第一章-有理数全章综合测试

合集下载

第一章 有理数单元检测卷(解析版)

第一章 有理数单元检测卷(解析版)

第1章《有理数》一、选择题(共36分)1.2023的相反数是( )A .12023B .2023-C .2023D .12023-【答案】B【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2023的相反数是2023-,故选:B .【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.中国是最早采用正负数表示相反意义的量、并进行负数运算的国家.若收入500元记作500+元,则支出237元记作( )A .237+元B .237-元C .0元D .474-元【答案】B【分析】根据相反意义的量的意义解答即可.【详解】∵收入500元记作500+元,∴支出237元记作237-元,故选B .【点睛】本题考查了相反意义的量,正确理解定义是解题的关键.3.2022年河南省凭借6.13万亿元的经济总量占据全国各省份第五位,占全国的5.0%,将数据“6.13万亿”用科学记数法表示为( )A .86.1310´B .106.1310´C .126.1310´D .146.1310´【答案】C【分析】科学记数法的表示形式为10n a ´的形式,其110a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将数据“6.13万亿”用科学记数法表示为126.1310´.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中110a £<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.下列说法正确的是( )A .0既是正数又是负数B .0是最小的正数C .0既不是正数也不是负数D .0是最大的负数【答案】C【分析】根据有理数的分类判断即可.【详解】∵0既不是正数也不是负数,故选C.【点睛】本题考查了零的属性,熟练掌握0既不是正数也不是负数是解题的关键.5.点A 为数轴上表示3的点,将点A 向左移动9个单位长度到B ,点B 表示的数是( )A .2B .−6C .2或−6D .以上都不对【答案】B【分析】根据数轴上的平移规律即可解答【详解】解:∵点A 是数轴上表示3的点,将点A 向左移9个单位长度到B ,∴点B 表示的数是:396-=-,故选B .【点睛】本题主要考查了数轴及有理数减法法则,掌握数轴上的点左移减,右移加是解题关键.6.哈尔滨市2023年元旦的最高气温为2℃,最低气温为8-℃,那么这天的最高气温比最低气温高( )A .10-℃B .6-℃C .6℃D .10℃【答案】D【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可.【详解】解:根据题意,得:()282810--=+=,\这天的最高气温比最低气温高10℃,故选:D .【点睛】本题考查了有理数的减法的应用,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.7.把()()()()8452--++---写成省略加号的形式是( )A .8452-+-+B .8452---+C .8452--++D .8452--+【答案】B 【分析】观察所给的式子,要写成省略加号的形式,即是将式子中的括号去掉即可.【详解】解:根据有理数的加减混合运算的符号省略法则化简,得,()()()()28452845---+---=--++.故选:B .【点睛】本题考查有理数的加减混合运算,熟练掌握去括号的法则:括号前是正号,去括号时,括号里面的各项都不改变符号;括号前是负号,去括号时,括号里面的各项都要改变符号是解题的关键.8.下列各对数中,不相等的一对数是( )A .()33-与33-B .33-与33C .()43-与43-D .()23-与23【答案】C【分析】根据有理数的乘方和绝对值的概念,逐一计算即可.【详解】解:()3327-=-,3327-=-,2727-=-,故A 不符合题意;3327-=,3327=,2727=,故B 不符合题意;()4381-=,4381-=-,8181¹-,故C 符合题意;()239-=,239=,99=,故D 不符合题意,故选:C .【点睛】本题考查了有理数的乘方和绝对值的概念,熟练掌握计算法则是解题的关键.9.用四舍五入法按要求对0.30628分别取近似值,其中错误的是( )A .0.3(精确到0.1)B .0.31(精确到0.01)C .0.307(精确到0.001)D .0.3063(精确到0.0001)【答案】C【分析】根据近似数的精确度对各选项进行判断即可.【详解】解:0.30628精确到0.1是0.3,A 选项正确,不符合题意;0.30628精确到0.01是0.31,B 选项正确,不符合题意;0.30628精确到0.001是0.306,C 选项错误,符合题意;0.30628精确到0.0001是0.3063,D 选项正确,不符合题意.【点睛】本题考查了近似数的精确度,熟练掌握四舍五入法及精确度的概念是解题的关键.10.若计算式子1(27)()3-W V 的结果为最大,则应分别在 ,△中填入下列选项中的( )A .+,-B .´,-C .¸,-D .-,¸【答案】D【分析】将四个选项中的运算符号分别代入式子中进行运算,通过比较结果即可得出结论.【详解】解:当选取A 选项的符号时,111(27)()99333+--=+=;当选取B 选项的符号时,111(27)()1414333´--=+=;当选取C 选项的符号时,12113(27)()37321¸--=+=;当选取D 选项的符号时,1(27)()5(3)153-¸-=-´-=,∵1113151493321>>>,当选取D 选项的符号时,计算式子1(27)(3-W V 的结果最大,故选:D .【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.11.如图,点A 、B 均在数轴上,且点,A B 所对应的实数分别为a 、b ,若0a b +>,则下列结论一定正确的是( )A .0ab >B .0a b ->C .0a b >D .0b >【答案】B【分析】根据0a b +>,可知,a b 可能同号,也可能异号,而a b >恒成立,即可求解.【详解】∵0a b +>,∴a b >-,即在数轴上,b -在a 的左侧,∴0b b a <<-<或0b b a -<<<,∴,a b 可能同号,也可能异号,而a b >恒成立,∴0a b ->一定正确,【点睛】本题考查了数轴上点的位置及其大小关系,熟练掌握数轴上右边的数总比左边的数大是解题的关键.12.若a 、b 互为相反数,c 、d 互为倒数,m 的倒数是它本身,则232cd m a b m+++的值为A .5B .5或2C .5或1-D .不确定【答案】C 【分析】根据相反数,倒数的性质,可得0,1a b cd +== ,1m =± ,再代入,即可求解.【详解】解:∵a 、b 互为相反数,c 、d 互为倒数,∴0,1a b cd +== ,∵m 的倒数是它本身,∴1m =± ,∴21m = ,当1m = 时,2331221051cd m a b m ´+++=´++=,当1m =- 时,2331221011cd m a b m ´+++=´++=--,∴232cd m a b m+++的值为5或1-.故选:C【点睛】本题主要考查了相反数,倒数的性质,熟练掌握一对互为相反数的和等于0,互为倒数的两个数的乘积为1是解题的关键.二、填空题(共18分)13.6-等于_____.【答案】6【分析】根据绝对值的定义进行求解即可.【详解】解:66-=,故答案为:6.【点睛】本题主要考查了求一个数的绝对值,熟知正数和0的绝对值是它本身,负数的绝对值是它的相反数是解题的关键.14.某种试剂的说明书上标明保存温度是(102)±℃,请你写出一个适合该试剂保存的温度:___________℃.【答案】10(答案不唯一)【分析】根据正数和负数的定义即可解答.【详解】解:由题意,可知适合该试剂的保存温度为8~12℃,在此温度范围内均满足条件.故答案为10(答案不唯一).【点睛】本题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.15.把2.674精确到百分位约等于______.【答案】2.67【分析】把千分位上的数字进行四舍五入即可.【详解】解:2.674 2.67».故答案为:2.67.【点睛】本题主要考查了近似数,解题的关键是熟练掌握定义,经过四舍五入得到的数叫近似数.16.计算:()14877-¸´=_____________.【答案】4849-【分析】根据有理数的乘除运算法则,从左往右依次计算即可.【详解】解:()111484874877749-¸´=-´´=-,故答案为:4849-.【点睛】本题考查了有理数的乘除运算.解题的关键在于明确运算顺序.易错点是先计算乘法然后计算除法.17.已知实数m ,n 在数轴上的对应点的位置如图所示,则m _______n .(填“<”、“>”或“=”)【答案】<【分析】根据在数轴上右边的数据大于左边的数据即可得出答案.【详解】解: m Q 在n 的左边,m n \<,故答案为:<.【点睛】此题考查了实数与数轴,正确掌握数轴上数据大小关系是解题关键.18.若()2180x y ++-=,则x y -的值为______.【答案】9-【分析】利用非负数的性质得出x y ,的值,代入计算得出答案.【详解】解:()2180x y ++-=Q ,1080x y \+=-=,,解得:18x y =-=,,189x y \-=--=-,故答案为:9-.【点睛】本题考查了非负数的性质,掌握非负数的意义和性质是正确解答的关键.三、解答题(共66分)19.(6分)计算:(1)23(22)(21)+---;(2)(3)(2)16(8)-´-+¸-.【答案】(1)22(2)4【分析】(1)利用加法的运算律进行求解即可;(2)先计算乘除,再计算加减即可求解.【详解】(1)解:23(22)(21)+---232221=-+22=;(2)解:(3)(2)16(8)-´-+¸-()62=+-4=.【点睛】本题考查了有理数的混合运算,解题的关键是掌握相应的运算法则.20.(6分)将下列各数在数轴上表示出来,并用“<”连接.2153,|3|,2,0,,(222----+【答案】详见解析,25312()0|3|222-<-<-+<<<-【分析】由绝对值,相反数,有理数的乘方的概念,找到各数在数轴上对应点的位置即可.【详解】解:25312(0|3|222-<-<-+<<<-.【点睛】本题考查数轴的概念,相反数,绝对值,有理数的乘方的概念,关键是准确确定各数在数轴上对应点的位置.21.(6分)计算:()()21125|2|953--´--+-¸.【答案】26-【分析】原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.【详解】解:()()21125|2|953--´--+-¸41227=---26=-.【点睛】此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行,熟练掌握运算法则是解题关键.22.(6分)数学老师布置了一道思考题:115626æöæö-¸-ç÷ç÷èøèø,小明仔细思考了一番,用了一种不同方法解决了这个问题,小明解法如下:原式的倒数为()151156226626æöæöæö-¸-=-´-=ç÷ç÷ç÷èøèøèø,所以11516262æöæö-¸-=ç÷ç÷èøèø.(1)请你判断小明的解答是否正确(2)请你运用小明的解法解答下面的问题计算:111112346æöæö-¸-+ç÷ç÷èøèø【答案】(1)小明的解答正确(2)13-【分析】(1)正确,利用倒数的定义判断即可;(2)求出原式的倒数,即可确定出原式的值.【详解】(1)解:小明的解答正确,理由为:一个数的倒数的倒数等于原数;(2)解:111134612æöæö-+¸-ç÷ç÷èøèø()11112346æö=-+´-ç÷èø()()()111121212346=´--´-+´-432=-+-3=-,∴11111123463æöæö-¸-+=-ç÷ç÷èøèø.【点睛】本题主要考查了有理数乘法和除法计算,熟练掌握相关计算法则是解题的关键.23.(6分)如果a ,b ,c 是非零有理数,求式子222||||||||a b c abc a b c abc -+++的所有可能的值.【答案】3±或5±【分析】根据绝对值的性质和有理数的除法法则分情况讨论即可.【详解】解:根据题意,当000a b c >>>,,时,22222215||||||||a b c abc a b c abc -+++=++-=;当000a b c >><,,时,22222213||||||||a b c abc a b c abc -+++=+-+=;当000a b c ><>,,时,22222213||||||||a b c abc a b c abc -+++=-++=;当000a b c <>>,,时,22222213||||||||a b c abc a b c abc -+++=-+++=;当000a b c <<>,,时,22222213||||||||a b c abc a b c abc -+++=--+-=-;当000a b c ><<,,时,22222213||||||||a b c abc a b c abc -+++=---=-;当000a b c <><,,时,22222213||||||||a b c abc a b c abc -+++=-+--=-;当000a b c <<<,,时,22222215||||||||a b c abc a b c abc -+++=---+=-;综上所述,式子222||||||||a b c abc a b c abc -+++的所有可能的值为3±或5±.【点睛】本题考查了有理数的乘法和绝对值的性质,熟练掌握绝对值的性质以及有理数的除法法则是解题的关键.24.(8分)某工厂一周内,计划每天生产自行车100辆,实际每天生产量如下表(以计划量为标准,增加的车辆记为正数,减少的车辆记为负数):星期周一周二周三周四周五周六周日增减(辆)1-+32-+4+75-10-(1)生产量最多的一天比最少的一天多生产多少辆?(2)本周一共生产了多少辆自行车?【答案】(1)17辆;(2)696辆.【分析】(1)由表可知,生产最多的一天为()1007+辆,最少的一天为()10010-,两者相减即可;(2)先用100乘以7,再将多生产或少生产的数量相加,两者相加即可.【详解】(1)()()10071001071017+--=+=(辆)∴生产量最多的一天比最少的一天多生产17辆;(2)()100713247510´+-+-++--7004=-696=(辆)∴本周一共生产了696辆自行车.【点睛】本题考查了正数和负数、有理数的四则运算在实际问题中的应用,根据表中数据正确列式,是解题的关键.25.(8分)如图,在数轴上有A、B、C三个点,请回答下列问题.(1)A、B两点间距离是,B、C两点间距离是,A、C两点间距离是.(2)若将点A向右移动5个单位到点D,B、C、D这三点所表示的数哪个最大?最大数比最小数大多少?【答案】(1)3 ;4;7(2)C点表示的数最大,最大数比最小数大4【分析】(1)根据数轴上两点之间的距离公式进行解答即可;(2)求出点D表示的数,然后再进行比较即可.【详解】(1)解:点A表示的数为4-,点B表示的数为1-,点C表示是数为3,则()AB=---=-+=,14143()31314BC=--=+=,()AC=--=+=,34347故答案为:3;4;7.-+=,点B表示的数为1-,点C表示(2)解:将点A向右移动5个单位到点D,则点D表示是数为451是数为3,>>-,∵311∴表示最大数的是点C,表示最小数的是点B()--=+=,31314∴最大数比最小数大4.【点睛】本题主要考查了用数轴上点表示有理数,数轴上两点之间的距离,解题的关键是数形结合找出点A、B、C在数轴上所表示的有理数.26.(10分)数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离=-.AB a b利用数形结合思想回答下列问题:(1)数轴上表示2和6两点之间的距离是 ,数轴上表示1和4-的两点之间的距离是 .(2)数轴上表示x 和3-的两点之间的距离表示为 .数轴上表示x 和6的两点之间的距离表示为 .(3)若x 表示一个有理数,则14x x -++的最小值= .(4)若x 表示一个有理数,且134x x ++-=,则满足条件的所有整数x 的是 .(5)若x 表示一个有理数,当x 为 ,式子234x x x ++-+-有最小值为 .【答案】(1)4,5(2)3x +,6x -(3)5(4)1-或0或1或2或3(5)3,6【分析】(1)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(2)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(3)根据数轴上两点之间的距离的意义可知x 在4-与1之间时,14x x -++有最小值5;(4)根据数轴上两点之间的距离的意义可知当x 在1-与3之间时(包含1-和3),134x x ++-=,然后可得满足条件的所有整数x 的值;(5)根据数轴上两点之间的距离的意义可知当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,然后可得答案.【详解】(1)解:数轴上表示2和6两点之间的距离是264-=,数轴上表示1和4-的两点之间的距离是()145--=,故答案为:4,5;(2)解:数轴上表示x 和3-的两点之间的距离表示为()33x x --=+,数轴上表示x 和6的两点之间的距离表示为6x -;故答案为:3x +,6x -;(3)解:根据数轴上两点之间的距离的意义可知:14x x -++可表示为点x 到1与4-两点距离之和,∴当x 在4-与1之间时,14x x -++有最小值5,故答案为:5;(4)解:根据数轴上两点之间的距离的意义可知:134x x ++-=表示为点x 到1-与3两点距离之和为4,∴当x 在1-与3之间时(包含1-和3),134x x ++-=,∴满足条件的所有整数x 的是1-或0或1或2或3;故答案为:1-或0或1或2或3;(5)解:根据数轴上两点之间的距离的意义可知:234x x x ++-+-可看作是数轴上表示x 的点到2-、3、4三点的距离之和,∴当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,即246--=,故答案为:3,6.【点睛】本题考查了数轴上两点之间的距离公式,绝对值的几何意义,正确理解数轴上两点之间的距离以及绝对值的几何意义是解题的关键.27.(10分)【概念学习】规定:求若干个相同的有理数(均不等0)的除法运算叫做除方,如333¸¸,()()()()2222-¸-¸-¸-等.类比有理数的乘方,我们把333¸¸记作3③,读作“3的圈3次方”,()()()()2222-¸-¸-¸-记作()2-④,读作“2-的圈4次方”.一般地,把()0n aa a a a ¸¸¸××׸¹1442443个记作,读作“a 的圈n 次方”.【初步探究】(1)直接写出计算结果:4=③______,412æö-=ç÷èø______.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(此处不用作答)(2)试一试:仿照上面的算式,将下列运算结果直接写成乘方幂的形式()3-=④______;5=⑥______;12æö=ç÷èø⑤______.(3)想一想:将一个非零有理数a 的圈n 次方写成乘方幂的形式等于______.(4)比较:()9-⑤______()3-⑦(填“>”“<”或“=”)【灵活应用】(5)算一算:211334æöæö-¸-´-ç÷ç÷èøèø⑤④.【答案】(1)14,4;(2)213æö-ç÷èø,415æöç÷èø,32;(3)21n a -æöç÷èø;(4)>;(5)163【分析】(1)根据题目给出的定义,进行计算即可;(2)将有理数除法转化为乘法,再写成幂的形式即可;(3)从(2)中总结归纳相关规律即可;(4)将两数变形,求出具体值,再比较大小即可;(5)先将除方转化为乘方,再运用有理数混合运算的方法进行计算即可.【详解】解:(1)144444=¸¸=③,411111422222æöæöæöæöæö-=-¸-¸-¸-=ç÷ç÷ç÷ç÷ç÷èøèøèøèøèø,故答案为:14,4;(2)()()()()()21333333æö--¸-¸-¸-=-è=ç÷ø④;4155555555æö=¸¸¸¸¸=ç÷èø⑥31111112222222æö=¸¸¸¸=ç÷èø⑤;故答案为:213æö-ç÷èø,415æöç÷èø,32;(3)a 的圈n 次方为:21...n n a a a a a a -æö¸¸¸¸=ç÷èø1442443个;(4)()31172999æö-=-=-ç÷èø⑤,()51124333æö-=-=-ç÷èø⑦,∵729243>,∴11729243->-,∴()9-⑤>()3-⑦,故答案为:>;(5)211334æöæö-¸-´-ç÷ç÷èøèø⑤④()232334=-¸-´()92716=-¸-´163=.【点睛】本题考查了有理数的除法运算,乘方运算,以及有理数混合运算,正确理解相关运算法则是解题的关键.。

