分子荧光光谱法-课件(PPT·精·选)
合集下载
分子荧光光谱法
光致发光(Photoluminescence): 荧光和
磷光是分子吸光成为激发态分子,在返回基态时 的发光现象.
荧光:受光激发的分子从第一激发单重态的最低 振动能级回到基态所发出的辐射。
磷光: 从第一激发三重态的最低振动能级回到基 态所发出的辐射。
1~3 ;
荧光分析法的特点
★★★
因应能试
为用提样
有范供用
态.当吸收一定频率的电磁辐射发生能级跃迁时,可上升到不同激发态
的各振动能级,其中多数分子上升至第一激发单重态这一过程约需10-
15秒.
激发
2 去活化过程
激发态分子的失活: 激发态分子不稳定,它要以辐射 或无辐射跃迁的方式回到基态
☆振动驰豫 (Vibrational relaxation)
☆荧光发射(Fluorescence)
荧光分析法的应用
无机物分析 无机离子中除少数例外一般不发荧光.但很多 无机离子能怀一些有机试剂形成荧光络合物,而进行定量 测定.
生物化学及生理医学方面的应用 荧光法对于生物中许多 重要的化合物具有很多的灵敏度和较好的物效性,故广用 于生物化学分析,生理医学和临床分析.
药物分析
目前还采用荧光分光光度计作为高效液相色谱,薄层色谱 和高效毛细管电泳等的检测器,使有效的分离手段与高灵 敏度,高选择性的测定方法结合起来,可用于测定复杂的混 合物.
荧光与环境因素的关系
★温度降低会使荧光强度增大; ★PH 带有酸性或碱性取代基的芳 香化合物的荧光与pH有关; ★溶剂 溶剂极性增加有时 会使荧光强度增加,荧光波长红移; 若溶剂和荧光物质形成氢键或使荧 光物质电离状态改变,会使荧光强度 、荧光波长改变;含重原子的溶剂 (碘乙烷、四溴化碳)使荧光减弱。 ★溶解氧的存在往往使荧光强度 降低。 ★激发光的照射
磷光是分子吸光成为激发态分子,在返回基态时 的发光现象.
荧光:受光激发的分子从第一激发单重态的最低 振动能级回到基态所发出的辐射。
磷光: 从第一激发三重态的最低振动能级回到基 态所发出的辐射。
1~3 ;
荧光分析法的特点
★★★
因应能试
为用提样
有范供用
态.当吸收一定频率的电磁辐射发生能级跃迁时,可上升到不同激发态
的各振动能级,其中多数分子上升至第一激发单重态这一过程约需10-
15秒.
激发
2 去活化过程
激发态分子的失活: 激发态分子不稳定,它要以辐射 或无辐射跃迁的方式回到基态
☆振动驰豫 (Vibrational relaxation)
☆荧光发射(Fluorescence)
荧光分析法的应用
无机物分析 无机离子中除少数例外一般不发荧光.但很多 无机离子能怀一些有机试剂形成荧光络合物,而进行定量 测定.
生物化学及生理医学方面的应用 荧光法对于生物中许多 重要的化合物具有很多的灵敏度和较好的物效性,故广用 于生物化学分析,生理医学和临床分析.
药物分析
目前还采用荧光分光光度计作为高效液相色谱,薄层色谱 和高效毛细管电泳等的检测器,使有效的分离手段与高灵 敏度,高选择性的测定方法结合起来,可用于测定复杂的混 合物.
