专题一 第3讲 三角恒等变换与解三角形(大题)

合集下载

第3讲 大题专攻——三角函数与解三角形 2023高考数学二轮复习课件

第3讲 大题专攻——三角函数与解三角形 2023高考数学二轮复习课件

22
∴ba=ssiinn BA=
3 3
=2 3
6.
3
目录
解三角形中的证明问题
【例3】 (2022·全国乙卷)记△ABC的内角A,B,C的对边分别为a,b,c,
已知sin Csin(A-B)=sin Bsin(C-A).
(1)证明:2a2=b2+c2;
解 证明:法一:由sin Csin(A-B)=sin Bsin(C-A)可得,sin Csin Acos
目录
2.(2021·新高考全国Ⅱ卷)(正、余弦定理,三角形面积公式)在△ABC中,角 A,B,C所对的边分别为a,b,c,b=a+1,c=a+2. (1)若2sin C=3sin A,求△ABC的面积; 解:由2sin C=3sin A及正弦定理可得2c=3a. 结合b=a+1,c=a+2,解得a=4,b=5,c=6. 在△ABC 中,由余弦定理得 cos C=a2+2ba2b-c2=16+2450-36=18,所以 sin
C= 1-cos2C=387, 所以 S△ABC=12absin C=12×4×5×387=154 7.
目录
(2)是否存在正整数a,使得△ABC为钝角三角形?若存在,求出a的值;
若不存在,说明理由.
解:设存在正整数a满足条件,由已知c>b>a,所以C为钝角.
所以cos
C=
Байду номын сангаас
a2+b2-c2 2ab
<0⇒a2+b2<c2⇒a2+(a+1)2<(a+2)2⇒(a+1)(a
目录
三角形中基本量的求解
【例2】 (2022·新高考Ⅱ卷)记△ABC的内角A,B,C的对边分别为a,b,
c,分别以a,b,c为边长的三个正三角形的面积依次为S1,S2,S3.已知S1

高二数学三角函数三角恒等变换解三角形试题答案及解析

高二数学三角函数三角恒等变换解三角形试题答案及解析

高二数学三角函数三角恒等变换解三角形试题答案及解析1.ABC中,已知,则ABC的形状为【答案】直角三角形【解析】略2.在中,,.(Ⅰ)求的值;(Ⅱ)设,求的面积.【答案】(1);(2).【解析】(1)利用内角和为,所以,再利用同角基本关系式求;(2),那么利用正弦定理,,求边,最后,试题解析:(1) ,,因为,所以,.(2),那么利用正弦定理,,代入数值,,所以.【考点】1.两角和的三角函数;2.正弦定理.3.(本题满分13分)已知中,点,动点满足(常数),点的轨迹为Γ.(Ⅰ)试求曲线Γ的轨迹方程;(Ⅱ)当时,过定点的直线与曲线Γ相交于两点,是曲线Γ上不同于的动点,试求面积的最大值.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)利用椭圆定义求动点轨迹,注意定义的条件要完整,不要少,另外要注意三角形中三顶点不共线,对轨迹要去杂(Ⅱ)求面积的最大值,首先要表示出面积,这要用到底乘高的一半,其中底为直线与椭圆的弦长,高为点到直线的距离,而由椭圆的几何性质知当直线与平行且与椭圆相切时,切点到直线的距离最大,因此还要求椭圆的切线,其次利用直线方程与椭圆方程联立方程组,再结合韦达定理可得弦长及切线,最后根据面积的表达式求最值,这要用到导数试题解析:(Ⅰ)在中,因为,所以(定值),且, 2分所以动点的轨迹为椭圆(除去与A、B共线的两个点).设其标准方程为,所以, 3分所以所求曲线的轨迹方程为.4分(Ⅱ)当时,椭圆方程为.5分①过定点的直线与轴重合时,面积无最大值.6分②过定点的直线不与轴重合时,设方程为:,,若,因为,故此时面积无最大值.根据椭圆的几何性质,不妨设.联立方程组消去整理得:, 7分所以则.8分因为当直线与平行且与椭圆相切时,切点到直线的距离最大,设切线,联立消去整理得,由,解得.又点到直线的距离, 9分所以, 10分所以.将代入得:,令,设函数,则,因为当时,,当时,,所以在上是增函数,在上是减函数,所以.故时,面积最大值是.所以,当的方程为时,的面积最大,最大值为.13分【考点】椭圆定义,直线与椭圆位置关系4.函数的图象的一条对称轴的方程是( )A.B.C.D.【答案】D【解析】根据余弦函数的图像和性质,可知,解得,,可知当时得到,故选D.【考点】余弦函数的图像和性质.5.已知两灯塔A和B与海洋观测站C的距离相等,灯塔A在观察站C的北偏东400,灯塔B在观察站C 的南偏东600,则灯塔A在灯塔B的()A.北偏东100B.北偏西100C.南偏东100D.南偏西100【答案】B【解析】由题意知, .由数形结合可得灯塔在灯塔的北偏西.故B正确.【考点】数形结合.6.已知函数的图象向左平移个单位长度,所得图象关于原点对称,则的最小值为()A.B.C.D.【答案】C【解析】函数,向左平移个单位长度得:,因为关于原点对称,所以,因此的最小正值为,选C.【考点】三角函数图像与性质7.角的终边上有一点,则()A.B.C.D.【答案】B【解析】【考点】三角函数定义8.三角形ABC中..则A的取值范围是.【答案】【解析】由已知不等式结合正弦定理得则A的取值范围是【考点】正余弦定理解三角形9.已知是锐角的外心,.若,则A.B.C.3D.【答案】A【解析】取AB的中点D,连接OA,OD,由三角形外接圆的性质可得OD⊥AB,∴.,代入已知,两边与作数量积得到由正弦定理可得:,化为cosB+cosCcosA=msinC,∵cosB=-cos(A+C)=-cosAcosC+sinAsinC,∴sinAsinC=msinC,∴m=sinA.∵,∴【考点】1.向量的线性运算性质及几何意义;2.正弦定理;3.三角函数基本公式10.如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射击线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角的大小.若,,,则的最大值是(仰角为直线AP与平面ABC所成角)【答案】【解析】仰角最大时即为面ACM与面ABC所成的角.过B作BC的垂线交CM于点P,过B作连接PN,则为所求的角,【考点】1、二面角的平面角;2、线面垂直的应用.【易错点晴】本题主要考查的是二面角的平面角的应用,属于中档题.本题容易犯的错误是过B作认为为所求角,从而出错.题中说目标P沿线MC运动,面ACM是确定的,仰角的最大值就是二面角M-AC-B的平面角,再应用三垂线法做出二面角的平面角.11.如图,某市新体育公园的中心广场平面图如图所示,在y轴左侧的观光道曲线段是函数,时的图象且最高点B(-1,4),在y轴右侧的曲线段是以CO为直径的半圆弧.(1)试确定A,和的值;(2)现要在右侧的半圆中修建一条步行道CDO(单位:米),在点C与半圆弧上的一点D之间设计为直线段(造价为2万元/米),从D到点O之间设计为沿半圆弧的弧形(造价为1万元/米).设(弧度),试用来表示修建步行道的造价预算,并求造价预算的最大值?(注:只考虑步行道的长度,不考虑步行道的宽度)【答案】(1);(2)造价,,在时取极大值,也即造价预算最大值为()万元.【解析】(1)由“五点法”可求得;(2)由(1)求出点坐标,得半圆的半径,用表示出弦长和弧长,由题意可得造价,,下面用导数的知识求出的最大值.试题解析:(1)因为最高点B(-1,4),所以A=4;,因为代入点B(-1,4),,又;(2)由(1)可知:,得点C即,取CO中点F,连结DF,因为弧CD为半圆弧,所以,即,则圆弧段造价预算为万元,中,,则直线段CD造价预算为万元所以步行道造价预算,.由得当时,,当时,,即在上单调递增;当时,,即在上单调递减所以在时取极大值,也即造价预算最大值为()万元.……16分【考点】“五点法”,的解析式,导数与最值.12.已知面积为,,则BC长为.【答案】【解析】由三角形面积公式可知【考点】三角形面积公式13.在△ABC中,a=3,b=5,sinA=,则sinB=()A.B.C.D.1【答案】A【解析】由正弦定理得【考点】正弦定理解三角形14.△ABC的内角A、B、C的对边分别为a、b、c.若a、b、c成等比数列且c=2a,则cosB =()A. B. C. D.【答案】A【解析】由a、b、c成等比数列且c=2,知:,所以,故选A.【考点】1、等比数列性质;2、余弦定理.15.已知中,角,所对的边分别是,且.(1)求的值;(2)若,求面积的最大值.【答案】(1);(2).【解析】(1)由条件的特点,可以考虑余弦定理求,再由半角公式求解;(2)由面积公式知,需求的最值,利用均值不等式即可.试题解析:(1)(2)又当且仅当时,△ABC面积取最大值,最大值为【考点】1、余弦定理;2、半角公式;3、基本不等式.【方法点晴】本题主要考查的是余弦定理、半角的正弦公式和三角形的面积公式及基本不等式,属于中档题.解题时一定要注意所给条件的结构特征,能主动联想余弦定理得角的余弦值,然后利用半角公式变形求解.由面积公式分析面积的最大值即求的最大值,因为考虑基本不等式来处理,注意等号成立的条件,这是易错点.16.已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若=(-cos,sin),=(cos,sin),a=2,且·=.(1)若△ABC的面积S=,求b+c的值.(2)求b+c的取值范围.【答案】(1)b+c=4,(2)【解析】(1)由已知及余弦定理可求cosA=-,结合范围三角形内角的取值范围A∈(0,π),可求A.又由三角形面积公式可求bc,利用余弦定理即可解得b+c的值.(2)由正弦定理及三角形内角和定理可得b+c=4sin(B+),根据范围0<B<,利用正弦函数的有界性即可求得b+c的取值范围试题解析:(1)∵=(-cos,sin),=(cos,sin),且·=,∴-cos2+sin2=,即-cosA=,又A∈(0,π),∴A=.又由S=bcsinA=,所以bc=4,由余弦定理得:a2=b2+c2-2bc·cos=b2+c2+bc,△ABC∴16=(b+c)2,故b+c=4(2)由正弦定理得:==4,又B+C=π-A=,∴b+c=4sinB+4sinC=4sinB+4sin(-B)=4sin(B+),∵0<B<,则<B+<,则<sin(B+)≤1,即b+c的取值范围是.【考点】正弦定理,余弦定理,三角形面积公式.【方法点睛】(1)在三角形中处理边角关系时,一般全部转化为角的关系,或全部转化为边的关系.题中若出现边的一次式一般采用正弦定理,出现边的二次式一般采用余弦定理,应用正弦、余弦定理时,注意公式变形的应用,解决三角形问题时,注意角的限制范围;(2)在三角形中,注意隐含条件(3)解决三角形问题时,根据边角关系灵活的选用定理和公式.(3))在解决三角形的问题中,面积公式最常用,因为公式中既有边又有角,容易和正弦定理、余弦定理联系起来.17.要得到函数y = sin的图象,只要将函数y = sin2x的图象A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【答案】B【解析】,因此只需将函数y = sin2x的图象向左平移个单位【考点】三角函数图像平移18.在中,,则边的长为()A.B.3C.D.7【答案】A【解析】由三角形的面积公式,得,解得;由余弦定理,得,即;故选A.【考点】1.三角形的面积公式;2.余弦定理.19.在中,若,则的形状为.【答案】等腰三角形【解析】法一:由正弦定理可将变形为,,即.,.所以三角形为等腰三角形.法二: 由可得,整理可得,解得,即.所以三角形为等腰三角形.【考点】正弦定理,余弦定理.【方法点睛】本题主要考查的是正弦定理、余弦定理,属于容易题,本题利用正弦定理把边转化为角,变形后为正弦的两角和差公式.或是利用余弦定理将角转化为边再变形整理.即解此类题的关键是边角要统一.20.在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,求AB的长.【答案】AB=.【解析】先根据余弦定理求出∠ADC的值,即可得到∠ADB的值,最后根据正弦定理可得答案.解:在△ADC中,AD=10,AC=14,DC=6,由余弦定理得cos∠ADC==,∴∠ADC=120°,∠ADB=60°在△ABD中,AD=10,∠B=45°,∠ADB=60°,由正弦定理得,∴AB=.【考点】余弦定理;正弦定理.21.(2015秋•醴陵市校级期末)正弦函数y=sinx在x=处的切线方程为.【答案】【解析】先求导函数,利用导函数在x=处可知切线的斜率,进而求出切点的坐标,即可求得切线方程.解:由题意,设f(x)=sinx,∴f′(x)=cosx当x=时,∵x=时,y=∴正弦函数y=sinx在x=处的切线方程为即故答案为:【考点】利用导数研究曲线上某点切线方程.22.在△ABC中,内角A,B,C的对边分别是a,b,c,若a2﹣b2=bc,sinC=2sinB,则A= .【答案】30°【解析】已知sinC=2sinB利用正弦定理化简,代入第一个等式用b表示出a,再利用余弦定理列出关系式,将表示出的c与a代入求出cosA的值,即可确定出A的度数.解:将sinC=2sinB利用正弦定理化简得:c=2b,代入得a2﹣b2=bc=6b2,即a2=7b2,∴由余弦定理得:cosA===,∵A为三角形的内角,∴A=30°.故答案为:30°【考点】正弦定理.23.在△ABC中,所对的边分别为,且,则.【答案】【解析】由得【考点】正弦定理24.△ABC的内角A,B,C的对边分别为a,b,c,若,则a等于()A.B.2C.D.【答案】D【解析】先根据正弦定理求出角C的正弦值,进而得到角C的值,再根据三角形三内角和为180°确定角A=角C,所以根据正弦定理可得a=c.解:由正弦定理,∴故选D.【考点】正弦定理的应用.25.在中, 角的对边分别是,且则的形状是()A.等腰三角形B.等腰直角三角形C.直角三角形D.等边三角形【答案】C【解析】,三角形为直角三角形【考点】余弦定理及二倍角公式26.已知中,角所对的边分别,且.(Ⅰ)求;(Ⅱ)若,求面积的最大值.【答案】(Ⅰ);(Ⅱ).【解析】对于问题(Ⅰ),首先根据余弦定理把关于边的问题转化为关于角的问题,再结合降次公式以及三角函数的诱导公式,即可求得;对于问题(Ⅱ)可以根据(Ⅰ)的结论并结合基本不等式和三角形的面积公式即可求得面积的最大值.试题解析:(Ⅰ)(Ⅱ)且,,又,,,面积的最大值注:求法不唯一,只要过程、方法、结论正确,给满分。

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是()A.B.C.D.【答案】A【解析】原函数在轴左侧是一段正弦型函数图象,在轴右侧是一条对数函数的图象,要使得图象上关于轴对称的点至少有对,可将左侧的图象对称到轴右侧,即,应该与原来轴右侧的图象至少有个公共点如图,不能满足条件,只有此时,只需在时,的纵坐标大于,即,得.【考点】分段函数,函数图象,正弦型函数,对数函数2.若,则函数的最大值是___________.【答案】【解析】由题意因为,所以,所以函数的最大值是.【考点】求最大值.3.已知,,则下列不等式一定成立的是A.B.C.D.【答案】D【解析】,【考点】三角函数的性质4.若,且为第二象限角,则()A.B.C.D.【答案】B【解析】由得又为第二象限角,所以,选B.【考点】两角差余弦公式5.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.-2D.【答案】C【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选C.【考点】三角函数的性质.6.设的最小值为,则.【答案】【解析】,根据题意,结合二次函数在某个区间上的最值问题,对参数进行讨论,当时,其最小值为,所以不合题意,当时,其最小值为,解得,当时,其最小值为,无解,所以.【考点】倍角公式,二次函数在给定区间上的最值问题.7.设函数对任意的,都有,若函数,则的值是()A.1B.-5或3C.D.-2【答案】D【解析】根据题意有是函数图像的对称轴,从而有,所以有,故选D.【考点】三角函数的性质.8.下列函数中,以为最小正周期的偶函数是()A.y=sin2x+cos2xB.y=sin2xcos2xC.y=cos(4x+)D.y=sin22x﹣cos22x【答案】D【解析】因为A项为非奇非偶函数,B项是奇函数,C项是奇函数,只有D项是符合题意的,故选D.【考点】诱导公式,倍角公式,三角函数的奇偶性和周期.9.函数的最大值为.【答案】【解析】解析式表示过的直线的斜率,由几何意义,即过定点(4,3)与单位圆相切时的切线斜率为最值.所以设切线得斜率为k,则直线方程为,即 ,【考点】三角函数最值【方法点睛】本题主要考查三角函数最值问题及转化的思想,解决问题的根据是根据所给函数式子转化为直线与圆的位置关系问题,即将所给式子看做定点与单位圆上点的连线的斜率的范围问题,通过模型转化使问题定点巧妙解决,属于经典试题.10.(本题满分12分)如图,在中,边上的中线长为3,且,.(1)求的值;(2)求边的长.【答案】(1)(2)4【解析】(1)利用角的关系,再结合两角差正弦公式展开就可求解(2)先在三角形ABD中,由正弦定理解出BD长,即CD长:由正弦定理,得,即,解得…故;再在三角形ADC中由余弦定理解出AC:;AC= 4试题解析:(1)(2)在中,由正弦定理,得,即,解得…故,从而在中,由余弦定理,得;AC= 4 ;【考点】正余弦定理11.中,,则的最大值为.【答案】【解析】设,由余弦定理的推论,所以,设,代入上式得,,故,当时,此时,符合题意,因此最大值为,故答案为:.【考点】解三角形.【思路点睛】首先假设,然后再根据余弦定理的推论,可得,找到与的关系,再设,代入上式得,利用根的判别式,进而求出结果.本题的关键是利用余弦定理的推论.12.已知函数的部分图象如图所示.(1)求函数的解析式;(2)若,求函数在区间上的单调减区间.【答案】(1);(2),.【解析】(1)由图象中的最高点和最低点的纵坐标得到关于的方程组求得,再利用图象得到函数的周期,进而得到值,最后代入最低点坐标或最高点坐标结合的范围求出,即得到函数的解析式;(2)先求出,利用两角和差的正弦公式将其化为的形式,再利用整体思想求其单调递减区间.试题解析:(1)由图知,解得,又,所以,所以,将点代入,得,再由,得,所以;(2)因为由,解得;又,故所求的单调减区间为,.【考点】1.三角函数的图象与性质;2.三角恒等变形.13.已知角的终边经过点(-4,3),则= ,= ;【答案】;【解析】由题意可得.【考点】任意角三角函数的定义.14.在△ABC中,a、b、c分别是角A、B、C的对边,且.(Ⅰ)求角B的大小;(Ⅱ)若,求△ABC的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)在解三角形的背景下,考查正弦定理,余弦定理,知值求值.(Ⅱ)综合余弦定理,求三角形的面积公式,需要把作为整体求之.试题解析:(Ⅰ)由正弦定理得将上式代入已知即,即.∵∵∵B为三角形的内角,∴.(Ⅱ)由余弦定理得,结合,可得,所以△ABC的面积.【考点】正弦定理,余弦定理,三角形的面积公式.15.在△中,角,,所对的边分别为,,,表示△的面积,若,,则.【答案】【解析】∵,∴,∴,∴,.∵,∴,∴,∴,∴.【考点】解三角形.【思路点睛】先利用余弦定理和三角形的面积公式可得,可得,再用正弦定理把中的边换成角的正弦,利用两角和公式化简整理可求得,最后根据三角形内角和,进而求得.16.中,角A,B,C的对边分别为a,b,c,若的面积,则 .【答案】【解析】由余弦定理,,又,,,即,,.【考点】1、余弦定理;2、同角三角函数的基本关系;3、三角形面积公式.【思路点睛】本题主要考查的是余弦定理、同角三角函数基本关系、三角形的面积公式,属于容易题.因为题目求,且的面积,边的平方的形式一般想到余弦定理,面积展开后利用余弦定理即可求得与的关系,从而利用同角三角函数的基本关系求得.17.(2012•安徽)设△ABC的内角A、B、C所对边的长分别为a、b、c,且有2sinBcosA=sinAcosC+cosAsinC.(Ⅰ)求角A的大小;(Ⅱ)若b=2,c=1,D为BC的中点,求AD的长.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)根据2sinBcosA=sinAcosC+cosAsinC,可得2sinBcosA=sin(A+C),从而可得2sinBcosA=sinB,由此可求求角A的大小;(Ⅱ)利用b=2,c=1,A=,可求a的值,进而可求B=,利用D为BC的中点,可求AD的长.解:(Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC∴2sinBcosA=sin(A+C)∵A+C=π﹣B∴sin(A+C)=sinB>0∴2sinBcosA=sinB∴cosA=∵A∈(0,π)∴A=;(Ⅱ)∵b=2,c=1,A=∴a2=b2+c2﹣2bccosA=3∴b2=a2+c2∴B=∵D为BC的中点,∴AD=.【考点】余弦定理;三角函数的恒等变换及化简求值.18.在中,已知.(Ⅰ)求sinA与角B的值;(Ⅱ)若角A,B,C的对边分别为的值.【答案】(Ⅰ);(Ⅱ),.【解析】(I)给出了关于角的两个三角函数值,利用诱导公式和同角三角函数的基本关系式可求得其正弦、余弦,再根据三角形的性质可求得的值;(II)在第一问的基础上,利用正弦定理可求得边,再由余弦定理求边,注意利用三角形基本性质舍解.试题解析:(Ⅰ)∵,,又∵,.∵,且,.(Ⅱ)由正弦定理得,,另由得,解得或(舍去),,.【考点】三角函数的诱导公式,同角三角函数的基本关系式及利用正、余弦定理在解三角形.19.已知,则的值为.【答案】.【解析】,故填:.【考点】三角恒等变形.20.在中,角A,B,C的对边分别为,,,若,则角的值为()A.或B.或C.D.【答案】A.【解析】,,∴或,故选A.【考点】余弦定理.【思路点睛】由已知条件,可先将切化弦,再结合正弦定理,将该恒等式的边都化为角,然后进行三角函数式的恒等变形,找出角之间的关系;或将角都化成边,然后进行代数恒等变形,可一题多解,多角度思考问题,从而达到对知识的熟练掌握.21.为了得到函数的图象,只需把函数图象上的所有点()A.横坐标缩短到原来的倍,纵坐标不变B.横坐标伸长到原来的2倍,纵坐标不变C.纵坐标缩短到原来的倍,横坐标不变D.纵坐标缩短到原来的2倍,横坐标不变【答案】A【解析】这是一个三角函数的图象变换问题,一般的为了得到函数的图象,只需把函数的图象上所有点的横坐标伸长()或缩短()到原来的倍(纵坐标不变)即可,因此为了得到函数的图象,只需把函数图象上的所有点横坐标缩短到原来的倍,纵坐标不变,故选A.【考点】三角函数的图象变换.【方法点睛】本题是一个三角函数的图象变换问题,属于容易题.一般的要得到函数(其中)的图像可按以下步骤进行:先把的图象向左()或向右()平移个单位,再将所得函数的图象上各点的横坐标扩大()或缩小()为原来的(纵坐标不变),再把所得函数图象上各点的纵坐标扩大()或缩小()为原来的倍(横坐标不变),最后再将所得图像向上()或向下()平移个单位,即可得到函数的图象.22.如图,在中,,,点在边上,且,.(I)求;(II)求的长.【答案】(Ⅰ);(Ⅱ),.【解析】(Ⅰ)由图可知,所以,又,所以,再由两角差的正弦公式可求得;(Ⅱ)由题意可用正弦定理、余弦定理即可求出、的长,在中,有,又从而可求得;在中,由余弦定理得,,从而可求出.试题解析:(Ⅰ)在中,因为,所以,所以(Ⅱ)在中,由正弦定理得,在中,由余弦定理得,所以【考点】1.解三角形;2.两角差的正弦公式.23.设的内角对边分别为,已知,且.(1)求角的大小;(2)若向量与共线,求的值.【答案】(1);(2)。