初一数学第一章有理数综合测试卷(含答案)

初一数学第一章有理数综合测试卷(含答案)

初一数学第一章有理数综合测试卷(时间100分钟,120分)一、填空题:(1-5题每空1分,6-18题每题2分,共38分)1、数轴上原点右边4厘米处的点表示的有理数是32,那么,数轴上原点左边10厘米处的点表示的有理数是________ 。

2、若三个有理数的乘积为负数,在这三个有理数中,有_____个负数。

3、一个数的相反数是它本身,这个数是_________;一个数的倒数是它本身,这个数是_________。

4、如果数轴上的点A 对应有理数为-2,那么与A 点相距3个单位长度的点所对应的有理数为____ __ _____。

5、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么习惯上将地下第一层记作 ;数-2的实际意义为 ,数+9的实际意义为 。

6、绝对值小于2008的所有整数的和 。

7、已知∣x ∣=8,∣y ∣=2,则(x + y )²= 。

8、已知∣a ∣=3,∣b ∣=2,且ab <0,则a ﹣b= 。

9、若2x −3与x=______。

10、如果|2x -y -2)²=0 成立时,则x ²+y ² = 。

11、(﹣1) +(﹣1) = (n 为正整数)。

12、计算:(1−2)×(2−3)×(3−4)×……×(100−101)= 。

13、如果|a|=3, |b|=5,且a>b ,那么a= ,b= 。

14、已知a 与b 互为相反数,b 与c 互为相反数,如果c=-6,那么a 的值是 。

15、如果n 是正整数,那么(−1) +(−1) = 。

16、若x 与2y 互为相反数,-y 与-3z 互为倒数,m 是任何正偶次幂都等于本身的数,求代数式2x+4y-3 y z+m ²的值 。

17、如果|a+b|+|a-2|=0,求|3a-2b|= 。

18、若a>0,b<0,且|a|>|b|,则a+b 0。

第一章-有理数单元练习题(含答案)

第一章-有理数单元练习题(含答案)

第5题图第一章有理数检测题(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分) 1. 下列说法正确的个数是( )①一个有理数不是整数就是分数; ②一个有理数不是正数就是负数; ③一个整数不是正的,就是负的; ④一个分数不是正的,就是负的. A.1 B. 2 C. 3 D. 42. 在211-,2.1,2-,0 ,()2--中,负数的个数有( ) A.2个 B.3个 C.4个 D.5个 3.一个数加上12-等于5-,则这个数是( )A .17 B.7 C.17- D.7- 4. 下列算式中,积为负分数的是( )A.)5(0-⨯B.)10()5.0(4-⨯⨯C.)2()5.1(-⨯D.)32()51()2(-⨯-⨯- 5. 有理数a 、b 在数轴上对应的位置如图所示,则( ) A .<0 B .>0C .-0 D .->06. 在-5,-101,-3. 5,-0.01,-2,-212各数中,最大的数是( )A.-212B.-101C .-0.01 D.-5 7.某世界级大气田,储量达6 000亿立方米,6 000亿立方米用科学记数法表示为( ) A .6×102亿立方米;B .6×103亿立方米;C .6×104亿立方米;D .0.6×104亿立方米 8. 用四舍五入法按要求对0.05019分别取近似值,其中错误的是( ) A .0.1(精确到0.1) B .0.05(精确到百分位) C .0.05(精确到千分位) D .0.0502(精确到0.0001)9. 小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二 次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是( ) A.90分 B.75分 C.91分 D.81分10. 已知=73.96,若2=0.739 6,则的值等于( )A. 0.86B. 86C.±0.86D.±86 二、填空题(每小题3分,共24分) 11.31的倒数是____;321的相反数是____. 12. 在数轴上,点所表示的数为2,那么到点的距离等于3个单位长度的点所表示的数是. 13. 若0<a <1,则a ,2a ,1a的大小关系是 . 14. +5.7的相反数与-7.1的绝对值的和是___________.15. 已知每辆汽车要装4个轮胎,则51只轮胎至多能装配______辆汽车. 16.-9、6、-3这三个数的和比它们绝对值的和小_________.17. 一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑_________台. 18. 规定a ﹡,则(-4)﹡6的值为 .三、解答题(共46分) 19.(6分)计算下列各题: (1)72(2)4)(3)2)(4)2)220. (6分)如果规定a ﹡b =,求2﹡(-3)的值.21. (6分)比较下列各对数的大小. (1)54-与43-; (2)54+-与54+-; (3)25与52; (4)232⨯与2)32(⨯.22. (6分)10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:,与标准质量相比较,这10袋小麦总计超过或不足多少千克?10袋小麦总质量是多少千克?每袋小麦的平均质量是多少千克?23. (6分)若<0,求32---+-x y y x 的值.24.(8分)小虫从某点O 出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为:(单位:cm ).问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1 cm奖励一粒芝麻,则小虫共可得到多少粒芝麻?25. (8分)同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=______.(2)找出所有符合条件的整数,使得=7,这样的整数是_____.参考答案1.B 解析:整数和分数统称为有理数,所以①正确;有理数包括正数、负数和零,所以②③不正确;分数包括正分数和负分数,所以④正确.故选B.2.A 解析:负数有211-,2-,所以有2个.故选A. 3.B 解析:一个数加上12-等于5-,所以-5减去-12等于这个数,所以这个数为7.故选B.4.D 解析:A 中算式乘积为0;B 中算式乘积为-20;C 中算式乘积为-3;D 中算式乘积为.故选D.5.A 解析:是负数,是正数,离原点的距离比离原点的距离大,所以,故选A.6.C 解析:可将这些数标在数轴上,最右边的数最大.也可以根据:负数比较大小,绝对值大的反而小.故选C.7.B 解析:乘号前面的数必须是大于或等于1且小于10的. 8.C 解析:C 应该是0.050. 9.C 解析:小明第四次测验的成绩是故选C.10.C 解析:因为0.739 6=73.96×,73.96×=,所以故选C. 11. 解析:根据倒数和相反数的定义可知的倒数为的相反数是.12.解析:点所表示的数为2,到点的距离等于3个单位长度的点所表示的数有两个,分别位于点的两侧,分别是解析:当0<<1时,14.1.4 解析:的相反数为,的绝对值为7.1,所以+5.7的相反数与-7.1的绝对值的和是15.12 解析:51÷4=12……3.所以51只轮胎至多能装配12辆汽车. 16.24 解析:,,所以.17.50 解析:将调入记为“+”,调出记为“-”,则根据题意有所以这个仓库现有电脑50台.18.-9 解析:根据﹡,得(-4)﹡6.19.解:(1)(2)(3)(4)20.解:2﹡(-3)=21.解:(1)所以(2)=1,=9,所以<.(3)(4)22.分析:将十个数相加,若和为正,则为超过的千克数,若和为负,则为不足的千克数;若将这个数加1 500,则为这10袋小麦的总千克数;再将10袋小麦的总千克数除以10,就为每袋小麦的平均质量.解:∵∴与标准质量相比较,这10袋小麦总计少了2 kg.10袋小麦的总质量是1 500-2=1 498(kg).每袋小麦的平均质量是23.解:当所以原式=-1.24.分析:(1)若将爬过的路程(向右爬行记为正,向左爬行记为负)相加和为0,则小虫回到原点.(2)可画图直观看出.(3)将所给数的绝对值相加即为所奖励的芝麻数.解:(1)∵,∴小虫最后回到原点O.(2)12㎝. (3)5+3-+10++8-+6-+12++10-=54,∴小虫可得到54粒芝麻.25.分析:(1)直接去括号,再按照去绝对值的方法去绝对值就可以了. (2)要求的整数值可以进行分段计算,令或时,分为3段进行计算,最后确定的值. 解:(1)7. (2)令或,则或.当时,,∴, . 当时,,∴ ,,∴ .当2时,,∴ ,,∴,∴ 综上所述,符合条件的整数有:-5,-4,-3,-2,-1,0,1,2.。

第一章《有理数》全章 练习题 (含答案)

第一章《有理数》全章 练习题 (含答案)

第一章《有理数》全章 练习题 (含答案)一、选择题1. 2024的倒数是( )A .2024B .2024−C .12024−D .120242. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,将这个数用科学记数法表示为( )A .84410⨯B .84.410⨯C .94.410⨯D .104.410⨯3.如图,数轴上点A 和点B 分别表示数a 和b ,则下列式子正确的是( )A .0a >B .0ab >C .0a b −>D .0a b +<4.下列几种说法中,不正确的有( )个.①绝对值最小的数是0;②最大的负有理数是﹣1;③数轴上离原点越远的点表示的数就越小;④平方等于本身的数只有0和1;⑤倒数是本身的数是1和﹣1.A .4B .3C .2D .15. 若|m ﹣2|+(n +3)2=0,则m ﹣n 的值为( )A .﹣5B .﹣1C .1D .56. 如图是嘉淇同学的练习题,他最后得分是( )A .20分B .15分C .10分D .5分6. 如图,数轴上,A B 两点分别对应有理数,a b ,则下列结论:①0ab <;②0a b +>;③1a b −>;④||||0a b −<,⑤220a b −<.其中正确的有( )A .1个B .2个C .3个D .4个8.如图是一个数值转换机, 若输入x 的值是1−, 则输出的结果y 为( )A .7B .8C .10D .129. 观察1211−=,2213−=,3217−=,42115−=,52131−=,⋯,归纳各计算结果中的个位数字的规律,猜测202221−的个位数字是( )A .1B .3C .7D .510. 计算 1111111111131422363524⎡⎤⎛⎫⎛⎫−+÷÷−⨯+−÷ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的值为( ) A .2514 B .2514− C .114 D .114− 二、填空题(本大题共6小题)11. -56____ -67(填>,<,=) 12. 如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作_____13. 数轴上,点A 表示的数是-3,距点A 为4个单位长度的点所表示的数是______.14. 若a 与b 互为相反数,m 与n 互为倒数,则()()220212022b a b mn a ⎛⎫+−+= ⎪⎝⎭ . 15.已知|a |=3,|b |=5,且ab <0,则a +b 的值16. 已知m 、n 两数在数轴上位置如图所示,将m 、n 、﹣m 、﹣n 用“<”连接:____________17.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为 . 18 .若x 是不等于1的实数,我们把11x−称为x 的差倒数, 如2的差倒数是1112=−−,-1的差倒数为()11112=−−, 现已知113x =−,2x 是1x 的差倒数,3x 是2x 的差倒数,4x 是3x 的差倒数,…,依此类推,则2022x = .三、解答题19. 把下列各数填在相应的括号里:﹣8,0.275,227 ,0,﹣1.04,﹣(﹣3),﹣13,|﹣2| 正数集合{ …}负整数集合{ …}分数集合{ …}负数集合{ …}.20 画一条数轴,在数轴上表示下列有理数,并用“<”号把各数连接起来:2.5−,0,-2,-(-4),-3.5,321. (1)(-534)+(+237)+(-114)-(-47) (2)()155********⎛⎫−+−⨯− ⎪⎝⎭ (3)-14+14×[2×(-6)-(-4)2] (4)(-2)3×(-34)+30÷(-5)-│-3│22. 已知a ,b 互为相反数,c ,d 互为倒数,|m |=2,求代数式2m ﹣(a +b ﹣1)+3cd 的值. .23. 已知x 是最小正整数,y ,z 是有理数,且有| y ﹣2|+|z+3|=0,计算:(1)求x ,y ,z 的值.(2)求3x ﹢y ﹣z 的值.24. 某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负, 行车依先后次序记录如下:(单位:km )+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+7(1)将最后一名乘客送到目地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)若每千米的价格为2.4元,司机一下午的营业额是多少元?25.已知数轴上三点M ,O ,N 对应的数分别为﹣1,0,3,点P 为数轴上任意点,其对应的数为x .(1)MN 的长为 ; (2)如果点P 到点M 、点N 的距离相等,那么x 的值是: ; (3)如果点P 以每分钟2个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动. 设t 分钟时点P 到点M 、点N 的距离相等,求t 的值.参 考 解 答:一、选择题1.D . 2 .C 3.D 4.C 5.D 6.B 7.D 8.A . 9 .B . 10..C二、填空题11. > 12 .-3分 13.1或-7 14.0 15.-2或2 16 .m <﹣n <n <﹣m 17.9900 18 .4三、解答题19. 解:正数集合{ 0.275,227,()3−−,2− …};负整数集合{8−…};分数集合{ 0.275, 227, 1.04−,13− …};负数集合{8−, 1.04−,13− …}.20 解:()2.5 2.5,44,−=−−=在数轴上表示各数如下:∴ 3.5−<2−<0< 2.5−<3<()4−−21. 解:(1)(-534)+(+237)+(-114)-(-47)3134=5124477⎡⎤⎛⎫⎛⎫⎛⎫−+−++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 734=−+=−(2)()155********⎛⎫−+−⨯− ⎪⎝⎭ ()()()()15573636363629612=⨯−−⨯−+⨯−−⨯− 182030217=−+−+=−(3)-14+14×[2×(-6)-(-4)2] ()1112164=−+⨯−− ()178=−+−=−(4)(-2)3×(-34)+30÷(-5)-│-3│ ()38634⎛⎫=−⨯−+−− ⎪⎝⎭6633=−−=−22. 解:a ,b 互为相反数,c ,d 互为倒数,|m |=2,∴0a b +=,1cd =,2m =±,∴原式=()2201314138⨯−−+⨯=++=或 原式=()()2201314130⨯−−−+⨯=−++=.23. 解:(1)∵x 是最小正整数∴x=1∵|y ﹣2|≥0,|z+3|≥0,且|y ﹣2|+|z+3|=0∴|y ﹣2|=0,|z+3|=0∴y ﹣2=0,z+3=0∴y=2,z=-3.(2)∵x=1,y=2,z=-3∴3x ﹢y ﹣z=3×1+2-(-3)=3+2+3=8.24. 解:(1)9-3-5+4-8+6-3-6-4+7=-3(千米)答:最后出租车离鼓楼出发点3千米,在鼓楼的西方;(2)()9+-3+-5+4+-8++6+-73+6+-4+ 2.4132+−⨯=(元), 答:若每千米的价格为2.4元,司机一个下午的营业额是132元.25.解:(1)MN 的长为3﹣(﹣1)=4.(2)x =(3﹣1)÷2=1;(3)①点P 是点M 和点N 的中点.根据题意得:(3﹣2)t =3﹣1,解得:t =2.②点M 和点N 相遇.根据题意得:(3﹣2)t =3+1,解得:t =4.故t 的值为2或4.故答案为4;1.。