荧光与环境因素的关系
★温度降低会使荧光强度增大; ★PH 带有酸性或碱性取代基的芳 香化合物的荧光与pH有关; ★溶剂 溶剂极性增加有时 会使荧光强度增加,荧光波长红移; 若溶剂和荧光物质形成氢键或使荧 光物质电离状态改变,会使荧光强度 、荧光波长改变;含重原子的溶剂 (碘乙烷、四溴化碳)使荧光减弱。 ★溶解氧的存在往往使荧光强度 降低。 ★激发光的照射
《荧光光谱法》PPT课件
O
CC
3b
Counts
60000 40000
O C 2H 5
20000
0 300 350 400 450 500 550 600
Wavelength (nm)
精选课件ppt
8
从图可看出激发光谱同荧光光谱大致成
镜相对称 a.荧光光谱(发射光谱)形状与基态S0振能级的分布情况(即能量间
隔情况)有关 b. 激发光谱(吸收谱)形状与激发态S1振动能级的分布有关 c. S0、、S1态中振动能级的分布是相似的(说明峰形状相 似)
精选课件ppt
33
一般情况下,多采用相对灵敏度来表示。相对灵敏度是以喹啉硫酸氢 盐的0.05mol/L硫酸溶液为标准,并定为1,然后与相同浓度荧光物 质的荧光强度比较,可求该物质的相对灵敏度。
精选课件ppt
34
3. 荧光分析法的选择性 很多分子在紫外可见区有吸收,但其中
只有一部分能再发射荧光或磷光,故荧光法 固有干扰很少,选择性较好。
b. 荧光物质的激发态分子M*与基态分子M形成激发态的二聚体(M*M)。
c. 基态的荧光物质分子的缔合。荧光自猝灭是与浓度有关的效应,因而 通过在荧光测定前稀释溶液的办法,可避免这一现象的发生,或减 小它所产生的影响。
精选课件ppt
23
三、发光强度同浓度的关系
荧光强度If正比于吸收的光量Ia与荧光量子产
11
❖ 3、降落到第一电子激发态的最低振动能级的分子,继续降落到基态 的各个不同振动能级,同时发射出相应的光量子,这就是荧光;
❖ 4、到达基态的各个不同振动能级的分子,再通过无辐射跃迁最后回 到基态的最低振动能级。
精选课件ppt
12
分子产生荧光必须具备两个条件:
分子荧光光谱法
激发态分子在发射荧光之前,很快经历了振动松 弛或者内转化的过程损失了一部分激发能,致使 发射向对于激发总是有一定的损失。
荧光光谱 磷光光谱
辐射跃迁只使激发态分子衰变到基态的不同振动 能级,然后通过振动松弛进一步损失能量。
图2 萘的激发光谱I、荧光II和 磷光光谱III
荧光与分子结构的关系
具有大的共轭π键的结构 化合物
ϕF
λex/nm
λem/nm
含有π→π*跃迁能级的芳 苯
0.11
205
278
香族化合物的荧光最强芳环 蒽
0.29
286
321
越大其荧光峰越移向长波长 萘
0.46
365
400
方向,且荧光长度往往比较
丁省
0.60
390
480
强。
戊省
0.52
580
640
取代基的影响
给电子基团,如-0H、-OR、 -NH2、-CN、-NR2等,使 荧光增强。
分子荧光光谱法
molecular fluorescence analysis
CONTENTS
01 概述/ 02 荧பைடு நூலகம்分析基本原理/ 03 荧光分析仪器 /
04 检测结果与分析/ 05 对比与发展 /
Part 01
概述
overview
原子光谱法 分子光谱法
主要研究内容
The Main Contents Of The Research
系间窜越 isc
03 不同多重态的两个电子态间的非辐射跃迁过 程(例如S1---T1,T1---S0)
内转换
振动弛豫
S2
系间跨越
S1
能
量
荧光光谱 磷光光谱
辐射跃迁只使激发态分子衰变到基态的不同振动 能级,然后通过振动松弛进一步损失能量。
图2 萘的激发光谱I、荧光II和 磷光光谱III
荧光与分子结构的关系
具有大的共轭π键的结构 化合物
ϕF
λex/nm
λem/nm
含有π→π*跃迁能级的芳 苯
0.11
205
278
香族化合物的荧光最强芳环 蒽
0.29
286
321
越大其荧光峰越移向长波长 萘
0.46
365
400
方向,且荧光长度往往比较
丁省
0.60
390
480
强。
戊省
0.52
580
640
取代基的影响