三角恒等变换与解三角形

三角恒等变换与解三角形

三角恒等变换与解三角形三角恒等变换是解决三角形相关问题中常用的工具。

通过利用三角函数之间的关系,可以在一些情况下简化问题的求解,或者将复杂的三角形相关问题转化为更简单的形式。

本文将介绍一些常见的三角恒等变换,并结合实例说明其在解三角形问题中的应用。

1. 正弦定理正弦定理是三角形中常用的定理之一,用于求解三角形的边或角。

假设有一个三角形ABC,边长分别为a、b、c,对应的内角为A、B、C,正弦定理的数学表达式为:```a/sinA = b/sinB = c/sinC```其中,等式两边都表示边与对应角的正弦值的比例关系。

举例:已知三角形的两边a、b和它们夹角C,求第三边c。

根据正弦定理可得```c/sinC = a/sinA = b/sinB```通过这个等式可以解出c的值,进而求得整个三角形的相关信息。

2. 余弦定理余弦定理也是解决三角形问题时常用的定理之一,可以用于求解三角形的边或角。

假设有一个三角形ABC,边长分别为a、b、c,对应的内角为A、B、C,余弦定理的数学表达式为:```c^2 = a^2 + b^2 - 2*a*b*cosC```其中,等式右侧表示边长和夹角的余弦值的比例关系。

举例:已知三角形的两边a、b和它们的夹角C,求第三边c。

根据余弦定理可得```c^2 = a^2 + b^2 - 2*a*b*cosC```通过解这个方程可以求得c的值。

3. 正切定理正切定理是利用正切函数关系来解决三角形问题的定理,可以用于求解三角形的边或角。

假设有一个三角形ABC,边长分别为a、b,对应的内角为A、B,正切定理的数学表达式为:```tanA = (b*sinA)/(a - b*cosA)```其中,等式右侧表示两个边长度和夹角的正切值的比例关系。

举例:已知三角形的一边a和它的内角A,求另一边b。

根据正切定理可得```tanA = (b*sinA)/(a - b*cosA)```通过这个等式可以解出b的值。

高考三轮复习专题训练2---三角恒等变换与解三角形综合问题

高考三轮复习专题训练2---三角恒等变换与解三角形综合问题

三角恒等变换与解三角形综合问题1.三角恒等变换与解三角形的综合问题是高考的热门考点,涉及的公式多、性质繁,知识点较为综合,主要涉及三角恒等变换、解三角形及三角函数与解三角形的开放、探究问题。

2.三角恒等变换与解三角形综合问题的答题模板第一步 利用正弦定理、余弦定理对条件式进行边角互化第二步 由三角方程或条件式求角第三步 利用条件式或正、余弦定理构建方程求边长第四步 检验易错易混、规范解题步骤得出结论3.常用的几个二级结论(1)降幂扩角公式()()221cos =1+cos2,21sin =1cos2.2ααα−α⎧⎪⎪⎨⎪⎪⎩(2)升幂缩角公式221+cos2=2cos ,1cos2=2sin .αα−αα⎧⎨⎩(3)正切恒等式tan tan tan tan tan tan ++=A B C A B C若△为斜三角形,则有tan tan tan tan tan tan ++=A B C A B C (正切恒等式).(4)射影定理在ABC 中,cos cos ,cos cos ,cos cos a b C c B b a C c A c a B b A =+=+=+.【典例】(2022·新高考全国Ⅰ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A 1+sin A =sin 2B 1+cos 2B. (1)若C =2π3,求B ;[切入点:二倍角公式化简] (2)求a 2+b 2c2的最小值.[关键点:找到角B 与角C ,A 的关系] 思路引导母题呈现三角恒等变换与解三角形综合问题的一般步骤方法总结1.(2023·河北石家庄·统考模拟预测)已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,3sin cos c a C c A =−.(1)求A ;(2)若2a =,ABC 的面积为3,求b ,c .2.(2023·安徽宿州·统考一模)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且()(sin sin )sin sin b c B C a A b C −−=−.(1)求角A 的大小;(2)求sin sin B C +的取值范围.3.(2023·全国·模拟预测)在①33cos sin c a B b A =+,②()()()sin sin sin sin b a B A c B C +−=−,③221cos 2a b ac B bc −=−这三个条件中任选一个,补充在下面的问题中,并解答问题. 在锐角ABC 中,内角,,A B C 的对边分别为,,a b c ,且______.(1)求A ;(2)若6a =,2BD DC =,求线段AD 长的最大值.注:如果选择多个条件分别解答,按第一个解答计分.4.(2023·贵州毕节·统考一模)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若cossin 2A B b c B +=. (1)求角C ;(2)若3c =,求BC 边上的高的取值范围.模拟训练5.(2023·全国·模拟预测)已知在三角形ABC 中,a ,b ,c 分别为角A ,B ,C 的三边,若222sin 6sin 3sin 63sin sin sin A B C A B C ++=(1)求∠C 的大小;(2)求233ab 的值.6.(2023·山东潍坊·统考一模)在①tan tan 3tan 13tan A C A C −=+;②()23cos 3cos c a B b A −=;③()3sin sin sin a c A c C b B −+=这三个条件中任选一个,补充在下面问题中并作答.问题:在ABC 中,角,,A B C 所对的边分别为,,a b c ,且__________. (1)求角B 的大小;(2)已知1c b =+,且角A 有两解,求b 的范围.7.(2023·全国·模拟预测)在①()cos 2cos 0c B b a C +−=,②cos 3sin +=+a b c B c B ,③()3cos cos cos sin C a B b A c C +=这三个条件中任选一个,补充在下面的横线上,并解答问题.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知______.(1)求角C 的值;(2)若ABC 的面积()2238912S b c =−,试判断ABC 的形状.注:如果选择多个条件分别解答,按第一个解答计分.8.(2023·安徽蚌埠·统考二模)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,3b =,a c <,且ππ1sin cos 364A A ⎛⎫⎛⎫−+= ⎪ ⎪⎝⎭⎝⎭. (1)求A 的大小;(2)若sin sin 43sin a A c C B +=,求ABC 的面积.9.(2023·广东惠州·统考模拟预测)条件①1cos 2a B cb =+, 条件②sin sin sin sin A C B C b a c−+=+, 条件③3sinsin 2B C b a B +=. 请从上述三个条件中任选一个,补充在下列问题中,并解答.已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且满足________,(1)求A ;(2)若AD 是BAC ∠的角平分线,且1AD =,求2b c +的最小值.10.(2023·山东临沂·统考一模)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知cos cos 2cos a B b A c C +=.(1)求C ;(2)若1c =,求ABC 面积的取值范围.1.(2023·河北石家庄·统考模拟预测)已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,3sin cos c a C c A =−.(1)求A ;(2)若2a =,ABC 的面积为3,求b ,c .【分析】(1)利用正弦定理把已知等式中的边转化为角的正弦,化简整理可求得πsin 6A ⎛⎫− ⎪⎝⎭的值,进而求得A ;(2)利用三角形面积公式求得bc 的值进而根据余弦定理求得22b c +的值,最后联立方程求得b 和c .【详解】(1)解:因为3sin cos c a C c A =−,由正弦定理sin sin sin a b c A B C ==得:sin 3sin sin sin cos C A C C A =−,∴3sin cos 1A A −=,π2sin 16A ⎛⎫∴−= ⎪⎝⎭,π1sin 62A ⎛⎫−= ⎪⎝⎭, ()0,πA ∈,ππ5π,666A ⎛⎫∴−∈− ⎪⎝⎭,ππ66A ∴−=, π3A ∴=. (2)解:113sin 3222ABC S bc A bc ==⋅=,4bc ∴=, 由余弦定理得:2221cos 22b c a A bc +−==,2244b c ∴+−=, 联立2284b c bc ⎧+=⎨=⎩,解得2,2b c ==. 2.(2023·安徽宿州·统考一模)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且()(sin sin )sin sin b c B C a A b C −−=−.(1)求角A 的大小;(2)求sin sin B C +的取值范围.【分析】(1)由正弦定理,将角化边,再根据余弦定理,求解即可.(2)由(1)可知,π3A =,则πsin sin 3sin 6B C B ⎛⎫+=+ ⎪⎝⎭π3sin 6A ⎛⎫=+ ⎪⎝⎭,根据正弦型三角函数的图象和性质,求解即可.模拟训练【详解】(1)由正弦定理可得()()b c b c a a bc −−=⋅−,即222b c a bc +−=,由余弦定理的变形得2221cos 22b c a A bc +−==, 又()0,πA ∈,所以π3A =.(2)由πA B C ++=得2π3C B =−,且2π0,3B ⎛⎫∈ ⎪⎝⎭, 所以2πππsin sin sin πsin 333C B B B ⎡⎤⎛⎫⎛⎫⎛⎫=−=−+=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 所以π33πsin sin sin sin sin cos 3sin 3226B C B B B B B ⎛⎫⎛⎫+=++=+=+ ⎪ ⎪⎝⎭⎝⎭, 因为20,π3B ⎛⎫∈ ⎪⎝⎭,从而ππ5,π666B ⎛⎫+∈ ⎪⎝⎭, 所以π1sin ,162B ⎛⎫⎛⎤+∈ ⎪ ⎥⎝⎭⎝⎦,从而3sin sin ,32B C ⎛⎤+∈ ⎥ ⎝⎦. 即sin sin B C +的取值范围为3,32⎛⎤ ⎥ ⎝⎦. 3.(2023·全国·模拟预测)在①33cos sin c a B b A =+,②()()()sin sin sin sin b a B A c B C +−=−,③221cos 2a b ac B bc −=−这三个条件中任选一个,补充在下面的问题中,并解答问题. 在锐角ABC 中,内角,,A B C 的对边分别为,,a b c ,且______.(1)求A ;(2)若6a =,2BD DC =,求线段AD 长的最大值.注:如果选择多个条件分别解答,按第一个解答计分.【分析】(1)先选条件,并利用正弦定理或余弦定理将已知条件转化,得到角A 的三角函数值,再结合角A 的取值范围即可求得角A 的大小;(2)先利用余弦定理建立关于,b c 的方程,再利用向量的线性运算将2BD DC =转化为AD 与AB ,AC 的关系,两边同时平方即可将2AD 用,b c 表示,最后利用ABC 是锐角三角形及换元法,利用基本不等式求AD 长的最大值即可.【详解】(1)方案一:选条件①.由正弦定理得()sin si 33sin 3sin s s i n n co C A A B B B A =+=+,∴3cos sin sin sin A B B A =,∵sin 0B >,∴sin 3cos A A =,即tan 3A =,∵02A π<<,∴3A π=.方案二:选条件②.由正弦定理得()()()b a b a c b c +−=−,即222b c a bc +−=,∴2221cos 22b c a A bc +−==,∵02A π<<,∴3A π=.方案三:选条件③.由余弦定理得22222122a c b a b ac bc ac +−−=⋅−,∴222b c a bc +−=,∴2221cos 22b c a A bc +−==,∵02A π<<,∴3A π=.(2)由2222cos a b c bc A =+−,得2236b c bc =+−,∵2BD DC =,∴22AD AB AC AD −=−,即32AD AB AC =+,两边同时平方得2222294442AD AB AC AB AC c b bc =++⋅=++,2236b c bc =+−∴()22222221424249b c bcAD b c bc b c bc ++=++=⨯+−.令b t c =,则0t >,()()2222424121411t t t AD t t t t +++==+−+−+,令1t u +=,则1u >,221212443333AD u u u u =+=+−++−,在锐角ABC 中2222222222222222222222222a b c b c bc b c b bca cb bc bc c b c bc b c a b c b c bc ⎧⎧+>+−+>⎧>⎪⎪+>⇒+−+>⇒⎨⎨⎨>⎩⎪⎪+>+>+−⎩⎩,∴122bc <<,∴31,32u b c ⎛⎫=+∈ ⎪⎝⎭,∴21241683233AD ≤+=+−,∴223AD ≤+,当且仅当3u =时取等号,∴线段AD 长的最大值为223+.4.(2023·贵州毕节·统考一模)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若cossin 2A B b c B +=. (1)求角C ;(2)若3c =,求BC 边上的高的取值范围.【分析】(1)根据给定条件,利用正弦定理边化角,再利用二倍角的正弦求解作答. (2)由(1)可得π(0,)3B ∈,再利用三角形面积公式计算作答.【详解】(1)在ABC 中,由正弦定理及A B C π+=−,得πsin cossin sin 2C B C B −=, 即有sin sin2sin cos sin 222C C C B B =,而(),0,A B π∈,0,22C π⎛⎫∈ ⎪⎝⎭,即sin 0B ≠,sin 02C ≠, 因此1cos 22C =,π23C =,所以2π3C =. (2)令ABC 边BC 上的高为h ,由11sin 22ABC S ah ac B ==,得3sin h B =, 由(1)知,π(0,)3B ∈,即3sin (0,)2B ∈,则33sin (0,)2h B =∈, 所以BC 边上的高的取值范围是3(0,)2. 5.(2023·全国·模拟预测)已知在三角形ABC 中,a ,b ,c 分别为角A ,B ,C 的三边,若222sin 6sin 3sin 63sin sin sin A B C A B C ++=(1)求∠C 的大小;(2)求233a b的值. 【分析】(1)根据正弦定理化角为边,将2c 表示出来,再利用余弦定理化简,再结合三角函数的性质及基本不等式即可得出答案;(2)直接利用(1)中的结论即可得解.【详解】(1)因为222sin 6sin 3sin 63sin sin sin A B C A B C ++=,所以2226363sin a b c ab C ++=,则22223sin 23a c ab C b =−−, 又222224323sin 233cos 3sin 2232a b ab C a b c a b C C ab ab b a +−+−===+−, 所以233sin cos 32a b C C b a+=+,因为2323223232a b a b b a b a+≥⋅=,当且仅当2332a b b a =,即23a b =时,取等号, π3sin cos 2sin 26C C C ⎛⎫+=+≤ ⎪⎝⎭,当且仅当ππ62C +=,即π3C =时,取等号, 所以233sin cos 232a b C C b a +=+=,所以π3C =; (2)由(1)可得23a b =,所以2333a b=. 6.(2023·山东潍坊·统考一模)在①tan tan 3tan 13tan A C A C −=+;②()23cos 3cos c a B b A −=;③()3sin sin sin a c A c C b B −+=这三个条件中任选一个,补充在下面问题中并作答. 问题:在ABC 中,角,,A B C 所对的边分别为,,a b c ,且__________.(1)求角B 的大小;(2)已知1c b =+,且角A 有两解,求b 的范围.【分析】(1)若选①,由两角和的正切公式化简即可求出求角B 的大小;若选②,利用正弦定理统一为角的三角函数,再由两角和的正弦公式即可求解;若选③,由余弦定理代入化简即可得出答案. (2)将1c b =+代入正弦定理可得1sin 2b C b +=,要使角A 有两解,即1sin 12C <<,解不等式即可得出答案. 【详解】(1)若选①:整理得()1tan tan 3tan tan A C A C −=−+,因为A B C π++=, 所以()tan tan 3tan tan 1tan tan 3A CB AC A C +=−+=−=−,因为()0,B π∈,所以6B π=; 若选②:因为()23cos 3cos c a B b A −=,由正弦定理得()2sin 3sin cos 3sin cos C A B B A −=,所以()2sin cos 3sin 3sin ,sin 0C B A B C C =+=>,所以3cos 2B =,因为()0,B π∈,所以6B π=; 若选③:由正弦定理整理得2223a c b ac +−=,所以222322a cb ac +−=, 即3cos 2B =,因为()0,B π∈,所以6B π=; (2)将1c b =+代入正弦定理sin sin b c B C =,得1sin sin b b B C +=,所以1sin 2b C b +=, 因为6B π=,角A 的解有两个,所以角C 的解也有两个,所以1sin 12C <<, 即11122b b+<<,又0b >,所以12b b b <+<,解得1b >. 7.(2023·全国·模拟预测)在①()cos 2cos 0c B b a C +−=,②cos 3sin +=+a b c B c B ,③()3cos cos cos sin C a B b A c C +=这三个条件中任选一个,补充在下面的横线上,并解答问题.在ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知______.(1)求角C 的值;(2)若ABC 的面积()2238912S b c =−,试判断ABC 的形状. 注:如果选择多个条件分别解答,按第一个解答计分.【分析】(1) 方案一:选条选①,根据正弦定理和两角和的正弦公式得到()sin 2sin cos 0B C A C +−=,再利用诱导公式和三角形内角和定理即可求解;方案二:选条选②,先利用正弦定理、诱导公式和三角形内角和定理得到sin cos sin 3sin sin B C B C B +=,再利用两角和的正弦公式即可求解;方案三:选条件③,利用正弦定理、诱导公式和两角和的正弦公式得出3cos sin C C =,然后利用同角三角函数的基本关系即可求解;(2)结合(1)的结论利用余弦定理和三角形面积可得3b a =,然后代入即可求解.【详解】(1)方案一:选条选①.由()cos 2cos 0c B b a C +−=,得sin cos sin cos 2sin cos 0C B B C A C +−=,得()sin 2sin cos 0B C A C +−=,即sin 2sin cos 0A A C −=.∵0A π<<,∴sin 0A >,∴1cos 2C =,又0πC <<,∴π3C =. 方案二:选条件②.由cos 3sin +=+a b c B c B ,得sin sin sin cos 3sin sin +=+A B C B C B ,即()sin sin sin cos 3sin sin B C B C B C B ++=+,于是sin cos cos sin sin sin cos 3sin sin B C B C B C B C B ++=+,因此sin cos sin 3sin sin B C B C B +=,∵()0,B π∈,∴sin 0B ≠,∴3sin cos 1C C −=,即π1sin 62C ⎛⎫−= ⎪⎝⎭, ∵()0,πC ∈,∴ππ5π,666C ⎛⎫−∈− ⎪⎝⎭,∴ππ66C −=,故π3C =. 方案三:选条件③.由正弦定理,得()23cos sin cos sin cos sin C A B B A C +=,即()23cos sin sin C A B C +=,∴23sin cos sin C C C =,又0πC <<,∴sin 0C ≠,∴3cos sin C C =,即tan 3C =,∴π3C =. (2)在ABC 中,π3C =,由余弦定理得222222cos c a b ab C a b ab =+−=+−, 又()223189sin 122S b c ab C =−=,∴()2223389124b a b ab ab ⎡⎤−+−=⎣⎦, 整理得22960a ab b −+=,得3b a =,此时227c a b ab a =+−=,∴2227cos 214a cb B ac +−==−,∴B 为钝角,故ABC 是钝角三角形. 【点睛】方法点睛:判断三角形形状的方法:(1)角化边,通过正、余弦定理化角为边,通过因式分解、配方等方法得出边与边之间的关系,进行判断;(2)边化角,通过正、余弦定理化边为角,利用三角恒等变换、三角形内角和定理及诱导公式等推出角与角之间的关系,进行判断.无论使用哪种方法,都不要随意约掉公因式,要移项、提取公因式,否则会有遗漏一种情况的可能.注意挖掘隐含条件,重视角的范围对三角函数值的限制.8.(2023·安徽蚌埠·统考二模)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,3b =,a c <,且ππ1sin cos 364A A ⎛⎫⎛⎫−+= ⎪ ⎪⎝⎭⎝⎭. (1)求A 的大小;(2)若sin sin 43sin a A c C B +=,求ABC 的面积.【分析】(1)已知等式利用诱导公式和倍角公式化简,可求A 的大小;(2)条件中的等式,利用正弦定理角化边,再用余弦定理求得c 边,用面积公式计算面积.【详解】(1)πππππ2sin cos cos cos 3636A A A A ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫−+=−−+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦ 2πcos 21π13cos 624A A ⎛⎫++ ⎪⎛⎫⎝⎭=+== ⎪⎝⎭,∴π31cos 22A ⎛⎫+=− ⎪⎝⎭, 因为0πA <<,得ππ7π2333A <+<,所以π2π233A +=或4323ππA +=, 解得π6A =或π2A =,因为a c <,得π2A <,∴π6A =. (2)由(1)知,6A π=,sin sin 43sin a A c C B +=,由正弦定理,得224312a c b +==,由余弦定理,得2222cos a b c bc A =+−⋅,即223123232c c c −=+−⋅, 整理,得22390c c −−=,由0c >得3c =,所以11133sin 332224ABC S bc A ==⨯⨯⨯=△. 9.(2023·广东惠州·统考模拟预测)条件①1cos 2a B cb =+, 条件②sin sin sin sin A C B C b a c−+=+, 条件③3sinsin 2B C b a B +=. 请从上述三个条件中任选一个,补充在下列问题中,并解答.已知ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且满足________,(1)求A ;(2)若AD 是BAC ∠的角平分线,且1AD =,求2b c +的最小值.【分析】(1)选①,利用正弦定理结合两角和的正弦公式可得出cos A 的值,结合角A 的取值范围可得出角A 的值;选②,利用正弦定理结合余弦定理可得出cos A 的值,结合角A 的取值范围可得出角A 的值;选③,利用正弦定理结合三角恒等变换化简可得出sin2A 的值,结合角A 的取值范围可得出角A 的值; (2)由已知ABC ABD ACD S S S =+结合三角形的面积公式可得出111b c+=,将2b c +与11b c +相乘,展开后利用基本不等式可求得2b c +的最小值.【详解】(1)解:选①:因为1cos 2a B c b =+,由正弦定理可得1sin cos sin sin 2A B C B =+, 即()11sin cos sin sin sin cos cos sin sin 22A B A B B A B A B B =++=++, 所以1cos sin sin 2A B B =−, 而()0,πB ∈,sin 0B ∴≠,故1cos 2A =−,因为()0,πA ∈,所以2π3A =; 选②:因为sin sin sin sin A C B C b a c −+=+,由正弦定理a c b c b a c −+=+, 即222b c a bc +−=−,由余弦定理2221cos 222b c a bc A bc bc +−−===−, 因为()0,πA ∈,所以2π3A =; 选③:因为3sin sin 2B C b a B +=, 正弦定理及三角形内角和定理可得π3sin sinsin sin 2A B A B −=, 即3sin cos 2sin cos sin 222A A A B B =,因为A 、()0,πB ∈,则π0,22A ⎛⎫∈ ⎪⎝⎭,所以,sin 0B ≠,cos 02A ≠, 所以3sin 22A =,所以π23A =,即2π3A =. (2)解:由题意可知,ABC ABD ACD S S S =+,由角平分线性质和三角形面积公式得12π1π1πsin 1sin 1sin 232323bc b c =⨯⨯+⨯⨯, 化简得bc b c =+,即111b c+=, 因此()112222332322c b c b b c b c b c b c b c ⎛⎫+=++=++≥+⋅=+ ⎪⎝⎭, 当且仅当221c b ==+时取等号,所以2b c +的最小值为322+.10.(2023·山东临沂·统考一模)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知cos cos 2cos a B b A c C +=.(1)求C ;(2)若1c =,求ABC 面积的取值范围.【分析】(1)利用正弦定理边化角,再利用和角的正弦化简作答.(2)由(1)的结论,利用余弦定理结合均值不等式求出三角形面积范围作答.【详解】(1)在ABC 中,由已知及正弦定理得:sin cos sin cos 2sin cos A B B A C C +=,即有()sin 2sin cos A B C C +=,即sin 2sin cos C C C =,而0πC <<,sin 0C >,则1cos 2C =, 所以π3C =. (2)在ABC 中,由余弦定理2222cos c a b ab C =+−得:221a b ab =+−,因此12ab ab ≥−,即01ab <≤,当且仅当a b =时取等号,又11333sin (0,]22244ABC S ab C ab ab ==⨯=∈△, 所以ABC 面积的取值范围是3(0,]4.。

