3∴m=1,故答案为:1.4.(3分)命题“若A∩B=B,则B? A”是真(真或假)命题.【解答】解:∵ A∩B=B,∴B? A,∴命题“若A∩B=B,则B? A”是真命题.故答案为:真.5.(3分)已知 x >1,则 y=x+ 的最小值为 3【解答】 解:∵ x >1,∴x ﹣1>0,∴y=x+ =(x ﹣1)+ +1+1=3,当且仅当 x=2 时取等号.则 y=x+ 的最小值为 3.故答案为: 3.6.( 3 分)已知 log 32=a ,则 log 324= 1+3a (结果用 a 表示) 【解答】 解: log 32=a ,则 log 324==1+3log 32=1+3a .故答案为: 1+3a . ,则 f[f ( )] = ﹣7【解答】 解:由分段函数的表达式得 f( ) =l 则 f (﹣ 2)=(﹣2)3+1=﹣8+1=﹣7, 故答案为:﹣ 7 8.(3 分)已知函数 f (x ) = ,g ( x )=x ﹣1,若 F (x )=f (x )?g (x ),则 F(x )的值域是 [ 0, )∪( ,+∞) .【解答】 解:F (x )=f (x )?g (x )= ( x ﹣1)= (x ≠1),由 ,解得 x ≥﹣2且 x ≠1.∴F (x )的定义域为 { x| x ≥﹣ 2且 x ≠1},则 x+2≥ 0 且 x+2≠ 3,∴F (x )的值域是 [ 0, )∪( ,+∞). 故答案为: [ 0, )∪( ,+∞).7.(3 分)已知函数 f (x )= =﹣,9.(3 分)已知函数,且f(2)<f(3),则实数k取值范围是(﹣1,2)【解答】 解:因为函数 是幂函数,且 f (2)< f ( 3), 所以其在( 0,+∞)上是增函数,所以根据幂函数的性质,有﹣ k 2+k+2>0,即 k 2﹣k ﹣2<0, 所以﹣ 1<k <2. 故答案为(﹣ 1,2).10.(3 分)已知偶函数 y=f (x )在区间 [ 0,+∞)上的解析式为 f(x )=x 2﹣2x , .设 x < 0,则﹣ x >0, 在区间 [ 0,+∞)上的解析式为 f (x )=x 2﹣ 2x , =(﹣x )2﹣2(﹣x )=x 2+2x ,又因为 y=f ( x )为偶函数, 所以 f (x )=f (﹣ x )=x 2+2x , ,故答案为: 11.(3分)已知函数 (f x )=| x 2﹣2|﹣a 有 4 个零点,则实数 a 的取值范围是 (0, 2) .【解答】 解:令 f (x )=0得| x 2﹣2| =a , 作出 y=| x 2﹣2| 的函数图象如图所示: 则 y=f (x )在区间(﹣∞, 0)上的解析式 f ( x )= 解答】 解:因为 y=f ( x ) 所以 综上所述, f ( x )=∵f(x)=| x2﹣2|﹣a有4个零点,∴直线y=a与y=| x2﹣2| 的图象有4个交点,∴0<a<2.故答案为:(0,2).12.(3分)若函数y=f(x)的图象是折线段ABC,其中A(0,0),B(1,1),C (2,0),则函数y=x?f(x)(0≤x≤2)的图象与x 轴围成的图形的面积为 1 .【解答】解:当函数y=f(x)的图象是折线段ABC,其中A(0,0),B(1,1),C(2,0),当经过点A,B 时,即为f(x)=x,0≤ x<1,当经过点B,C 时,即为f(x)=﹣x+2,1≤x<2,∴y=x?f(x)= ,设函数y=xf(x)(0≤x≤2)的图象与x 轴围成的图形的面积为S,∴S= x2dx+ (﹣x2+2x)dx= x3| +(﹣x3+x2)| = +(﹣+4)﹣(﹣+1)=1,故答案为: 1二、选择题(共4小题,每小题 3 分,满分12分)13.(3分)已知实数a、b,且a>b,下列结论中一定成立的是()A.a2>b2 B. < 1 C.2a>2b D.【解答】解:∵函数y=2x在R上单调递增,又a>b,∴ 2a> 2b.故选: C .故选: B . 15.( 3 分)函数 f (x )=x 2+2(a ﹣1)x+2 在(﹣∞, 4] 上是减函数,则实数 a 的取值范围是( )A .a=5B .a ≥5C . a=﹣3D .a ≤﹣ 3【解答】 解:由题意可得函数的对称轴 x=1﹣a 在(﹣∞, 4] 的右侧, 1﹣a ≥4,解得 a ≤3.故选: D .16.(3 分)根据有关资料,围棋状态空间复杂度的上限 M 约为 3361,而可观测 宇宙中普通物质的原子总数 N 为 1080,则下列各数中与 最接近的是( ) A .1033 B .1053 C .1073 D .1093【解答】 解:由题意: M ≈3361,N ≈1080, 根据对数性质有: 3=10lg3≈100.48, ∴M ≈3361≈(100.48)361≈10173,∴ ≈=1093. ∴ ≈ =10 .令 x=1, 解:令 x=0,则 =1,即图象过( 0,1)点,排除 C 、D ; 则 = < 1,故排除 A14.(3 分)的图象是( )C解故选:D.三、解答题(共 5 小题,满分52 分)17.(8 分)已知a>0,试比较与的值的大小.解答】解:﹣=,,当a>1时,﹣2a<0,a2﹣1>0,则< 0,即< ;当0<a<1 时,﹣2a<0,a2﹣1< 0,则> 0,即> .综上可得a>1 时,< ;0<a<1 时,> .< < 时,> .18.(10 分)已知集合A={x| +1≤0} ,B={ x| ()a?2x=4} ,若A∪B=A,求实数 a 的取值范围.【解答】解:集合A={x| +1≤0} ={ x| ≤0} ={ x| 1≤x<2},B={x| ()a?2x=4} ={ x| 2x a=4} ={ x| x=a+2} ,由A∪ B=A,可得B? A,即有1≤a+2<2,解得﹣1≤a<0.