新人教版七年级数学试题第一章《有理数》全章检测120分钟150分

新人教版七年级数学试题第一章《有理数》全章检测120分钟150分

第一章《有理数》全章检测测试题(时间120分钟 满分150分)一、选择题(每题3分,共45分)1、大于–3.5,小于2.5的整数共有( )个。

A.6B.5C.4D.32、如果一个数的相反数比它本身大,那么这个数为 ( )A 、正数B 、负数C 、整数D 、不等于零的有理数3、在有理数中,绝对值等于它本身的数有 ( )A. 1个B. 2个C. 3个D. 无穷多个4. 若ab≠0,则a/b 的取值不可能是 ( )A 0B 1C 2D -25. 在-2,0,1,3这四个数中,比0小的数是( )A 、-2B 、0C 、1D 、36、已知点A 和点B 在同一数轴上, 点A 表示数2-, 又已知点B 和点A 相距5个单位长度, 则点B 表示的数是 ( )A.3B.-7C.3或-7D.3或77、 若两个有理数的和是正数,那么一定有结论( )A . 两个加数都是正数;B .两个加数有一个是正数;C . 一个加数正数,另一个为零D .两个加数不能同为负数8. 下列说法正确的个数是 ( ) ①一个有理数不是整数就是分数 ②一个有理数不是正数就是负数 ③一个整数不是正的,就是负的 ④一个分数不是正的,就是负的。

A 1B 2C 3D 4 2.9、甲、乙、丙三地的海拔高度分别为20米,-15米和-10米,那么最高的地方比最低的地方高( )A.10米B.15米C.35米D.5米10、下列说法中正确的是 ( )A.a -一定是负数B.a 一定是负数C.a -一定不是负数D.2a -一定是负数11、每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为15000000千米,将150000000千米用科学记数法表示为( )A .0.15×910千米B .1.5×810千米C .15×710千米D .1.5×710千米12. 下列说法正确的是 ( )。

①0是绝对值最小的有理数 ②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小 。

人教版七年级上册数学第一章有理数《单元综合检测题》带答案

人教版七年级上册数学第一章有理数《单元综合检测题》带答案

第一章有理数测试卷一、选择题(本大题共10小题,每小题3分,共30分)1.每年5月是西安樱桃上市的季节,如果+3吨表示运入仓库的樱桃吨数,那么运出5吨樱桃表示为()A. -2吨B. +2吨C. -5吨D. +5吨2.下列四个数中,与-5的和为0的数是()A. -5B. 5C. 0D. -3.大于-0.5而小于4的整数共有()A. 6个B. 5个C. 4个D. 3个4.-|-2017|的相反数是()A. 2017B.C. -2017D. -5.在下列数:+3、+(-2.1)、-、-π、0、-、中,正数有()A. 1个B. 2个C. 3个D. 4个6.下列算式正确的是()A. (-14)-5=-9B. 0 -(-3)=3C. (-3)-(-3)=-6D. ∣5-3∣=-(5-3)7.2016年春节黄金周海南旅游大幅增长,据统计,2月7至13日,全省共接待游客约3710000人次,将3710000用科学记数法表示为()A. 3.71×107B. 0.371×107C. 3.71×106D. 37.1×1068.下列各对数中,互为相反数的一组是()A. -32与-23B. (-3)2与-32C. -23与(-2)3D. (-3×2)3与-3×239.13世纪数学家斐波那契的《计算书》中有这样一个问题:”在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( )A. 42B. 49C. 76D. 7710.如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O 的位置应该在()A. 点A的左边B. 点A与点B之间C. 点B与点C之间D. 点C的右边二、填空题(本大题共6小题,每小题3分,共18分)11.计算的结果为__.12.已知,数轴上表示点A、B、C、D的四个数分别是-1,2,3,-4,离原点距离最远的点是_______.13.用四舍五入法得到的近似数5.10×104精确到________位.14.已知有理数-7,8,-12,通过有理数的加减混合运算,若使运算结果最大,则可列式为__________.15.已知n为正整数,计算:=__________.16.已知31=3,32=9,33=27, 34=81,35=243,36=729,….推测32017的个位数字是__.三、解答题(本大题共6小题,共52分)17.计算:(1)2×(-5)+22-3÷;(2)48×().18.用数轴上的点表示下列各有理数:-1.5,-22,-(-),+5,-|-3|,并把它们按从大到小的顺序用”>”号连接起来.19.北京航天研究院所属工厂制造飞船上的一种螺母,要求螺母内径可以有±0.02 mm的误差,抽查5个螺母,超过规定内径的毫米数记作正数,检查结果(单位:mm)如下:+0.01,-0.018,+0.026,-0.025,+0.015. (1)指出哪些产品符合要求.(2)指出符合要求的产品中哪个质量较好一些.20.根据如图所示的数轴,解答下面问题.(1)写出点A表示的数的绝对值;(2)对A,B点进行如下操作:先把点A,B表示的数乘﹣,再把所得数对应的点向右平移1个单位长度,得到对应点A′,B′,在数轴上表示出点A′,B′.21.我国约有9 600 000平方千米的土地,平均1平方千米的土地一年从太阳得到的能量相当于燃烧150 000吨煤所产生的能量.(1)一年内我国土地从太阳得到的能量相当于燃烧多少吨煤所产生的能量?(2)若1吨煤大约可以发出8000度电,那么(1)中的煤大约发出多少度电?(结果用科学记数法表示)22.某公司6天内货品进出仓库的吨数如下,其中正数表示进库的吨数:+31,-32,-16,+35,-38,-20.(1)经过这6天,仓库里的货品是_________(填”增多了”或”减少了”).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?附加题(共20分,不计入总分)23.已知a是有理数,下列各式:(-a)2=a2;-a2=(-a)2;(-a)3=a3;|-a3|=a3.其中一定成立的有()A. 1个B. 2个C. 3个D. 4个24.符号”f”表示一种运算,它对一些数的运算如下:f(1)=1+,f(2)=1+,f(3)=1+,f(4)=1+…(1)利用以上运算规律,写出f(2017)=__________;(2)计算:f(1)•f(2)•f(3)•…•f(100)的值.答案与解析一、选择题(本大题共10小题,每小题3分,共30分)1.每年5月是西安樱桃上市的季节,如果+3吨表示运入仓库的樱桃吨数,那么运出5吨樱桃表示为()A. -2吨B. +2吨C. -5吨D. +5吨【答案】C【解析】【分析】根据正负号表示相反意义的量解答.【详解】解:依据题意,”+”表示”运入”,则运出为”-”,运出5吨为-5,故选择C.【点睛】本题考查了正负号的实际意义.2.下列四个数中,与-5的和为0的数是()A. -5B. 5C. 0D. -【答案】B【解析】【分析】互为相反数的两数和为0.【详解】解:由题意可知两数互为相反数,则与-5的和为0的数是5,故选择B.【点睛】本题考查了相反数的性质.3.大于-0.5而小于4的整数共有()A. 6个B. 5个C. 4个D. 3个【答案】C【解析】【分析】由实数的大小关系逐一写出即可.【详解】解:有实数的大小关系可知,大于-0.5而小于4的整数为0,1,2,3,共4个,故选择C.【点睛】本题考查了实数的大小及整数的概念.4.-|-2017|的相反数是()A. 2017B.C. -2017D. -【答案】A【解析】【分析】-|-2017|去绝对值后得-2017,再求该数的相反数即可.【详解】解:-|-2017|去绝对值后得-2017,-2017的相反数为2017,故选择A.【点睛】本题考查了相反数.5.在下列数:+3、+(-2.1)、-、-π、0、-、中,正数有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】试题分析:因为+(-2.1)=-2.1,-=-9,所以在数:+3、+(-2.1)、-、-π、0、-、中,正数只有+3一个,故选:A.考点:正负数.6.下列算式正确的是()A. (-14)-5=-9B. 0 -(-3)=3C. (-3)-(-3)=-6D. ∣5-3∣=-(5-3)【答案】B【解析】根据有理数的减法,减去一个数等于加上这个数的相反数,可知:(-14)-(+5)=(-14)+(-5)=-19;0-(-3)=0+(+3)=3;(-3)-(-3)=(-3)+3=0;︱5-3︱=5-3=2.故选:B.7.2016年春节黄金周海南旅游大幅增长,据统计,2月7至13日,全省共接待游客约3710000人次,将3710000用科学记数法表示为()A. 3.71×107B. 0.371×107C. 3.71×106D. 37.1×106【答案】C【解析】试题分析:科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数.3710000=3.71×.故选:C.考点:科学记数法——表示较大的数.8.下列各对数中,互为相反数的一组是()A. -32与-23B. (-3)2与-32C. -23与(-2)3D. (-3×2)3与-3×23【答案】B【解析】【分析】只有符号不同的两个数互为相反数,对各选项进行整理对比即可.【详解】解:A选项,-32=-9,-23=-8,故不是相反数;B选项,(-3)2=9,-32=9,故是相反数;C选项,-23=-8,(-2)3=-8,故不是相反数;D选项,(-3×2)3=-216,-3×23=-216,故不是相反数;故选择B.【点睛】本题考查了相反数的定义.9.13世纪数学家斐波那契的《计算书》中有这样一个问题:”在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( ) A. 42 B. 49 C. 76 D. 77【答案】C【解析】试题分析:有理数乘方的定义:求n个相同因数积的运算,叫做乘方.依此即可求解.依题意有,刀鞘数为76.考点:有理数的乘方10. 如图,数轴上的A、B、C三点所表示的数分别为a、b、c,AB=BC,如果|a|>|c|>|b|,那么该数轴的原点O的位置应该在()A. 点A的左边B. 点A与点B之间C. 点B与点C之间D. 点C的右边【答案】C【解析】试题分析:当原点在A时,则最大;当原点在点C的右边,则,当原点在点A和点B之间,则最大,则只有当原点在点B和点C之间才符合条件.考点:(1)、数轴;(2)、绝对值二、填空题(本大题共6小题,每小题3分,共18分)11.计算的结果为__.【答案】2【解析】=+(5-3)=2;故答案是2。

人教版数学七年级上册第一章有理数《单元综合检测》(附答案)

人教版数学七年级上册第一章有理数《单元综合检测》(附答案)