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析

高三数学三角函数三角恒等变换解三角形试题答案及解析1.已知中,那么角=【答案】π/4【解析】略2.已知f(α)=(1)化简f(α);(2)若α是第三象限角,且cos(α-)=,求f(α)的值.【答案】(1)f(α)==-cosα.(2)∵α是第三象限角,且cos(α-)=-sinα=,∴sinα=-,∴cosα=-=-,∴f(α)=-cosα=.【解析】略3.已知函数为奇函数,且,其中(1)求的值;(2)若,求的值.【答案】(1) , ;(2)【解析】(1)由为奇函数,可得,函数化为,又根据可求;(2)由(1)可得,由得又因为,所以,再根据两角和的正弦可求试题解析:因为为奇函数,所以,,则(2),因为,即又因为,所以,【考点】函数的奇偶性,三角函数的性质4.设命题函数是奇函数;命题函数的图象关于直线对称.则下列判断正确的是()A.为真B.为假C.为假D.为真【答案】C【解析】因为是偶函数,所以命题是假命题,由余弦函数的性质可知命题是假命题,选项C正确.【考点】1.三角函数性质;2.逻辑联结词与命题.5.(本小题满分12分)某同学用五点法画函数在某一个周期内的图像时,列表并填入了部分数据,如下表:5-5(1)请将上表数据补充完整,并直接写出函数的解析式;(2)若函数的图像向左平移个单位后对应的函数为,求的图像离原点最近的对称中心.【答案】(1);(2).【解析】第一问结合三角函数的性质,确定出对应的值,完善表格,从而确定出函数解析式,第二问利用图形的平移变换,将函数的解析式求出来,利用函数的性质,找出函数图像的对称中心,给赋值,比较从而确定出离原点最近的对称中心.试题解析:(1)根据表中已知数据,解得数据补全如下表:050-50函数表达式为(2)函数图像向左平移个单位后对应的函数是,其对称中心的横坐标满足,所以离原点最近的对称中心是.【考点】三角函数的性质,图像的变换.6.(本小题满分10分)已知函数.(1)求的最小正周期;(2)设,求的值域和单调递减区间.【答案】(1);(2)【解析】(1)先根据二倍角公式和两角和与差的公式进行化简,再求出周期即可;(2)先根据x的范围求得,再结合正弦函数的性质可得到函数f(x)的值域,求得单调递减区间.试题解析:(1)(2)∵,,的值域为.的递减区间为.【考点】三角函数的周期性及其求法;正弦函数的定义域和值域;正弦函数的单调性7.(本小题满分12分)在中,角的对边分别为,已知,向量,且∥.(1)求角的大小;(2)若成等差数列,求边的大小.【答案】(1);(2)【解析】(1)利用数量积运算、正弦定理即可得出;(2)由成等差数列,可得,或,即2a=b.再利用直角三角形的边角关系、余弦定理即可得出.试题解析:(1)∥,得,由正弦定理可得,(2)成等差,所以化简整理得:即或得或若若【考点】正弦定理;平面向量数量积运算8.在中,角所对的边为.已知,且.(1)求的值;(2)当时,求的面积.【答案】(1);(2).【解析】(1)根据已知条件中的式子,结合正弦定理,将其化为的方程,即可求解;(2)利用已知条件,结合余弦定理,可求得,的值,再利用三角形面积计算公式即可求得的值.试题解析:(1)∵,∴①,又∵,∴②,联立①②,即可求得,;(2)由(1)结合余弦定理可知,或,由已知易得,∴,∴,.【考点】1.正余弦定理解三角形;2.三角恒等变形.9.(本题满分12分)已知,,函数.(1)求的最小正周期,并求其图像对称中心的坐标;(2)当时,求函数的值域.【答案】(1)的最小正周期为,其对称中心的坐标为()();(2)的值域为.【解析】(1)先用降幂公式和辅助角公式,将进行化简整理得到,然后根据正弦函数的周期公式可得函数的最小正周期,进而求出函数的零点,即为函数的图像对称中心的坐标;(2)根据可得到,最后结合正弦函数的图像与性质可得函数的值域.试题解析:(1)因为=,所以的最小正周期为,令,得,∴故所求对称中心的坐标为()().(2)∵,∴,∴,即的值域为.【考点】1、三角函数中的恒等变换;2、三角函数的周期性及其求法;3、正弦函数的图像及其性质.【方法点晴】本题考查了三角函数中的恒等变换、三角函数的周期性及其求法和正弦函数的图像及其性质,重点考查学生对三角函数的基本概念、基本性质和基本原理,属中档题.解决这类问题最关键的一步是运用降幂公式、倍角公式及三角函数的和差公式等将函数的表达式化简为同角的正弦或余弦形式.因此需要大家应熟练掌握相关公式并结合三角函数的图像及其性质进行求解.10.若函数在上单调递减,且在上的最大值为,则的值为()A.B.C.D.【答案】A【解析】由题意得:,解得,选A.【考点】正切函数性质11.(本小题满分12分)已知向量,.(1)当时,求的值;(2)设函数,已知在中,内角、、的对边分别为、、,若,,,求当时,的取值范围.【答案】(1);(2).【解析】(1)平方关系和商数关系式中的角都是同一个角,且商数关系式中,利用,得出,把转化为的式子,从而求解;(2)熟悉三角公式的整体结构,灵活变换,要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形,把形如化为,研究函数的性质由的取值范围确定的取值范围,再确定的取值范围.试题解析:(1),,,(2)由正弦定理得,得或,,因此,,即.【考点】1、同角三角函数的基本关系;2、三角函数的化简;3、求三角函数的值域.12.(2012秋•泰安期中)已知函数f(x)=2sinωxcosωx﹣2sin2ωx+(ω>0),直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为.(Ⅰ)求ω的值;(Ⅱ)求函数f(x)的单调增区间;(Ⅲ)若f(α)=,求sin(π﹣4α)的值.【答案】(Ⅰ)1;(Ⅱ)见解析;(Ⅲ)﹣.【解析】(I)利用二倍角公式即辅助角公式,化简函数,利用直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为,可得函数的最小正周期为π,根据周期公式,可求ω的值;(II)利用正弦函数的单调性,可得函数f(x)的单调增区间;(III)由f(a)=,可得sin(2a+)=,根据sin(π﹣4a)=sin[﹣2(2a+)]=﹣cos[2(2a+)]=2sin2(2a+)﹣1,即可求得结论.解:(I)∵f(x)=2sinωxcosωx﹣2sin2ωx+=sin2ωx+cos2ωx=2sin(2ωx+)∵直线x=x1,x=x2是函数y=f(x)的图象的任意两条对称轴,且|x1﹣x2|的最小值为,∴函数的最小正周期为π∴=π∴ω=1;(II)由(I)知,f(x)=2sin(2x+)∴﹣+2kπ≤2x+≤+2kπ,k∈Z∴﹣+kπ≤x≤+kπ,k∈Z∴函数f(x)的单调增区间为[﹣+kπ,+kπ],k∈Z;(III)∵f(a)=,∴sin(2a+)=∴sin(π﹣4a)=sin[﹣2(2a+)]=﹣cos[2(2a+)]=2sin2(2a+)﹣1=﹣.【考点】三角函数中的恒等变换应用;由y=Asin(ωx+φ)的部分图象确定其解析式;复合三角函数的单调性.13.已知向量,且函数在时取得最小值.(Ⅰ)求的值;(Ⅱ)在中,分别是内角的对边,若,,,求的值.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)利用向量的数量积公式,结合辅助角公式,求的值;(Ⅱ)先求出,再利用正弦定理,即可求的值.试题解析:(Ⅰ)由于(Ⅱ)由上知,于是由正弦定理得:【考点】正弦定理,余弦定理,两角和与差的三角函数,向量的数量积14.已知,函数在单调递减,则的取值范围是.【答案】【解析】,,由题意,所以,由于,所以只有,.【考点】三角函数的单调性.【名师】求形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(其中A≠0,ω>0)的函数的单调区间,可以通过解不等式的方法去解答,列不等式的原则是:①把“ωx+φ(ω>0)”视为一个“整体”;②A>0(A<0)时,所列不等式的方向与y=sin x(x∈R),y=cos x(x∈R)的单调区间对应的不等式方向相同(反).15.(2015秋•南京校级期中)将函数f(x)=2sin(2x﹣)的图象向左平移m个单位(m>0),若所得的图象关于直线x=对称,则m的最小值为.【答案】【解析】由条件利用函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得m的最小值.解:将函数f(x)=2sin(2x﹣)的图象向左平移m个单位(m>0),可得y=2sin[2(x+m)﹣]=2sin(2x+2m﹣)的图象.∵所得的图象关于直线x=对称,∴2•+2m﹣=kπ+,k∈Z,即 m=+,k∈Z,则m的最小值为,故答案为:.【考点】函数y=Asin(ωx+φ)的图象变换.16.(2015秋•昌平区期末)已知函数.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)的单调递减区间.【答案】(Ⅰ);(Ⅱ)函数f(x)的单调递减区间是.)【解析】(Ⅰ)利用三角函数的倍角公式以及辅助角公式进行化简,即可求函数f(x)的最小正周期;(Ⅱ)利用三角函数的单调性即可求函数f(x)的单调递减区间.解:(Ⅰ)==所以最小正周期.(Ⅱ)由,得.所以函数f(x)的单调递减区间是.)【考点】三角函数中的恒等变换应用;正弦函数的图象.17.已知函数.(1)求的最小正周期和在上的单调递减区间;(2)若为第四象限角,且,求的值.【答案】(1);(2).【解析】(1)对的表达式进行三角恒等变形,利用三角函数的性质即可求解;(2)利用同角三角函数的基本关系求得的值后即可求解.试题解析:(1)由已知,所以最小正周期,由,得,故函数在上的单调递减区间;(2)因为为第四象限角,且,所以,所以.【考点】三角函数综合.18.已知是第二象限角,且,则()A.B.C.D.【答案】C【解析】由,得,又∵是第二象限角,∴,∴原式=;故选C.【考点】1.诱导公式;2.同角三角函数基本关系式.19.在中,角所对的边分别为,且,则的最大值为_____.【答案】【解析】由及正弦定理得,又因为,于是可得,所以,所以,则的最大值为,故答案填.【考点】1、正弦定理;2、两角和与差的三角函数;3、基本不等式.20.将函数图象上各点的横坐标伸长到原来的倍,再向左平移个单位,纵坐标不变,所得函数图象的一条对称轴的方程是()A.B.C.D.【答案】D【解析】将函数图象上各点的横坐标伸长到原来的倍,得,再向左平移个单位,得,令,解得,令,得,即所得函数图象的一条对称轴的方程是,故选D.【考点】三角函数的图象变换与三角函数的性质.21.设平面向量.(1)若,求的值;(2)若,求的取值范围.【答案】(1);(2).【解析】(1)先利用向量数量积的坐标表示求出,利用商数关系求出得值,再利用二倍角公式求出的值,最后代入到的展开式即可求得;(2)欲求,先求出,再根据求的范围,从而可得的取值范围.试题解析:(1)因为,所以,∴,∴.(2),,.【考点】1、向量数量积的坐标表示;2、二倍角公式;3、三角函数;4、商数关系;5、向量的模.22.设中的内角所对的边长分别为,且.(1)当时,求角的度数;(2)求面积的最大值.【答案】(1);(2).【解析】(1)求出,再由正弦定理求出,求出角;(2)求三角形面积的最大值,即求的最大值,由,,求出,就可以求出面积的最大值.试题解析:解:(1)因为,所以.因为,由正弦定理可得.因为,所以是锐角,所以.(2)因为的面积,所以当最大时,的面积最大.因为,所以.因为,所以,所以(当时等号成立).所以面积的最大值为.【考点】1.正弦定理;2.余弦定理;3.重要不等式.23.在中,内角的对边为,已知.(1)求角的值;(2)若,且的面积为,求.【答案】(1);(2).【解析】根据正弦定理可得,根据内角和定理和两角和的正弦公式整理可得,即得角的值;(2)由的面积为,求得的值,根据余弦定理表示构造的另一个方程,解方程组即可求得.试题解析:(1)∵,∴,∴,即,∴,∴,又∵是三角形的内角,∴(2)∵,∴,∴,又∵,∴,∴,∴【考点】正余弦定理解三角形.24.的三个内角满足:,则()A.B.C.D.或【答案】B【解析】由已知条件以及正弦定理可得:,即,再由余弦定理可得,所以,故选B.【考点】正弦定理、余弦定理.25.在中,角,,的对边分别是,,,已知,.(I)求的值;(II)若角为锐角,求的值及的面积.【答案】(I);(II)【解析】(I)根据题意和正弦定理求出a的值;(II)由二倍角的余弦公式变形求出sin2A,由A 的范围和平方关系求出cosA,由余弦定理列出方程求出b的值,代入三角形的面积公式求出△ABC的面积.试题解析:(I)因为,且,所以.因为,由正弦定理,得.(II)由得.由余弦定理,得.解得或(舍负).所以.【考点】正弦定理;余弦定理26.如图所示的是函数和函数的部分图象,则函数的解析式是()A.B.C.D.【答案】C.【解析】由题意得,,故排除B,D;又∵,故排除A,故选C.【考点】三角函数的图象和性质.27.已知,则=()A.B.C.D.【答案】A【解析】,故选A.【考点】和差倍半的三角函数.28.在中,角所对的边分别为,.(Ⅰ)求的值;(Ⅱ)若,,求的面积.【答案】(Ⅰ)(Ⅱ)【解析】(Ⅰ)先根据正弦定理将边统一成角:,再利用三角形内角关系、诱导公式、两角和正弦公式将三角统一成两角:,最后根据同角三角函数关系将弦化切:(Ⅱ)由(Ⅰ)易得,已知两角一对边,根据正弦定理求另一边:,利用三角形内角关系求第三角的正弦值:,最后根据面积公式求面积:试题解析:解:(Ⅰ)由及正弦定理得.所以,所以.(Ⅱ),所以, ,,所以的面积为.【考点】正弦定理,弦化切【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向.第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.29.同时具有性质“①最小正周期是,②图象关于直线对称;③在上是增函数”的一个函数是()A.B.C.D.【答案】C【解析】由题意得,函数的最小周期为,则,又函数图象关于直线对称,则函数为函数的最小值,则只有B、C满足,由当时,,则函数是单调递增函数,故选C.【考点】三角函数的性质.30.若函数的最大值为5,则常数______.【答案】【解析】,其中,故函数的最大值为,由已知得,,解得.【考点】三角函数的图象和性质.【名师】解决三角函数性质问题的基本思路是通过化简得到,结合角的范围求解.. 本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.31.定义在区间[0,]上的函数的图象与的图象的交点个数是 .【答案】7【解析】由,因为,所以故两函数图象的交点个数是7.【考点】三角函数图象【名师】求函数图象的交点个数,有两种方法:一是直接求解,如本题,解一个简单的三角方程,此方法立足于易于求解;二是数形结合,分别画出函数图象,数出交点个数,此法直观,但对画图要求较高,必须准确,尤其是要明确函数的增长幅度.32.△ABC的内角A、B、C的对边分别为a、b、c.已知,,,则b=(A)(B)(C)2 (D)3【答案】D【解析】由余弦定理得,解得(舍去),选D.【考点】余弦定理【名师】本题属于基础题,考查内容单一,根据余弦定理整理出关于b的一元二次方程,再通过解方程求b.运算失误是基础题失分的主要原因,请考生切记!33.将函数y=2sin(2x+)的图像向右平移个周期后,所得图像对应的函数为A.y=2sin(2x+)B.y=2sin(2x+)C.y=2sin(2x–)D.y=2sin(2x–)【答案】D【解析】函数的周期为,将函数的图像向右平移个周期即个单位,所得图像对应的函数为,故选D.【考点】三角函数图像的平移【名师】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减”;二是平移多少个单位是对x而言的,不要忘记乘以系数.34.如图,在Rt△ABC中,AC⊥BC,D在边AC上,已知BC=2,CD=1,∠ABD=45°,则AD=.【答案】5【解析】,,所以,.【考点】解三角形.【名师】在解直角三角形时,直角三角形中的三角函数定义是解题的桥梁,利用它可以很方便地建立边与角之间的关系.35.设函数的部分图象如图所示,直线是它的一条对称轴,则函数的解析式为()A.B.C.D.【答案】C【解析】因为直线是它的一条对称轴,排除B,D,因为图象过点,排除选项A,选C.【考点】三角函数图象与性质.36.在中,角,,的对边分别为,,,且满足,则角等于()A.B.C.D.【答案】A【解析】由正弦定理可得,即,由余弦定理可得,所以,故应选A。