则 a 的取值范围是[ ﹣1,0).19.(10分)判断并证明函数f(x)= 在区间(﹣1,0)上的单调性.【解答】解:根据题意,函数f(x)= 在区间(﹣1,0)上单调递增,证明如下:设﹣1<x1< x2<0,则f(x1)﹣f(x2)=又由﹣1<x1< x2<0,则x2﹣x1> 0,x2+x1<0,x12﹣1<0,x22﹣1<0,则有f(x1)﹣f(x2)< 0,则函数f(x)= 在区间(﹣1,0)上单调递增.20.(10分)如图,在半径为40cm的半圆(O为圆心)形铁皮上截取一块矩形材料ABCD,其中A,B在直径上,C,D在圆周上.(1)设AD=x,将矩形ABCD的面积y表示为x 的函数,并写出定义域(2)应怎样截取,才能使矩形ABCD的面积最大?最大面积是多少?【解答】解:(1)AB=2OA=2 =2 ,∴y=f(x)=2x ,x∈(0,40).(2)y2=4x2(1600﹣x2)≤ 4×()2=16002,即y≤ 1600,当且仅当x=20 时取等号.∴截取AD=20 时,才能使矩形材料ABCD的面积最大,最大面积为1600cm2.21.(14 分)已知函数f(x)=log a x+b(a>0,a≠1)的图象经过点(8,2)和(1,﹣1)(1)求 f (x)的解析式(2)若[ f(x)]2=3f(x),求实数x的值(3)令y=g(x)=2f(x+1)﹣f(x),求y=g(x)的最小值,及取最小值时x 的值.【解答】解:(1)由题可知:f(8)=log a8+b=2,f (1)=log a1+b=﹣1,解得:a=2,b=﹣1,所以 f (x)=log2x﹣1,x>0;(2)由[f(x)]2=3f(x)可知f(x)=0或f(x)=3,又由(1)可知log2x﹣1=0 或log2x﹣1=3,解得:x=2 或x=16;(3)由(1)可知y=g(x)=2f(x+1)﹣f(x)=2[log2(x+1)﹣1]﹣(log2x﹣1)= ﹣1≥log2(2+2)﹣1=1,当且仅当即x=1 时取等号,所以,当x=1 时g(x)取得最小值1.赠送—高中数学必修 1 知识点【1.1.1 】集合的含义与表示1)集合的概念集合中的元素具有确定性、互异性和无序性 .2)常用数集及其记法N 表示自然数集,N 或N 表示正整数集,Z 表示整数集,Q 表示有理数集,R表示实数集 .3)集合与元素间的关系对象a 与集合M 的关系是a M ,或者a M ,两者必居其一 .4)集合的表示法①自然语言法:用文字叙述的形式来描述集合 . ②列举法:把集合中的元素一一列举出来,写在大括号内表示集合 .③描述法: { x| x具有的性质 } ,其中x为集合的代表元素 . ④图示法:用数轴或韦恩图来表示集合 .5)集合的分类①含有有限个元素的集合叫做有限集 . ②含有无限个元素的集合叫做无限集 . ③不含有任何元素的集合叫做空集().【 1.1.2 】集合间的基本关系6)子集、真子集、集合相等7)已知集合A有n(n 1)个元素,则它有2n个子集,它有2n 1个真子集,它有2n 1个非空子集,它有2n 2 非空真子集1.1.3 】集合的基本运算8)交集、并集、补集【补充知识】含绝对值的不等式与一元二次不等式的解法1)含绝对值的不等式的解法| x | a(a 0) x| x a 或 x a}| ax b | c,| ax b | c (c 0)把 ax b 看 成 一 个 整 体 , 化 成 |x | a ,| x | a( a 0) 型不等式来求解2)一元二次不等式的解法判别式b 2 4ac2ax 2bx c 0(a 0)的解集一元二次方程2ax 2bx c 0(a 0)的根2 ax 2bx c 0(a 0)的解集二次函数2y ax bx c(a 0)的图象 x1,2b b 24ac 2a其中x 1 x 2 ){x|x x 1或 x x 2} x1 x2{x|xb 2a2ba}无实根{x| x 1 x x 2}。

2016-2017学年上海市上海中学高一上学期期末考数学试卷含详解

2016-2017学年上海市上海中学高一上学期期末考数学试卷含详解

上海中学2016学年第一学期高一期末试卷一、填空题(本大题共有12题,满分36分)考生应在答题纸相应編号的空格内直接填写结果,毎填对得3分.1.函数2()lg(31)f x x =+的定义域是__________.2.函数2()(1)f x x x =的反函数为1()f x -=______.3.若幂函数()f x 的图像经过点127,9⎛⎫ ⎪⎝⎭,则该函数解析式为()f x =______.4.若对任意不等于1的正数a ,函数2()3x f x a -=-的图象都过点P ,则点P 的坐标是______.5.已知2()f x ax bx =+是定义在[]3,2a a -上的偶函数,那么=a ______,b =______.6.方程224log (1)log (1)5x x +++=的解集为_________________.7.已知符号函数1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则函数()()sgn sgn y x x =+的值域为______.8.已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =+,则函数()f x 的解析式为()f x =______.9.函数2650.3x x y -+=的单调增区间为______.10.设函数()y f x =存在反函数1()f x -,若满足1()()f x f x -=恒成立,则称()f x 为“自反函数”,如函数()f x x =,()g x b x =-,()(0)kh x k x =≠等都是“自反函数”,试写出一个不同于上述例子的“自反函数”y =______.11.