给电子基团,如-0H、-OR、 -NH2、-CN、-NR2等,使 荧光增强。
分子荧光光谱法
molecular fluorescence analysis
CONTENTS
01 概述/ 02 荧பைடு நூலகம்分析基本原理/ 03 荧光分析仪器 /
04 检测结果与分析/ 05 对比与发展 /
Part 01
概述
overview
原子光谱法 分子光谱法
主要研究内容
The Main Contents Of The Research
系间窜越 isc
03 不同多重态的两个电子态间的非辐射跃迁过 程(例如S1---T1,T1---S0)
内转换
振动弛豫
S2
系间跨越
S1
能
量
第十一讲义章分子荧光与分子磷光光谱法
电子通常的情况下分子的电子处于最低的能级状态(大多数有机物的分子 的基态是处于单重态的)。用S0表示。若分子受激发,其电子从基态的电子能 级跃迁到较高的电子能级,即激发态,用S1, S2……表示。
(一)荧光和磷光的产生
处于分子基态单重态中的电子对,其自旋方向相反,当分子吸收能量,若 电子在跃迁过程中不发生自旋方向的改变,通常跃迁至第一激发态单重态轨道 上,也可能跃迁至能级更高的单重态上。这种跃迁是符合光谱选律的。
11
(二)激发光谱曲线和荧光、磷光光谱曲线 荧光和磷光均为光致发光,因此必须选择合适的激发光波长,可根 据它们的激发光谱曲线来确定。绘制激发光谱曲线时,固定测量波 长为荧光(或磷光)最大发射波长,然后改变激发波长,根据所测 得的荧光(磷光)强度与激发光波长的关系,即可绘制 激发光谱 曲线。
应该指出,激发光谱曲线与其吸收曲线可能相同,但激发光谱 曲线是荧光强度与波长的关系曲线,吸收曲线则是吸光度与波长的 关系曲线,两者在性质上是不同的。当然,在激发光谱曲线的最大 波长处,处于激发态的分子数目是最多的,这可说明所吸收的光能 量也是最多的,自然能产生最强的荧光。
处于激发态的电子,通常以辐射跃迁方式或无辐射跃迁方式 再回到基态。辐射跃迁主要涉及到荧光、延迟荧光或磷光的发射; 无辐射跃迁则是指以热的形式辐射其多余的能量,包括振动弛豫 (VR)、内部转移(IR)、系间窜跃(IX)及外部转移(EC) 等,各种跃迁方式发生的可能性及程度,与荧光物质本身的结构 及激发时的物理和化学环境等因素有关。
下面结合荧光和磷光的产生过程,进一步说明各种能量传递 方式在其中所起的作用。
设处于基态单重态中的电子吸收波长为λ1和λ2的辐射光之后, 分别激发至第二单重态S2及第一单重态S1。
4
(一)荧光和磷光的产生
处于分子基态单重态中的电子对,其自旋方向相反,当分子吸收能量,若 电子在跃迁过程中不发生自旋方向的改变,通常跃迁至第一激发态单重态轨道 上,也可能跃迁至能级更高的单重态上。这种跃迁是符合光谱选律的。
11
(二)激发光谱曲线和荧光、磷光光谱曲线 荧光和磷光均为光致发光,因此必须选择合适的激发光波长,可根 据它们的激发光谱曲线来确定。绘制激发光谱曲线时,固定测量波 长为荧光(或磷光)最大发射波长,然后改变激发波长,根据所测 得的荧光(磷光)强度与激发光波长的关系,即可绘制 激发光谱 曲线。
应该指出,激发光谱曲线与其吸收曲线可能相同,但激发光谱 曲线是荧光强度与波长的关系曲线,吸收曲线则是吸光度与波长的 关系曲线,两者在性质上是不同的。当然,在激发光谱曲线的最大 波长处,处于激发态的分子数目是最多的,这可说明所吸收的光能 量也是最多的,自然能产生最强的荧光。
处于激发态的电子,通常以辐射跃迁方式或无辐射跃迁方式 再回到基态。辐射跃迁主要涉及到荧光、延迟荧光或磷光的发射; 无辐射跃迁则是指以热的形式辐射其多余的能量,包括振动弛豫 (VR)、内部转移(IR)、系间窜跃(IX)及外部转移(EC) 等,各种跃迁方式发生的可能性及程度,与荧光物质本身的结构 及激发时的物理和化学环境等因素有关。
下面结合荧光和磷光的产生过程,进一步说明各种能量传递 方式在其中所起的作用。
设处于基态单重态中的电子吸收波长为λ1和λ2的辐射光之后, 分别激发至第二单重态S2及第一单重态S1。
4
第十三章-荧光分析法PPT课件
内部能量转换
当两个电子激发态之间的能量相差较小以至其振动能级有重叠 时,受激分子由高电子能级转移至低电子能级的过程。
.