【高考数学 核心突破 解三角形】三角函数的图象与性质、三角恒等变换与解三角形(含规范大题示范)

【高考数学 核心突破 解三角形】三角函数的图象与性质、三角恒等变换与解三角形(含规范大题示范)

第1讲 三角函数的图象与性质[考情考向分析] 1.以图象为载体,考查三角函数的最值、单调性、对称性、周期性.2.考查三角函数式的化简、三角函数的图象和性质、角的求值,重点考查分析、处理问题的能力,是高考的必考点.热点一 三角函数的概念、诱导公式及同角关系式1.三角函数:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx(x ≠0).各象限角的三角函数值的符号:一全正,二正弦,三正切,四余弦.2.同角基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α⎝⎛⎭⎫α≠k π+π2,k ∈Z . 3.诱导公式:在k π2+α,k ∈Z 的诱导公式中“奇变偶不变,符号看象限”.例1 (1)(2018·资阳三诊)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边经过点P (2,1),则tan ⎝⎛⎭⎫2α+π4等于( ) A .-7 B .-17 C.17 D .7答案 A解析 由角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,终边经过点P (2,1), 可得x =2,y =1,tan α=y x =12,∴tan 2α=2tan α1-tan 2α=11-14=43,∴tan ⎝⎛⎭⎫2α+π4=tan 2α+tan π41-tan 2αtan π4=43+11-43×1=-7. (2)(2018·衡水金卷信息卷)已知曲线f (x )=x 3-2x 2-x 在点(1,f (1))处的切线的倾斜角为α,则cos 2⎝⎛⎭⎫π2+α-2cos 2α-3sin(2π-α)cos(π+α)的值为( ) A.85 B .-45 C.43 D .-23 答案 A解析 由f (x )=x 3-2x 2-x 可知f ′(x )=3x 2-4x -1, ∴tan α=f ′(1)=-2,cos 2⎝⎛⎭⎫π2+α-2cos 2α-3sin ()2π-αcos ()π+α =(-sin α)2-2cos 2α-3sin αcos α =sin 2α-2cos 2α-3sin αcos α=sin 2α-2cos 2α-3sin αcos αsin 2α+cos 2α=tan 2α-3tan α-2tan 2α+1=4+6-25=85. 思维升华 (1)涉及与圆及角有关的函数建模问题(如钟表、摩天轮、水车等),常常借助三角函数的定义求解.应用定义时,注意三角函数值仅与终边位置有关,与终边上点的位置无关. (2)应用诱导公式时要弄清三角函数在各个象限内的符号;利用同角三角函数的关系化简过程要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等.跟踪演练1 (1)(2018·合肥质检)在平面直角坐标系中,若角α的终边经过点P ⎝⎛⎭⎫sin 5π3,cos 5π3,则sin(π+α)等于( ) A .-32 B .-12 C.12 D.32答案 B解析 由诱导公式可得,sin 5π3=sin ⎝⎛⎭⎫2π-π3=-sin π3=-32, cos 5π3=cos ⎝⎛⎭⎫2π-π3=cos π3=12, 即P ⎝⎛⎭⎫-32,12, 由三角函数的定义可得,sin α=12⎝⎛⎭⎫-322+⎝⎛⎭⎫122=12,则sin ()π+α=-sin α=-12.(2)(2018·衡水金卷调研卷)已知sin(3π+α)=2sin ⎝⎛⎭⎫3π2+α,则sin (π-α)-4sin ⎝⎛⎭⎫π2+α5sin (2π+α)+2cos (2π-α)等于( )A.12B.13C.16 D .-16 答案 D解析 ∵sin(3π+α)=2sin ⎝⎛⎭⎫3π2+α, ∴-sin α=-2cos α,即sin α=2cos α,则sin (π-α)-4sin ⎝⎛⎭⎫π2+α5sin (2π+α)+2cos (2π-α)=sin α-4cos α5sin α+2cos α=2cos α-4cos α10cos α+2cos α=-212=-16.热点二 三角函数的图象及应用 函数y =A sin(ωx +φ)的图象 (1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应的y 的值,描点、连线可得.(2)图象变换:(先平移后伸缩)y =sin x ――――――――――――→向左(φ>0)或向右(φ<0)平移|φ|个单位长度 y =sin(x +φ)―――――――――――――→横坐标变为原来的1ω(ω>0)倍纵坐标不变y =sin(ωx +φ)―――――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ). (先伸缩后平移)y =sin x ――――――――――→横坐标变为原来的1ω(ω>0)倍纵坐标不变y =sin ωx ―――――――→向左(φ>0)或右(φ<0)平移|φ|ω个单位长度y =sin(ωx +φ) ――――――――――――→纵坐标变为原来的A (A >0)倍横坐标不变y =A sin(ωx +φ).例2 (1)(2018·安徽省江淮十校联考)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象( ) A .向左平移π12个单位长度B .向右平移π12个单位长度C .向左平移5π12个单位长度D .向右平移5π12个单位长度答案 A解析 由题意知,函数f (x )的最小正周期T =π, 所以ω=2,即f (x )=sin ⎝⎛⎭⎫2x +π3,g (x )=cos 2x . 把g (x )=cos 2x 变形得g (x )=sin ⎝⎛⎭⎫2x +π2=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π3,所以只要将f (x )的图象向左平移π12个单位长度,即可得到g (x )=cos 2x 的图象,故选A.(2)(2018·永州模拟)函数f (x )=A sin(ωx +φ)()ω>0,|φ|<π的部分图象如图所示,将函数f (x )的图象向右平移5π12个单位长度后得到函数g (x )的图象,若函数g (x )在区间⎣⎡⎦⎤-π6,θ上的值域为[-1,2],则θ=________.答案 π3解析 函数f (x )=A sin(ωx +φ)()ω>0,|φ|<π的部分图象如图所示, 则A =2,T 2=13π12-7π12=π2,解得T =π,所以ω=2,即f (x )=2sin(2x +φ), 当x =π3时,f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫2×π3+φ=0, 又|φ|<π,解得φ=-2π3,所以f (x )=2sin ⎝⎛⎭⎫2x -2π3, 因为函数f (x )的图象向右平移5π12个单位长度后得到函数g (x )的图象, 所以g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -5π12-2π3=2cos 2x , 若函数g (x )在区间⎣⎡⎦⎤-π6,θ上的值域为[-1,2],则2cos 2θ=-1,则θ=k π+π3,k ∈Z ,或θ=k π+2π3,k ∈Z ,所以θ=π3.思维升华 (1)已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置.(2)在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度数和方向. 跟踪演练2 (1)(2018·潍坊模拟)若将函数y =cos ωx (ω>0)的图象向右平移π3个单位长度后与函数y =sin ωx 的图象重合,则ω的最小值为( ) A.12 B.32 C.52 D.72 答案 B解析 将函数y =cos ωx (ω>0)的图象向右平移π3个单位长度后得到函数的解析式为y =cosω⎝⎛⎭⎫x -π3=cos ⎝⎛⎭⎫ωx -ωπ3. ∵平移后得到的函数图象与函数y =sin ωx 的图象重合, ∴-ωπ3=2k π-π2(k ∈Z ),即ω=-6k +32(k ∈Z ).∴当k =0时,ω=32.(2)(2018·北京朝阳区模拟)函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则ω=________;函数f (x )在区间⎣⎡⎦⎤π3,π上的零点为________.答案 27π12解析 从图中可以发现,相邻的两个最高点和最低点的横坐标分别为π3,-π6,从而求得函数的最小正周期为T =2⎣⎡⎦⎤π3-⎝⎛⎭⎫-π6=π,根据T =2πω可求得ω=2.再结合题中的条件可以求得函数的解析式为f (x )=2sin ⎝⎛⎭⎫2x -π6,令2x -π6=k π(k ∈Z ),解得x =k π2+π12(k ∈Z ),结合所给的区间,整理得出x =7π12.热点三 三角函数的性质 1.三角函数的单调区间y =sin x 的单调递增区间是⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ),单调递减区间是⎣⎡⎦⎤2k π+π2,2k π+3π2(k ∈Z );y =cos x 的单调递增区间是[2k π-π,2k π](k ∈Z ),单调递减区间是[2k π,2k π+π](k ∈Z ); y =tan x 的单调递增区间是⎝⎛⎭⎫k π-π2,k π+π2(k ∈Z ).2.y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数; 当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得.y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数.例3 设函数f (x )=sin ωx ·cos ωx -3cos 2ωx +32(ω>0)的图象上相邻最高点与最低点的距离为π2+4. (1)求ω的值;(2)若函数y =f (x +φ)⎝⎛⎭⎫0<φ<π2是奇函数,求函数g (x )=cos(2x -φ)在[0,2π]上的单调递减区间. 解 (1)f (x )=sin ωx ·cos ωx -3cos 2ωx +32=12sin 2ωx -3(1+cos 2ωx )2+32 =12sin 2ωx -32cos 2ωx =sin ⎝⎛⎭⎫2ωx -π3, 设T 为f (x )的最小正周期,由f (x )的图象上相邻最高点与最低点的距离为π2+4,得⎝⎛⎭⎫T 22+[2f (x )max ]2=π2+4, ∵f (x )max =1,∴⎝⎛⎭⎫T 22+4=π2+4, 整理得T =2π.又ω>0,T =2π2ω=2π,∴ω=12.(2)由(1)可知f (x )=sin ⎝⎛⎭⎫x -π3, ∴f (x +φ)=sin ⎝⎛⎭⎫x +φ-π3. ∵y =f (x +φ)是奇函数,∴sin ⎝⎛⎭⎫φ-π3=0, 又0<φ<π2,∴φ=π3,∴g (x )=cos(2x -φ)=cos ⎝⎛⎭⎫2x -π3. 令2k π≤2x -π3≤2k π+π,k ∈Z ,得k π+π6≤x ≤k π+2π3,k ∈Z ,∴函数g (x )的单调递减区间是⎣⎡⎦⎤k π+π6,k π+2π3,k ∈Z . 又∵x ∈[0,2π],∴当k =0时,函数g (x )的单调递减区间是⎣⎡⎦⎤π6,2π3; 当k =1时,函数g (x )的单调递减区间是⎣⎡⎦⎤7π6,5π3.∴函数g (x )在[0,2π]上的单调递减区间是⎣⎡⎦⎤π6,2π3,⎣⎡⎦⎤7π6,5π3. 思维升华 函数y =A sin(ωx +φ)的性质及应用类题目的求解思路第一步:先借助三角恒等变换及相应三角函数公式把待求函数化成y =A sin(ωx +φ)+B 的形式;第二步:把“ωx +φ”视为一个整体,借助复合函数性质求y =A sin(ωx +φ)+B 的单调性及奇偶性、最值、对称性等问题.跟踪演练3 (2018·四川成都市第七中学模拟)已知函数f (x )=3sin ⎝⎛⎭⎫2x +π2+sin 2x +a 的最大值为1.(1)求函数f (x )的最小正周期与单调递增区间;(2)若将f (x )的图象向左平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值.解 (1)∵f (x )=3sin ⎝⎛⎭⎫2x +π2+sin 2x +a =3cos 2x +sin 2x +a =2sin ⎝⎛⎭⎫2x +π3+a ≤1, ∴2+a =1, 即a =-1,∴最小正周期为T =π. ∴f (x )=2sin ⎝⎛⎭⎫2x +π3-1, 令2k π-π2≤2x +π3≤2k π+π2,k ∈Z ,得k π-5π12≤x ≤k π+π12,k ∈Z .∴函数f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12,k ∈Z . (2)∵将f (x )的图象向左平移π6个单位长度,得到函数g (x )的图象,∴g (x )=f ⎝⎛⎭⎫x +π6=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π3-1 =2sin ⎝⎛⎭⎫2x +2π3-1. ∵x ∈⎣⎡⎦⎤0,π2,∴2x +2π3∈⎣⎡⎦⎤2π3,5π3, ∴当2x +2π3=2π3,即x =0时,sin ⎝⎛⎭⎫2x +2π3=32,g (x )取最大值3-1; 当2x +2π3=3π2,即x =5π12时,sin ⎝⎛⎭⎫2x +2π3=-1,g (x )取最小值-3.真题体验1.(2018·全国Ⅰ)已知函数f (x )=2sin x +sin 2x ,则f (x )的最小值是________. 答案 -332解析 f ′(x )=2cos x +2cos 2x =2cos x +2(2cos 2x -1) =2(2cos 2x +cos x -1)=2(2cos x -1)(cos x +1). ∵cos x +1≥0,∴当-1≤cos x <12时,f ′(x )<0,f (x )单调递减;当12<cos x ≤1时,f ′(x )>0,f (x )单调递增, ∴当cos x =12时,f (x )有最小值.又f (x )=2sin x +sin 2x =2sin x (1+cos x ),∴当sin x =-32时,f (x )有最小值, 即f (x )min =2×⎝⎛⎭⎫-32×⎝⎛⎭⎫1+12=-332.2.(2018·全国Ⅱ改编 )若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是________. 答案 π4解析 f (x )=cos x -sin x=-2⎝⎛⎭⎫sin x ·22-cos x ·22=-2sin ⎝⎛⎭⎫x -π4, 当x ∈⎣⎡⎦⎤-π4,3π4,即x -π4∈⎣⎡⎦⎤-π2,π2时, y =sin ⎝⎛⎭⎫x -π4单调递增, f (x )=-2sin ⎝⎛⎭⎫x -π4单调递减. ∵函数f (x )在[-a ,a ]上是减函数, ∴[-a ,a ]⊆⎣⎡⎦⎤-π4,3π4, ∴0<a ≤π4,∴a 的最大值为π4.3.(2018·天津改编)将函数y =sin ⎝⎛⎭⎫2x +π5的图象向右平移π10个单位长度,所得图象对应的函数______.(填序号)①在区间⎣⎡⎦⎤3π4,5π4上单调递增; ②在区间⎣⎡⎦⎤3π4,π上单调递减; ③在区间⎣⎡⎦⎤5π4,3π2上单调递增; ④在区间⎣⎡⎦⎤3π2,2π上单调递减. 答案 ①解析 函数y =sin ⎝⎛⎭⎫2x +π5的图象向右平移π10个单位长度后的解析式为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π10+π5=sin 2x ,则函数y =sin 2x 的一个单调增区间为⎣⎡⎦⎤3π4,5π4,一个单调减区间为⎣⎡⎦⎤5π4,7π4.由此可判断①正确.4.(2018·全国Ⅲ)函数f (x )=cos ⎝⎛⎭⎫3x +π6在[0,π]上的零点个数为______. 答案 3解析 由题意可知,当3x +π6=k π+π2(k ∈Z )时,f (x )=cos ⎝⎛⎭⎫3x +π6=0. ∵x ∈[0,π], ∴3x +π6∈⎣⎡⎦⎤π6,19π6, ∴当3x +π6的取值为π2,3π2,5π2时,f (x )=0,即函数f (x )=cos ⎝⎛⎭⎫3x +π6在[0,π]上的零点个数为3. 押题预测1.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π5(x ∈R ,ω>0)图象的相邻两条对称轴之间的距离为π2.为了得到函数g (x )=cos ωx 的图象,只要将y =f (x )的图象( ) A .向左平移3π20个单位长度B .向右平移3π20个单位长度C .向左平移π5个单位长度D .向右平移π5个单位长度押题依据 本题结合函数图象的性质确定函数解析式,然后考查图象的平移,很有代表性,考生应熟练掌握图象平移规则,防止出错. 答案 A解析 由于函数f (x )图象的相邻两条对称轴之间的距离为π2,则其最小正周期T =π,所以ω=2πT=2,即f (x )=sin ⎝⎛⎭⎫2x +π5,g (x )=cos 2x . 把g (x )=cos 2x 变形得g (x )=sin ⎝⎛⎭⎫2x +π2=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +3π20+π5,所以要得到函数g (x )的图象,只要将f (x )的图象向左平移3π20个单位长度即可.故选A.2.如图,函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫其中A >0,ω>0,|φ|≤π2 与坐标轴的三个交点P ,Q ,R 满足P (2,0),∠PQR =π4,M 为QR 的中点,PM =25,则A 的值为( )A.83 3B.1633 C .8 D .16 押题依据 由三角函数的图象求解析式是高考的热点,本题结合平面几何知识求A ,考查数形结合思想. 答案 B解析 由题意设Q (a,0),R (0,-a )(a >0). 则M ⎝⎛⎭⎫a 2,-a2,由两点间距离公式,得 PM =⎝⎛⎭⎫2-a 22+⎝⎛⎭⎫a 22=25, 解得a 1=8,a 2=-4(舍去),由此得T 2=8-2=6,即T =12,故ω=π6,由P (2,0)得φ=-π3,代入f (x )=A sin(ωx +φ),得f (x )=A sin ⎝⎛⎭⎫π6x -π3, 从而f (0)=A sin ⎝⎛⎭⎫-π3=-8,得A =163 3. 3.已知函数f (x )=cos 4x -2sin x cos x -sin 4x .(1)若x 是某三角形的一个内角,且f (x )=-22,求角x 的大小; (2)当x ∈⎣⎡⎦⎤0,π2时,求f (x )的最小值及取得最小值时x 的值. 押题依据 三角函数解答题的第(1)问的常见形式是求周期、求单调区间及求对称轴方程(或对称中心)等,这些都可以由三角函数解析式直接得到,因此此类命题的基本方式是利用三角恒等变换得到函数的解析式.第(2)问的常见形式是求解函数的值域(或最值),特别是指定区间上的值域(或最值),是高考考查三角函数图象与性质命题的基本模式. 解 (1)∵f (x )=cos 4x -2sin x cos x -sin 4x =(cos 2x +sin 2x )(cos 2x -sin 2x )-sin 2x =cos 2x -sin 2x=2⎝⎛⎭⎫22cos 2x -22sin 2x=2cos ⎝⎛⎭⎫2x +π4, ∴f (x )=2cos ⎝⎛⎭⎫2x +π4=-22, 可得cos ⎝⎛⎭⎫2x +π4=-12. 由题意可得x ∈(0,π), ∴2x +π4∈⎝⎛⎭⎫π4,9π4, 可得2x +π4=2π3或4π3,∴x =5π24或13π24.(2)∵x ∈⎣⎡⎦⎤0,π2,∴2x +π4∈⎣⎡⎦⎤π4,5π4, ∴cos ⎝⎛⎭⎫2x +π4∈⎣⎡⎦⎤-1,22, ∴f (x )=2cos ⎝⎛⎭⎫2x +π4∈[-2,1]. ∴f (x )的最小值为-2,此时2x +π4=π,即x =3π8.A 组 专题通关1.(2018·佛山质检)函数y =sin ⎝⎛⎭⎫2x +π6+cos ⎝⎛⎭⎫2x -π3的最小正周期和振幅分别是( ) A .π, 2 B .π,2 C .2π,1 D .2π, 2 答案 B解析 ∵y =sin ⎝⎛⎭⎫2x +π6+cos ⎝⎛⎭⎫2x -π3 =sin ⎝⎛⎭⎫2x +π6+sin ⎣⎡⎦⎤⎝⎛⎭⎫2x -π3+π2 =2sin ⎝⎛⎭⎫2x +π6, ∴T =2π2=π,振幅为2.2.(2018·天津市十二校模拟)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(x ∈R ,ω>0)的最小正周期为π,将y =f (x )的图象向左平移|φ|个单位长度,所得图象关于y 轴对称,则φ的一个值是( ) A.π2 B.3π8 C.π4 D.5π8答案 D解析 由函数f (x )=sin ⎝⎛⎭⎫ωx +π4(x ∈R ,ω>0)的最小正周期为π=2πω, 可得ω=2,∴f (x )=sin ⎝⎛⎭⎫2x +π4. 将y =f (x )的图象向左平移|φ|个单位长度, 得y =sin ⎣⎡⎦⎤2(x +|φ|)+π4的图象, ∵平移后图象关于y 轴对称, ∴2|φ|+π4=k π+π2(k ∈Z ),∴|φ|=k π2+π8(k ∈Z ),令k =1,得φ=±5π8.3.(2018·河北省衡水金卷模拟)已知函数f (x )=3sin ωx -2cos 2ωx2+1(ω>0),将f (x )的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位长度,所得函数g (x )的部分图象如图所示,则φ的值为( )A.π12B.π6C.π8D.π3 答案 A解析 ∵f (x )=3sin ωx -2cos 2ωx2+1 =3sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π6, 则g (x )=2sin ⎣⎡⎦⎤ω(x -φ)-π6=2sin ⎝⎛⎭⎫ωx -ωφ-π6. 由图知T =2⎝⎛⎭⎫11π12-5π12=π, ∴ω=2,g (x )=2sin ⎝⎛⎭⎫2x -2φ-π6, 则g ⎝⎛⎭⎫5π12=2sin ⎝⎛⎭⎫5π6-π6-2φ=2sin ⎝⎛⎭⎫2π3-2φ=2, 即2π3-2φ=π2+2k π,k ∈Z , ∴φ=π12-k π,k ∈Z .又0<φ<π2,∴φ的值为π12.4.(2018·山东、湖北部分重点中学模拟)已知函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2,f (x 1)=2,f (x 2)=0,若|x 1-x 2|的最小值为12,且f ⎝⎛⎭⎫12=1,则f (x )的单调递增区间为( ) A.⎣⎡⎦⎤-16+2k ,56+2k ,k ∈ZB.⎣⎡⎦⎤-56+2k ,16+2k ,k ∈Z C.⎣⎡⎦⎤-56+2k π,16+2k π,k ∈Z D.⎣⎡⎦⎤16+2k ,76+2k ,k ∈Z 答案 B解析 由f (x 1)=2,f (x 2)=0,且|x 1-x 2|的最小值为12,可知T 4=12,∴T =2,∴ω=π,又f ⎝⎛⎭⎫12=1,则φ=±π3+2k π,k ∈Z , ∵0<φ<π2,∴φ=π3,∴f (x )=2sin ⎝⎛⎭⎫πx +π3. 令-π2+2k π≤πx +π3≤π2+2k π,k ∈Z ,得-56+2k ≤x ≤16+2k ,k ∈Z .故f (x )的单调递增区间为⎣⎡⎦⎤-56+2k ,16+2k ,k ∈Z . 5.(2018·焦作模拟)函数f (x )=3sin ωx +cos ωx (ω>0)图象的相邻对称轴之间的距离为π2,则下列结论正确的是( ) A .f (x )的最大值为1B .f (x )的图象关于直线x =5π12对称C .f ⎝⎛⎭⎫x +π2的一个零点为x =-π3D .f (x )在区间⎣⎡⎦⎤π3,π2上单调递减 答案 D解析 因为f (x )=3sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π6的相邻的对称轴之间的距离为π2, 所以2πω=π,得ω=2,即f (x )=2sin ⎝⎛⎭⎫2x +π6, 所以f (x )的最大值为2,所以A 错误; 当x =5π12时,2x +π6=π,所以f ⎝⎛⎭⎫5π12=0, 所以x =5π12不是函数图象的对称轴,所以B 错误;由f ⎝⎛⎭⎫x +π2=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π2+π6 =-2sin ⎝⎛⎭⎫2x +π6, 当x =-π3时,f ⎝⎛⎭⎫x +π2=2≠0, 所以x =-π3不是函数的一个零点,所以C 错误;当x ∈⎣⎡⎦⎤π3,π2时,2x +π6∈⎣⎡⎦⎤5π6,7π6,f (x )单调递减,所以D 正确. 6.