方程2210x x +-=的解可视为函数2y x =+的图像与函数1y x =的图像交点的横坐标,若方程440x ax +-=的各个实根1x ,2x ,L ,(4)k x k 所对应的点4,i i x x ⎛⎫ ⎪⎝⎭(1,2,,)i k = 均在直线y x =的同侧,则实数a 的取值范围是______.12.对于函数()y f x =,若存在定义域D 内某个区间[,]a b ,使得()y f x =在[,]a b 上的值域也是[,]a b ,则称函数()y f x =在定义域D 上封闭.如果函数()(0)1||kxf x k x =≠+在R 上封闭,那么实数k 的取值范围是______.二、选择题(本大题共有4题,满分16分)每题有且仅有一个正确答案,考生应在答题纸的相应编号的空格内填写答案,每题填对得4分,否则一律得零分.13.已知3()1(0)f x ax bx ab =++≠,若(2017)f k =,则(2017)f -=A.k B.k - C.1k - D.2k-14.定义在R 上的函数()y f x =在区间(,2)-∞上是增函数,且函数(2)y f x =+的图像关于直线1x =对称,则()A.(1)(5)f f <B.(1)(5)f f >C.(1)(5)f f = D.(0)(5)f f =15.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油16.设函数()22,0log ,0x x f x x x ⎧+≤⎪=⎨⎪⎩,若关于x 的方程()f x a =有四个不同的解1234,,,x x x x ,且1234x x x x <<<,则()3122341x x x x x ++的取值范围是()A.()3,∞-+ B.(),3-∞ C.[)3,3- D.(]3,3-三、解答题(本大题共有5题,满分48分)解答下列各题必须在答题纸相应編号的相应区域內写出必要的步骤.17.在平面直角坐标系中,作出下列函数的图像.(1)13y x =;(2)||112x y ⎛⎫=- ⎪⎝⎭.18.已知集合{}226|310330,xx D x x +=-⋅+∈R ,求函数2()log ()22x f x x =⋅∈D 的值域.19.设函数()x xf x ka a -=-(a>0且a≠1)是奇函数.(1)求常数k 的值;(2)若已知f (1)=,且函数22()2()x x g x a a mf x -=+-在区间[1,+∞])上的最小值为—2,求实数m 的值.20.已知函数()||1m f x x x=+-.(1)当2m =时,判断()f x 在(,0)-∞上的单调性并证明;(2)若对任意x R ∈,不等式(2)0x f >恒成立,求m 的取值范围;(3)讨论函数()y f x =的零点个数.21.已知a ∈R ,函数2()log [(3)34]f x a x a =-+-.(1)当2a =时,解不等式10f x ⎛⎫<⎪⎝⎭;(2)若函数()24y f x x =-的值域为R ,求a 的取值范围;(3)若关于x 的方程21()log 20f x a x ⎛⎫-+=⎪⎝⎭的解集中恰好只有一个元素,求a 的取值范围.上海中学2016学年第一学期高一期末试卷一、填空题(本大题共有12题,满分36分)考生应在答题纸相应編号的空格内直接填写结果,毎填对得3分.1.函数2()lg(31)f x x =+的定义域是__________.【答案】1,13⎛⎫- ⎪⎝⎭【分析】根据函数的解析式,列出使解析式有意义的不等式组,求出解集即可.【详解】要使函数()f x=()2lg 31x +有意义,则10310x x ->⎧⎨+>⎩,解得113x -<<,即函数()f x()2lg 31x +的定义域为1,13⎛⎫- ⎪⎝⎭.故答案为1,13⎛⎫- ⎪⎝⎭.【点睛】本题考查了根据函数解析式求定义域的应用问题,是基础题目.2.函数2()(1)f x x x =的反函数为1()fx -=______.1)x ≥【分析】由2y x =解出x =再交换,x y 的位置,注明定义域即可得到反函数.【详解】由2y x =且1x ≥得x =,所以1()1)f x x -=≥.故答案为1)x ≥.【点睛】本题考查了求反函数,属于基础题.3.若幂函数()f x 的图像经过点127,9⎛⎫ ⎪⎝⎭,则该函数解析式为()f x =______.【答案】23x -【分析】设幂函数()f x x α=,由1(27)9f =可解得.【详解】设幂函数()f x x α=,依题意可得1(27)9f =,所以1279α=,解得23α=-.所以()f x =23x -.故答案为:23x -【点睛】本题考查了幂函数的解析式,属于基础题.4.若对任意不等于1的正数a ,函数2()3x f x a -=-的图象都过点P ,则点P 的坐标是______.【答案】()2,2-【分析】根据指数函数x y a =的图象恒过定点(0,1)以及图象的平移变换可得答案.【详解】因为函数x y a =的图象恒过定点(0,1),所以将函数x y a =的图象向右平移2个单位,向下平移3个单位后所得函数23x y a -=-的图象恒过定点(2,2)-,所以点P 的坐标为(2,2)-.故答案为:(2,2)-.【点睛】本题考查了指数型函数过定点,函数图象的平移变换,属于基础题.5.已知2()f x ax bx =+是定义在[]3,2a a -上的偶函数,那么=a ______,b =______.【答案】①.1②.0【分析】由题可得定义域关于原点O 对称,所以321a a a -=-⇒=,再根据偶函数的定义得0b =.