6
荧光和磷光产生示意图
关于荧光
荧光的产生需经历两个过程:
吸收 发射
第一激发单重态的最低振动能级
振动驰豫 内部能量转换
.
8
例题
1. 所谓荧光,即某些物质经入射光照射后, 吸收了入射光的能量,从而辐射出比入射 光: A 波长长的光线 B 波长短的光线 C 能量大的光线 D 频率高的光线
.
24
三、影响荧光强度的外部因素
温度 溶剂 酸度 散射光
学习目的: 提高荧光分析的灵敏度和选择性
.
25
1 溶剂对荧光的影响
萘在下列哪种溶剂中的荧光强度最强? A 1-氯丙烷 B 1-溴丙烷 C 1-碘丙烷 D 1,2-二氯丙烷
1. 一般情况下,荧光波长随着溶剂极性的增强而长移, 荧光强度也增强。
OH N
C H2
芴φf 1.0
O N Mg1/2
.
21
(三)分子的刚性和共平面性
CH3
SO3Na
N
CH3 CH3
SO3NaN CH3
H CCH
H CC H
结论:在相同的长共轭分子中,分子的刚性和共 平面性越强,荧光效率越大,荧光波长长移
(四)取代基效应
给电子基团 -NH2、 -OH、-OCH3、-NHR、-NR2荧 光效率提高、荧光波长长移
•
• • • •
cx
cs
.
34
二、定量分析方法
2、比例法(对照法)
Fs F0 KCs
FxF0KCx
Cx
Fx Fs
当两个电子激发态之间的能量相差较小以至其振动能级有重叠 时,受激分子由高电子能级转移至低电子能级的过程。
.
6
荧光和磷光产生示意图
关于荧光
荧光的产生需经历两个过程:
吸收 发射
第一激发单重态的最低振动能级
振动驰豫 内部能量转换
.
8
例题
1. 所谓荧光,即某些物质经入射光照射后, 吸收了入射光的能量,从而辐射出比入射 光: A 波长长的光线 B 波长短的光线 C 能量大的光线 D 频率高的光线
.
24
三、影响荧光强度的外部因素
温度 溶剂 酸度 散射光
学习目的: 提高荧光分析的灵敏度和选择性
.
25
1 溶剂对荧光的影响
萘在下列哪种溶剂中的荧光强度最强? A 1-氯丙烷 B 1-溴丙烷 C 1-碘丙烷 D 1,2-二氯丙烷
1. 一般情况下,荧光波长随着溶剂极性的增强而长移, 荧光强度也增强。
OH N
C H2
芴φf 1.0
O N Mg1/2
.
21
(三)分子的刚性和共平面性
CH3
SO3Na
N
CH3 CH3
SO3NaN CH3
H CCH
H CC H
结论:在相同的长共轭分子中,分子的刚性和共 平面性越强,荧光效率越大,荧光波长长移
(四)取代基效应
给电子基团 -NH2、 -OH、-OCH3、-NHR、-NR2荧 光效率提高、荧光波长长移
•
• • • •
cx
cs
.