人教版七年级上册第一章测试卷考试总分:120 分考试时间:120 分钟一、选择题(共10 小题,每小题 3 分,共30 分)1.下列各对量中,不具有相反意义的是( )A. 胜2局与负3局B. 盈利6万元与亏损8万元C. 向西走3米与向南走3米D. 转盘逆时针转3圈与顺时针转5圈2.红山水库又名“红山湖”,位于老哈河中游,设计库容量亿立方米,现在水库实际库容量亿立方米,是暑期度假旅游的好去处.亿用科学记数法表示为( )A. B. C. D.3.在下列选项中,既是分数,又是负数的是( )A. 9B.C. -0.125D. -724.北京故宫的占地面积约为平方米,即为()平方米.A. 72000B. 720000C. 7200000D. 720000005. 下列语句中,正确的是( )A. 平方等于它本身的数只有1.B. 倒数等于它本身的数只有1.C. 相反数等于它本身的数只有0.D. 绝对值等于它的本身的数只有0.6.如图的数轴上有、、三点,其中为原点,点所表示的数为,根据图中数轴上这三点之间的实际距离进行估计,下列何者最接近点所表示的数( )A. B. C. D.7.等于( )A. B. C. D.8.下列说法正确的是( )A. 最小的有理数是B. 任何有理数都可以用数轴上的点表示C. 绝对值等于它的相反数的数都是负数D. 整数是正整数和负整数的统称9.等于( )A. 2B. -2C. +2D. +110.下列说法正确的个数是( )①既不是正数也不是负数.②是绝对值最小的数.③一个有理数不是整数就是分数.④的绝对值是.A. 1B. 2C. 3D. 4二、填空题(共10 小题,每小题 3 分,共30 分)11.若,,则的值为________.12.某日最高温度是,最低温度是,则这一天的日温差是________.13.计算:________,________,________.14.比与的差大的有理数是________.15.绝对值小于的所有整数的和为________.16.计算:________,________.17.________的倒数等于本身;的倒数为________.18.如果在数轴上表示的点是,那么数轴上到的距离是的点表示的数是________.19.已知四个数:-2,-3,4,-1,任取其中两个数相乘,所得的积的最小值是.20.的倒数是________;的绝对值是________;的平方根是________.三、解答题(共7 小题,共60 分)21.计算下列各题:(1)(2)(3)(4)22.有时灵活运用分配律可以简化有理数运算,使计算又快又准,例如逆用分配律,可使运算大大简便,试逆用分配律计算下列各题:;(2).23.已知a是最大的负整数,b是﹣2的相反数,c与d互为倒数,计算:a+b﹣cd的值.24.一台电子计算机每秒可做次运算,它工作可做多少次运算(结果用科学记数法表示)?25.用四舍五入法按括号内的要求对下列各数取近似值.(1);(精确到万位)(2).(精确到千分位)26.有张写着不同数字的卡片:,,,,,,如果从中任意抽取张.使这张卡片上的数字的积最小,应该如何抽?积又是多少?使这张卡片上的数字的积最大,应该如何抽?积又是多少?27.数学老师布置了一道思考题:“计算”,小红和小明两位同学经过仔细思考,用不同的方法解答了这个问题.小红的解法:原式的倒数为.所以.小明的解法:原式.请你分别用小红和小明的方法计算:.参考答案一、选择题(共10 小题,每小题 3 分,共30 分)1.下列各对量中,不具有相反意义的是( )A. 胜2局与负3局B. 盈利6万元与亏损8万元C. 向西走3米与向南走3米D. 转盘逆时针转3圈与顺时针转5圈【答案】C【解析】【分析】根据相反意义的定义,即可得出结果.【详解】∵向西走与向南走不具有相反意义,向西走与向南走具有相反意义,∴向西走3米与向南走3米不具有相反意义.故选C.【点睛】本题考查了正负数相反意义的定义,牢牢掌握相反意义的定义是解答本题的关键.2.红山水库又名“红山湖”,位于老哈河中游,设计库容量亿立方米,现在水库实际库容量亿立方米,是暑期度假旅游的好去处.亿用科学记数法表示为( )A. B. C. D.【答案】C【解析】【分析】用科学记数法记数时,主要是准确把握标准形式a×10n即可.【详解】解:16.2亿=1620000000=1.62×109.故选C.【点睛】科学记数法的形式是a×10n,其中1≤|a|<10,n是整数,若这个数是大于10的数,则n比这个数的整数位数少1.3.在下列选项中,既是分数,又是负数的是( )A. 9B.C. -0.125D. -72【答案】C【解析】试题分析:A.9 是整数,故不符题意;B.是分数,正数,故不符题意;C.-0.125是分数,负数,符合题意;D.-72是整数;故选C.考点:有理数的分类.4.北京故宫的占地面积约为平方米,即为()平方米.A. 72000B. 720000C. 7200000D. 72000000【答案】B【解析】【分析】根据科学记数法的表示方法,指数是几,小数点向右移动几位,可得答案.【详解】解:=720000.故选B.【点睛】本题考查了根据科学记数法写出原数.5. 下列语句中,正确的是( )A. 平方等于它本身的数只有1.B. 倒数等于它本身的数只有1.C. 相反数等于它本身的数只有0.D. 绝对值等于它的本身的数只有0.【答案】C【解析】A.平方等于它本身的数有1和0,故错误;B.倒数等于它本身的数有1和-1,故错误;C.相反数等于它本身的数只有0.正确;D.绝对值等于它的本身的数有0和正数,故错误;故选C6.如图的数轴上有、、三点,其中为原点,点所表示的数为,根据图中数轴上这三点之间的实际距离进行估计,下列何者最接近点所表示的数( )A. B. C. D.【答案】C【分析】根据数轴上的数据求出OA的长度,从而估算出OB的长度,即可估算出点B表示的数,从而得解. 【详解】解:由数轴的可知:OA=106;∴B点表示的实数为:20OA=2×107;故选C.【点睛】本题考查了数轴与有理数的乘法运算,估算出点B表示的数是解题的关键.7.等于( )A. B. C. D.【答案】A【解析】【分析】表示求-2的相反数.【详解】解:-(+2)=-2.故选A.【点睛】本题考查了求有理数的相反数.8.下列说法正确的是( )A. 最小的有理数是B. 任何有理数都可以用数轴上的点表示C. 绝对值等于它的相反数的数都是负数D. 整数是正整数和负整数的统称【答案】B【解析】分析:利用有理数的概念、数轴上点与有理数的关系、相反数的求法、整数等知识对各选项进行判断;解:A选项有理数包括了正数、0、负数,所以没有最小的有理数,故是错误的;B选项数轴上的点与有理数是一一对应的关系,故是正确的;C选项绝对值等于它的相反数的数有0和负数,故是错误的;D选项整数包括了正整数、0和负整数,故是错误的;故选B。

人教版七年级上册数学第一章有理数综合测试题含答案

人教版七年级上册数学第一章有理数综合测试题含答案

第一章有理数测试卷考试总分: 120 分考试时间: 120 分钟一、选择题(共10 小题,每小题 3 分,共30 分)1. 如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作( )A. -3mB. 3 mC. 6 mD. -6 m2.用科学记数法表示为的数是()A. 1999B. 199.9C. 0.001999D. 199903.下列说法中正确的是()A. 最小的整数是0B. 有理数分为正数和负数C. 如果两个数的绝对值相等,那么这两个数相等D. 互为相反数的两个数的绝对值相等4.由四舍五入得到的近似数万,下列说法正确的是()A. 精确到千分位B. 精确到百分位C. 精确到万分位D. 精确到百位5.下列说法错误的是()A. 两个数互为倒数,则这两个数的积是B. 有理数的倒数是C. 两个数互为负倒数,则这两个数的积是D. 乘以任何数都等于6.下列计算正确的是()①‚②,③④⑤⑥.A. 2个B. 6个C. 4个D. 5个7.近似数所表示的准确数的范围是()A. 1.25≤A<1.35B. 1.20<A<1.30C. 1.295≤A<1.305D. 1.300≤A<1.3058.下列算式中,运算结果为负数的是()A. B.C. D.9. 3的相反数是()A. ﹣3B. 3C.D.10.下列说法中正确的有()个.①是负分数;②、不是整数;③是非负数:④不是有理数.A. 1B. 2C. 3D. 4二、填空题(共10 小题,每小题 3 分,共30 分)11.一天早晨的气温是,中午的气温比早晨上升了,则中午的气温是________;某人向北走千米,再向南走千米,结果向________走千米.12. 在数轴上,点M表示的数为-2,将它先向右平移4.5个单位,再向左平移5个单位到达N点,则点N 表示的数是________.13.在下列括号中填入适当的数________.14.纽约与北京的时差为﹣13h,李伯伯在北京乘坐中午十二点的航班飞行约20h到达纽约,那么李伯伯到达纽约时间是_____点.15.据相关报道,截止到今年四月,我国已完成万个农村教学点的建设任务.万可用科学记数法为________.16.的相反数是________,的倒数是________,的绝对值是________.17.绝对值小于的所有非负整数的积为________.18.在数-1,2,-3,5,-6中,任取两个数相乘,其中最大的积是_____.19. 用科学记数法表示10300000记作___________.20.已知,互为相反数,,互为倒数,的绝对值等于,则________.三、解答题(共6 小题,每小题10 分,共60 分)21.计算下列各题(1)(2)(3)(4)22.在数轴上表示下列各数:,,,,,,并用”“号把这些数连接起来.23.滴水成河,若滴水积在一起合立方米,现有一条河流总体积为万亿立方米,试求该河流有多少滴水?(用科学记数法表示)24.如图是一个”有理数转换器”(箭头是指有理数进入转换器后的路径,方框是对进入的数进行转换的转换器)当小明输入;;这三个数时,这三次输入的结果分别是多少?你认为当输入什么数时,其输出的结果是?你认为这的”有理数转换器”不可能输出什么数?25.一股民上星期五买进某公司股票股,每股元,下表为本周内每日该股票的涨跌情况(单位:元)星期一二三四五每股涨跌星期三收盘时,每股是________元;本周内每股最高价为________元,每股最低价为________元;已知该股民买进股票时付了‰的手续费,卖出时还需付成交额‰的手续费和‰的交易锐,如果该股民在星期五收盘前将全部股票卖出,他的收益情况如何?26.已知多项式,,其中,马小虎同学在计算”“时,误将”“看成了”“,求得的结果为.求多项式;求出的正确结果;当时,求的值.答案与解析一、选择题(共10 小题,每小题 3 分,共30 分)1. 如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作( )A. -3mB. 3 mC. 6 mD. -6 m【答案】A【解析】试题分析:因为上升记为+,所以下降记为﹣,所以水位下降3m时水位变化记作﹣3m.故选A.考点:正数和负数.2.用科学记数法表示为的数是()A. 1999B. 199.9C. 0.001999D. 19990【答案】A【解析】【分析】根据n是几,小数点向右移动几位,可得原数.【详解】1.999×103=1999,故选:A.【点睛】本题考查的是科学计数法,熟练掌握科学计数法的定义是解题的关键.3.下列说法中正确的是()A. 最小的整数是0B. 有理数分为正数和负数C. 如果两个数的绝对值相等,那么这两个数相等D. 互为相反数的两个数的绝对值相等【答案】D【解析】试题解析:A、因为整数包括正整数和负整数,0大于负数,所以最小的整数是0错误;B、因为0既不是正数也不是负数,但是有理数,所以有理数分为正数和负数错误;C、因为:如+1和-1的绝对值相等,但+1不等于-1,所以如果两个数的绝对值相等,那么这两个数相等错误;D、由相反数的意义和数轴,互为相反数的两个数的绝对值相等,如|+1|=|-1|=1,所以正确;故选D.考点:1.正数和负数;2.相反数;3.绝对值.4.由四舍五入得到的近似数万,下列说法正确的是()A. 精确到千分位B. 精确到百分位C. 精确到万分位D. 精确到百位【答案】D【解析】【分析】近似数精确到哪一位,应当看末位数字实际在哪一位【详解】数3.05万末尾数字5表示5百,所以,精确到百位.故选D.【点睛】本题考查的是近似数,熟练掌握四舍五入是解题的关键.5.下列说法错误的是()A. 两个数互为倒数,则这两个数的积是B. 有理数的倒数是C. 两个数互为负倒数,则这两个数的积是D. 乘以任何数都等于【答案】B【解析】【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【详解】A. 互为倒数的两个数的积是1,故A正确;B. m是0时,m没有倒数,故B错误;C. 两个数互为负倒数,则这两个数的积是−1,故C正确,D. 0乘任何数都得0,故D正确;故选:B.【点睛】本题考查的是倒数,熟练掌握倒数的定义是解题的关键.6.下列计算正确的是()①‚②,③④⑤⑥.A. 2个B. 6个C. 4个D. 5个【答案】A【解析】【分析】原式各项计算得到结果,即可作出判断.【详解】①,正确;②ƒ③,错误;④,正确;⑤,错误;⑥.则计算正确的有2个,故选A.【点睛】本题考查的是有理数的计算,熟练掌握计算法则是解题的关键.7.近似数所表示的准确数的范围是()A. 1.25≤A<1.35B. 1.20<A<1.30C. 1.295≤A<1.305D. 1.300≤A<1.305【答案】C【解析】【分析】近似值是通过四舍五入得到的:精确到哪一位,只需对下一位数字进行四舍五入.【详解】根据取近似数的方法,得1.30可以由大于或等于1.295的数,0后面的一位数字,满5进1得到;或由小于1.305的数,舍去1后的数字得到,因而1.295A<1.305.故选C.【点睛】本题考查的是近似数,熟练掌握四舍五入的方法是解题的关键.8.下列算式中,运算结果为负数的是()A. B.C. D.【答案】A【解析】【分析】把各个选项中的数化到最简,即可解答本题.【详解】∵−|−1|=−1,故选项A符合题意,∵−(−2)3=−(−8)=8,故选项B不符合题意,∵−(−)=,故选项C不符合题意,∵(−3)2=9,故选项D不符合题意,故选A.【点睛】本题考查的是正负数,相反数和绝对值,熟练掌握它们的定义是解题的关键.9. 3的相反数是()A. ﹣3B. 3C.D.【答案】A【解析】试题分析:根据相反数的含义,可得:3的相反数是:﹣3.故选A.考点:相反数.视频10.下列说法中正确的有()个.①是负分数;②、不是整数;③是非负数:④不是有理数.A. 1B. 2C. 3D. 4【答案】B【解析】【分析】根据有理数的意义与分类逐一分析探讨得出答案即可.【详解】①是负分数,正确;②2、4是整数,所以②错误;③0是非负数,正确;④−1.3是有理数,所以④错误.正确的是①③共2个.故选:B.【点睛】本题考查的是有理数,熟练掌握它的定义是解题的关键.二、填空题(共10 小题,每小题 3 分,共30 分)11.一天早晨的气温是,中午的气温比早晨上升了,则中午的气温是________;某人向北走千米,再向南走千米,结果向________走千米.【答案】(1). 4o C (2). 南【解析】【分析】根据题意列出算式,根据有理数的加法法则计算即可.【详解】−7+(+11)=4,则中午的气温是4 o C ,记向北为正,则向南为负,+4+(−7)=−3,结果向南走3千米,故答案为:4 o C ;南.【点睛】本题考查的是有理数,熟练掌握有理数的计算法则是解题的关键.12. 在数轴上,点M表示的数为-2,将它先向右平移4.5个单位,再向左平移5个单位到达N点,则点N 表示的数是________.【答案】-2.5.【解析】试题解析:数轴上表示-2的点先向右移动4.5个单位的点为:-2+4.5=2.5;再向左移动5个单位的点为:2.5-5=-2.5.考点:数轴.13.在下列括号中填入适当的数________.【答案】【解析】【分析】根据有理数的加减运算法则首先去括号,进而移项计算得出即可.【详解】∵(+32)−(+18)−(+64)=−50,∴−50+32=−18,(+32)−(+18)−−32−(+64)=−18故答案为:−32.【点睛】本题考查的是有理数的加减法,熟练掌握计算法则是解题的关键.14.纽约与北京的时差为﹣13h,李伯伯在北京乘坐中午十二点的航班飞行约20h到达纽约,那么李伯伯到达纽约时间是_____点.【答案】19【解析】根据纽约与北京的时差为﹣13h,可列式求解为:12+20﹣13=32﹣13=19,所以李伯伯到达纽约时间是19点,即晚上7点.故答案为:19.点睛:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.15.据相关报道,截止到今年四月,我国已完成万个农村教学点的建设任务.万可用科学记数法为________.【答案】【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将5.78万用科学记数法表示为:5.78×104.故答案为:5.78×104.【点睛】本题考查的是科学计数法,熟练掌握科学计数法的定义是解题的关键.16.的相反数是________,的倒数是________,的绝对值是________.【答案】(1). (2). (3).【解析】【分析】根据相反数,绝对值,倒数的概念及性质解题.【详解】的相反数为:,的倒数是,的绝对值是:.【点睛】本题考查的知识点是绝对值、相反数、倒数的定义,解题关键是注意区分概念,不要混淆.17.绝对值小于的所有非负整数的积为________.【答案】【解析】【分析】先求出绝对值小于2.5的所有的非负整数,再求积.【详解】绝对值小于2.5的所有非负整数为-2,-1,0,1,2,之积为0.故答案为:0【点睛】本题考查的知识点是非负整数的概念,解题关键是注意非负整数也包含0.18.在数-1,2,-3,5,-6中,任取两个数相乘,其中最大的积是_____.【答案】18.【解析】试题分析:最大的积是:(﹣3)×(﹣6)=18,故答案为:18.考点:1.有理数的乘法;2.有理数大小比较.19. 用科学记数法表示10300000记作___________.【答案】1.03×107【解析】试题分析:科学计数法是指:a×,且1≤<10,n为原数的整数位数减一.考点:科学计数法20.已知,互为相反数,,互为倒数,的绝对值等于,则________.【答案】或【解析】【分析】由互为相反数,互为倒数,x的绝对值等于2,可得,整体代入即可求值.【详解】互为相反数,,互为倒数,,x的绝对值为2,,;.故答案为:1或5.【点睛】本题考查的知识点是相反数,绝对值,倒数,平方的概念及性质,解题关键是两个相反数的和为0.三、解答题(共6 小题,每小题10 分,共60 分)21.计算下列各题(1)(2)(3)(4)【答案】(1)40;(2);(3)23;(4)-8【解析】【分析】(1)去掉括号,再根据有理数的加、减运算求值即可;(2)取消绝对值符号及小括号,再根据有理数的加、减运算求值即可;(3)根据有理数混合运算的运算顺序,先算出乘、除的值,再相加即可得出结论;(4)先算出乘方的值,再有理数混合运算的运算顺序求值即可得出结论.【详解】解:(1),,;(2),,;,,;(4),,,.【点睛】本题考查的知识点是有理数的混合运算, 绝对值, 有理数的乘方,解题关键是依照运算法则依次进行运算.22.在数轴上表示下列各数:,,,,,,并用”“号把这些数连接起来.【答案】,数轴见解析【解析】【分析】根据数轴上的点表示的数右边的总比左边的大,可得答案.【详解】解:如图,用”“号把这些数连接起来.【点睛】本题考查的知识点是有理数大小比较,解题关键是利用数轴上的点表示的数右边的总比左边的大.23.滴水成河,若滴水积在一起合立方米,现有一条河流总体积为万亿立方米,试求该河流有多少滴水?(用科学记数法表示)【答案】该河流有滴水.【解析】【分析】首先利用科学计数法分别表示出2000和10万亿,然后利用乘法进行计算即可得出答案.【详解】∵10万亿=,2000=,∴滴,即该河流有滴水.【点睛】本题主要考查的是科学计数法的表示方法以及计算法则,属于基础题型.理解科学计数法的方法是解决这个问题的关键.科学计数法是指:,且,n为原数的整数位数减一.24.如图是一个”有理数转换器”(箭头是指有理数进入转换器后的路径,方框是对进入的数进行转换的转换器)当小明输入;;这三个数时,这三次输入的结果分别是多少?你认为当输入什么数时,其输出的结果是?你认为这的”有理数转换器”不可能输出什么数?【答案】(1)当输入时,输出;当输入时,输出;当输入时,输出(2)应输入或(为自然数);(3)输出的数应为非负数【解析】【分析】(1)先判断出3、、0.4与2的大小,再根据所给程序图找出合适的程序进行计算即可;(2)由此程序可知,当输出0时,因为0的相反数及绝对值均为0,所以应输入0;(3)根据绝对值的性质和倒数的定义可找出规律.【详解】解:∵,∴输入时的程序为:,∴的相反数是,的倒数是,∴当输入时,输出;∵.∴输入时的程序为:,∴的相反数是,,∴当输入时,输出;∵,∴输入时的程序为:,的相反数为,的绝对值是∴当输入时,输出.∵输出数为,的相反数及绝对值均为,当输入的倍数时也输出.∴应输入或(为自然数);由图表知,不管输入正数、或者负数,输出的结果都是非负数.所以输出的数应为非负数.【点睛】本题考查的知识点是有理数的混合运算,解题关键是审清题意,根据已知条件进行解答. 25.一股民上星期五买进某公司股票股,每股元,下表为本周内每日该股票的涨跌情况(单位:元)星期一二三四五每股涨跌星期三收盘时,每股是________元;本周内每股最高价为________元,每股最低价为________元;已知该股民买进股票时付了‰的手续费,卖出时还需付成交额‰的手续费和‰的交易锐,如果该股民在星期五收盘前将全部股票卖出,他的收益情况如何?【答案】(1)34.5;(2)35.5;28;(3)889.5元.【解析】【分析】(1)本题先根据题意列出式子解出结果即可.(2)根据要求列出式子解出结果即可.(3)先算出刚买股票后去掉手续费剩余的钱是多少,然后再算出周五卖出股票后所剩的钱,最后再减去当时的钱,剩下的钱就是所收益的.【详解】解:(1)根据题意得:27+4+4.5-1,=35.5-1,=34.5(2)根据题意得:27+4+4.5,=35.527+4+4.5-1-2.5-4,=35.5-1-2.5-4,=28(3)27×1000×(1+1.5‰)=27000×(1+1.5‰)=27040.5(元)28×1000-28×1000×1.5‰-28×1000×1‰=28000-28000×1.5‰-28000×1‰=28000-42-28=27930(元)27930-27040.5.5=889.5(元)故答案为:(1)34.5;(2)35.5;28;(3)889.5元.【点睛】本题考查的知识点是有理数的混合运算,解题关键是在解题时要注意运算数序及符号.26.已知多项式,,其中,马小虎同学在计算”“时,误将”“看成了”“,求得的结果为.求多项式;求出的正确结果;当时,求的值.【答案】(1)(2)【解析】【分析】(1)因为,所以,将代入即可求出;(2)将(1)中求出的与代入,去括号合并同类项即可求;(3)根据(2)的结论,把代入求值即可.【详解】解:∵,,∴;∵,,∴;当时,.【点睛】本题考查的知识点是整式的加减,解题的关键是读懂题意,并正确进行整式的运算.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.。