【详解】因为2()f x ax bx =+是定义在[]3,2a a -上的偶函数,所以32a a -=-且()()f x f x -=恒成立,所以1a =,22ax bx ax bx -=+恒成立,所以1a =,20bx =恒成立,所以1,0a b ==.故答案为(1)1;(2)0【点睛】考查了函数奇偶性的定义以及奇偶函数的定义域特征,属于基础题.6.方程224log (1)log (1)5x x +++=的解集为_________________.【答案】{}3【分析】直接利用对数运算公式化简得到答案.【详解】将224log (1)log (1)5x x +++=化简为:2212log (1)log (1)52x x +++=即2log (1)2,3x x +==故答案为{}3【点睛】本题考查了对数方程,属于简单题型.7.已知符号函数1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则函数()()sgn sgn y x x =+的值域为______.【答案】{}0,2【分析】分三段求出各段的值域,再相并即可得到答案.【详解】当0x >时,sgn()|sgn()|112y x x =+=+=,当0x =时,sgn()|sgn()|000y x x =+=+=,当0x <时,sgn()|sgn()|1|1|2y x x =-+=+-=,所以函数()()sgn sgn y x x =+的值域为:{0,2}.故答案为{0,2}.【点睛】本题考查了分段函数的值域,属于基础题.8.已知()f x 是定义在R 上的奇函数,当0x <时,2()f x x x =+,则函数()f x 的解析式为()f x =______.【答案】22,0,0x x x x x x ⎧-+≥⎨+<⎩【分析】根据()f x 为奇函数,求出0x =,0x >的解析式后,可得分段函数()f x 的解析式.【详解】因为()f x 是定义在R 上的奇函数,所以()()f x f x -=-,当0x =时,(0)(0)f f =-,所以(0)0f =,当0x >时,222()()[()()]()f x f x x x x x x x =--=--+-=--=-+,所以()f x =22,0,0x x x x x x ⎧-+≥⎨+<⎩.故答案为:22,0,0x x x x x x ⎧-+≥⎨+<⎩.【点睛】本题考查了函数的奇函数的性质,分段函数的解析式,属于基础题.9.函数2650.3xx y -+=的单调增区间为______.【答案】(,1]-∞和[3,5].【分析】首先通过函数图象讨论2|65|y x x =-+的递减区间,再根据指数函数0.3x y =递减以及复合函数的同增异减原则可得.【详解】作出函数2|65|y x x =-+的图象如图所示:观察函数图象可知,函数2|65|y x x =-+的递增区间为[1,3]和[5,)+∞,递减区间为(,1]-∞和[3,5],因为指数函数0.3x y =在定义域内递减,根据复合函数的同增异减原则可得2650.3x x y -+=的递增区间为(,1]-∞和[3,5].故答案为:(,1]-∞和[3,5].【点睛】本题考查了二次函数,指数函数的单调性,复合函数的同增异减原则,属于基础题.10.设函数()y f x =存在反函数1()f x -,若满足1()()f x f x -=恒成立,则称()f x 为“自反函数”,如函数()f x x =,()g x b x =-,()(0)kh x k x=≠等都是“自反函数”,试写出一个不同于上述例子的“自反函数”y =______.【答案】1)x ≤≤【分析】根据题意,只要写出一个满足条件的函数即可,如1)y x =≤≤.【详解】根据题意,设1)y x =≤≤,则221y x =-,所以221x y =-,所以x =(01y ≤≤),交换,x y 得反函数1)y x =≤≤.故答案为:1)x ≤≤.【点睛】本题考查了求反函数的解析式,属于基础题.11.方程2210x x +-=的解可视为函数2y x =+的图像与函数1y x=的图像交点的横坐标,若方程440x ax +-=的各个实根1x ,2x ,L ,(4)k x k 所对应的点4,i i x x ⎛⎫⎪⎝⎭(1,2,,)i k = 均在直线y x =的同侧,则实数a 的取值范围是______.【答案】()(),66,-∞-+∞ 【分析】原方程等价于34x a x +=,分别作出3y x a =+和4y x=的图象,分0a >和a<0讨论,利用数形结合即可得到结论.【详解】因为方程440x ax +-=等价于34x a x+=,原方程的实根是3y x a =+与曲线4y x=的交点的横坐标,曲线3y x a =+是由曲线3y x =纵向平移||a 个单位而得到,若交点4,i i x x ⎛⎫ ⎪⎝⎭(1,2,,)i k = 均在直线y x =的同侧,因y x =与4y x =的交点为(2,2),(2,2)--,所以结合图象可得:3022a x a x >⎧⎪+>-⎨⎪≥-⎩或322a x a x <⎧⎪+<⎨⎪≤⎩恒成立,所以32a x >--在[2,)-+∞上恒成立,或32a x <-+在(,2]-∞上恒成立,所以3max (2)a x >--=3(2)26---=,或33min (2)226a x <-+=-+=-,即实数a 的取值范围是()(),66,-∞-+∞ .故答案为:()(),66,-∞-+∞ .【点睛】本题考查了数形结合思想,等价转化思想,函数与方程,幂函数的图象,属于中档题.12.对于函数()y f x =,若存在定义域D 内某个区间[,]a b ,使得()y f x =在[,]a b 上的值域也是[,]a b ,则称函数()y f x =在定义域D 上封闭.如果函数()(0)1||kxf x k x =≠+在R 上封闭,那么实数k 的取值范围是______.