在平面直角坐标系中,角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边过点P (-3,-1),则tan α=________,cos α+sin ⎝⎛⎭⎫α-π2=________. 答案33解析 ∵角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边过点P (-3,-1),∴x =-3,y =-1,∴tan α=y x =33,cos α+sin ⎝⎛⎭⎫α-π2=cos α-cos α=0. 7.(2018·河北省衡水金卷模拟)已知tan α=2,则sin 22α-2cos 22αsin 4α=________.答案112解析 ∵tan 2α=2tan α1-tan 2α=-43, ∴sin 22α-2cos 22αsin 4α=sin 22α-2cos 22α2sin 2αcos 2α=tan 22α-22tan 2α=169-22×⎝⎛⎭⎫-43=112.8.(2017·全国Ⅱ)函数f (x )=sin 2x +3cos x -34⎝⎛⎭⎫x ∈⎣⎡⎦⎤0,π2的最大值是________. 答案 1解析 f (x )=1-cos 2x +3cos x -34=-⎝⎛⎭⎫cos x -322+1. ∵x ∈⎣⎡⎦⎤0,π2,∴cos x ∈[0,1], ∴当cos x =32时,f (x )取得最大值,最大值为1. 9.(2018·潍坊模拟)设函数f (x )(x ∈R )满足f (x -π)=f (x )-sin x ,当-π<x ≤0时,f (x )=0,则f ⎝⎛⎭⎫2 018π3=________.答案32解析 ∵f (x -π)=f (x )-sin x , ∴f (x )=f (x -π)+sin x ,则f (x +π)=f (x )+sin(x +π)=f (x )-sin x . ∴f (x +π)=f (x -π),即f (x +2π)=f (x ). ∴函数f (x )的周期为2π,∴f ⎝⎛⎭⎫2 018π3=f ⎝⎛⎭⎫672π+2π3=f ⎝⎛⎭⎫2π3 =f ⎝⎛⎭⎫-π3+sin 2π3. ∵当-π<x ≤0时,f (x )=0,∴f ⎝⎛⎭⎫2 018π3=0+sin 2π3=32. 10.已知向量m =(3sin ωx,1),n =(cos ωx ,cos 2ωx +1),设函数f (x )=m ·n +b . (1)若函数f (x )的图象关于直线x =π6对称,且当ω∈[0,3]时,求函数f (x )的单调递增区间;(2)在(1)的条件下,当x ∈⎣⎡⎦⎤0,7π12时,函数f (x )有且只有一个零点,求实数b 的取值范围. 解 m =(3sin ωx,1),n =(cos ωx ,cos 2ωx +1), f (x )=m ·n +b =3sin ωx cos ωx +cos 2ωx +1+b =32sin 2ωx +12cos 2ωx +32+b=sin ⎝⎛⎭⎫2ωx +π6+32+b . (1)∵函数f (x )的图象关于直线x =π6对称,∴2ω·π6+π6=k π+π2(k ∈Z ),解得ω=3k +1(k ∈Z ),∵ω∈[0,3],∴ω=1, ∴f (x )=sin ⎝⎛⎭⎫2x +π6+32+b , 由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),解得k π-π3≤x ≤k π+π6(k ∈Z ),∴函数f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). (2)由(1)知f (x )=sin ⎝⎛⎭⎫2x +π6+32+b , ∵x ∈⎣⎡⎦⎤0,7π12,∴2x +π6∈⎣⎡⎦⎤π6,4π3, ∴当2x +π6∈⎣⎡⎦⎤π6,π2,即x ∈⎣⎡⎦⎤0,π6时,函数f (x )单调递增; 当2x +π6∈⎣⎡⎦⎤π2,4π3,即x ∈⎣⎡⎦⎤π6,7π12时,函数f (x )单调递减. 又f (0)=f ⎝⎛⎭⎫π3,∴当f ⎝⎛⎭⎫π3>0≥f ⎝⎛⎭⎫7π12或f ⎝⎛⎭⎫π6=0时,函数f (x )有且只有一个零点, 即sin 4π3≤-b -32<sin 5π6或1+32+b =0,∴b 的取值范围为⎝ ⎛⎦⎥⎤-2,3-32∪⎩⎨⎧⎭⎬⎫-52. B 组 能力提高11.如图,单位圆O 与x 轴的正半轴的交点为A ,点C ,B 在圆O 上,且点C 位于第一象限,点B 的坐标为⎝⎛⎭⎫45,-35,∠AOC =α,若BC =1,则3cos 2α2-sin α2cos α2-32的值为( )A.45B.35 C .-45 D .-35 答案 B解析 ∵点B 的坐标为⎝⎛⎭⎫45,-35,设∠AOB =θ, ∴sin(2π-θ)=-35,cos(2π-θ)=45,即sin θ=35,cos θ=45,∵∠AOC =α,BC =1,∴θ+α=π3,则α=π3-θ,则3cos 2α2-sin α2cos α2-32=32cos α-12sin α=cos ⎝⎛⎭⎫α+π6=cos ⎝⎛⎭⎫π2-θ=sin θ=35.12.(2018·株洲质检)已知函数f (x )=2sin(ωx +φ)+1⎝⎛⎭⎫ω>0,|φ|≤π2,其图象与直线y =3相邻两个交点的距离为π,若f (x )>2对∀x ∈⎝⎛⎭⎫π24,π3恒成立,则φ的取值范围是( ) A.⎝⎛⎭⎫π6,π2 B.⎣⎡⎦⎤π6,π3 C.⎝⎛⎭⎫π12,π3 D.⎣⎡⎦⎤π12,π6答案 D解析 因为函数f (x )=2sin(ωx +φ)+1⎝⎛⎭⎫ω>0,|φ|≤π2,其图象与直线y =3相邻两个交点的距离为π,所以函数周期为T =π,ω=2, 当x ∈⎝⎛⎭⎫π24,π3时,2x +φ∈⎝⎛⎭⎫π12+φ,2π3+φ, 且|φ|≤π2,由f (x )>2知,sin(2x +φ)>12,所以⎩⎨⎧π6≤π12+φ,2π3+φ≤5π6,解得π12≤φ≤π6.13.函数f (x )=12-x的图象与函数g (x )=2sin π2x (0≤x ≤4)的图象的所有交点为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),则f (y 1+y 2+…+y n )+g (x 1+x 2+…+x n )=________. 答案 12解析 如图,画出函数f (x )和g (x )的图象,可知有4个交点,并且关于点(2,0)对称,所以y 1+y 2+y 3+y 4=0,x 1+x 2+x 3+x 4=8,所以f (y 1+y 2+y 3+y 4)+g (x 1+x 2+x 3+x 4)=f (0)+g (8)=12+0=12.14.已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1. (1)求常数a ,b 的值;(2)设g (x )=f ⎝⎛⎭⎫x +π2且lg g (x )>0,求g (x )的单调区间. 解 (1)∵x ∈⎣⎡⎦⎤0,π2,∴2x +π6∈⎣⎡⎦⎤π6,7π6. ∴sin ⎝⎛⎭⎫2x +π6∈⎣⎡⎦⎤-12,1, ∴-2a sin ⎝⎛⎭⎫2x +π6∈[-2a ,a ]. ∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1,∴b =-5,3a +b =1,因此a =2,b =-5. (2)由(1)得f (x )=-4sin ⎝⎛⎭⎫2x +π6-1, ∴g (x )=f ⎝⎛⎭⎫x +π2=-4sin ⎝⎛⎭⎫2x +7π6-1 =4sin ⎝⎛⎭⎫2x +π6-1. 又由lg g (x )>0,得g (x )>1,∴4sin ⎝⎛⎭⎫2x +π6-1>1,∴sin ⎝⎛⎭⎫2x +π6>12, ∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z ,即k π<x ≤k π+π6,k ∈Z 时,g (x )单调递增;当2k π+π2<2x +π6<2k π+5π6,k ∈Z ,即k π+π6<x <k π+π3,k ∈Z 时,g (x )单调递减.∴g (x )的单调递增区间为⎝⎛⎦⎤k π,k π+π6,k ∈Z , 单调递减区间为⎝⎛⎭⎫k π+π6,k π+π3,k ∈Z .第2讲 三角恒等变换与解三角形[考情考向分析] 正弦定理、余弦定理以及解三角形问题是高考的必考内容,主要考查:1.边和角的计算.2.三角形形状的判断.3.面积的计算.4.有关参数的范围问题.由于此内容应用性较强,与实际问题结合起来进行命题将是今后高考的一个关注点,不可轻视.热点一 三角恒等变换 1.三角求值“三大类型”“给角求值”“给值求值”“给值求角”. 2.三角函数恒等变换“四大策略”(1)常值代换:特别是“1”的代换,1=sin 2θ+cos 2θ=tan 45°等.(2)项的拆分与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等. (3)降次与升次:正用二倍角公式升次,逆用二倍角公式降次. (4)弦、切互化:一般是切化弦.例1 (1)(2018·广东省省际名校(茂名市)联考)若cos ⎝⎛⎭⎫α+π3=45,则cos ⎝⎛⎭⎫π3-2α等于( )A.2325 B .-2325C.725 D .-725答案 D解析 ∵cos ⎝⎛⎭⎫α+π3=45, ∴cos ⎝⎛⎭⎫α+π3=sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π3 =sin ⎝⎛⎭⎫π6-α=45,∴cos ⎝⎛⎭⎫π3-2α=1-2sin 2⎝⎛⎭⎫π6-α=-725. (2)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则β等于( ) A.5π12 B.π3 C.π4 D.π6答案 C解析 因为α,β均为锐角,所以-π2<α-β<π2.又sin(α-β)=-1010,所以cos(α-β)=31010. 又sin α=55,所以cos α=255, 所以sin β=sin [α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×⎝⎛⎭⎫-1010=22. 所以β=π4.思维升华 (1)三角变换的关键在于对两角和与差的正弦、余弦、正切公式,二倍角公式,三角恒等变换公式的熟记和灵活应用,要善于观察各个角之间的联系,发现题目所给条件与恒等变换公式的联系,公式的使用过程要注意正确性,要特别注意公式中的符号和函数名的变换,防止出现“张冠李戴”的情况.(2)求角问题要注意角的范围,要根据已知条件将所求角的范围尽量缩小,避免产生增解. 跟踪演练1 (1)(2018·湖南G10教育联盟联考)已知cos ⎝⎛⎭⎫π2+α=3sin ⎝⎛⎭⎫α+7π6,则tan ⎝⎛⎭⎫π12+α=________. 答案 23-4解析 ∵cos ⎝⎛⎭⎫π2+α=3sin ⎝⎛⎭⎫α+7π6, ∴-sin α=-3sin ⎝⎛⎭⎫α+π6, ∴sin α=3sin ⎝⎛⎭⎫α+π6=3sin αcos π6+3cos αsin π6 =332sin α+32cos α, ∴tan α=32-33,又tan π12=tan ⎝⎛⎭⎫π3-π4=tan π3-tan π41+tan π3tanπ4=3-11+3=2-3, ∴tan ⎝⎛⎭⎫π12+α=tan π12+tan α1-tan π12tan α=()2-3+32-331-()2-3×32-33=23-4. (2)(2018·江西省重点中学协作体联考)若2cos 2θcos ⎝⎛⎭⎫π4+θ=3sin 2θ,则sin 2θ等于( )A.13 B .-23C.23 D .-13答案 B解析 由题意得2cos 2θcos ⎝⎛⎭⎫π4+θ=2(cos 2θ-sin 2θ)22(cos θ-sin θ)=2(cos θ+sin θ)=3sin 2θ,将上式两边分别平方,得4+4sin 2θ=3sin 22θ, 即3sin 22θ-4sin 2θ-4=0, 解得sin 2θ=-23或sin 2θ=2(舍去),所以sin 2θ=-23.热点二 正弦定理、余弦定理1.正弦定理:在△ABC 中,a sin A =b sin B =csin C =2R (R 为△ABC 的外接圆半径).变形:a =2R sin A ,b =2R sin B ,c =2R sin C ,sin A =a 2R ,sin B =b 2R ,sin C =c2R ,a ∶b ∶c =sin A ∶sin B ∶sin C 等.2.余弦定理:在△ABC 中,a 2=b 2+c 2-2bc cos A .变形:b 2+c 2-a 2=2bc cos A ,cos A =b 2+c 2-a 22bc. 例2 (2017·全国Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin A +3cos A =0,a =27,b =2. (1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 解 (1)由已知可得tan A =-3,所以A =2π3.在△ABC 中,由余弦定理,得a 2=b 2+c 2-2bc cos A ,即28=4+c 2-4c ·cos2π3, 即c 2+2c -24=0,解得c =-6(舍去)或c =4. 所以c =4.(2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6.故△ABD 的面积与△ACD 的面积的比值为12AB ·AD ·sin π612AC ·AD =1.又△ABC 的面积为12×4×2sin ∠BAC =23,所以△ABD 的面积为 3.思维升华 关于解三角形问题,一般要用到三角形的内角和定理,正弦、余弦定理及有关三角形的性质,常见的三角变换方法和原则都适用,同时要注意“三统一”,即“统一角、统一函数、统一结构”,这是使问题获得解决的突破口.跟踪演练2 (2018·广州模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知B =60°,c =8.(1)若点M ,N 是线段BC 的两个三等分点,BM =13BC ,ANBM =23,求AM 的值;(2)若b =12,求△ABC 的面积.解 (1)由题意得M ,N 是线段BC 的两个三等分点,设BM =x ,则BN =2x ,AN =23x , 又B =60°,AB =8,在△ABN 中,由余弦定理得12x 2=64+4x 2-2×8×2x cos 60°, 解得x =2(负值舍去),则BM =2. 在△ABM 中,由余弦定理,得AB 2+BM 2-2AB ·BM ·cos B =AM 2,AM =82+22-2×8×2×12=52=213.(2)在△ABC 中,由正弦定理b sin B =c sin C, 得sin C =c sin B b =8×3212=33.又b >c ,所以B >C ,则C 为锐角,所以cos C =63. 则sin A =sin(B +C )=sin B cos C +cos B sin C=32×63+12×33=32+36, 所以△ABC 的面积S =12bc sin A=48×32+36=242+8 3.热点三 解三角形与三角函数的综合问题解三角形与三角函数的综合是近几年高考的热点,主要考查三角形的基本量,三角形的面积或判断三角形的形状.例3 (2018·天津)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b sin A =a cos ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值.解 (1)在△ABC 中,由正弦定理a sin A =bsin B,可得 b sin A =a sin B .又由b sin A =a cos ⎝⎛⎭⎫B -π6,得a sin B =a cos ⎝⎛⎭⎫B -π6, 即sin B =cos ⎝⎛⎭⎫B -π6,所以tan B = 3. 又因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =a cos ⎝⎛⎭⎫B -π6,可得sin A =217 . 因为a <c ,所以cos A =277 .因此sin 2A =2sin A cos A =437,cos 2A =2cos 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B=437×12-17×32=3314. 思维升华 解三角形与三角函数的综合题,要优先考虑角的范围和角之间的关系;对最值或范围问题,可以转化为三角函数的值域来求解.跟踪演练3 (2018·雅安三诊)已知函数f (x )=2cos 2x +sin ⎝⎛⎭⎫7π6-2x -1(x ∈R ). (1)求函数f (x )的最小正周期及单调递增区间;(2)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=12,若b +c =2a ,且·=6,求a 的值.解 (1)f (x )=sin ⎝⎛⎭⎫7π6-2x +2cos 2x -1 =-12cos 2x +32sin 2x +cos 2x=12cos 2x +32sin 2x =sin ⎝⎛⎭⎫2x +π6.∴函数f (x )的最小正周期T =2π2=π.由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),可解得k π-π3≤x ≤k π+π6(k ∈Z ).∴f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ).(2)由f (A )=sin ⎝⎛⎭⎫2A +π6=12,可得2A +π6=π6+2k π或2A +π6=5π6+2k π(k ∈Z ).∵A ∈(0,π),∴A =π3,∵·=bc cos A =12bc =6,∴bc =12,又∵2a =b +c ,∴cos A =12=(b +c )2-a 22bc -1=4a 2-a 224-1=a 28-1,∴a =2 3.真题体验1.(2017·山东改编)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是______.(填序号) ①a =2b; ②b =2a; ③A =2B; ④B =2A .答案 ①解析 ∵等式右边=sin A cos C +(sin A cos C +cos A sin C )=sin A cos C +sin(A +C )=sin A cos C +sin B ,等式左边=sin B +2sin B cos C ,∴sin B +2sin B cos C =sin A cos C +sin B .由cos C >0,得sin A =2sin B .根据正弦定理,得a =2b .2.(2018·全国Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.答案 -12解析 ∵sin α+cos β=1,①cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,∴sin αcos β+cos αsin β=-12, ∴sin(α+β)=-12. 3.(2018·全国Ⅲ改编)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =________.答案 π4解析 ∵S =12ab sin C =a 2+b 2-c 24=2ab cos C 4=12ab cos C , ∴sin C =cos C ,即tan C =1.又∵C ∈(0,π),∴C =π4. 4.(2018·全国Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知b sin C +c sin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC 的面积为________.答案 233 解析 ∵b sin C +c sin B =4a sin B sin C ,∴由正弦定理得sin B sin C +sin C sin B =4sin A sin B sin C .又sin B sin C >0,∴sin A =12. 由余弦定理得cos A =b 2+c 2-a 22bc =82bc =4bc>0, ∴cos A =32,bc =4cos A =833, ∴S △ABC =12bc sin A =12×833×12=233.押题预测1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A =23,sin B =5cos C ,并且a =2,则△ABC 的面积为________.押题依据 三角形的面积求法较多,而在解三角形中主要利用正弦、余弦定理求解,此题很好地体现了综合性考查的目的,也是高考的重点.答案 52解析 因为0<A <π,cos A =23,所以sin A =1-cos 2A =53. 又由5cos C =sin B =sin(A +C )=sin A cos C +cos A sin C =53cos C +23sin C 知,cos C >0, 并结合sin 2C +cos 2C =1,得sin C =56,cos C =16. 于是sin B =5cos C =56. 由a =2及正弦定理a sin A =c sin C,得c = 3. 故△ABC 的面积S =12ac sin B =52. 2.已知函数f (x )=3sin ωx ·cos ωx -cos 2ωx (ω>0)的最小正周期为2π3. (1)求ω的值;(2)在△ABC 中,sin B ,sin A ,sin C 成等比数列,求此时f (A )的值域.押题依据 三角函数和解三角形的交汇命题是近几年高考命题的趋势,本题综合考查了三角变换、余弦定理和三角函数的值域,还用到数列、基本不等式等知识,对学生能力要求较高. 解 (1)f (x )=32sin 2ωx -12(cos 2ωx +1) =sin ⎝⎛⎭⎫2ωx -π6-12, 因为函数f (x )的最小正周期为T =2π2ω=2π3, 所以ω=32.(2)由(1)知f (x )=sin ⎝⎛⎭⎫3x -π6-12,易得f (A )=sin ⎝⎛⎭⎫3A -π6-12.因为sin B ,sin A ,sin C 成等比数列,所以sin 2A =sin B sin C ,所以a 2=bc ,所以cos A =b 2+c 2-a 22bc =b 2+c 2-bc2bc≥2bc -bc2bc =12(当且仅当b =c 时取等号).因为0<A <π,所以0<A ≤π3,所以-π6<3A -π6≤5π6,所以-12<sin ⎝⎛⎭⎫3A -π6≤1,所以-1<sin ⎝⎛⎭⎫3A -π6-12≤12,所以f (A )的值域为⎝⎛⎦⎤-1,12.A 组 专题通关1.(2018·全国Ⅲ)若sin α=13,则cos 2α等于( )A.89B.79C .-79D .-89答案 B解析 ∵sin α=13,∴cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫132=79.2.tan 70°+tan 50°-3tan 70°tan 50°的值为( ) A. 3 B.33 C .-33 D .- 3答案 D解析 因为tan 120°=tan 70°+tan 50°1-tan 70°tan 50°=-3, 即tan 70°+tan 50°-3tan 70°tan 50°=- 3.3.(2018·凯里市第一中学《黄金卷》模拟)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A =b c,则该三角形为( ) A .等腰三角形B .等腰直角三角形C .等边三角形D .直角三角形答案 D解析 由cos A =b c ,即b 2+c 2-a 22bc =b c, 化简得c 2=a 2+b 2,所以△ABC 为直角三角形.4.(2018·衡水金卷调研卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,a cos B +b cos A=2c cos C ,c =7,且△ABC 的面积为332,则△ABC 的周长为( ) A .1+7B .2+7C .4+7D .5+7 答案 D解析 在△ABC 中,a cos B +b cos A =2c cos C , 则sin A cos B +sin B cos A =2sin C cos C , 即sin(A +B )=2sin C cos C ,∵sin(A +B )=sin C ≠0,∴cos C =12,∴C =π3,由余弦定理可得,a 2+b 2-c 2=ab ,即(a +b )2-3ab =c 2=7,又S =12ab sin C =34ab =332,∴ab =6,∴(a +b )2=7+3ab =25,a +b =5,∴△ABC 的周长为a +b +c =5+7.。