34
二、定量分析方法
2、比例法(对照法)
Fs F0 KCs
FxF0KCx
Cx
Fx Fs
分子荧光光谱法
菲
线状环结构比非线状 结构的荧光波长长
• 芳香族化合物因具有共轭的不饱和体系, 芳香族化合物因具有共轭的不饱和体系, 多数能发生荧光 • 多环芳烃是重要的环境污染物,可用荧光 多环芳烃是重要的环境污染物, 法测定 • 3,4 - 苯并芘是强致癌物 , 苯并芘是强致癌物
λ ex = 386 nm λem = 430 nm
(二)荧光与有机化合物结构的关系
物质只有吸收了紫外可见光,产生π 物质只有吸收了紫外可见光,产生π → π*,n → π* 跃迁, 跃迁,产生荧光 跃迁相比,摩尔吸收系数大10 π → π*与n → π*跃迁相比,摩尔吸收系数大102~103, 寿命短 跃迁常产生较强的荧光, π → π*跃迁常产生较强的荧光, n → π*跃迁产生的 荧光弱
1. 电子自旋状态的多重性
大多数分子含有偶数电子,基态分子每一个轨道 大多数分子含有偶数电子, 中两个电子自旋方向总是相反的↑↓ 中两个电子自旋方向总是相反的↑↓ ,处于基态单 重态。 当物质受光照射时, 重态。用 “S0” 表示 ;当物质受光照射时,基态 分子吸收光能产生电子能级跃迁, 分子吸收光能产生电子能级跃迁,由基态跃迁至 更高的单重态,电子自旋方向没有改变, 更高的单重态,电子自旋方向没有改变,净自旋 = 0 .这种跃迁是符合光谱选律的 第一激发单重态 S1
VR S2 IC VR S1 ISC
VR:振动驰豫 : IC:内部转换 : ISC:系间窜跃 :
T1
S0 吸光 吸光
S0
3. 荧光光谱的产生—辐射去激 荧光光谱的产生—
处于S 处于S1或T1态的电子返回S0态时,伴随有发光现 态的电子返回S 态时, 象,这种过程叫辐射去激 发光 S0 S1或T1 荧光: (1)荧光: 当电子从第一激发单重态S 当电子从第一激发单重态S1的最低振动能级回到基 态S0各振动能级所产生的光辐射叫荧光 荧光是相同多重态间的允许跃迁,产生速度快, 荧光是相同多重态间的允许跃迁,产生速度快, 10-9~10-6s,又叫快速荧光或瞬时荧光,外部光源停 又叫快速荧光或瞬时荧光, 止照射, 止照射,荧光马上熄灭 无论开始电子被激发至什么高能级,它都经过无辐 无论开始电子被激发至什么高能级, 射去激消耗能量后到S 的最低振动能级,发射荧光, 射去激消耗能量后到S1的最低振动能级,发射荧光, 荧光波长比激发光波长长。 荧光波长比激发光波长长。 λ 荧>λ激
分子荧光光谱法
减弱或消失,称为荧光熄灭(或猝灭)。
荧光发射光谱 荧光激发光谱
磷光光谱
200 260 320 380 440 500 560 620 室温下菲的乙醇溶液荧(磷)光光谱
3.激发光谱与发射光谱的关系 a.Stokes位移 激发光谱与发射光谱之间的波长差值。发射光谱的
波长比激发光谱的长,振动弛豫消耗了能量。 b.发射光谱的形状与激发波长无关 电子跃迁到不同激发态能级,吸收不同波长的能量
浓度很低时,将括号项近似处理后: If = 2.3 I0 l c = Kc
(2)定量方法
标准曲线法: 配制一系列标准浓度试样测定荧光强度,绘制标准曲
线,再在相同条件下测量未知试样的荧光强度,在标准曲线 上求出浓度; 比较法:
在线性范围内,测定标样和试样的荧光强度,比较;
5.荧光分析法的应用
(1)无机化合物的分析
(1)电子跃迁类型 发射 π*→π跃迁比π*→n跃迁更常见
(2)共轭效应 芳香族化合物的荧光最常见且最强,大多 数未取代芳烃在溶液中发荧光,随着环的数目和稠合程 度增加,荧光峰红移,Φ↑。简单杂环化合物不发荧光, 但具有稠环结构的杂环化合物都发荧光。