【答案】()(),11,-∞-+∞U 【分析】先用定义证明函数1||x y x =+在[0,)+∞上递增,再根据奇偶性可得函数1||xy x =+在R 上为增函数,然后讨论0k >和0k <可得()f x 的单调性,当0k >时,依题意可得,a b 是1||kxx x =+的两个不同的实数解,由此可解得1k >.当0k <时,依题意可得()()f a bf b a =⎧⎨=⎩,由此可推出1k <-.【详解】.设120x x ≤<,则121221121212(1)(1)11(1)(1)x x x x x x y y x x x x +-+-=-=++++1212(1)(1)x x x x -=++,因为120x x ≤<,所以12y y <,所以函数1||xy x =+在[0,)+∞上递增,又函数1||x y x =+为奇函数,所以函数1||xy x =+在R 上为增函数,当0k >时,函数()1||kx f x x =+为增函数,因为()y f x =在[,]a b 上的值域也是[,]a b ,所以()()f a af b b =⎧⎨=⎩,即11kaa a kb b b⎧=⎪+⎪⎨⎪=⎪+⎩,即,a b 是1||kxx x =+的两个不同的实数解,解得0x =或||1x k =-,由||10x k =->得1k >,当0k <时,()1||kx f x x =+为递减函数,因为()y f x =在[,]a b 上的值域也是[,]a b ,所以()()f a b f b a =⎧⎨=⎩,即11kaba kb ab⎧=⎪+⎪⎨⎪=⎪+⎩,因为0,k a b <<,所以0a b <<,所以ka b abkb a ab =-⎧⎨=+⎩,所以()k a b a b +=+,因为0k <,所以0a b +=,即=-b a ,所以()ka a a a =---,所以1011k a =-<-=-,即1k <-.综上所述:1k <-或1k >.故答案为:()(),11,-∞-+∞U .【点睛】本题考查了对新概念的理解转化能力,函数的单调性,奇偶性,函数的定义域和值域,本题是较难题.二、选择题(本大题共有4题,满分16分)每题有且仅有一个正确答案,考生应在答题纸的相应编号的空格内填写答案,每题填对得4分,否则一律得零分.13.已知3()1(0)f x ax bx ab =++≠,若(2017)f k =,则(2017)f -=A.kB.k -C.1k -D.2k-【答案】D【分析】由(2017)f k =可得3201720171a b k ++=,即3(20172017)1a b k -+=-,将其代入到(2017)f -=3201720171a b --+即可得到答案.【详解】因为3()1(0)f x ax bx ab =++≠,所以3201720171a b k ++=,即3(20172017)1a b k -+=-,所以(2017)f -=3201720171a b --+=3(20172017)1112a b k k -++=-+=-.故选:D.【点睛】本题考查了整体替换法,求函数值,属于基础题.14.定义在R 上的函数()y f x =在区间(,2)-∞上是增函数,且函数(2)y f x =+的图像关于直线1x =对称,则()A.(1)(5)f f <B.(1)(5)f f >C.(1)(5)f f =D.(0)(5)f f =【答案】C【分析】根据平移变换可得,()y f x =的图像关于直线3x =对称,根据对称性可得答案.【详解】因为(2)y f x =+的图像关于直线1x =对称,所以()y f x =的图像关于直线3x =对称,故(1)(5)f f =.故选:C.【点睛】本题考查了函数的图象的平移变换以及函数的对称性,本题为基础题.15.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/小时.相同条件下,在该市用丙车比用乙车更省油【答案】D【详解】解:对于A ,由图象可知当速度大于40km /h 时,乙车的燃油效率大于5km /L ,∴当速度大于40km /h 时,消耗1升汽油,乙车的行驶距离大于5km ,故A 错误;对于B ,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B 错误;对于C ,由图象可知当速度为80km /h 时,甲车的燃油效率为10km /L ,即甲车行驶10km 时,耗油1升,故行驶1小时,路程为80km ,燃油为8升,故C 错误;对于D ,由图象可知当速度小于80km /h 时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,故D 正确故选D .考点:1、数学建模能力;2、阅读能力及化归思想.16.设函数()22,0log ,0x x f x x x ⎧+≤⎪=⎨⎪⎩,若关于x 的方程()f x a =有四个不同的解1234,,,x x x x ,且1234x x x x <<<,则()3122341x x x x x ++的取值范围是()A.()3,∞-+ B.(),3-∞ C.[)3,3- D.(]3,3-【答案】D【分析】由题意,根据图象得到12x a +=-,22x a +=,23log x a =-,24log x a =,(02)a <≤,推出312234()2214a a x x x x x ++=-.令2a t =,(]1,4t ∈,而函数2y t t=-.即可求解.【详解】()3122234414422222a a a a a x x x x x --++=-⋅+=-⋅【点睛】方法点睛:已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.