新高考数学大题专项训练(一)解三角形(考点1 三角函数的图象与性质及三角恒等变换)(解析版)

新高考数学大题专项训练(一)解三角形(考点1 三角函数的图象与性质及三角恒等变换)(解析版)

专项一解三角形考点1 三角函数的图象与性质及三角恒等变换大题拆解技巧【母题】(2020年天津卷)在△ABC中,角A,B,C所对的边分别为a,b,c.已知a=2√2,b=5,c=√13.(1)求角C的大小;(2)求sin A的值;(3)求sin (2A+π4)的值.【拆解1】在△ABC中,角A,B,C所对的边分别为a,b,c.已知a=2√2,b=5,c=√13,求角C的大小.【解析】在△ABC中,由a=2√2,b=5,c=√13及余弦定理,得cosC=a 2+b2-c22ab=2×2√2×5=√22,又因为C∈(0,π),所以C=π4.【拆解2】在△ABC中,已知C=π4,a=2√2,c=√13,求sin A的值.【解析】在△ABC 中,由C=π4,a=2√2,c=√13及正弦定理,可得sinA=asinC c=2√2×√22√13=2√1313.【拆解3】在△ABC 中,已知a<c,sin A=2√1313,求sin 2A,cos 2A 的值.【解析】由a<c 知角A 为锐角,由sin A=2√1313,可得cosA=√1-sin 2A =3√1313, 所以sin 2A=2sin Acos A=1213,cos 2A=2cos2A-1=513.【拆解4】已知sin 2A=1213,cos 2A=513,求sin (2A+π4)的值.【解析】因为sin 2A=1213,cos 2A=513,所以sin (2A+π4)=sin 2Acos π4+cos 2Asin π4=1213×√22+513×√22=17√226.小做 变式训练设函数f(x)=2sin 2x-sin(2x-π6).(1)当x∈[0,π2]时,求f(x)的值域;(2)若函数f(x)的图象向右平移π6个单位长度后得到g(x)的图象,且存在x 0∈[-π2,0],使g(x 0)=23,求cos 2x 0的值.【拆解1】已知函数f(x)=2sin 2x-sin(2x-π6).化简该函数解析式.【解析】f(x)=1-cos 2x-(√32sin 2x-12cos 2x)=1-sin (2x+π6).【拆解2】已知函数f(x)=1-sin(2x+π6),当x∈[0,π2]时,求f(x)的值域. 【解析】已知函数f(x)=1-sin(2x+π6),∵x∈[0,π2],∴2x+π6∈[π6,7π6],∴sin(2x+π6)∈[-12,1],∴f(x)的值域为[0,32].【拆解3】已知函数f(x)=1-sin(2x+π6),若函数f(x)的图象向右平移π6个单位长度后得到g(x)的图象,求g(x)的解析式. 【解析】g(x)=f(x-π6)=1-sin[2(x-π6)+π6]=1-sin(2x-π6).【拆解4】已知函数g(x)=1-sin(2x-π6),且存在x 0∈[-π2,0],使g(x 0)=23,求cos 2x 0的值.【解析】∵g(x0)=1-sin(2x0-π6)=23,∴sin(2x0-π6)=13.又x0∈[-π2,0],sin(2x0-π6)>0,∴2x0-π6∈[-7π6,-π),∴cos(2x0-π6)=-2√23,∴cos 2x0=cos[(2x0-π6)+π6]=cos(2x0-π6)cosπ6-sin(2x0-π6)sinπ6=-2√23×√32-13×12=-2√6+16.通法 技巧归纳1.求解三角函数的值域(最值)常见的三种类型:(1)形如y=asin x+bcos x+c 的三角函数化为y=Asin(ωx+φ)+c 的形式,再求值域(最值);(2)形如y=asin 2x+bsin x+c 的三角函数,可先设sin x=t,化为关于t 的二次函数求值域(最值);(3)形如y=asin xcos x+b(sin x±cos x)+c 的三角函数,可先设t=sin x±cos x,化为关于t 的二次函数求值域(最值).2.在解决求值、化简、证明问题时,一般是观察角、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的变换.突破 实战训练 <基础过关>1.已知函数f(x)=1-2cos 2x+2√3sin xcos x(x∈R). (1)求f(2π3)的值;(2)求f(x)的最小正周期及单调递增区间.【解析】(1)f(x)=-cos 2x+√3sin 2x=2(-12cos 2x+√32sin 2x)=2sin(2x-π6),则f(2π3)=2sin(2×2π3-π6)=-1.(2)最小正周期T=2π2=π,令-π2+2kπ≤2x -π6≤π2+2kπ,k∈Z,解得-π6+kπ≤x≤π3+kπ,k∈Z,即单调递增区间为[-π6+kπ,π3+kπ],k∈Z.2.已知函数f(x)=(sin x-1)·(cos x+1). (1)若sin α-cos α=12,求f(α);(2)求f(x)的值域.【解析】(1)因为sin α-cos α=12,所以1-2sin αcos α=14,即sin αcos α=38.从而f(α)=(sin α-1)(cos α+1)=sin αcos α+sin α-cos α-1=-18.(2)令t=sin x-cos x,则sin xcos x=1-t 22,其中t∈[-√2,√2],则原问题转化为求y=-t 22+t-12在[-√2,√2]上的值域. 因为y=-t 22+t-12=-12(t-1)2,所以y∈[-32-√2,0].故f(x)的值域为[-32-√2,0].3.已知函数f(x)=sin 2x+√3sin xcos x. (1)求函数y=f(x)图象的对称中心; (2)若f(α2-π24)=1310,求sin 2α.【解析】(1)由二倍角公式得f(x)=√32sin 2x-12cos 2x+12,故f(x)=sin(2x-π6)+12,令2x-π6=kπ,k∈Z,解得x=12kπ+π12,k∈Z,所以函数y=f(x)图象的对称中心是(π12+12kπ,12),k∈Z.(2)由f(α2-π24)=1310,得sin(α-π4)+12=1310,所以sin(α-π4)=45,故sin 2α=cos(2α-π2)=1-2sin2(α-π4)=-725.4.设向量a=(√3sin x,sin x),b=(cos x,sin x),x∈[0,π2].(1)若|a|=|b|,求实数x 的值; (2)设函数f(x)=a·b,求f(x)的最大值. 【解析】(1)|a|2=(√3sin x)2+sin2x=4sin2x,|b|2=cos2x+sin2x=1,根据|a|=|b|,得4sin2x=1,又x∈[0,π2],从而sinx=12,∴x=π6.(2)f(x)=a·b=√3sin x·cos x+sin2x=√32sin 2x-12cos 2x+12=sin(2x-π6)+12,∵x∈[0,π2],∴2x -π6∈[-π6,5π6],∴当2x-π6=π2,即x=π3时,f(x)max=f(π3)=32,∴f(x)的最大值为32.<能力拔高>5.已知函数f(x)=sin 2(x -π3)-12(cos 2x-1).(1)求f(x)的单调递增区间;(2)若y=g(x)的图象是由y=f(x)的图象向右平移π6个单位长度得到的,则当x∈[-π2,π2]时,求满足g(x)≤54的实数x 的集合.【解析】(1)f(x)=sin2(x -π3)-12(cos 2x-1)=1-cos(2x -2π3)2-12cos 2x+12=12-12(-12cos2x +√32sin2x)-12cos 2x+12 =14cos 2x-√34sin 2x-12cos 2x+1=-√34sin 2x-14cos 2x+1=-12sin (2x +π6)+1. 令2x+π6∈[π2+2kπ,3π2+2kπ],k∈Z,则x∈[π6+kπ,2π3+kπ],k∈Z,所以f(x)的单调递增区间为x∈[π6+kπ,2π3+kπ],k∈Z.(2)由题可知g(x)=-12sin [2(x -π6)+π6]+1=-12sin (2x -π6)+1,由g(x)≤54,得sin (2x -π6)≥-12,由x∈[-π2,π2],得2x-π6∈[-7π6,5π6],由正弦函数的图象与性质可知2x-π6∈[-7π6,-5π6]∪[-π6,5π6],则x∈[-π2,-π3]∪[0,π2],即所求实数x 的取值集合为{x|-π2≤x ≤-π3或0≤x ≤π2}.6.已知θ∈(0,π3)且满足sin θ+sin (θ+π3)=4√35. (1)求cos(2θ+π3)的值;(2)已知函数f(x)=sin xcos(θ+π6)+cos xsin(θ+π6),若方程f(x)=a 在区间[0,π2]内有两个不同的解,求实数a 的取值范围. 【解析】(1)由sin θ+sin (θ+π3)=4√35,得32sin θ+√32cos θ=4√35,即sin(θ+π6)=45,则cos(2θ+π3)=cos (2θ+π6)=1-2sin 2(θ+π6)=1-2×(45)2=-725.(2)由θ∈(0,π3),令φ=θ+π6,则φ∈(π6,π2),得cos(θ+π6)=35,f(x)=sin xcos φ+cos xsin φ=sin(x+φ),当0≤x≤π2时,φ≤x+φ≤π2+φ,当x+φ=π2,即x=π2-φ时,f(x)max =1,当0≤x≤π2-φ时,f(x)是单调递增的,函数值从sin φ=45增到1,当π2-φ≤x≤π2时,f(x)是单调递减的,函数值从1减到sin(π2+φ)=cos φ=35,方程f(x)=a 在区间[0,π2]内有两个不同的解,即f(x)图象与直线y=a 有两个不同的公共点,则45≤a<1,所以实数a 的取值范围是[45,1).<拓展延伸>7.设函数f(x)=asin x+bcos x,其中a,b 为常数.(1)当x=2π3时,函数f(x)取最大值2,求函数f(x)在[π2,π]上的最小值;(2)设g(x)=-asinx,当b=-1时,不等式f(x)>g(x)对x∈(0,π)恒成立,求实数a 的取值范围.【解析】(1)由题意得{√a 2+b 2=2,√32a -12b =2,解得{a =√3,b =-1,∴f(x)=√3sin x-cos x=2sin (x -π6).当x∈[π2,π]时,x-π6∈[π3,5π6],∴f(x)min=2sin 5π6=1.(2)∵f(x)>g(x),∴asin x -cos x>-asinx.当x∈(0,π)时,sin x∈(0,1],∴asin2x -sin xcos x>-a,即a(1-cos 2x)-sin 2x>-2a,整理得3a>sin 2x+acos 2x.又sin 2x+acos 2x=√a 2+1sin(2x+φ),其中tan φ=a,∴(sin 2x+acos 2x)max=√a 2+1,∴3a>√a 2+1,解得a>√24,∴不等式f(x)>g(x)对x∈(0,π)恒成立时,a∈(√24,+∞).8.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,-π2<φ<π2)的图象与y 轴的交点为(0,1),它在y 轴右侧的第一个最高点和第一个最低点的坐标分别为(x0,2)和(x0+2π,-2). (1)求函数f(x)的解析式;(2)将函数f(x)的图象向左平移a(a∈(0,2π))个单位长度后,得到函数g(x)的图象,若g(x)是奇函数,求实数a 的值.新高考数学 大题专项训练 学科精品资源11 / 11【解析】(1)由题意得A=2,T 2=x0+2π-x0=2π, 即T=2πω=4π,解得ω=12, ∴f(0)=2cos (12×0+φ)=1,即cos φ=12. ∵-π2<φ<π2,∴φ=-π3或φ=π3, 若φ=π3,当x>0时,函数先取得最小值,后取得最大值,不符合图象, ∴φ=-π3, ∴函数f(x)的解析式为f(x)=2cos (12x -π3). (2)由题意得g(x)=2cos [12(x +a )-π3]. ∵y=g(x)是奇函数,∴g(0)=2cos (a 2-π3)=0, ∴a 2-π3=kπ-π2(k∈Z),即a=2kπ-π3(k∈Z). 又a∈(0,2π),∴a=5π3. 当a=5π3时,g(x)=2cos [12(x +5π3)-π3]=2cos (12x +π2)=-2sin 12x, 此时有g(-x)=-g(x),即函数g(x)为奇函数,故a=5π3.。

高二数学三角函数三角恒等变换解三角形试题答案及解析

高二数学三角函数三角恒等变换解三角形试题答案及解析

高二数学三角函数三角恒等变换解三角形试题答案及解析1..【答案】【解析】故答案为:.【考点】两角和与差的三角公式.2.若函数在区间上单调递增,则的最小值是()A.B.C.D.【答案】D【解析】依题意,,令,在区间上,,单调递增,,所以;【考点】1.导数与单调性;2.化归的思想;3.函数在内是()A.增函数B.减函数C.有增有减D.不能确定【答案】A【解析】函数,可得,所以函数在内是增函数.故选:A.【考点】利用导数研究函数的单调性.4.(12分).已知在△ABC中,内角A,B,C所对的边长分别为a,b,c,且tan A+tan B=.(1)求角B的大小;(2)若,求sinA·sinC的值.【答案】(1);(2)【解析】(Ⅰ)已知等式左边利用同角三角函数间的基本关系化简,整理后根据sinC不为0求出cosB的值,即可确定出B的度数;(Ⅱ)已知等式去分母整理后得到关系式,利用余弦定理列出关系式,把得出关系式及cosB的值代入,并利用正弦定理化简,即可求出sinAsinC的值试题解析:(Ⅰ)已知等式变形得:sinAcosA+sinBcosB=2sinCcosA,去分母得:sinAcosB+sinBcosA=2sinCcosB,即sin(A+B)=2sinCcosB=sinC,∵sinC≠0,∴cosB=12,则B=60°;(Ⅱ)由,整理得:,∵cosB=12,∴,由正弦定理得:sin2B=2sinA·sinC=,则sinA·sinC=【考点】1.同角间三角函数关系;2.正弦定理5.将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),再将所得图象向左平移个单位,则所得函数图象对应的解析式为()A.B.C.D.【答案】D【解析】将函数的图象上所有点的横坐标伸长到原来的倍(纵坐标不变),得到函数的图像,再将所得图象向左平移个单位,则所得函数图象对应的解析式为.故选D.【考点】三角函数图像变换:周期变换、左右平移.6.已知在△ABC中,三个内角A,B,C的对边分别为a,b,c,若△ABC的面积为S,且,则tanC等于()A.B.C.D.【答案】C【解析】【考点】1.余弦定理解三角形;2.同角间三角函数关系7.已知在△ABC中,内角A,B,C所对的边长分别为a,b,c,且tan A+tan B=.(1)求角B的大小;(2)若+=3,求sin Asin C的值.【答案】(1);(2)【解析】(1)由题意切化弦,同分可得,整理可得,即可求得;(2)根据已知式子同分可得,由余弦定理得到,再结合正弦定理即可得到试题解析:(1)由题意可得:因为,所以,又因为,所以(2)有题意可得:即由余弦定理可得:,得到有正弦定理:【考点】1.正余弦定理;2.化简求值8.(本题满分11分)若的内角所对的边分别为,且满足(1)求;(2)当时,求的面积.【答案】(1);(2).【解析】(1)因为正弦定理,所以化为,因为三角形内角有,所以即,所以;(2)由余弦定理,得,而,,得,即,因为三角形的边,所以,则.试题解析:(1)因为由正弦定理,得,又,从而,由于所以(2)解法一:由余弦定理,得,而,,得,即因为,所以,故面积为.解法二:由正弦定理,得从而又由知,所以故,所以面积为.【考点】1.正弦定理与余弦定理;2.三角形的面积公式.9.在中,已知,,则的长为____________________.【答案】【解析】由正弦定理可得【考点】正弦定理解三角形10.(本小题满分10分)在△ABC中,是方程的一个根,(1)求;(2)当时,求△ABC周长的最小值.【答案】(1)(2)【解析】(1)解一元二次方程得到方程的根,结合三角函数有界性得到的值,从而求得大小;(2)由三角形余弦定理结合,可将转化为的表达式,从而求得其最小值,得到周长的最小值试题解析:(1)又是方程的一个根(2)由余弦定理可得:则:当时,c最小且,此时△ABC周长的最小值为.【考点】1.余弦定理解三角形;2.一元二次方程的根11.在△ABC中,角A,B,C所对的边分别为a,b,c,若(b-c)cosA=acosC,则cosA=_____【答案】【解析】由正弦定理可将已知条件转化为【考点】正弦定理与三角函数基本公式12.在△ABC中,cosA=,sinB=,则cosC的值为.【答案】【解析】由cosA=,sinB=得【考点】三角函数基本公式13.在△ABC中,如果,且为锐角,试判断此三角形的形状.【答案】等腰直角三角形.【解析】判定三角形的形状由三角形的三边长或三个角来确定.由可确定.根据正弦定理,可确定角,从而确定三角形的形状.试题解析:因为,所以,又为锐角,所以.,.由正弦定理得:,即展开得:,即,则,所以△ABC是等腰直角三角形.【考点】1.三角形形状;2.正弦定理;14.在△中,分别为角所对的边,若,则此三角形一定是()A.正三角形B.直角三角形C.等腰三角形D.等腰或直角三角形【答案】C【解析】,三角形为等腰三角形【考点】1.正弦定理解三角形;2.三角函数基本公式15.在中,、、分别是三内角A、B、C的对应的三边,已知(1)求角C的大小;(2)满足的是否存在?若存在,求角A的大小.【答案】(1);(2)不存在【解析】(1)由正弦定理将变形可得到关于角C的关系式,进而求得角C的大小;(2)结合角C的大小将变形求解A角,若A角存在则三角形存在试题解析:(1)由正弦定理,得因为由则(2)由(1)知,于是=这样的三角形不存在。