(3)平面刚性结构效应 有刚性结构的分子容易发荧光, 刚性和共平面性的增加有利于荧光发射。
分子荧光光谱法
光致发光(Photoluminescence): 荧光和磷光是分子吸光
成为激发态分子,在返回基态时的发光现象,称为光致发光。 特点: ★灵敏度高。检测限比吸收光谱法低1~3个数量级; ★线性范围宽; ★选择性比吸收光谱法好。因为能产生紫外可见吸收的分子不 一定发射荧光或磷光; ★应用范围不如吸收光谱法广,因为有的分子不发荧光。 基于化合物的荧光测量而建立起来的分析方法称为分子荧光光 谱法。
荧光发射光谱 荧光激发光谱
磷光光谱
200 260 320 380 440 500 560 620 室温下菲的乙醇溶液荧(磷)光光谱
3.激发光谱与发射光谱的关系 a.Stokes位移 激发光谱与发射光谱之间的波长差值。发射光谱的
波长比激发光谱的长,振动弛豫消耗了能量。 b.发射光谱的形状与激发波长无关 电子跃迁到不同激发态能级,吸收不同波长的能量
浓度很低时,将括号项近似处理后: If = 2.3 I0 l c = Kc
(2)定量方法
标准曲线法: 配制一系列标准浓度试样测定荧光强度,绘制标准曲
线,再在相同条件下测量未知试样的荧光强度,在标准曲线 上求出浓度; 比较法:
在线性范围内,测定标样和试样的荧光强度,比较;
5.荧光分析法的应用
(1)无机化合物的分析
(1)电子跃迁类型 发射 π*→π跃迁比π*→n跃迁更常见
(2)共轭效应 芳香族化合物的荧光最常见且最强,大多 数未取代芳烃在溶液中发荧光,随着环的数目和稠合程 度增加,荧光峰红移,Φ↑。简单杂环化合物不发荧光, 但具有稠环结构的杂环化合物都发荧光。
(3)平面刚性结构效应 有刚性结构的分子容易发荧光, 刚性和共平面性的增加有利于荧光发射。
分子荧光光谱法
光致发光(Photoluminescence): 荧光和磷光是分子吸光
成为激发态分子,在返回基态时的发光现象,称为光致发光。 特点: ★灵敏度高。检测限比吸收光谱法低1~3个数量级; ★线性范围宽; ★选择性比吸收光谱法好。因为能产生紫外可见吸收的分子不 一定发射荧光或磷光; ★应用范围不如吸收光谱法广,因为有的分子不发荧光。 基于化合物的荧光测量而建立起来的分析方法称为分子荧光光 谱法。
分子荧光光谱法
(1)荧光与结构的关系
电子跃迁类型 * → 的荧光效率高,系间窜跃至三重态的 的速率常数较小,有利于荧光的产生。 共轭效应 含有* → 跃迁能级的芳香族化合物的荧光最 常见且最强。具有较大共轭体系或脂环羰基结构的 脂肪族化合物也可能产生荧光 取代基效应: 苯环上有吸电子基常常会妨碍荧光的产生;而 给电子基会使荧光增强。
(2)环境因素 ①温度 温度对荧光的影响很大。 温度降低会减少碰撞和非辐射失活的概率, 因此会增加荧光强度。例如:荧光素的乙醇溶 液在0℃以下每降低10℃,荧光产率增加3%, 当温度降低至-80 ℃时,荧光产率为100%。 ②pH值 含有酸性或碱性取代基的芳香化合物的荧 光与pH有关。pH的变化影响了荧光基团的电荷 状态,从而使其荧光发生变化。
7.影响荧光强度的因素
(1)内部因素 自猝灭——发光物质分子间碰撞而发生的能量无辐射 转移。自猝灭随溶液浓度的增加而增加。
自吸收——荧光化合物的发射光谱的波长与其吸收光 谱的波长重叠,溶液内部激发态分子所发射的荧光在 通过外部溶液时被同类分子吸收,从而使荧光被减弱。 荧光强度F与光源的辐射强度I0有关,因此增大光源辐 射功率I0可提高荧光测定的灵敏度。紫外-可见分光光 度法无法通过改变入射光强度来提高灵敏度。
6. 荧光强度与浓度的关系
荧光是物质吸收光子之后发出的辐射,荧光强度 (F)与
①荧光物质的吸光程度及其②发射荧光的能力有关:
F = K′(I0—I) I0 —入射光辐射强度; I —透射光辐射强度; K′—取决于荧光量子产率(Ф)。
Lambert-Beer 定律:
I I0 e
2.303bc
(3)跃迁的方式:
①无辐射跃迁: 振动弛豫、内转换、系间窜越、外转换 ②辐射跃迁: 荧光、磷光
分子荧光光谱法
产生荧光 基态分子 光照激发 价电子跃迁到激发态
去激发光 * * n
基态
在光致激发和去激发光的过程中,分子中 的价电子( 、n电子)处于不同的自旋状 态,通常用电子自旋状态的多重性来描述
1. 电子自旋状态的多重性
大多数分子含有偶数电子,基态分子每一个轨道 中两个电子自旋方向总是相反的 ,处于基态单 重态。用 “S0” 表示 ;当物质受光照射时,基态 分子吸收光能产生电子能级跃迁,由基态跃迁至 更高的单重态,电子自旋方向没有改变,净自旋 = 0 .这种跃迁是符合光谱选律的 第一激发单重态 S1
应用最广泛的一种光 源,可发射250~800nm
很强的连续光源
2、单色器
荧光计用滤光片作单色器,荧光计只能用于定量 分析,不能获得光谱
大多数荧光光度计一般采用两个光栅单色器,有
较高的分辨率,能扫描图谱,既可获得激发光谱, 又可获得荧光光谱
第一单色器作用:分离出所需要的激发光,选择
最佳激发波长 光物质 ex
f
ex /nm
em /nm
苯
0.11
205
278
萘
0.29
286
310
蒽
0.46
365
400
线状环结构比非线状
菲
结构的荧光波长长
350
• 芳香族化合物因具有共轭的不饱和体系, 多数能发生荧光 • 多环芳烃是重要的环境污染物,可用荧光 法测定 • 3,4 - 苯并芘是强致癌物
ex = 386 nm em = 430 nm
浓度高时, If与C不呈线形关系,有时C增大, If 反而降低因为有时发生荧光猝灭效应
荧光猝灭
——荧光物质与溶剂或其它物质之间 发生化学反应,或发生碰撞后使荧光强度 下降或荧光效率f 下降称为荧光猝灭。 使荧光强度降低的物质称为荧光猝灭剂
去激发光 * * n
基态
在光致激发和去激发光的过程中,分子中 的价电子( 、n电子)处于不同的自旋状 态,通常用电子自旋状态的多重性来描述
1. 电子自旋状态的多重性
大多数分子含有偶数电子,基态分子每一个轨道 中两个电子自旋方向总是相反的 ,处于基态单 重态。用 “S0” 表示 ;当物质受光照射时,基态 分子吸收光能产生电子能级跃迁,由基态跃迁至 更高的单重态,电子自旋方向没有改变,净自旋 = 0 .这种跃迁是符合光谱选律的 第一激发单重态 S1
应用最广泛的一种光 源,可发射250~800nm
很强的连续光源
2、单色器
荧光计用滤光片作单色器,荧光计只能用于定量 分析,不能获得光谱
大多数荧光光度计一般采用两个光栅单色器,有
较高的分辨率,能扫描图谱,既可获得激发光谱, 又可获得荧光光谱
第一单色器作用:分离出所需要的激发光,选择
最佳激发波长 光物质 ex
f
ex /nm
em /nm
苯
0.11
205
278
萘
0.29
286
310
蒽
0.46
365
400
线状环结构比非线状
菲
结构的荧光波长长
350
• 芳香族化合物因具有共轭的不饱和体系, 多数能发生荧光 • 多环芳烃是重要的环境污染物,可用荧光 法测定 • 3,4 - 苯并芘是强致癌物
ex = 386 nm em = 430 nm
浓度高时, If与C不呈线形关系,有时C增大, If 反而降低因为有时发生荧光猝灭效应
荧光猝灭
——荧光物质与溶剂或其它物质之间 发生化学反应,或发生碰撞后使荧光强度 下降或荧光效率f 下降称为荧光猝灭。 使荧光强度降低的物质称为荧光猝灭剂
现代生物仪器分析第三章 分子荧光光谱法
第二节 荧光分析的原理