三、解答题(本大题共有5题,满分48分)解答下列各题必须在答题纸相应編号的相应区域內写出必要的步骤.17.在平面直角坐标系中,作出下列函数的图像.(1)13y x =;(2)||112x y ⎛⎫=- ⎪⎝⎭.【答案】(1)见解析,(2)见解析【分析】(1)直接作出幂函数的图象;(2)根据图像变换规律将指数函数先关于y 轴对称,再向下平移一个单位即可.【详解】(1)幂函数13y x =的图象如下:(2)先作出1()2x y =的图象,再去掉y 轴左边图象,保留y 轴右边图象,并将y 轴右边图象翻折到左边,然后向下平移一个单位即可得到.图象如下:【点睛】考查了幂函数、指数函数的图像以及图像的变换,本题为基础题.18.已知集合{}226|310330,x x D x x +=-⋅+∈R ,求函数22()log ()22x x f x x =⋅∈D 的值域.【答案】1,04⎡⎤-⎢⎥⎣⎦【分析】首先解指数不等式得到[2,4]D =,再化简函数表达式,换元变成二次函数求值域可得到答案.【详解】由226310330x x +-⋅+,得2(3)9037290x x -⋅+≤,所以(39)(381)0x x --≤,所以9381x ≤≤,所以24x ≤≤.所以[2,4]D =因为22()log [2,4])22x x f x x =⋅∈,所以()()22()log 1log 2y f x x x ==--,令2log t x =,因为[2,4]x ∈,所以t ∈[1,2],则232y t t =-+,t ∈[1,2],所以32t =时,min 14y =-,1t =或2t =时,max 0y =,函数2()log [2,4])22x f x x =⋅∈的值域为1[,0]4-.【点睛】本题考查了指数不等式,对数的运算以及复合函数的值域问题.本题为中档题,19.设函数()x x f x ka a -=-(a>0且a≠1)是奇函数.(1)求常数k 的值;(2)若已知f (1)=,且函数22()2()x x g x a a mf x -=+-在区间[1,+∞])上的最小值为—2,求实数m 的值.【答案】(1);(2).【详解】试卷分析:(1)函数()x x f x ka a -=-的定义域为R ,∵函数()x x f x ka a -=-(a>0且a≠1)是奇函数∴f (0)=k -1=0,∴k=1.(2)∵f (1)=,∴=,解得a=3或∵a>0且a≠1,∴a=3g (x )=32x +3-2x -2m (3x -3-x )=(3x -3-x )2-2m (3x -3-x )+2(x≥1)令3x -3-x =t (t≥),则y=t 2-2mt+2=(t—m )2—m 2+2)当m≥时,min y =—m 2+2=-2,解得m=2或m=-2,舍去当m<时,min y =()2-2m×+2=-2,解得m=∴m=.试卷解析:(1)函数()x x f x ka a -=-的定义域为R∵函数()x x f x ka a -=-(a>0且a≠1)是奇函数∴f (0)=k -1=0∴k=1(2)∵f (1)=∴=,解得a=3或∵a>0且a≠1∴a=3g (x )=32x +3-2x -2m (3x -3-x )=(3x -3-x )2-2m (3x -3-x )+2(x≥1)令3x -3-x =t (t≥)则y=t 2-2mt+2=(t—m )2—m 2+2当m≥时,min y =—m 2+2=-2,解得m=2或m=-2,舍去当m<时,min y =()2-2m×+2=-2,解得m=∴m=考点:指数函数的应用.20.已知函数()||1m f x x x=+-.(1)当2m =时,判断()f x 在(,0)-∞上的单调性并证明;(2)若对任意x R ∈,不等式(2)0x f >恒成立,求m 的取值范围;(3)讨论函数()y f x =的零点个数.【答案】(1)()f x 在(,0)-∞上的单调递减,证明见解析;(2)14m >;(3)见解析.【分析】(1)当2m =时,利用函数单调性的定义可判断()f x 在(,0)-∞上的单调性,并用定义法证明.(2)利用分离参数的方法将不等式(2)0x f >恒成立,化为22(2)x x m >-,然后求最值即可.(3)函数()y f x =的零点个数,即方程||(0)m x x x x =-+≠的实根的个数,可数形结合分析得出答案.【详解】(1)当2m =,0x <时,2()1f x x x=-+-在(,0)-∞单调递减.证明:任取120x x <<,12121222()()1(1)f x f x x x x x -=-+---+-211222()+()x x x x =--=2121122()()+x x x x x x -=-212121+2=()x x x x x x -⋅由120x x <<,有210x x ->,210x x >,所以212121+2()0x x x x x x -⋅>,即12())0(f x f x ->.则12()()f x f x >,所以当2m =时,()f x 在(,0)-∞上的单调递减.(2)不等式(2)0x f >恒成立,即|2|102x x m +->所以22(2)x x m >-在x R ∈上恒成立.而221112(2)=(2)244x x x ---+≤(当12=2x 即=1x -时取得等号),所以14m >.(3)由()0f x =即||0(0)x x x m x -+=≠,所以22(0)=(0)x x x m x x x x x x ⎧-+>=-+⎨+<⎩,设22(0)g()(0)x x x x x x x ⎧-+>=⎨+<⎩作出函数g()x的图象,如下.由图可知:当14m >或14m <-时,有1个零点;当14m =或0m =或14m =-时,有2个零点;当104m -<<或104m <<时,有3个零点;【点睛】本题考查函数单调性的判断,以及不等式恒成立问题的求解,利用参数分离的方法解决恒成立问题是基本方法,属于中档题.21.