人教版初中数学七年级上册第一章《有理数》综合测试题含答案

人教版初中数学七年级上册第一章《有理数》综合测试题含答案

人教版初中数学七年级上册第一章《有理数》综合测试题一、正本清源,做出选择(每题3分,共30分)1.检测下列4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数. 从轻重的角度看,最接近标准的是( ).2.德润楼的高度为28米,地下室的高度为-3米,那么该楼的最高点比最低点(包括地下)高( ).A .25米B .-25米C .-31米D .31米3.据CCTV 新闻报道,今年5月我国新能源汽车销量达到104400辆,该销量用科学记数法表示为( )A .0.1044×106辆B .1.044×106辆C .1.044×105辆D .10.44×104辆4.若两个有理数在数轴上的对应点分别位于原点的两侧,那么这两个数的( ).A .和是正数B .积是正数C .商是正数D .平方和是正数5.若a ,b 互为相反数,则下列各组中,不互为相反数的是( ).A .-a 和-bB .2a 和2bC .a 2和b 2D .a 3和b 36.若a=3,∣b ∣=4,且在数轴上表示有理数b 的点在原点的左边,则a -b 的值为( ).A .1B .-1C .7D .-1或77.若a +b >0,且b <0,则a 、b 、―a 、―b 的大小关系为( ).A .―a <b <―b <aB .―a <―b <b <aC .―a <b <a <―bD .b <―a <―b <a8.下列计算正确的是( ).A .17÷4÷4=17÷4×14=17÷1=17 B .-22+(-1)2=-3 C . 2×32=(2×3)2= 62=36 D .6-6÷(2×3)=0÷2×3=09.如果x 是最大的负整数,y 是最小的正整数,那么x 16-y 13+3xy 的值是( ).A .-3B .3C .-5D .510.计算:21-1=1,22-1=3,23-1=7,24-1=15,25-1=31,26-1=63,…,归纳各计算结果中的个位数字规律,猜测22020-1的个位数字是( ).A .1B .3C .5D .7二、有的放矢,圆满填空(每题3分,共24分) 11.某方便面厂生产的100g 袋装方便面外包装印有(100±5) g 的字样.小芳购买了一袋这 样的方便面后,称了一下发现只有96g ,你认为该厂在重量上______欺诈行为.(填“有”或“没有”)12.数轴上A 、B 、C 三点所对应的有理数分别为23-、45-、34,则此三点到原点的距离最近的点为___________.13.在-(-2)、∣-1∣、-∣0∣、-(+2)、-23、(-3)4中,非负数有__________个.14.敏敏手中的纸条上写着a 2,慧慧手中的纸条上写着(-2)2,若这两个数相等,那么a 的值为__________.15.两个数的积为-20,其中一个数比15-的倒数大3,则另一个数为________. 16.定义新运算“⊗”,规定:a ⊗b =13a -4b 2,则12⊗(-1)=_________. 17.下图是一个数值转换机,若输入数为3,则输出数是_________.18.根据指令机器人在数轴上能完成以下动作,(+,a )表示向右移a 个单位,(-,a )表示向左移a 个单位,现在机器人在-5处,接到指令(+,7)机器人应到_________处,此时请你接着给它一个指令___________,使其移到-2处.三、细心解答,运用自如(共66分)19.(每小题3分,共9分)计算下列各题:(1)13311(0.05)244-÷⨯÷- (2)-2×32-(-2×3)2(3)-19-5×(-2)+(-4)2÷(-8)20.(6分)已知A 为-4的相反数与-12的绝对值的差,B 是比-6大5的数.(1)求A -B 的值;(2)求B -A 的值;(3)从(1)和(2)的计算结果,你能知道A -B 与B -A 之间有什么关系吗?21.(6分)数学老师从马小虎的作业中找到两道错题,马小虎不明白错误的原因,聪明的你能帮他找到错误的原因,并帮助他改正吗?(1)-52+(-5)×(-2)=25+(-5)×(-2)=25-10=15.(2)(-3)-10÷5×15=(-3)-10÷1=(-3)-10=-13.22.(8分)在一条东西走向的大街上,一辆出租车第一次从A 地出发向东行驶4km 至B 地,第二次从B 地出发向西行驶8km 至C 地,第三次从C 地出发向东行驶3km 至D 地.(1)记向东为正,点A 为原点,把该出租车先后到达的地点A ,B ,C ,D 四地用数轴直观地描绘出来.(2)试说出C 地位于A 地的什么方向?距离A 地多远?23.(8分)利用计算器计算下列各式,并将结果填在横线上:(1)10 101×11=___________;10 101×22=___________;10 101×33=___________;(2)你发现了什么规律?(3)请你利用这个规律直接写出10 101×99的结果.24.(9分)环宇自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的实际生产情况(超产为正、减产为负,单位:辆)(1)根据记录可知前三天共生产自行车多少辆?(2)生产量最多的一天比生产量最少的一天多生产自行车多少辆?(3)该厂实行计件工资制,每生产一辆车60元,超额完成任务每辆车奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?25.(10分)我们约定将16=24,写成f (16)=4,例如:根据这个约定,可把64=26写成f (64)=6;将25=52写成g(25)=2,例如:根据这个约定,可把125=53写成g(125)=3.解答下列问题:(1)f (32)=_________,g(______)=1.(2)计算f (128)-g(625)的结果为多少?26.(10分)数学课上,老师随手在黑板上写下了7个有理数.4--,0,12⎛⎫--⎪⎝⎭,3,23-,-2020,-1.(1)请你指出哪些是整数?哪些是负整数?哪些是负分数?(2)若选择其中的四个整数,将这四个整数经过有理数的混合运算后,能否得出结果为-1?若能,写出算式,并写出计算过程;若不能,请说明理由.参考答案:一、正本清源,做出选择1.C;2.D;3.C;4.D;5.C;6.B;7.A.点拨:利用特殊值法,可令a=5,b=-2,所以有-a=-5,-b=2.8.B.点拨:选项A的结果为1716,选项C的结果为18,选项D的结果为5.9.A.点拨:根据题意,得x=-1,y=1,所以(-1)16-113+3×(-1)×1=1-1-3=-3. 10.C.点拨:由于2020=4×505,探究规律知,22020-1与24-1的个位数字相同. 二、有的放矢,圆满填空11.没有;12.23-;13.4;14.2或-2. 点拨:根据题意得,a2= (-2)2 = 4,又(±2)2 = 4,故a =±2. 15.10. 点拨:可列式为(-20)÷(-5+3)=10.16.0.点拨:根据题意,得12⊗(-1)= 13×12-4×(-1)2=4-4=0.17.65.点拨:根据题意,得32-1=8,所以82+1=65.18.2,(-,4). 点拨:可画出数轴,在数轴上操作.三、细心解答,运用自如19.(1)70;(2)-54;(3)7.20.由题意知,A=(4)128----=-,B=(-6)+5=-1;(1)A-B=(-8)-(-1)=-7;(2)B-A=(-1)-(-8)=7;(3)A-B与B-A互为相反数.21.(1)误认为-52的底数是-5;另外同号相乘得正,而不是取相同的符号.正解:原式=-25+(-5)×(-2)=-25+10=-15.(2)错在没有遵循同级运算应按从左到右的顺序进行计算.正解:原式=(-3)-2×15==(-3)-25=175-.22.(1)A,B,C,D四地用数轴表示如下图所示:(2)C地位于A地的西面,距离A地4km..23.(1)111 111;222 222;333 333.(2)10 101与某个个位与十位数字相同的两位数相乘,等于一个六位数,且这个六位数的每个数字都与这个两位数的每位数字相同.(3)10 101×99=999 999.24.(1)根据题意,得[(+5)+(-2)+(-4)]+200×3=599(辆).答:根据记录可知前三天共生产自行车599辆.(2)根据题意,得(+16)-(-10)=26(辆).答:生产量最多的一天比生产量最少的一天多生产自行车26辆.(3)由于(+5)+(-2)+(-4)+(+13)+(-10)+(+16)+(―9)=9(辆),所以(7×200+9)×60+9×15=84675(元).答:该厂工人这一周的工资总额是84675元.25.(1)5,5;(2)因为27=128,所以f (128)=7;因为54=625,所以g(625)=4;故f (128)-g(625)=7-4=3.26.(1)整数:-︱-4︱,0,3,-2020,-1;负整数:-︱-4︱,-2020,-1;负分数:2 3 .(2)能!算式为:0×(-2020)+(-︱-4︱)+3=0-4+3=-1.。

第一章-有理数全章综合测试(含答案)

第一章-有理数全章综合测试(含答案)