高二数学三角函数三角恒等变换解三角形试题

高二数学三角函数三角恒等变换解三角形试题

高二数学三角函数三角恒等变换解三角形试题1.已知,三个数,,中()A.都小于B.至少一个大于或等于C.都大于或等于D.至多一个大于【答案】B【解析】因为,令,,,又因为,由函数的性质可知,,所以,所三个数,,中至少有一个大于,故选B.【考点】1.的性质与基本不等式;2.逻辑联结词与命题.2.锐角中,已知,则的取值范围是()A.B.C.D.【答案】C【解析】由正弦定理可得,所以.因为为锐角三角形,所以.即.故C正确.【考点】1正弦定理;2三角函数化简求值.3.角的终边上有一点,则()A.B.C.D.【答案】B【解析】【考点】三角函数定义4.在△ABC中,若,则与的大小关系为()A.B.C.≥D.、的大小关系不能确定【答案】A【解析】在三角形中由正弦定理可知时有【考点】正弦定理解三角形5.下列函数中,周期为且为奇函数的是()A.B.C.D.【答案】B【解析】函数为偶函数,故A错误;函数,周期为1且为奇函数,故选B;函数是周期为2的奇函数,故C错误;函数是周期为的偶函数,故D错误.【考点】函数的奇偶性、周期性.6.在中,角所对的边长为,则“”是“”的()条件A.充分不必要B.必要不充分C.充要D.既不充分又不必要【答案】A【解析】因为时,所以,而时,由正弦定理知,即,得或,即不一定成立,故选A.【考点】1、充要条件;2、正弦定理.7.(2015秋•宁城县期末)在△ABC中,两直角边和斜边分别为a,b,c,若a+b=cx,试确定实数x的取值范围()A.B.C.D.【答案】A【解析】由a+b=cx得,x=,由正弦定理得=sin(A+45°),由此能确定实数x的取值范围.解:由a+b=cx得,x=,由题意得在△ABC中,∠C=90°,则∠A+∠B=90°,由正弦定理得:===sinA+cosA=sin(A+45°),由A∈(0,90°)得,A+45°∈(45°,135°),所以sin(A+45°)∈(,1],即sin(A+45°)∈(1,],∴∈(1,],∴x=∈(1,].故选:A.【考点】三角形中的几何计算.8.(2015秋•宁德校级期中)在△ABC中,角A,B,C所对的边分别为a,b,c.(Ⅰ)若b2+c2=a2+bc,求角A的大小;(Ⅱ)若acosA=bcosB,试判断△ABC的形状.【答案】(Ⅰ)A=;(Ⅱ)△ABC是等腰三角形或直角三角形.【解析】(Ⅰ)由已知利用余弦定理可得cosA=,又结合∠A是△ABC的内角,即可求A的值.(Ⅱ)由正弦定理得sinAcosA=sinBcosB,可得sin2A=sin2B.利用正弦函数的图象和性质可得2A=2B或2A+2B=π,即可得解.解:(Ⅰ)∵由已知得cosA===,又∵∠A是△ABC的内角,∴A=.(Ⅱ)在△ABC中,由acosA=bcosB,得sinAcosA=sinBcosB,∴sin2A=sin2B.∴2A=2B或2A+2B=π.∴A=B或∴△ABC是等腰三角形或直角三角形.【考点】正弦定理.9.已知、、分别为的三边、、所对的角,的面积为,且.(1)求角的大小;(2)若,求周长的最大值.【答案】(1);(2)【解析】(1)利用面积公式及,建立等式关系求出角C;(2)方法1:由(1)确定角C,用角表示角,由正弦定理,求出关于角的关系,这样周长就是表示成了关于角的函数,求出该函数的最大值;方法2:利用余弦定理,配方,利用基本不等式,,解出的范围,即可求出周长最大值.试题解析:(1)∵△ABC的面积为S,∴,又∵C为三角形内角,∴.(2)解法1:由正弦定理得:,∵,,,从而.综上:.解法2:由余弦定理即,(当且仅当时取到等号)综上:.【考点】 1.面积公式;2.正弦定理;3.余弦定理.10.已知的三边长分别为,则的面积为__________.【答案】【解析】的边长由余弦定理得,,所以三角形的面积为.【考点】1、余弦定理的运用;2、三角形的面积公式.11.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成600的视角,从B岛望C岛和A岛成300的视角,则B、C间的距离是___________________海里.【答案】【解析】依题意,作图如下:∵∠CAB=60°,∠ABC=30°,∴△ABC为直角三角形,∠C为直角,又|AB|=10海里,∴|BC|=|AB|sin60°=10×=海里,【考点】正弦定理的应用12.在中,分别是角A、B、C的对边,且(1)求角B的大小;(2)若,求的面积.【答案】(1)(2)【解析】(1)变形已知式子代入结合角的范围可得;(2)由余弦定理可得,代入数据配方整体可得ac,代入面积公式可得试题解析:(1)由已知得(2)将代入中,得,【考点】余弦定理;正弦定理13.已知函数.设时取得最大值.(1)求的最大值及的值;(2)在中,内角的对边分别为,且,求的值.【答案】(1);(2)【解析】(1)根据三角函数的恒等变换公式,可得,又,则,可知当时,即可求出结果;(2)由(1)知,由正弦定理,可得,再根据余弦定理,可得由此可求出.试题解析:解:(1)由题意,.又,则.故当,即时,.(2)由(1)知.由,即.又.则,即.故.【考点】1.三角恒等变换;2.正弦定理;3.余弦定理.14.在△中,,,,则A.B.C.D.【答案】C【解析】由得【考点】正弦定理解三角形15.已知函数(其中),其部分图像如图所示.(I)求的解析式;(II)求函数在区间上的最大值及相应的x值.【答案】(I);(II) 当时,取得最大值.【解析】(I)根据图象可求出的值,再根据图象可求出周期,进而可求得的值,再结合函数在处有最大值以及,就可以求出的值,由此可求出函数的表达式;(II)根据(I)的结论先求出函数的表达式,再结合,就可求出在区间上的的最大值及相应的值.试题解析:(I)由图可知,,所以.又,且,所以.所以(II)由(I),所以因为,所以,.故:,当时,取得最大值【考点】1、三角函数的“由图求式”;2、形如的函数的最值问题.16.在△ABC中,如果lga﹣lgc=lgsinB=﹣lg,并且B为锐角,则△ABC的形状是()A.等边三角形B.直角三角形C.等腰三角形D.等腰直角三角形【答案】D【解析】在中,如果,并且为锐角,∴,∴,,∴,∴,故的形状为等腰直角三角形,故选D.【考点】三角形的形状判断;对数的运算性质.17.已知中,角的对边分别为,,向量,,且.(Ⅰ)求的大小;(Ⅱ)当取得最大值时,求角的大小和的面积.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)通过向量的垂直,两角和与差的三角函数化简表达之,利用三角形的内角和,转化为的三角函数值,然后求的大小;(Ⅱ)通过的大小,推出的关系,化简为的三角函数的形式,通过的范围求出不等式取得最大值时,求角的大小,利用正弦定理求出的值,即可利用三角形的面积公式求解三角形的面积.试题解析:(Ⅰ)因为,所以即,因为,所以所以(Ⅱ)由,故由,故最大值时,由正弦定理,,得故【考点】正弦定理;平面向量数量积的运算;三角函数中的恒等变换应用.18.在中,角、、所对的边分别是、、,若(Ⅰ)求角;(Ⅱ)若,,求的面积。

高三数学三角函数三角恒等变换解三角形试题

高三数学三角函数三角恒等变换解三角形试题

高三数学三角函数三角恒等变换解三角形试题1.某航模兴趣小组的同学,为了测定在湖面上航模航行的速度,采用如下办法:在岸边设置两个观察点A、B ,且 AB长为80米,当航模在C处时,测得∠ABC=105°和∠BAC=30°,经过20秒后,航模直线航行到 D 处,测得∠BAD=90°和∠ABD=45°.请你根据以上条件求出航模的速度.(答案保留根号)【答案】法一:在△ABC中,∵∠BAD=90°,∠ABD=45°,∴∠ADB="45°"在中,在中,DC2=DB2+BC2-2DB·BC cos60°=(80)2+(40)2-2×80×40×=9600,航模的速度(米/秒)答:航模的速度为2(米/秒))法二:(略解)、在中,中在中,DC2=AD2+AC2-2AD·AC cos60°="9600"航模的速度(米/秒)答:航模的速度为2(米/秒)【解析】略2.函数的一部分图象如图所示,其中,,,则()A.B.C.D.【答案】D【解析】由得:又,故选D3.函数的部分图象如图所示,设是图象的最高点,是图象与轴的交点,则A.B.C.D.【答案】B【解析】从向x轴作垂线,垂足为,由,可得,,,所以,故选B.【考点】1.三角函数的图像与性质;2.三角函数求值.4.中,角所对的边分别为,若().A.B.C.D.【答案】C【解析】由余弦定理,又由,得,故选C.【考点】余弦定理.5.(12分)已知向量,,设函数.(1)求函数的单调递减区间;(2)在△ABC中,角A,B,C的对边分别为a,b,c,且满足,,求的值.【答案】(1);(2).【解析】本题主要考查向量的数量积、倍角公式、两角差的正弦公式、三角函数的单调性、正弦定理、余弦定理等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,先利用向量的数量积得到的解析式,再利用倍角公式和两角差的正弦公式化简表达式,使之成为的形式,再数形结合求函数的递减区间;第二问,先利用正弦定理将转化为,再将已知条件代入余弦定理中得出,从而得到特殊角,最后代入中.试题解析:(1)令,所以的递减区间为(2)由,⇒,∴,即,又∵,,∴.【考点】向量的数量积、倍角公式、两角差的正弦公式、三角函数的单调性、正弦定理、余弦定理.6.(本小题满分12分)在△ABC中,a, b, c分别为内角A, B, C的对边,且,(Ⅰ)求A的大小;(Ⅱ)求的最大值.【答案】(Ⅰ)120°;(Ⅱ)1【解析】(Ⅰ)求角的大小,从已知可看出,把已知条件用正弦定理化为边的关系,然后用余弦定理可得;(Ⅱ)由(Ⅰ),因此可把化为一个角的三角函数,再由两角和与差的正弦公式化为一个三角函数,可得最大值.试题解析:(Ⅰ)由已知,根据正弦定理得即由余弦定理得故,A=120°(Ⅱ)由(Ⅰ)得:故当B=30°时,sinB+sinC取得最大值1。

常考问题三角恒等变换与解三角形

常考问题三角恒等变换与解三角形

知识与方法
热点与突破
审题与答题
热点与突破 热点一 三角变换及应用 【例 1】 (1)已知 0<β<π2<α<π,且 cosα-β2=-19,sinα2-β=23,
求 cos(α+β)的值; (2)已知 α,β∈(0,π),且 tan(α-β)=12,tan β=-17,求 2α-β 的值.
知识与方法
A,所以
tan
A=
33,
因为 0<A<23π,所以 A=6π,C=π2.
法二 由已知,得 A+C=2B,又 A+B+C=π,所以 B=3π,又由
sin C=2sin A,得 c=2a,所以 b2=a2+4a2-2a·2acosπ3=3a2,c2
=a2+b2,即△ABC 为直角三角形,所以 C=2π,A=23π-2π=π6.
热点与突破
审题与答题
x2=ACcos∠CAD=10 13cos(45°-θ)=30. y2=ACsin∠CAD=10 13sin(45°-θ)=20. 所以过点 B,C 的直线 l 的斜率为 k=2, 故直线 l 的方程为 y=2x-40. 又点 E(0,-55)到直线 l 的距离为 d=|0+515+-440|=3 5<7. 所以船会进入警戒水域.
知识与方法
热点与突破
审题与答题
[规律方法] 求解此类问题,一要注意从问题的不断转化中寻求解
题的突破口,如求A→B·A→C,需要求出 bc,由三角形的面积及 cos A,
可求出 sin A,二要注意求解本题第(2)问时,应该结合第(1)问中的 结论.
知识与方法
热点与突破
审题与答题
【训练 2】 (2013·山东卷)设△ABC 的内角 A,B,C 所对的边分别 为 a,b,c,且 a+c=6,b=2,cos B=79. (1)求 a,c 的值; (2)求 sin(A-B)的值. 解 (1)由余弦定理,得 cos B=a2+2ca2c-b2=a2+2ac2c-4=79,即 a2+c2-4=194ac. ∴(a+c)2-2ac-4=194ac,∴ac=9. 由aa+ c=c= 9,6, 得 a=c=3.

三角恒等变换、解三角形大题

三角恒等变换、解三角形大题

三角恒等变换、解三角形大题1.已知,,f(x)=a⃗⋅b⃗ .]上的最大值和最小值.(1)求f(x)的最小正周期及单调递减区间;(2)求函数f(x)在区间[0,π22.△ABC的内角A,B,C的对边分别为a,b,c,已知sin∠BAC+√3cos∠BAC=0,a=2√7,b=2.(1)求c;(2)设D为BC边上一点,且AD⊥AC,求△ABD的面积.3.已知函数f(x)=4cos xsin(x+π6)−1.(1)求f(x)的最小正周期; (2)求f(x)在区间[−π6,π4]上的最大值和最小值.4.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(−35,−45).(1)求sin(α+π)的值;(2)若角β满足sin(α+β)=513,求cosβ的值.5.在△ABC中,角A,B,C所对的边分别为a,b,c.已知a=2√2,b=5,c=√13.(Ⅰ)求角C的大小;(Ⅱ)求sin A的值;(Ⅲ)求sin(2A+π4)的值.6.已知函数f(x)=sin2x+√3sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若f(x)在区间[−π3,m]上的最大值为32,求m的最小值.7.已知m⃗⃗⃗ =(12sinx,√32),n⃗=(cosx,cos2x−12)(x∈R),且函数f(x)=m⃗⃗⃗ ⋅n⃗.(1)求f(x)的对称轴方程;(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,若f(A)=0,sinB=45,a=√3,求b的值.8.已知函数f(x)=√3cos(2x−π3)−2sinxcosx.(Ⅰ)求f(x)的最小正周期;(Ⅱ)求证:当x∈[−π4,π4]时,f(x)≥−12.答案和解析1.【答案】解:,,由,∴f(x)的最小正周期T=2π2=π,由,得:π6+kπ≤x≤2π3+kπ,k∈Z,∴f(x)的单调递减区间为[π6+kπ,2π3+kπ],k∈Z;(2)由x∈[0,π2]可得:2x+π6∈[π6,7π6],当2x+π6=7π6时,函数f(x)取得最小值为2sin7π6+1=0,当2x+π6=π2时,函数f(x)取得最大值为2sinπ2+1=3,故得函数f(x)在区间[0,π2]上的最大值为3,最小值为0.【解析】本题考查三角函数化简及三角函数的图象与性质,考查了学生的计算能力,培养了学生分析问题与解决问题的能力,属于中档题.(1)由f(x)=a⃗⋅b⃗ ,根据向量的数量积的运用可得f(x)的解析式,化简,利用周期公式求函数的最小正周期,最后将内层函数看作整体,放到正弦函数的减区间上,解不等式得函数的单调递减区间;(2)在[0,π2]上时,求出内层函数的取值范围,结合三角函数的图象和性质,可得出f(x)的最大值和最小值.2.【答案】解:(1)∵sin∠BAC+√3cos∠BAC=0,∴tan∠BAC=−√3,∵0<∠BAC<π,∴∠BAC=2π3,由余弦定理可得a2=b2+c2−2bccos∠BAC,即28=4+c2−2×2c×(−12),即c2+2c−24=0,解得c =−6(舍去)或c =4, 故c =4.(2)∵c 2=b 2+a 2−2abcosC , ∴16=4+28−2×2√7×2×cosC , ∴cosC =√7, ∴CD =AC cosC =22√7=√7,∴CD =12BC ,∴S △ABD =12S △ABC , 又S △ABC =12AB ⋅AC ⋅sin∠BAC =12×4×2×√32=2√3,∴S △ABD =√3.【解析】本题考查了余弦定理,三角形面积公式,属于中档题. (1)根据余弦定理即可求出c ;(2)先求出cos C ,求出CD 的长,得到S △ABD =12S △ABC ,即可得解.3.【答案】解:(1)因为f(x)=4cos xsin (x +π6)−1=4cos x (√32sin x +12cos x)−1=√3sin 2x +2cos 2x −1 =√3sin 2x +cos 2x=2sin (2x +π6), 所以f(x)的最小正周期为π; (2)因为−π6≤x ≤π4, 所以−π6≤2x +π6≤2π3.故当2x +π6=π2,即x =π6时,f(x)取得最大值2; 当2x +π6=−π6,即x =−π6时,f(x)取得最小值−1.【解析】本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,属于中档题. (1)利用二倍角和两角和与差以及辅助角公式将函数化为y =Asin(ωx +φ)的形式,即可求出函数的最小正周期;(2)先根据x 的取值范围求得2x +π6的范围,再由正弦函数的性质即可求出函数的最大值和最小值.4.【答案】解:(1)∵角α的顶点与原点O 重合,始边与x 轴非负半轴重合,终边过点P(−35,−45). ∴x =−35,y =−45,r =|OP|=√(−35)2+(−45)2=1,∴sin(α+π)=−sinα=−yr =45;(2)由x =−35,y =−45,r =|OP|=1, 得sinα=−45,cosα=−35, 又由sin(α+β)=513,得cos(α+β)=±√1−sin 2(α+β) =±√1−(513)2=±1213, 则cosβ=cos[(α+β)−α]=cos(α+β)cosα+sin(α+β)sinα=1213×(−35)+513×(−45)=−5665,或cosβ=cos[(α+β)−α]=cos(α+β)cosα+sin(α+β)sinα=−1213×(−35)+513×(−45)=1665.∴cosβ的值为−5665或1665.【解析】本题考查了任意角的三角函数的定义,考查了三角函数的诱导公式的应用,考查了两角差的余弦函数公式,是中档题.(1)由已知条件即可求r ,则sin(α+π)的值可得;(2)由已知条件即可求sinα,cosα,cos(α+β),再由cosβ=cos[(α+β)−α]=cos(α+β)cosα+sin(α+β)sinα,代值计算得答案.5.【答案】解:(Ⅰ)由余弦定理以及a =2√2,b =5,c =√13,则cosC =a 2+b 2−c 22ab=2×2√2×5=√22, ∵C ∈(0,π), ∴C =π4;(Ⅱ)由正弦定理,以及C=π4,a=2√2,c=√13,可得sinA= asinCc =2√2×√22√13=2√1313;(Ⅲ)由a<c,及sinA=2√1313,可得cosA=√1−sin2A=3√1313,则sin2A=2sinAcosA=2×2√1313×3√1313=1213,∴cos2A=2cos2A−1=513,∴sin(2A+π4)=√22(sin2A+cos2A)=√22(1213+513)=17√226.【解析】本题考了正余弦定理,同角的三角函数的关系,二倍角公式,两角和的正弦公式,属于中档题.(Ⅰ)根据余弦定理即可求出C的大小;(Ⅱ)根据正弦定理即可求出sin A的值;(Ⅲ)根据同角的三角函数的关系,二倍角公式,两角和的正弦公式即可求出.6.【答案】解:(Ⅰ)函数f(x)=sin2x+√3sinxcosx=1−cos2x2+√32sin2x=sin(2x−π6)+12,f(x)的最小正周期为T=2π2=π;(Ⅱ)若f(x)在区间[−π3,m]上的最大值为32,可得2x−π6∈[−5π6,2m−π6],且当sin(2x−π6)=1时,f(x)取得最大值,即有2m−π6≥π2,解得m≥π3,则m的最小值为π3.【解析】本题考查三角函数的图象与性质,注意运用二倍角公式和三角函数的周期公式、最值,考查运算能力,属于基础题.(Ⅰ)运用二倍角公式的降幂公式和两角差的正弦公式化简函数为f(x)=sin(2x−π6)+12,利用周期公式即可得解;(Ⅱ)求得2x−π6的范围,结合正弦函数的图象可得2m−π6≥π2,即可得到所求最小值.7.【答案】解:=12sin(2x+π3),令2x+π3=kπ+π2,k∈Z;可得x=12kπ+π12,k∈Z;即f(x)的对称轴方程为x=12kπ+π12,k∈Z;(2)f(A)=12sin(2A+π3)=0,,得,,∴当k=1时,A=π3,∵sinB=45,a=√3,∴由正弦定理可得b45=√3√32,∴b=85.【解析】本题考查三角函数的图象与性质,考查正弦定理,考查学生的计算能力,属于中档题.(1)利用向量的数量积,结合辅助角公式化简函数,利用正弦函数的性质,求f(x)的对称轴方程;(2)求出A,利用正弦定理,求b的值.8.【答案】解:(Ⅰ)f(x)=√3cos(2x−π3)−2sinxcosx,=√3(12cos2x+√32sin2x)−sin2x,=√32cos2x+12sin2x,=sin(2x+π3),∴f(x)的最小正周期T=2π2=π,∴f(x)的最小正周期为π,(Ⅱ)∵x∈[−π4,π4 ],∴2x+π3∈[−π6,5π6],∴−12≤sin(2x+π3)≤1,∴f(x)≥−1.2【解析】本题考查了三角函数的化简以及周期的定义和正弦函数的图象和性质,属于中档题.),根据周期的定义即可求(Ⅰ)根据两角差的余弦公式和两角和正弦公式即可求出f(x)=sin(2x+π3出,(Ⅱ)根据正弦函数的图象和性质即可证明.。

三角恒等变换与解三角形

三角恒等变换与解三角形

三角恒等变换与解三角形三角恒等变换是解三角形中常用的方法之一。

通过利用三角函数之间的关系,可以简化复杂的三角形问题,从而解决解题难题。

本文将介绍常见的三角恒等变换,并结合实例来说明其在解三角形问题中的应用。

一、三角恒等变换的定义三角恒等变换指的是一些等式或关系式,通过其变换可以得到与原三角函数等价的另一种表达式。

这些变换可以方便我们在求解三角形问题时进行化简和变形。

下面将介绍几种常见的三角恒等变换:1. 余弦定理余弦定理是三角形中常用的恒等变换之一,可以用来求解三角形的边长或角度。

余弦定理表达式如下:\[c^2 = a^2 + b^2 - 2ab \cos(C)\]其中,\(a\)、\(b\)、\(c\)表示三角形的边长,\(C\)表示夹角\(c\)的对应角。

2. 正弦定理正弦定理也是解三角形问题中常用的恒等变换。

正弦定理表达式如下:\[\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}\]其中,\(a\)、\(b\)、\(c\)表示三角形的边长,\(A\)、\(B\)、\(C\)表示三角形的对应角度。

3. 余角恒等变换余角恒等变换可以将三角函数中的一个角的正弦、余弦、正切、余切等函数转化为另一个角的相应三角函数表达式。

例如,\(sin(\pi -\theta) = sin\theta\)、\(cos(\pi - \theta) = -cos\theta\)等。

二、三角恒等变换在解三角形中的应用三角恒等变换在解三角形问题中是十分有用的。

通过对已知条件进行恒等变换,可以从中发现一些隐藏的关系,从而简化问题。

例如,已知三角形的两边和一夹角,可以使用余弦定理求解第三边的长度。

而当已知三角形的两边和三个角度之一时,可以使用正弦定理求解三角形的三个角度。

通过利用三角恒等变换,可以将复杂的计算问题转化为简单的代数计算,进而解决三角形问题。

下面通过一个具体的例子来说明三角恒等变换在解三角形中的应用。

三角恒等变换和解三角形题型总结(有参考答案)