已知a ∈R ,函数2()log [(3)34]f x a x a =-+-.(1)当2a =时,解不等式10f x ⎛⎫< ⎪⎝⎭;(2)若函数()24y f x x =-的值域为R ,求a 的取值范围;(3)若关于x 的方程21()log 20f x a x ⎛⎫-+= ⎪⎝⎭的解集中恰好只有一个元素,求a 的取值范围.【答案】(1)1,12⎛⎫ ⎪⎝⎭(2)[8,)+∞(3){}1,12,32⎛⎤ ⎥⎝⎦【分析】(1)根据对数函数的单调性可解得,注意真数大于零;(2)化简得到22log (3)4(3)34y a x a x a ⎡⎤=---+-⎣⎦的值域为R ,故2(3)4(3)34a x a x a ---+-能够取到一切大于0的实数,由于二次项系数含参,故需要分类讨论,当3a =时,显然不符合题意;故只能3a >,再结合0∆≥即得答案.(3)化简对数方程得到2(3)(4)10a x a x -+--=,在120a x +>的条件下只有一个根,然后分类讨论即可得到答案.【详解】(1)2a =时,不等式10f x ⎛⎫<⎪⎝⎭等价于21o 2(l g )0x +>-,所以1021x <-<,所以112x<<,所以112x <<,所以不等式10f x ⎛⎫<⎪⎝⎭的解集为1(,1)2.(2)因为函数()24y f x x =-的值域为R ,即22log (3)4(3)34y a x a x a ⎡⎤=---+-⎣⎦的值域为R ,故2(3)4(3)34a x a x a ---+-能够取到一切大于0的实数,当3a =时,2(3)4(3)345a x a x a ---+-=,不符合题意;当3a <时,222(3)4(3)34(3)(4)34(3)(2)8a x a x a a x x a a x a ---+-=--+-=--+-8a ≤-不符合题意,当3a >时,根据二次函数的图象和性质可得216(3)4(3)(34)0a a a ∆=----≥,解得8a ≥;综上所述:a 的取值范围是[8,)+∞.(3)关于x 的方程21()log 20f x a x ⎛⎫-+= ⎪⎝⎭的解集中恰好只有一个元素,所以221log [(3)34]log (2)a x a a x -+-=+的解集中恰好只有一个元素,即120a x +>且1(3)342a x a a x-+-=+的解集中恰好只有一个元素,所以2(3)(4)10a x a x -+--=,即[(3)1](1)0a x x --+=,①当3a =时,解得=1x -,此时121650a x+=-+=>,满足题意;②当2a =时,121x x ==-,此时1230a x +=>也满足题意;③当3a ≠且2a ≠时,两根为113x a =-,21x =-,当13x a =-时,由12330a a x +=->得1a >,当=1x -时,由12210a a x +=->得12a >,因为13x a =-和=1x -只能取一个值,所以只能取=1x -,所以330a -≤且210a ->,解得112a <≤.综上所述:a 的取值范围是1(,1]{2,3}2⋃.【点睛】考查了对数不等式,复合函数的值域问题和对数方程的问题.,分类讨论思想,本题为较难题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浦东新区2016学年度第一学期教学质量检测
高一数学试卷
一、填空题:(本大题共12小题,每小题3分,共36分)
1. 函数x y a =(0a >且1a ≠)的图象均过定点 .
2. 请写出“好货不便宜”的等价命题: .
3.若集合{}{}|1,|A x x B x x a =≤=≥满足{}1A B =,则实数a = .
4.不等式2110x --<的解集是 .
5.若()121f x x +=-,则()1f = .
6.不等式302
x x -≥-的解集为 . 7.若函数()()()1f x x x a =++为偶函数,则a = .
8.设(
)(
)2
f x
g x x
==,则()()f x g x ⋅= . 9.设:5x α≤-或1x ≥,:2321m x m β-≤≤+,若α是β的必要条件,则实数m 的取值范围为 .
10.函数2212x y -⎛⎫= ⎪⎝⎭的值域是 .
11.已知0ab >,且41a b +=,则11a b
+的最大值为 . 12.已知函数()()12,14,1x a x f x a x x
⎧-<⎪=⎨+≥⎪⎩在R 上是增函数,则实数a 的取值范围
为 .
二、选择题(本大题共4小题,每题3分,共12分,每题都给出代号为A,B,C,D
的四个结论,其中有且只有一个结论是正确的,每题答对得3分,否则一律得零分)
13.函数43
y x =的大致图象是( )
14.已知()f x 是R 上的奇函数,且当0x >时,()1f x x =-,则0x <时,()f x =( )
A.1x --
B. 1x +
C. 1x -+
D. 1x -
15.证券公司提示:股市有风险,入市需谨慎。

小强买股票A 连续4个跌停(一个跌停:比前一天收市价下跌10%),则至少需要几个涨停,才能不亏损(一个 涨停:比前一天收市价上涨10%).
A. 3
B. 4
C. 5
D. 6
16.给定实数x ,定义[]x 为不大于x 的最大整数,则下列结论中正确的是( )
A. []0x x -≥
B. []1x x -<
C. 令()[]f x x x =-,对任意实数x ,()()1f x f x +=恒成立.
D.令()[]f x x x =-,对任意实数x ,()()f x f x -=恒成立.