第一章有理数全章综合测试一、选择题:1.下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C.0 不是最小的有理数D.正有理数包括整数和分数2.12的相反数的绝对值是()A.-12B.2 C.一 2D.123.有理数a、b 在数轴上的位置如图所示,那么下列式子中成立的是()A.a>b B.a <b C.ab>0 D.ab>04.在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数5.如果一个有理数的绝对值是正数,那么这个数必定是()A.是正数B.不是0 C.是负数D.以上都不对6.下列各组数中,不是互为相反意义的量的是()A.收入200 元与支出20 元B.上升l0 米和下降7 米C.超过0.05mm 与不足0.03m D.增大 2 岁与减少 2 升7.下列说法正确的是()A.-a 一定是负数;B. a 定是正数;C. a 一定不是负数;D.-a 一定是负数8.如果一个数的平方等于它的倒数.那么这个数一定是()A.0 B.1 C.-1 D.±19.如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数()A.互为相反数但不等于零B.互为倒数C.有一个等于零D.都等于零2 10.若 0<m<1,m、m、1m的大小关系是()2 A.m<m <1m1B. mmC.1m2 D.1<m<mm<m2<m2<m11.4604608 取近似值,保留三个有效数字,结果是()6 B.4600000 C.4.61 ×106 D.4.605 ×106A.4.60 ×10- 1 -A.a+b 一定大于a-b B.若- ab<0,则 a、b 异号3=b3,则 a=b D.若 a2=b2,则 a=b C.若 a13.下列运算正确的是()2÷(一2)2=lB.A.-2 2133=-8127C.-5÷13×35=-25D.314×(-3.25)-634×3.25=-32.5.2,b=(-2×3)14.若 a=-2×3 2,c=-(2×4)2,则下列大小关系中正确的是()A.a>b>0 B.b>c>a C.b>a>c D.c>a>b15.若x =2,y =3,则x y 的值为()A.5 B.-5 C.5 或 1 D.以上都不对二、填空题1.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降1l℃,这时气温是____。

人教版初中数学七年级上册第一章《有理数》综合测试题含答案

人教版初中数学七年级上册第一章《有理数》综合测试题含答案

人教版初中数学七年级上册第一章《有理数》综合测试题一、正本清源,做出选择(每题3分,共30分)1.检测下列4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数. 从轻重的角度看,最接近标准的是( ).2.德润楼的高度为28米,地下室的高度为-3米,那么该楼的最高点比最低点(包括地下)高( ).A .25米B .-25米C .-31米D .31米3.据CCTV 新闻报道,今年5月我国新能源汽车销量达到104400辆,该销量用科学记数法表示为( )A .0.1044×106辆B .1.044×106辆C .1.044×105辆D .10.44×104辆4.若两个有理数在数轴上的对应点分别位于原点的两侧,那么这两个数的( ).A .和是正数B .积是正数C .商是正数D .平方和是正数5.若a ,b 互为相反数,则下列各组中,不互为相反数的是( ).A .-a 和-bB .2a 和2bC .a 2和b 2D .a 3和b 36.若a=3,∣b ∣=4,且在数轴上表示有理数b 的点在原点的左边,则a -b 的值为( ).A .1B .-1C .7D .-1或77.若a +b >0,且b <0,则a 、b 、―a 、―b 的大小关系为( ).A .―a <b <―b <aB .―a <―b <b <aC .―a <b <a <―bD .b <―a <―b <a8.下列计算正确的是( ).A .17÷4÷4=17÷4×14=17÷1=17 B .-22+(-1)2=-3 C . 2×32=(2×3)2= 62=36 D .6-6÷(2×3)=0÷2×3=09.如果x 是最大的负整数,y 是最小的正整数,那么x 16-y 13+3xy 的值是( ).A .-3B .3C .-5D .510.计算:21-1=1,22-1=3,23-1=7,24-1=15,25-1=31,26-1=63,…,归纳各计算结果中的个位数字规律,猜测22020-1的个位数字是( ).A .1B .3C .5D .7二、有的放矢,圆满填空(每题3分,共24分) 11.某方便面厂生产的100g 袋装方便面外包装印有(100±5) g 的字样.小芳购买了一袋这 样的方便面后,称了一下发现只有96g ,你认为该厂在重量上______欺诈行为.(填“有”或“没有”)12.数轴上A 、B 、C 三点所对应的有理数分别为23-、45-、34,则此三点到原点的距离最近的点为___________.13.在-(-2)、∣-1∣、-∣0∣、-(+2)、-23、(-3)4中,非负数有__________个.14.敏敏手中的纸条上写着a 2,慧慧手中的纸条上写着(-2)2,若这两个数相等,那么a 的值为__________.15.两个数的积为-20,其中一个数比15-的倒数大3,则另一个数为________. 16.定义新运算“⊗”,规定:a ⊗b =13a -4b 2,则12⊗(-1)=_________. 17.下图是一个数值转换机,若输入数为3,则输出数是_________.18.根据指令机器人在数轴上能完成以下动作,(+,a )表示向右移a 个单位,(-,a )表示向左移a 个单位,现在机器人在-5处,接到指令(+,7)机器人应到_________处,此时请你接着给它一个指令___________,使其移到-2处.三、细心解答,运用自如(共66分)19.(每小题3分,共9分)计算下列各题:(1)13311(0.05)244-÷⨯÷- (2)-2×32-(-2×3)2(3)-19-5×(-2)+(-4)2÷(-8)20.(6分)已知A 为-4的相反数与-12的绝对值的差,B 是比-6大5的数.(1)求A -B 的值;(2)求B -A 的值;(3)从(1)和(2)的计算结果,你能知道A -B 与B -A 之间有什么关系吗?21.(6分)数学老师从马小虎的作业中找到两道错题,马小虎不明白错误的原因,聪明的你能帮他找到错误的原因,并帮助他改正吗?(1)-52+(-5)×(-2)=25+(-5)×(-2)=25-10=15.(2)(-3)-10÷5×15=(-3)-10÷1=(-3)-10=-13.22.(8分)在一条东西走向的大街上,一辆出租车第一次从A 地出发向东行驶4km 至B 地,第二次从B 地出发向西行驶8km 至C 地,第三次从C 地出发向东行驶3km 至D 地.(1)记向东为正,点A 为原点,把该出租车先后到达的地点A ,B ,C ,D 四地用数轴直观地描绘出来.(2)试说出C 地位于A 地的什么方向?距离A 地多远?23.(8分)利用计算器计算下列各式,并将结果填在横线上:(1)10 101×11=___________;10 101×22=___________;10 101×33=___________;(2)你发现了什么规律?(3)请你利用这个规律直接写出10 101×99的结果.24.(9分)环宇自行车厂计划一周生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的实际生产情况(超产为正、减产为负,单位:辆)(1)根据记录可知前三天共生产自行车多少辆?(2)生产量最多的一天比生产量最少的一天多生产自行车多少辆?(3)该厂实行计件工资制,每生产一辆车60元,超额完成任务每辆车奖15元,少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?25.(10分)我们约定将16=24,写成f (16)=4,例如:根据这个约定,可把64=26写成f (64)=6;将25=52写成g(25)=2,例如:根据这个约定,可把125=53写成g(125)=3.解答下列问题:(1)f (32)=_________,g(______)=1.(2)计算f (128)-g(625)的结果为多少?26.(10分)数学课上,老师随手在黑板上写下了7个有理数.4--,0,12⎛⎫--⎪⎝⎭,3,23-,-2020,-1.(1)请你指出哪些是整数?哪些是负整数?哪些是负分数?(2)若选择其中的四个整数,将这四个整数经过有理数的混合运算后,能否得出结果为-1?若能,写出算式,并写出计算过程;若不能,请说明理由.参考答案:一、正本清源,做出选择1.C;2.D;3.C;4.D;5.C;6.B;7.A.点拨:利用特殊值法,可令a=5,b=-2,所以有-a=-5,-b=2.8.B.点拨:选项A的结果为1716,选项C的结果为18,选项D的结果为5.9.A.点拨:根据题意,得x=-1,y=1,所以(-1)16-113+3×(-1)×1=1-1-3=-3. 10.C.点拨:由于2020=4×505,探究规律知,22020-1与24-1的个位数字相同. 二、有的放矢,圆满填空11.没有;12.23-;13.4;14.2或-2. 点拨:根据题意得,a2= (-2)2 = 4,又(±2)2 = 4,故a =±2. 15.10. 点拨:可列式为(-20)÷(-5+3)=10.16.0.点拨:根据题意,得12⊗(-1)= 13×12-4×(-1)2=4-4=0.17.65.点拨:根据题意,得32-1=8,所以82+1=65.18.2,(-,4). 点拨:可画出数轴,在数轴上操作.三、细心解答,运用自如19.(1)70;(2)-54;(3)7.20.由题意知,A=(4)128----=-,B=(-6)+5=-1;(1)A-B=(-8)-(-1)=-7;(2)B-A=(-1)-(-8)=7;(3)A-B与B-A互为相反数.21.(1)误认为-52的底数是-5;另外同号相乘得正,而不是取相同的符号.正解:原式=-25+(-5)×(-2)=-25+10=-15.(2)错在没有遵循同级运算应按从左到右的顺序进行计算.正解:原式=(-3)-2×15==(-3)-25=175-.22.(1)A,B,C,D四地用数轴表示如下图所示:(2)C地位于A地的西面,距离A地4km..23.(1)111 111;222 222;333 333.(2)10 101与某个个位与十位数字相同的两位数相乘,等于一个六位数,且这个六位数的每个数字都与这个两位数的每位数字相同.(3)10 101×99=999 999.24.(1)根据题意,得[(+5)+(-2)+(-4)]+200×3=599(辆).答:根据记录可知前三天共生产自行车599辆.(2)根据题意,得(+16)-(-10)=26(辆).答:生产量最多的一天比生产量最少的一天多生产自行车26辆.(3)由于(+5)+(-2)+(-4)+(+13)+(-10)+(+16)+(―9)=9(辆),所以(7×200+9)×60+9×15=84675(元).答:该厂工人这一周的工资总额是84675元.25.(1)5,5;(2)因为27=128,所以f (128)=7;因为54=625,所以g(625)=4;故f (128)-g(625)=7-4=3.26.(1)整数:-︱-4︱,0,3,-2020,-1;负整数:-︱-4︱,-2020,-1;负分数:2 3 .(2)能!算式为:0×(-2020)+(-︱-4︱)+3=0-4+3=-1.。

人教版初中数学七年级上册第一章《有理数》综合能力检测题含答案

人教版初中数学七年级上册第一章《有理数》综合能力检测题含答案

人教版初中数学七年级上册第一章《有理数》综合能力检测题一、选择题1.-2019的相反数是( )A.-2019B.2019C.-20191D. 20191 2.一个数的倒数等于它本身的数是( )A.1B.-1C.±1D.03.如果两个数的绝对值相等,则这两个数( )A.互为相反数 B .相等 C.积为0 D.互为相反数或相等4.下列说法中正确的是( )A.一个数前面加上“-”号,这个数就是负数B.非负数就是正数C.正数和负数统称为有理数D.0既不是正数又不是负数5.下列各对数中,数值相等的是( )A.-27与(-2)7B.-32与(-3)2C.-3×23与-32×2D.-(-3)2与-(-2)36.大于-2019而小于2020的所有整数的和是( )A.-2019B.-2018C.2019D.20207.当n 为正整数时,(-1)2n +1-(-1)2n 的值是( )A.0B.2C.-2D.2,或-28.定义a ∨b 表示a 、b 两数中较大的一个,a ∧b 表示a 、b 两数中较小的一个,则(50∨52)∨(49∧51)的结果是( )A.50B.52C.49D.519.某人用1000元购进一批货物,第二天售出,获利110,过几天又以900元购进一批货物,但这一次亏了10%,这样,他在这两次交易中( )A.不盈不亏B.盈10元C.亏10元D.不能确定10.31=3,32=9,33=27,34=81,35=243,36=729,…,用你发现的规律写出32019的末位数字是( )A.3B.9C.7D.1二、填空题11.绝对值最小的有理数是_____,最小的正整数是_____.12.写出与-32异号的两个有理数:_____.13.比7大-7的数是_____.14.最小的自然数与最大的负整数的差是_____.15.不为零的两数成互为相反数,则它们的商是_____.16.绝对值小于π的所有整数有_____个,其积为_____.17.在数轴上距2.5有3.5个单位长度的点所表示的数是_____.18.19.一外地民工10天的收支情况如下(收入为正):30元,-17元,23元,-15元,-3 元,27元,45元,-10元,-8元,20元.如果他原来有钱60元,则现在他有_____元钱.20.你喜欢吃拉面吗?拉面馆的师傅将一根很粗的面条,捏合一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条,拉成了许多细的面条,如图所示:这样,第4次捏合后可拉出_____根细面条;第_____次捏合后可拉出256根细面条.三、解答题21.计算:(1)-6+213.(2)(712-56+1)÷(-124). 22.某项科学研究,以45分钟为一个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正.例如9:15记为-1,10:45记为1等等,依此类推,上午7:45•应记为多少?23.一天美美和丽丽利用温差来测量山峰的高度.美美在山脚测得的温度是4℃,丽丽此时在山顶测得的温度是-2℃,已知该地区高度每升高100米,气温下降0.6℃,问这个山峰有多高?24.讲完“有理数的乘法”后,老师在课堂上出了下面一道计算题:992122×(-11). 不一会儿,不少同学算出了答案,老师把班上同学的解题归类写到黑板上: 解法一:原式=-219922×11=-2418922=-109912. 解法二:原式=(99+2122)×(-11)=99×(-11)+ 2122×(-11)=-109912. 解法三:原式=(100-122)×(-11)=100×(-11)+122×11=-109912. 对这三种解法,大家议论纷纷,你认为哪种方法最好?说说你的理由,通过对本题的求解,你有何启发?25.若定义一种新的运算为a *b =ab ÷(1-ab ),计算[(3*2)]*16. 26.写出一个三位数,它的各个数位上的数字都不相等,如637,用这个三位数各个数位上的数字组成一个最大数和一个最小数,并用最大数减去最小数,得到一个新的三位数.对于新得到的三位数,重复上面的过程,又得到一个新的三位数,一直重复下去,你发现了什么?请写出你的探索过程.27.任选1,2,3,…,9中的一个数字,将这个数乘7,再将结果乘15 873,你发现了什么规律?能试着解释一下理由吗?28.某一出租车一天下午以文昌阁为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+9,-3,-5,+4,-8,+6,-5,-6,-4,+10.(1)将最后一名乘客送到目的地,出租车在文昌阁的什么方向?离文昌阁多远?(2)若每公里的价格为2.4元,司机一个下午的营业额是多少?参考答案:一、1.B.点拨:负数的相反数是正数;2.C.点拨:1的倒数等于1,-1的倒数等于-1;3.D.点拨:非负数的绝对值等于它的本身,负数的绝对值等于它的相反数;4.D.点拨:A、B、C都应忽视了0;5.A.点拨:(-2)7=-27,-32=-9≠(-3)2=9,-3×23=-24≠-32×2=-18,-(-3)2=-9≠-(-2)3=-8;6.C.点拨:-2018+(-2017) +(-2016) +…+2016+2017+2018+2019=2019;7.C.点拨:因为(-1)2n+1=-1,(-1)2n=1,所以(-1)2n+1-(-1)2n=-1-1=2;8.B.点拨:由新定义,得(50∨52)∨(49∧51)=52∨49=52;9.B.点拨:1000×110-900×10%=10;10.C.点拨:末位数字依次以3、9、7、1循环,而2019÷4=502…3,即末位数字是7.二、11.0、1;12.答案不惟一,所有正数都可,如,2、9.等等;13.0.点拨:7+(-7)=0;14.1.点拨:最小的自然数是0,最大的负整数是-1,其差为0-(-1)=1;15.-1.点拨:取具体数值验证;16.7、0.点拨:绝对值小于π的所有整数有-3、-2、-1、0、1、2、3,其和为(-3)+(-2)+(-1)+0+1+2+3=0;17.-1和6.点拨:在2.5的左边,且与之相距3.5个单位长度的点是-1,在2.5的右边,且与之相距3.5个单位长度的点是6;18.日,一.点拨:星期一的温差=11℃-2℃=9℃,星期二的温差=12℃-1℃=11℃,星期三的温差=11℃-0℃=11℃,星期四的温差=9℃-(-1)℃=10℃,星期五的温差=7℃-(-4)℃=11℃,星期六的温差=5℃-(-5)℃=10℃,星期日的温差=7℃-(-5)℃=12℃,显然,星期日的温差最大,星期一的温差最小;19.152.点拨:60+30+(-17)+23+(-15)+(-3)+27+45+(-10)+(-8)+20=152;20.16、8.点拨:第在次捏合后可拉出21根细面条,第2次捏合后可拉出22根细面条,第3次捏合后可拉出23根细面条,第4次捏合后可拉出24根细面条,…,第n次捏合后可拉出2n根细面条,所以第4次捏合后可拉出24=16根细面条,若拉出256根细面条,则有2n=256,即2n=28,所以n=8.三、21.(1)原式=-183+73=-323.(2)原式=(712-56+1)×(-24)=(712-56+1)×(-24)=712×(-24)-56×(-24) +1×(-24)=-14+20-24=-18.22.以10时为0,向前每45分钟为一个“-1”,因为7:45到10:00共135分钟,含3个45分钟,所以7:45应记为-3.23.从山脚到山顶温度降低了4-(-2)=6(℃).因为每升高100米平均降低0.6℃,由6÷0.6=10,可知从山脚到山顶共升高了10个100米,所以山高为10×100=2500(米).即综合式子是:[4-(-2)]÷0.6×100=1000(米),即山高为1000米.24.解法二与解法三;解法二与解法三巧妙地利用了拆分思想,把带分数拆成一个整数与一个真分数的和,再应用分配律,简化了计算过程;我们在解题时要善于发现问题的特点.25.因为a*b=ab÷(1-ab),所以[(3*2)]*16=3×2÷(1-3×2)*16=(-65)*16=(-65)×16÷[1-(-65)×16]=(-15)÷65=-15×56=-16.26.若以637为例进行尝试:637→763-367=396→963-369=594→954-459=495→954-459=495,最后结果固定为495,若再用258进行尝试:258→852-258=594→954-459=495→954-459=495.经过多次尝试后发现,总能得到495这结果,并固定在这一结果上,似乎掉进了一个“黑洞”.点拨:这是数学上的“黑洞”问题,有兴趣的同学可以尝试探索四位数、五位数是否也存在同样的“黑洞”,自己发现数学中某些数字的神奇作用,感受数学的无穷魅力.27.取数字3,乘7,再将结果乘15 873,得(3×7)×15 873=21•×15 •873=333 333;取数字5,乘7,再将结果乘15 873,得(5×7)×15 873=35×15 •873=555555;取数字8,乘7,再将结果乘15 873,得(8×7)×15 873=56×15 873=888 888.由此,通过观察发现,任选1,2,3,…,9中的一个数字n ,将这个数乘7,再将结果乘15 873,均得到一个6位数,每位上的数字相同,都是n ,即(n ×7)×15 873=nnn nnn .因为7×15873=111 111,所以(n ×7)×15 873=n ×(7×15 873)=n ×111 111=nnn nnn .点拨:通过探索规律可以发现,数学真奇妙,数学中存在一些具有特殊作用的数字,如本题7与15 873的积就具有神奇的“复印”功能,你能将任意一个1,2,3,…,9中的数字连续“复印”6次,你还能发现其他具有“特异功能”的数字吗?28.(1)因为+9+(-3)+(-5)+4+(-8)+6+(-5)+(-6)+(-4)+10=-2,所以出租车在文昌阁的西边,距文昌阁2千米.(2)因为+9+3-+5-+4+8-+6+5-+6-+4-+10=60,所以60×2.4=144,即司机一个下午的营业额是144元.。