(一)荧光发生机理 物质的基态分子受一激发光源的照射, 被激发至激发态,在返回基态时,产生 波长与入射光相同或较长的荧光。 通过测定物质分子产生的荧光强度进行
分 析 的 方 法 称 为 荧 光 分 析 (fluorescence analysis)。
1、分子的激发态
荧光和磷光这两种光致发光过程的机理不同, 可从实验观察激发态分子寿命的长短来加以区 别: 对于荧光来说,当激发光停止照射后,发光 过程几乎立即停止(在10-9~10-6秒,荧光寿 命fluorescence life time )。 磷光则将持续一段时间(在10-3~10秒)。
荧光分析法发展简史
2、分子荧光和磷光的产生
分子在室温时基本上处于电子能级的基态。当吸 收了紫外—可见光后,基态分子中的电子只能跃 迁到激发单线态的各个不同振动—转动能级,根 据自旋禁阻规律,不能直接跃迁到激发三重态的 各个振--转能级。 处于激发态的分子是不稳定的,它可能通过辐射 跃迁和无辐射跃迁等分子内的去活化过程释放多 余的能量而返回至基态,发射荧光是其中的一条 途径。
世界上第一次记录荧光现象是16世纪 西班牙的内科医生和植物学家 N.Monardes。 1575年他提出在含有一种木头切片的 水溶液中,可观察到极可爱的天蓝色。
1852年,stokes在考察奎宁和叶绿素的 荧光时,用分光光度计观察到其荧光的 波长比入射光的波长稍微长些,从而导 入了荧光是光发射的概念。 18工作。应用铝—桑色素配 合物的荧光进行铝的测定。 19世纪以前,荧光的观察是靠肉眼进行 的,直到1928年,才由Jette和West完成 了第一台荧光计。
激发单重态与激发三重态的性质不同
分子荧光光谱法
5. 荧光发射:当激发态的分子通过振动驰豫 荧光发射:当激发态的分子通过振动驰豫——内转换 内转换——振动驰豫到达单重激发态的 内转换 振动驰豫到达单重激发态的 最低振动能级时,单重激发态最低振动能级的电子可通过发射辐射(光子) 最低振动能级时,单重激发态最低振动能级的电子可通过发射辐射(光子)跃回到基态 的不同振动能级, 荧光发射” 的不同振动能级,此过程称为 “荧光发射”。 6. 磷光发射:三重激发态最低振动能级的分子以发射辐射(光子)的形式回到基态的不 磷光发射:三重激发态最低振动能级的分子以发射辐射(光子) 同振动能级, 磷光发射” 同振动能级,此过程称为 “磷光发射”。
三、激发光谱与荧光光谱
1、激发光谱 将激发荧光的光源用单色器分光, 将激发荧光的光源用单色器分光,连续改变激发光 波长,固定荧光发射波长, 波长,固定荧光发射波长,测定不同波长激发光下物质 溶液发射的荧光强度( ,以激发光的波长为横座标, 溶液发射的荧光强度 F),以激发光的波长为横座标, 光谱图, 荧光强度为纵座标作F—l光谱图,便可得到荧光物质的 激发光谱。 激发光谱。
由于三重态寿命较长, 由于三重态寿命较长,因而发生振动弛豫及外转换的几率 也高,失去激发能的可能性大, 也高,失去激发能的可能性大,以致在室温条件下很难观 察到溶液中的磷光现象。因此, 察到溶液中的磷光现象。因此,试样采用液氮冷冻降低其 它去活化才能观察到某些分子的磷光。 它去活化才能观察到某些分子的磷光。 处于激发态的分子,可以通过上述不同途径回到基态, 处于激发态的分子,可以通过上述不同途径回到基态,哪 种途径的速度快,哪种途径就优先发生。 种途径的速度快,哪种途径就优先发生。 如果发射荧光使受激分子去活化过程与其他过程相比较快, 如果发射荧光使受激分子去活化过程与其他过程相比较快, 则荧光发生几率高,强度大。 则荧光发生几率高,强度大。 如果发射荧光使受激分子去活化过程与其他过程相比较慢, 如果发射荧光使受激分子去活化过程与其他过程相比较慢, 则荧光很弱或不发生。 则荧光很弱或不发生。