三、解答题:本大题共5小题,共52分.解答应写出必要的文字说明或推理、验算过程.
17.(本题满分8分)
已知()()33255
3m m m +≤-,求实数m 的取值范围.
18.(本题满分10分)
如图,矩形草坪AMPN 中,点C 在对角线MN 上,CD 垂直AN 于点D ,CB 垂直
于AM 于点B ,3CD AB ==米,2AD BC ==米,设DN x =米,BM y =米,求这块矩形草坪AMPN 面积的最小值.
19.(本题满分10分,第1小题4分,第2小题6分)
设a 是实数,函数()()2.21
x f x a x R =-∈+ (1)若已知()1,2为该函数图象上一点,求a 的值;
(2)证明:对任意a ,()f x 在R 上为增函数.
20.(本题满分12分,第1小题3分,第2小题4分,第3小题5分) 已知函数()22f x x ax a =-+.
(1)若对任意的实数x 都有()()11f x f x +=-成立,求实数a 的值;
(2)若()f x 在区间[)1,+∞上为单调增函数,求实数a 的取值范围;
(3)当[]1,1x ∈-时,求函数()f x 的最大值.
21.(本题满分12分,第1小题3分,第2小题4分,第3小题5分)
在区间D 上,如果函数()f x 为减函数,而()xf x 为增函数,则称()f x 为D 上的
弱减函数,若()
f x =. (1)判断()f x 在区间[)0,+∞上是否是弱减函数;
(2)当[]1,3x ∈时,不等式4
2a a x x +≤≤恒成立,求实数a 的取值范围; (3)若函数()()1g x f x k x =+-在[]0,3上有两个不同的零点,求实数k 的取值范围.
浦东新区2016学年度第一学期期末质量测试
高一数学参考答案
一、填空题
1. (0,1)
2. 便宜没好货
3. 1
4. )23,21(
5. 1-
6. ),3[)2,(+∞⋃-∞
7. 1- 8. ) 0()0 1(∞+-∈,,, x x 9.3-≤m 或2≥m 10. (0,4]
11. 9
12. [1,0)-
二、选择题
13. A 14. B 15. C 16. D
三、解答题
17.(本题满分8分)
解:(1)设函数5
3x y =,函数为R 上的单调递增函数 ………………2分 得,32+-≤+m m m ………………2分 即,03-22≤+m m ………………2分
得,0)3)(1(≤+-m m
所以,m 的取值范围为:]1,3[-∈m ………………2分
18.(本题满分10分) 解:263x NCD CMB xy y
∠=∠⇒=⇒=………………….2分 (2)(3)AMPN S x y =++
326xy x y =+++
1232x y =++ ………………….3分
1224≥+=………………….2分
当且仅当32x y =,即2,3x y ==时取得等号。

………………….2分
面积的最小值为24平方米。

………………….1分
19. (本题满分10分,第1小题4分,第2小题6分)
解:1)28233
a a =-⇒= ………………….4分 2)证明:设任意1212,,x x R x x ∈<,………………….1分
则12()()f x f x -1222()()2121
x x a a =---++ 21222121
x x =-++ 12122(22)(21)(21)
x x x x -=++, ………………….3分 由于指数函数2x y =在R 上是增函数,且12x x <,所以1222x x <即12220x x -<,
又由20x >,得1120x +>,2120x +>,………………….1分
∴12()()0f x f x -<即12()()f x f x <,
所以,对于任意,()a f x 在R 上为增函数.…………………1分
20.(本题满分12分,第1小题3分,第2小题4分,第,3小题5分)
解:(1)由题意知函数12-)(2+=ax x x f 的对称轴为1,即1=a ………………3分
(2)函数12-)(2+=ax x x f 的图像的对称轴为直线a x =
)(x f y =在区间[1,+∞)上为单调递增函数,
得,1≤a ………………4分
(3)函数图像开口向上,对称轴a x =,
当0<a 时,1=x 时,函数取得最大值为:a x f 22)(max -= ………………2分
当0>a 时,1-=x 时,函数取得最大值为:a x f 22)(max += ………………2分
当0=a 时,1-1或=x 时,函数取得最大值为:2)(max =x f ………………1分
21. (本题满分12分,第1小题3分,第2小题4分,第3小题5分) 解:(1)由初等函数性质知x x f +=
11)(在),0[+∞上单调递减,………………1分 而x x x x x
x
x xf +-+=+-+=+=11111)1(1)(在),0[+∞上单调递增, 所以x x f +=11
)(是),0[+∞上的弱减函数………………2分
(2
)不等式化为42a a +≤≤在]3,1[∈x 上恒成立 ………………1分
则min max 42a a ⎧≤⎪⎪⎨+⎪≥⎪⎩
,………………1分 而x x
y +=1在]3,1[单调递增,所以]22,
1[-∈a ………………2分 (3)由题意知方程||11
1x k x =+-在]3,0[上有两个不同根
① 当0=x 时,上式恒成立;………………2分
② 当]3,0(∈x 时,方程||111x k x =+-
只有一解 ………………1分 x x x x x x x x x x x k +++=++⋅+⋅=+-+⋅=+-=1)1(1)11(111111)111(12 令x t +=1,则]2,1(∈t ………………1分 方程化为t t k +=21
在]2,1(∈t 上只有一解,所以)
21
,61[∈k ……1分。

相关文档
最新文档