人教版七年级数学上册第一章《有理数》综合测试卷【含答案】

人教版七年级数学上册第一章《有理数》综合测试卷【含答案】

人教版七年级数学上册第一章《有理数》综合测试卷一.选择题(共12小题,满分36分,每小题3分)1.2021的相反数是( )A.﹣2021B.2021C.D.﹣2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4 400 000 000人,这个数用科学记数法表示为( )A.44×108B.4.4×109C.4.4×108D.4.4×10103.下列各数:﹣,﹣0.7,﹣9,25,π,0,﹣7.3中,分数有( )个.A.1B.2C.3D.44.近似数35.04万精确到( )A.百位B.百分位C.万位D.个位5.在下列气温的变化中,能够反映温度上升5℃的是( )A.气温由﹣5℃到5℃B.气温由﹣1℃到﹣6℃C.气温由5℃到0℃D.气温由﹣2℃到3℃6.下列说法正确的是( )A.非负数包括零和整数B.正整数包括自然数和零C.零是最小的整数D.整数和分数统称为有理数7.已知三个数a+b+c=0,则这三个数在数轴上表示的位置不可能是( )A.B.C.D.8.绝对值大于2小于5的正整数有( )个.A.2B.3C.4D.59.用分配律计算()×,去括号后正确的是( )A.﹣B.﹣C.﹣D.﹣10.计算(﹣2)200+(﹣2)201的结果是( )A.﹣2B.﹣2200C.1D.220011.在数轴上表示a 、b 两数的点如图所示,则下列判断正确的是( )A .a +b >0B .a +b <0C .ab >0D .|a |>|b |12.若a 2=25,|b |=3,则a +b 所有可能的值为( )A .8B .8或2C .8或﹣2D .±8或±2二.填空题(共8小题,满分32分,每小题4分)13.有理数中,最大的负整数是 .14.比较大小:﹣2 ﹣3.(填“<”或“>”)15.若m 与﹣2互为相反数,则m 的值为 .16.1.95≈ (精确到十分位);≈ (精确到万位).17.数轴上表示数﹣5和表示﹣14的两点之间的距离是 .18.填空:|﹣1+|+|﹣+|+|﹣+|+…+|﹣+|= .19.规定图形表示运算a ﹣b ﹣c ,图形表示运算x ﹣z ﹣y +w .则+= .20.若a 、b 为整数,且|a ﹣2|+(b +3)2020=1,则b a = .三.解答题(共7小题,满分52分)21.(8分)把下列各数填在相应的大括号内:﹣35,0.1,,0,,1,4.01001000…,22,﹣0.3,,π.正 数:{  …};整 数:{  …};负{  …};非负整数:{  …}.22.(6分)计算:(1)8+(﹣6)+5+(﹣8). (2)0.47﹣4﹣(﹣1.53)﹣1.23.(8分)计算:(1)(﹣+﹣)×36 (2)(﹣3)2×(﹣)+4+22×24.(8分)把下列各数在数轴上表示出来,再按从小到大的顺序用“<”连接起来:﹣3,0,+3.5,25.(6分)王先生到市行政中心大楼办事,假定乘电梯向上一楼记作+1,向下一楼记作﹣1,王先生从1楼出发,电梯上下楼层依次记录如下(单位:层):+6,﹣3,+10,﹣8,+12,﹣7,﹣10.(1)请你通过计算说明王先生最后是否回到出发点1楼.(2)该中心大楼每层高3m,电梯每向上或下1m需要耗电0.2度,根据王先生现在所处位置,请你算算,他办事时电梯需要耗电多少度?26.(8分)已知|a|=8,|b|=2;(1)当a、b同号时,求a+b的值;(2)当a、b异号时,求a+b的值.27.(8分)请你研究以下分析过程,并尝试完成下列问题.13=1213+23=9=32=(1+2)213+23+33=36=62=(1+2+3)213+23+33+43=100=102=(1+2+3+4)2(1)13+23+33+ (103)(2)13+23+33+ (203)(3)13+23+33+…+n3= (4)计算:113+123+133+…+203的值.答案一.选择题(共12小题,满分36分,每小题3分)1.解:2021的相反数是:﹣2021.故选:A.2.解:4 400 000 000=4.4×109,故选:B.3.解:下列各数:﹣,﹣0.7,﹣9,25,π,0,﹣7.3中,分数有:﹣,﹣0.7,﹣7.3,共3个,故选:C.4.解:∵35.04万末尾数字4表示4百,∴近似数35.04万精确到百位.故选:A.5.解:A.气温由﹣5℃到5℃,上升了5﹣(﹣5)=10(℃),不符合题意;B.气温由﹣1℃到﹣6℃,上升了﹣6﹣(﹣1)=﹣5(℃),不符合题意;C.气温由5℃到0℃,上升了0﹣5=﹣5(℃),不符合题意;D.气温由﹣2℃到3℃,上升了3﹣(﹣2)=5(℃),符合题意;故选:D.6.解:非负数包括零和正数,A错误;正整数指大于0的整数,B错误;没有最小的整数,C错误;整数和分数统称为有理数,这是概念,D正确.故选:D.7.解:已知a+b+c=0,A.由数轴可知,a>0>b>c,当|a|=|b|+|c|时,满足条件.B.由数轴可知,a>b>0>c,当|c|=|a|+|b|时,满足条件.C.由数轴可知,a>c>0>b,当|b|=|a|+|c|时,满足条件.D.由数轴可知,a>0>b>c,且|a|<|b|+|c|时,所以不可能满足条件.故选:D.8.解:绝对值大于2小于5的正整数有3,4,共2个,故选:A.9.解:()×=,故选:D.10.解:(﹣2)201=(﹣2)×(﹣2)200,所以(﹣2)200+(﹣2)201=(﹣2)200+(﹣2)×(﹣2)200=﹣(﹣2)200=﹣2200.故选:B.11.解:由数轴可知,a为正数,b为负数,且|a|<|b|,∴a+b应该是负数,即a+b<0,又∵a>0,b<0,ab<0,故答案A、C、D错误.故选:B.12.解:∵a2=25,|b|=3,∴a=±5,b=±3,a=5,b=3时,a+b=5+3=8,a=5,b=﹣3时,a+b=5+(﹣3)=2,a=﹣5,b=3时,a+b=﹣5+3=﹣2,a=﹣5,b=﹣3时,a+b=﹣5+(﹣3)=﹣8,综上所述,a+b所有可能的值为±8或±2.故选:D.二.填空题(共8小题,满分32分,每小题4分)13.解:有理数中,最大的负整数是﹣1,故﹣1.14.解:∵|﹣2|<|﹣3|,∴﹣2>.故>.15.解:∵﹣2的相反数是2,∴m=2.故2.16.解:1.95≈2.0(精确到十分位);≈58万(精确到万位),故2.0;58万.17.解:|﹣5﹣(﹣14)|=9.18.解:原式=1﹣+﹣+﹣+…+﹣=1﹣=,故19.解:根据题中的新定义得:原式=(1﹣2﹣3)+(4﹣6﹣7+5)=﹣4﹣4=﹣8,故﹣820.解:∵|a﹣2|≥0,(b+3)2020≥0,而a、b为整数,∴|a﹣2|=1,(b+3)2020=0或|a﹣2|=0,(b+3)2020=1,∴a=1或3,b=﹣3或a=2,b=﹣4或﹣2,当a=1,b=﹣3时,b a=﹣3;当a=3,b=﹣3时,b a=(﹣3)3=﹣27;当a=2,b=﹣4,b a=(﹣4)2=16;当a=2,b=﹣2时,b a=(﹣2)2=4;综上所述,b a=(﹣3)3=﹣27;的值为﹣3或﹣27或4或16.故答案为﹣3或﹣27或4或16.三.解答题(共7小题,满分52分)21.解:正数:{0.1,1,4.01001000…,22,,π,…};整数:{﹣35,0,1,22,,…};负{,,﹣0.3,…};非负整数:{0,1,22,,…}.故0.1,1,4.01001000…,22,,π;﹣35,0,1,22,;,,﹣0.3;0,1,22,.22.解:(1)原式=8+(﹣8)+(﹣6)+5=0+(﹣1)=﹣1;(2)原式=0.47+1.53﹣(4+1)=2﹣6=﹣4.23.解:(1)原式=﹣6+27﹣15=6;(2)原式=9××(﹣)+4+4×(﹣)=﹣﹣+4=﹣.24.解:如图所示:数轴上的点表示的数右边的总比左边的大,得<0.5<+3.5.25.解:(1)(+6)+(﹣3)+(+10)+(﹣8)+(+12)+(﹣7)+(﹣10),=6﹣3+10﹣8+12﹣7﹣10,=28﹣28,=0,∴王先生最后能回到出发点1楼;(2)王先生走过的路程是3×(|+6|+|﹣3|+|+10|+|﹣8|+|+12|+|﹣7|+|﹣10|),=3×(6+3+10+8+12+7+10),=3×56,=168(m),∴他办事时电梯需要耗电168×0.2=33.6(度).26.解:(1)∵|a|=8,|b|=2,且a,b同号,∴a=8,b=2;a=﹣8,b=﹣2,则a+b=10或﹣10;(2)∵|a|=8,|b|=2,且a,b异号,∴a=8,b=﹣2;a=﹣8,b=2,则a+b=6或﹣6.27.解:(1)13+23+33+…+103=3025;(2)13+23+33+…+203=44100;(3)13+23+33+…+n3=;(4)113+123+133+…+203=41075.故(1)3025;(2)44100;(3);(4)41075。