三角恒等变换和解三角形题型总结(有参考答案)

ABC 中 AB=1,BC=2,则角 C 的取值范围是 (答:0 C );(9)设 O 是锐角三角形 6
ABC 的 外 心 , 若 C 75 , 且 AOB, BOC, COA 的 面 积 满 足 关 系 式
SAOB SBOC 3SCOA ,求A (答: 45 ).
两角和与差的三角函数 (2009 年 11 月 20 日)
sin10
= 2sin 50 2sin10 2
2 cos10
2 cos10
=
2 sin
50
2 sin 10 sin cos10
40
2 cos10
= 2sin 60 2 cos10 2 2 sin 60
cos10
=2 2 3 6.
2
变式训练 1:(1)已知
∈(
,
),sin
=3
,则 tan(
2
=-cos[(α- )+( 3 )]= 56
4
4
65
变式训练 2:设 cos(

)=- 1
,sin(
-β)= 2 ,且π

<π,0<β< π

2
9
2
32
2
求 cos( +β).
解:∵ π

<π,0<β<π
,∴ π
<α-
2
(
) (
)

2
2

2
2
2
等),
如(1)已知 tan( ) 2 ,tan( ) 1 ,那么 tan( ) 的值是_____(答: 3 );
5
44
4
22
(2)已知0
,且cos(
)1

高一数学三角函数三角恒等变换解三角形试题答案及解析

高一数学三角函数三角恒等变换解三角形试题答案及解析

高一数学三角函数三角恒等变换解三角形试题答案及解析1.(本小题满分12分)已知函数.(1)化简;(2)已知常数,若函数在区间上是增函数,求的取值范围;(3)若方程有解,求实数a的取值范围.【答案】(1)f(x)(2)(3)【解析】(1)························· 4分(2) ∵由∴的递增区间为∵在上是增函数∴当k = 0时,有∴解得∴的取值范围是····················· 8分(3) 解一:方程即为从而问题转化为方程有解,只需a在函数的值域范围内∵当;当∴实数a的取值范围为················ 12分解二:原方程可化为令,则问题转化为方程在[– 1,1]内有一解或两解,设,若方程在[– 1,1]内有一个解,则解得若方程在[– 1,1]内有两个解,则解得∴实数a的取值范围是[– 2,]2.已知函数(1)求函数f(x)的最小正周期及单调递增区间;(2)在中,A、B、C分别为三边所对的角,若a=f(A)=1,求的最大值.【答案】(1),单调增区间;(2)【解析】(1)首先借助于基本三角函数公式将函数式化简为的最简形式,周期由的系数求解,求增区间需令,解得的范围得到单调区间;(2)中由的值求得角,借助于三角形余弦定理可得到关于两边的关系式,进而结合不等式性质得到关于的不等式,求得范围试题解析:(1),所以函数的最小正周期为.由得所以函数的单调递增区间为.(2)由可得,又,所以。

第3讲 三角函数解答题解题策略及答题规范 (大题攻略) 2-2-1-3

第3讲 三角函数解答题解题策略及答题规范 (大题攻略) 2-2-1-3
注:如果选择多个条件分别解答,按第一个解答计分.
解 若选①,设函数 f(x)的最小正周期为 T.

42+T22=5,得 T=6=2ωπ,则 ω=3Байду номын сангаас,
因为点 A(2,2)在该函数的图像上,
所以 2sin23π+φ=2,得23π+φ=π2+2kπ,k∈Z, 则 φ=-6π+2kπ,k∈Z,
又|φ|<2π,所以 φ=-6π,
若选②,则 sin(-ω+φ)=±1,得-ω+φ=2π+k1π,k1∈Z, 因为点 A(2,2)在该函数的图像上,所以 2sin(2ω+φ)=2, 得 2ω+φ=π2+2k2π,k2∈Z, 则 φ=2π+2k1+3 k2π,k1,k2∈Z. 因为|φ|<2π,所以 φ=-6π,ω=3π+k2π,k2∈Z. 又 0<ω<π2,所以 ω=π3,
点π4,
2+1,且相邻两个最高点与最低点的距离为
π2+64 2.
(1)求函数 f(x)的解析式和单调递增区间;
(2)若将函数 f(x)图像上所有的点向左平移38π个单位长度,再将所得图像上所有点的
横坐标变为原来的12,得到函数 g(x)的图像,求 g(x)在1π2,π3上的值域.
解 (1)由相邻两个最高点和最低点的距离为 π22+64,可得ωπ 2+42= π22+642, 解得 ω=2.
(1)解决三角函数图像问题的方法及注意事项 ①已知函数 y=Asin(ωx+φ)(A>0,ω>0)的图像求解析式时,常采用待定系数法, 由图中的最高点、最低点或特殊点求 A;由函数的周期确定 ω;常根据“五点法”中 的五个点求解 φ,其中一般把第一个零点作为突破口,可以从图像的升降找准第一个 零点的位置. ②在图像变换过程中务必分清是先相位变换,还是先周期变换,变换只是相对于 其中的自变量 x 而言的,如果 x 的系数不是 1,就要把这个系数提取后再确定变换的 长度和方向.

三角函数及解三角形(三)

三角函数及解三角形(三)
例2.(2018·全国Ⅰ)在平面四边形ABCD中,∠ADC=90°, ∠A=45°,AB=2,BD=5.
(1)求cos∠ADB;
(2)若 DC=2 2,求 BC.
规范解答 ·分步得分
解 (1)在△ABD 中,由正弦定理得sBinDA=sin∠ABADB,
即sin545°=sin∠2ADB,…………………………………………2 分 解得 sin∠ADB= 52.……………………………………………3 分 又 BD>AB,∴∠ADB<45°,……………………………………5 分 ∴cos∠ADB= 1-225= 523.…………………………………6 分
3.若涉及面积,则利用面积公式 S= 1 absin C
2
= 1 bcsin A= 1 acsin B.
2
2
(4)若求最值,常利用基本不等式.
跟踪训练1 .(2019·全国Ⅰ理)△ABC的内角A,B,C的对边分别 为a,b,c,设(sin B-sin C)2=sin2A-sin Bsin C.
(1)求A;
(2)若 2a+b=2c,求 sin C.
解(1)由已知得sin2B+sin2C-sin2A=sin Bsin C,
故由正弦定理得b2+c2-a2=bc,
由余弦定理得 cos A=b2+2cb2c-a2=12,
因为0°<A<180°,所以A=60°.
(2)由(1)知B=120°-C,
由题设及正弦定理得 2sin A+sin(120°-C)=2sin C,

2
,则
cos C

1 sin2 C 11 14
………………11分 43
所以sin(B-C)=sin Bcos C-sin Ccos B= 7 …………12分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲 三角恒等变换与解三角形(大题)热点一 三角形基本量的求解求解三角形中的边和角等基本量,需要根据正弦、余弦定理,结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图中标出来,然后确定转化的方向; 第二步:定工具,即根据条件和所求,合理选择转化的工具,实施边角之间的互化; 第三步:求结果.例1 (2019·湖北、山东部分重点中学联考)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,已知a cos A =R ,其中R 为△ABC 外接圆的半径,a 2+c 2-b 2=433S ,其中S 为△ABC的面积. (1)求sin C ;(2)若a -b =2-3,求△ABC 的周长. 解 (1)由正弦定理得a cos A =a2sin A ,∴sin 2A =1,又0<2A <π, ∴2A =π2,则A =π4.又a 2+c 2-b 2=433·12ac sin B ,由余弦定理可得2ac cos B =233ac sin B , ∴tan B =3, 又0<B <π,∴B =π3,∴sin C =sin(A +B )=sin ⎝⎛⎭⎫π4+π3=2+64. (2)由正弦定理得a b =sin A sin B =23,又a -b =2-3,∴⎩⎨⎧a =2,b =3,又sin C =2+64, ∴c =222·2+64=2+62,∴a +b +c =322+3+62.跟踪演练1 △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2a cos A =b cos C +c cos B . (1)求A ;(2)若a =7,b =8,求c .解 (1)方法一 由余弦定理cos B =c 2+a 2-b 22ac ,cos C =a 2+b 2-c 22ab,得2a cos A =b cos C +c cos B =a , ∴cos A =12.∵0<A <π,∴A =π3.方法二 由正弦定理a =2R sin A ,b =2R sin B , c =2R sin C ,得4R sin A cos A =2R sin B cos C +2R sin C cos B =2R sin(B +C ),A +B +C =π,∴cos A =12,∵0<A <π,∴A =π3.(2)由余弦定理a 2=b 2+c 2-2bc cos A , 得72=82+c 2-2×8×c ×12,即c 2-8c +15=0, 解得c =3或c =5.热点二 与三角形面积有关的问题三角形面积的最值问题主要有两种解决方法:一是将面积表示为边的形式,利用基本不等式求得最大值或最小值;二是将面积用三角形某一个角的三角函数表示,结合角的范围确定三角形面积的最值.例2 (2019·衡水质检)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且c sin ⎝⎛⎭⎫π2-A 是a cos B 与b cos A 的等差中项.(1)求角A ;(2)若2a =b +c ,且△ABC 的外接圆半径为1,求△ABC 的面积. 解 (1)因为c sin ⎝⎛⎭⎫π2-A 是a cos B 与b cos A 的等差中项, 所以2c cos A =a cos B +b cos A . 由正弦定理得2sin C cos A =sin A cos B +sin B cos A , 从而可得2sin C cos A =sin C ,又C 为三角形的内角,所以sin C ≠0,于是cos A =12,又A 为三角形内角,因此A =π3.(2)设△ABC 的外接圆半径为R ,则R =1, a =2R sin A =3,由余弦定理得a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc ,即3=12-3bc ,所以bc =3.所以△ABC 的面积为S =12bc sin A =334.跟踪演练2 (2019·武汉调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a =2,b =3,sin 2C +sin A =0. (1)求c ;(2)求△ABC 的面积. 解 (1)由sin 2C +sin A =0, 知2sin C ·cos C +sin A =0,利用正弦定理边角互化及余弦定理可得2c ·a 2+b 2-c 22ab +a =0,∴c (a 2+b 2-c 2)+a 2b =0,而a =2,b =3, ∴c (4+9-c 2)+12=0,即c 3-13c -12=0, ∴(c +1)(c +3)(c -4)=0,而c >0,∴c =4. (2)在△ABC 中,由余弦定理得: cos B =a 2+c 2-b 22ac =1116,∴sin B =1-cos 2B =31516, ∴△ABC 的面积S =12ac sin B=12×2×4×31516=3154. 热点三 以平面几何为背景的解三角形问题解决以平面几何为载体的解三角形问题,主要注意以下几方面:一是充分利用平面几何图形的性质;二是出现多个三角形时,从条件较多的三角形突破求解;三是四边形问题要转化到三角形中去求解;四是通过三角形中的不等关系⎝⎛⎭⎫如大边对大角,最大角一定大于等于π3确定角或边的范围.例3 (2019·深圳调研)如图,在平面四边形ABCD 中,AC 与BD 为其对角线,已知BC =1,且cos ∠BCD =-35.(1)若AC 平分∠BCD ,且AB =2,求AC 的长; (2)若∠CBD =45°,求CD 的长. 解 (1)若对角线AC 平分∠BCD , 即∠BCD =2∠ACB =2∠ACD , ∴cos ∠BCD =2cos 2∠ACB -1=-35,∵cos ∠ACB >0,∴cos ∠ACB =55, ∵在△ABC 中,BC =1,AB =2,cos ∠ACB =55, ∴由余弦定理AB 2=BC 2+AC 2-2BC ·AC ·cos ∠ACB 可得, AC 2-255AC -3=0,解得AC =5,或AC =-355(舍去),∴AC 的长为 5. (2)∵cos ∠BCD =-35,∴sin ∠BCD =1-cos 2∠BCD =45,又∵∠CBD =45°,∴sin ∠CDB =sin(180°-∠BCD -45°) =sin(∠BCD +45°)=22(sin ∠BCD +cos ∠BCD )=210, ∴在△BCD 中,由正弦定理BC sin ∠CDB =CDsin ∠CBD,可得CD =BC ·sin ∠CBDsin ∠CDB=5,即CD 的长为5.跟踪演练3 (2019·淮南模拟)如图,在锐角△ABC 中,D 为边BC 的中点,且AC =3,AD =322,O 为△ABC 外接圆的圆心,且cos ∠BOC =-13.(1)求sin ∠BAC 的值; (2)求△ABC 的面积.解 (1)如图所示,∠BOC =2∠BAC ,∴cos ∠BOC =cos 2∠BAC =1-2sin 2∠BAC =-13,∴sin 2∠BAC =23,sin ∠BAC =63.(2)延长AD 至E ,使AE =2AD ,连接BE ,CE , 则四边形ABEC 为平行四边形, ∴CE =AB ,在△ACE 中,AE =2AD =32,AC =3, ∠ACE =π-∠BAC , cos ∠ACE =-cos ∠BAC =-1-⎝⎛⎭⎫632=-33, 由余弦定理得,AE 2=AC 2+CE 2-2AC ·CE ·cos ∠ACE ,即(32)2=(3)2+CE 2-2×3·CE ×⎝⎛⎭⎫-33, 解得CE =3,∴AB =CE =3, ∴S △ABC =12AB ·AC ·sin ∠BAC=12×3×3×63=322.真题体验(2019·全国Ⅰ,理,17)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sin B sin C . (1)求A ;(2)若2a +b =2c ,求sin C .解 (1)由已知得sin 2B +sin 2C -sin 2A =sin B sin C , 故由正弦定理得b 2+c 2-a 2=bc , 由余弦定理得cos A =b 2+c 2-a 22bc =12,因为0°<A <180°,所以A =60°. (2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin(120°-C )=2sin C , 即62+32cos C +12sin C =2sinC , 可得cos(C +60°)=-22. 由于0°<C <120°,所以sin(C +60°)=22, 故sin C =sin(C +60°-60°)=sin(C +60°)cos 60°-cos(C +60°)sin 60°=6+24. 押题预测在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且tan A 2tan B2+3⎝⎛⎭⎫tan A 2+tan B 2=1. (1)求角C ;(2)若△ABC 的面积为43,a =2,求边c 的值.解 (1)因为tan A 2tan B2+3⎝⎛⎭⎫tan A 2+tan B 2=1, 所以tan A 2+tan B21-tan A 2tanB 2=33,所以tan ⎝⎛⎭⎫A +B 2=33.因为0<A +B <π,所以A +B 2=π6,所以A +B =π3,所以C =2π3.(2)S =12ab sin C =43,a =2,所以b =8,所以c 2=a 2+b 2-2ab cos C =84, 所以c =221.A 组 专题通关1.(2019·湖南雅礼中学月考)如图,在△ABC 中,B =π4,角A 的平分线AD 交BC 于点D ,设∠BAD =α,sin α=55.(1)求sin C ;(2)若BA →·BC →=28,求AC 的长. 解 (1)∵α∈⎝⎛⎭⎫0,π2,sin α=55=15. ∴cos α=1-sin 2α=25. 则sin ∠BAC =sin 2α=2sin αcos α=2×15×25=45. ∴cos ∠BAC =2cos 2α-1=2×45-1=35,sin C =sin ⎣⎡⎦⎤π-⎝⎛⎭⎫π4+2α=sin ⎝⎛⎭⎫π4+2α =22cos 2α+22sin 2α=22×35+22×45=7210. (2)由正弦定理,得AB sin C =BC sin ∠BAC ,即AB 7210=BC45, ∴AB =728BC ,①又BA →·BC →=28,∴|AB ||BC |×22=28,②由①②解得BC =42,又由AC sin B =BC sin ∠BAC 得AC 22=BC 45,∴AC =5.2.(2019·湖南、江西名校联考)已知向量m =(sin x ,-1),n =(3,cos x ),且函数f (x )=m ·n . (1)若x ∈⎝⎛⎭⎫0,π2,且f (x )=23,求sin x 的值; (2)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =7,△ABC 的面积为332,且f ⎝⎛⎭⎫A +π6=73b sin C ,求△ABC 的周长. 解 (1)f (x )=m ·n =(sin x ,-1)·(3,cos x ) =3sin x -cos x =2sin ⎝⎛⎭⎫x -π6. ∵f (x )=23,∴sin ⎝⎛⎭⎫x -π6=13. 又x ∈⎝⎛⎭⎫0,π2, ∴x -π6∈⎝⎛⎭⎫-π6,π3,cos ⎝⎛⎭⎫x -π6=223. ∴sin x =sin ⎣⎡⎦⎤⎝⎛⎭⎫x -π6+π6=13×32+223×12=3+226. (2)∵f ⎝⎛⎭⎫A +π6=73b sin C , ∴2sin A =73b sin C ,即6sin A =7b sin C , 由正弦定理可知6a =7bc , 又a =7,∴bc =6.由已知△ABC 的面积等于12bc sin A =332,可得sin A =32, 又A ∈⎝⎛⎭⎫0,π2,∴A =π3. 由余弦定理得b 2+c 2-2bc cos A =7, 故b 2+c 2=13,从而(b +c )2=25,b +c =5, ∴△ABC 的周长为5+7.3.(2019·佛山市顺德区检测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c,2b sin C cos A +a sin A =2c sin B .(1)证明:△ABC 为等腰三角形;(2)若D 为BC 边上的点,BD =2DC ,且∠ADB =2∠ACD ,a =3,求b 的值. (1)证明 ∵2b sin C cos A +a sin A =2c sin B , ∴由正弦定理得:2bc cos A +a 2=2cb , 由余弦定理得:2bc ·b 2+c 2-a 22bc +a 2=2bc ,化简得:b 2+c 2=2bc ,∴(b -c )2=0即b =c, 故△ABC 为等腰三角形.(2)解 方法一 如图,由已知得BD =2,DC =1,∵∠ADB =2∠ACD =∠ACD +∠DAC , ∴∠ACD =∠DAC, ∴AD =CD =1, 又∵cos ∠ADB =-cos ∠ADC ,∴AD 2+BD 2-AB 22AD ·BD =-AD 2+CD 2-AC 22AD ·CD ,即12+22-c 22×2×1=-12+12-b 22×1×1, 得2b 2+c 2=9,由(1)可知b =c ,得b = 3. 方法二 取BC 的中点E ,连接AE .由(1)知AB =AC ,∴AE ⊥BC , 由已知得EC =32,DC =1,ED =12,∵∠ADB =2∠ACD =∠ACD +∠DAC , ∴∠ACD =∠DAC , ∴AE =AD 2-DE 2=1-⎝⎛⎭⎫122=32,∴b =AC =AE 2+EC 2=⎝⎛⎭⎫322+⎝⎛⎭⎫322= 3.方法三 由已知可得CD =13a =1,由(1)知,AB =AC ,∴∠B =∠C ,又∵∠DAC =∠ADB -∠C =2∠C -∠C =∠C , ∴△CAB ∽△CDA , 即CB CA =CA CD ,即3b =b1,∴b = 3. B 组 能力提高4.(2019·河北衡水金卷质量测评)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且a =362,A =60°,C =45°. (1)求c 的值;(2)以AB 为一边向外(与点C 不在AB 同侧)作一新的△ABP ,使得∠APB =30°,求△ABP 面积的最大值.解 (1)在△ABC 中,由正弦定理得a sin A =c sin C ,将a =362,A =60°,C =45°代入上式得362sin 60°=csin 45°⇒c =3, 所以c 的值为3.(2)在△ABP 中,由余弦定理得 AB 2=P A 2+PB 2-2P A ·PB cos 30°, 所以9=P A 2+PB 2-3P A ·PB , 由不等式的性质可知9=P A 2+PB 2-3P A ·PB ≥(2-3)P A ·PB , 所以P A ·PB ≤92-3=9(2+3),当且仅当P A =PB 时取等号. 所以S △P AB =12P A ·PB sin 30°=14P A ·PB ≤94(2+3), 所以△ABP 面积的最大值为94(2+3). 5.(2019·成都模拟)如图,在平面四边形ABCD 中,AB =2,BC =3-1,∠ABC =120°,∠ADC =30°.(1)若CD =6,求AD ;(2)求四边形ABCD 面积的最大值.解 (1)连接AC ,在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC=22+(3-1)2-2×2×(3-1)×⎝⎛⎭⎫-12=6, 所以AC = 6.又CD =6,所以△ACD 为等腰三角形,作CE ⊥AD 于E ,则DE =AE ,在Rt △DCE 中,∠ADC =30°,所以DE =CD ·cos 30°=6×32=322, 所以AD =2DE =3 2.(2)由题意知S △ABC =12AB ·BC sin ∠ABC =32-32. 在△ACD 中,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC =AD 2+DC 2-62AD ·DC =32, 所以AD 2+DC 2=3AD ·DC +6.又AD 2+DC 2≥2AD ·DC ,当且仅当AD =DC 时等号成立,所以3AD ·DC +6≥2AD ·DC ,所以AD ·DC ≤6()2+3,所以S △ACD =12AD ·DC sin ∠ADC ≤3+332, 所以S 四边形ABCD =S △ABC +S △ACD ≤92+ 3. 故四边形ABCD 面积的最大值为92+ 3.。

相关文档
最新文档