人教版数学七年级上册第一章有理数《单元综合测试卷》附答案

人教版数学七年级上册第一章有理数《单元综合测试卷》附答案

人教版数学七年级上学期 第一章有理数测试一、单选题1.下列各个运算中,结果为负数是( ) A. 2-B. ()2--C. 2(2)-D. 22-2.3的倒数是( ). A.13B. -13C. 3D. -33.计算(-8)×(-2)÷(- 12)的结果为( ) A. 16B. -16C. 32D. -324.2018年国庆假期里,民航提供的运力满足了旅客出行需求,中国民航共保障国内外航班近77800班,将77800用科学记数法表示应为( ). A. 0.778×105B. 7.78×105C. 7.78×104D. 77.8×1035.下列各组中的两个项,不属于同类项的是( ) A. 2x 2y 与﹣12yx 2B.213m n 与n 2m C. a 2b 与5a 2bD. 1与﹣326.下列各组数的大小关系正确的是( ) A. 1167-> B. 3423->- C.110001000<- D. -3.5>-3.67.如果单项式x m+2n y 与x 4y 4m ﹣2n 和是单项式,那么m,n 的值为( ) A. m=﹣1,n=1.5 B. m=1,n=1.5C. m=2,n=1D. m=﹣2,n=﹣18.单项式23m hπ的系数和次数分别是( )A.3π,1 B.3π ,2 C.3π ,3 D.3π ,4 9.如果a =a 3成立,则a 可能的取值有( ) A. 1个B. 2个C. 3个D. 无数个10.已知等式3a =2b +5,则下列等式不一定成立的是( )A. 3a ﹣5=2bB. 3a +1=2b +6C. 3ac =2bcD. a =2533b + 11.微信红包是沟通人们之间感情的一种方式,已知小明在2016年”元旦节”收到微信红包为300元,2018年为363元,若这两年小明收到的微信红包的年平均增长率为x ,根据题意可列方程为( ) A. 363(1+2x)=300 B. 300(1+x 2)=363 C. 300(1+x)2=363D. 300+x 2=36312.若x=-3是方程2(x-m )=6的解,则m 的值为( ) A. 6B. 6-C. 12D. 12-二、填空题13.比-1小2的数是______.14.3.1415精确到百分位的近似数是_____. 15若|x|=3,则x=_____.16.已知A=x 2+32y 2-5xy,B=2xy+2x 2-y 2,则A-3B 的值为_________17.小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:122y y +=--¤ .小明翻看了书后的答案,此方程的解是y= 12-,则这个常数是_______. 18.若x 2m +1=3是关于x 一元一次方程,则m=______.三、解答题19.计算: (1)11623⎛⎫-⨯- ⎪⎝⎭(2)42÷2-243()92⨯-. 20.解方程:(1)30564x x--= (2) 1.7210.70.3x x --=21.已知30.5x m n -与45y m n 是同类项,求2223232(543)(2532)x y x y x x x y y x y --+---- 的值22.一艘货轮货舱容积是2000立方米,可载重500吨,现有甲、乙两种货物待装,已知甲种货物每吨体积为7立方米,乙种货物每吨体积为2立方米,两种货物各装多少吨最合理?23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表:若每袋标准质量为450g,则这批样品的总质量是多少?与标准质量差值(单位:g) -3 -2 0 1 1.5 2.5袋数(单位:袋) 1 4 3 4 5 324.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总数的2 3,若提前购票,则给予不同程序的优惠:若在五月份内,团体票每张12元,共售出团体票数的35;零售票每张16元,共售出零售票数的一半;如果在六月份内,团体票按每张16元出售,并计划在六月份售出全部余票,设六月份零售票按每张x元定价,总票数为a张.(1)五月份的票价总收入为_____元;六月份的总收入为______元;(2)当x为多少时,才能使这两个月的票款收入持平?25.(1)已知x=2是关于x的一元一次方程(a-1)x2+(b+2)x=2的解,求a,b的值(2)一个三角形的周长是48,第一边长为3a+2b,第二边长比第一边的2倍少a,求第三边长.26.燕尾槽的截面如图所示(1)用整式表示图中阴影部分的面积;(2)若x=5,y=2,求阴影部分的面积答案与解析一、单选题1.下列各个运算中,结果为负数的是( ) A. 2- B. ()2--C. 2(2)-D. 22-【答案】D 【解析】 【分析】先把各项分别化简,再根据负数的定义,即可解答. 【详解】A 、|-2|=2,不是负数; B 、-(-2)=2,不是负数; C 、(-2)2=4,不是负数; D 、-22=-4,是负数. 故选D .【点睛】本题考查了正数和负数,解决本题的关键是先进行化简. 2.3的倒数是( ). A.13B. -13C. 3D. -3【答案】A 【解析】乘积为1的两数互为倒数,故选A 3.计算(-8)×(-2)÷(- 12)的结果为( ) A. 16 B. -16C. 32D. -32【答案】D 【解析】 【分析】先把除法转化为乘法,然后根据乘法法则计算即可. 【详解】(-8)×(-2)÷(- 12) =(-8)×(-2) ×(- )=-32.故选D.【点睛】本题考查了乘除混合运算,一般先把除法转化为乘法,再按照乘法法则计算.4.2018年国庆假期里,民航提供的运力满足了旅客出行需求,中国民航共保障国内外航班近77800班,将77800用科学记数法表示应为().A. 0.778×105B. 7.78×105C. 7.78×104D. 77.8×103【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.所以确定n的值是看小数点向左移动的个数.【详解】解:77800=7.78 ×104.故选:C【点睛】本题考查科学记数法,掌握科学计数法的形式是本题的解题关键.5.下列各组中的两个项,不属于同类项的是( )A. 2x2y与﹣12yx2 B. 213m n与n2mC. a2b与5a2bD. 1与﹣32【答案】B【解析】【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【详解】A、2x2y与-12yx2符合同类项的定义,是同类项;B、13m2n与n2m不符合同类项的定义,不是同类项;C、a2b与5a2b符合同类项的定义,是同类项;D、1与-32符合同类项的定义,是同类项.故选B.【点睛】本题考查了同类项,同类项是字母项且相同字母的指数也相同.6.下列各组数的大小关系正确的是( )A. 1167-> B. 3423->- C.110001000<- D. -3.5>-3.6【答案】D 【解析】 【分析】根据有理数的大小比较方法比较即可求出答案. 【详解】A. ∵ 1167-< ,故不正确; B. ∵3423->-,∴ 3423-<- ,故不正确; C. ∵110001000>-,故不正确; D. ∵ 3.5 3.6-<-,∴ -3.5>-3.6,故正确; 故选D.【点睛】本题考查了有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.7.如果单项式x m+2n y 与x 4y 4m ﹣2n 的和是单项式,那么m,n 的值为( ) A. m=﹣1,n=1.5 B. m=1,n=1.5C. m=2,n=1D. m=﹣2,n=﹣1【答案】B 【解析】分析:根据两个单项式的和还是单项式可知它们是同类项,根据同类项的概念列出方程组,解答即可. 详解:两个单项式的和还是单项式可知它们是同类项,24421,m n m n +=⎧∴⎨-=⎩ 解得:11.5.m n =⎧⎨=⎩故选B.点睛:所含字母相同,并且相同字母的指数也相同的项叫做同类项. 8.单项式23m hπ的系数和次数分别是( )A.3π,1 B.3π ,2 C.3π ,3 D.3π ,4 【答案】C 【解析】 【分析】数字因数叫做单项式的的系数,系数包括它前面的符号,单项式的次数是所有字母的指数的和. 【详解】单项式23m hπ的系数是3π,次数分别是3. 故选C.【点睛】本题考查了单项式的有关概念,解决本题的关键是熟练掌握单项式的概念. 9.如果a =a 3成立,则a 可能的取值有( ) A. 1个 B. 2个C. 3个D. 无数个【答案】C 【解析】 【分析】根据乘方的意义求解即可. 【详解】∵03=0,13=1,(-1)3=-1, ∴a 可能的取值有0,1,-1. 故选C.【点睛】本题考查了乘方的意义,正数的任何次幂都是正数,负数的偶次幂是正数,负数的奇次幂是负数,0的任何正整数次幂都等于0.10.已知等式3a =2b +5,则下列等式不一定成立的是( ) A. 3a ﹣5=2b B. 3a +1=2b +6C. 3ac =2bcD. a =2533b + 【答案】C 【解析】 【分析】根据等式的性质,依次分析各个选项,选出等式不一定成立的选项即可. 【详解】解:A .3a =2b +5,等式两边同时减去5得:3a ﹣5=2b ,即A 项正确, B .3a =2b +5,等式两边同时加上1得:3a +1=2b +6,即B 项正确,C .3a =2b +5,等式两边同时乘以c 得:3ac =2bc +5c ,即C 项错误,D .3a =2b +5,等式两边同时除以3得:a =2533b +,即D 项正确, 故选C .【点睛】本题考查了等式的性质,正确掌握等式的性质是解题的关键.11.微信红包是沟通人们之间感情的一种方式,已知小明在2016年”元旦节”收到微信红包为300元,2018年为363元,若这两年小明收到的微信红包的年平均增长率为x ,根据题意可列方程为( ) A. 363(1+2x)=300 B. 300(1+x 2)=363 C. 300(1+x)2=363 D. 300+x 2=363【答案】C 【解析】 【分析】这两年小明收到的微信红包的年平均增长率为x ,则2017年收到300(1+x ),2018年收到300(1+x )2,根据题意列方程解答即可. 【详解】由题意可得, 300(1+x )2=363. 故选C.【点睛】本题考查了一元二次方程的应用---增长率问题;本题的关键是掌握增长率问题中的一般公式为a (1+x )n =b ,其中n 为共增长了几年,a 为第一年的原始数据,b 是增长后的数据,x 是增长率. 12.若x=-3是方程2(x-m )=6的解,则m 的值为( ) A. 6 B. 6-C. 12D. 12-【答案】B 【解析】把x=-3代入方程2(x ﹣m)=6得,2(-3-m)=6,解得:m=-6, 故选B.二、填空题13.比-1小2的数是______. 【答案】-3 【解析】 【分析】用-1减2计算出结果即可. 详解】-1-2=-3. 故答案为-3.【点睛】本题考查了有理数的减法,解答本题的关键是根据题意正确列出算式. 14.3.1415精确到百分位的近似数是_____. 【答案】3.14 【解析】 分析】把千分位四舍五入得到的数就是精确到百分位的数. 【详解】3.1415精确到百分位的近似数是3.14. 故答案为3.14.【点睛】】本题考查了近似数,经过四舍五入得到的数为近似数,近似数与精确数的接近程度,可以用精确度表示.近视数的最后一个数字实际在什么位上,即精确到了什么位.取近似数的时候,要求精确到某一位,应当对下一位的数字进行四舍五入. 15.若|x|=3,则x=_____. 【答案】±3. 【解析】 ∵|x|=3, ∴x=±3.16.已知A=x 2+32y 2-5xy,B=2xy+2x 2-y 2,则A-3B 的值为_________【答案】2251135x xy y --+【解析】 【分析】把A =x 2+32y 2-5xy ,B =2xy +2x 2-y 2代入则A -3B ,然后去括号合并同类项即可. 【详解】把A =x 2+32y 2-5xy ,B =2xy +2x 2-y 2代入则A -3B ,得 A -3B = x 2+32y 2-5xy -3(2xy +2x 2-y 2) = x 2+32y 2-5xy -6xy -6x 2+3y 2 =2251135x xy y --+.故答案为2251135x xy y --+.【点睛】本题考查了整式的加减,即去括号合并同类项.解去括号法则:当括号前是“+”号时,去掉括号和前面的“+”号,括号内各项的符号都不变号;当括号前是“-”号时,去掉括号和前面的“-”号,括号内各项的符号都要变号.17.小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:122y y +=--¤ .小明翻看了书后的答案,此方程的解是y= 12- ,则这个常数是_______. 【答案】1 【解析】 【分析】设¤=a ,把y = 12- 代入122y y +=--¤,解关于a 的方程即可求出a 的值. 【详解】设¤=a ,把y = 12- 代入122y y +=--¤,得1112? 222⨯-+=---()()a ,∴11122-+=-a ,∴a =1, ∴¤=a =1. 故答案为1.【点睛】本题考查了一元一次方程解得定义,能使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.本题也考查了一元一次方程的解法.18.若x 2m +1=3是关于x 的一元一次方程,则m=______. 【答案】0.5 【解析】 【分析】根据未知数的次数等于1列式求解即可. 【详解】由题意得, 2m =1, ∴m =0.5. 故答案为0.5.【点睛】本题考查了一元一次方程的定义,方程的两边都是整式,只含有一个未知数,并且未知数的次数都是1,像这样的方程叫做一元一次方程.三、解答题19.计算:(1)11623⎛⎫-⨯-⎪⎝⎭ (2)42÷2-243()92⨯-. 【答案】(1)-1;(2)7.【解析】【分析】(1)根据乘法的分配律计算即可;(2)根据先算乘方,再算乘除,后算加减顺序计算即可.【详解】(1)11623⎛⎫-⨯-⎪⎝⎭ =-6×12-(-6)×13=-3+2=-1; (2)22434292⎛⎫÷-⨯- ⎪⎝⎭=16÷2-4994⨯ =8-1=7.【点睛】本题考查了有理数的混合运算,熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方,再算乘除,最后算加减;同级运算,按从左到右的顺序计算;如果有括号,先算括号里面的,并按小括号、中括号、大括号的顺序进行;有时也可以根据运算定律改变运算的顺序. 20.解方程:(1)30564x x --= (2) 1.7210.70.3x x --= 【答案】(1)30 ;(2)1417 .【分析】(1)按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可;(2)先化整,然后按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】(1)30564x x --= , 2x -3(30-x )=60,2x -90+3x =60,2x +3x =60+905x =150,x =30;(2) 1.7210.70.3x x --=, 101720173x x --=, 30x-7(17-20x )=21,30x -119+140x =21,30x +140x =21+119,170x =140,x =1417. 【点睛】本题考查了一元一次方程的解法,解一元一次方程的基本步骤为:①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1.21.已知30.5x m n -与45y m n 是同类项,求2223232(543)(2532)x y x y x x x y y x y --+----的值【答案】-95.【解析】【分析】先根据30.5x m n -与45y m n 是同类项求出x 和y 的值,再把()()22232325432532x y x y x x x y y x y --+----去括号合并同类项,然后把x 和y 的值代入计算即可. 【详解】∵30.5x m n -与45y m n 是同类项,()()22232325432532x y x y x x x y y x y --+---- =222543x y x y x --+-32322532x x y y x y +++=2223x y x -+-3323x y +当x =4,y =3时,原式=2223x y x -+-3323x y +=-2×42×3+3×42-2×43+3×33=-96+48-128+81=-224+129=-95.【点睛】本题是整式的加减—化简求值类型的题目,解决本题需要掌握整式的加减法运算法则、合并同类项、代数式求值等知识点22.一艘货轮货舱容积是2000立方米,可载重500吨,现有甲、乙两种货物待装,已知甲种货物每吨体积为7立方米,乙种货物每吨体积为2立方米,两种货物各装多少吨最合理?【答案】甲种货物装200吨,乙种货物装300吨.【解析】试题分析:设甲种货物装x 吨,根据货舱容积2000立方米,可载重500吨,即可列方程求解.设甲种货物装x 吨,则乙种货物装(500-x)吨,由题意得7x+2(500-x)=2000解得x=200,500-x=300答:甲种货物装200吨,乙种货物装300吨.考点:本题考查了一元一次方程的应用点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解. 23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超出或不足的部分分别用正数、负数来表示,记录如下表:若每袋标准质量为450g,则这批样品的总质量是多少?【答案】9008.【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,求出20袋食品与标准质量差值的和,再与20袋食品的标准质量的和相加即可.【详解】(-3)×1+(-2)×4+0×3+1×4+1.5×5+2.5×3=-3-8+0+4+7.5+7.5=8(g),20×450+8=9008(g).∴这批样品的总质量是9008g.【点睛】主要考查了有理数混合运算在实际生活中的应用.解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.24.某音乐厅五月初决定在暑假期间举办学生专场音乐会,入场券分为团体票和零售票,其中团体票占总数的2 3,若提前购票,则给予不同程序的优惠:若在五月份内,团体票每张12元,共售出团体票数的35;零售票每张16元,共售出零售票数的一半;如果在六月份内,团体票按每张16元出售,并计划在六月份售出全部余票,设六月份零售票按每张x元定价,总票数为a张.(1)五月份的票价总收入为_____元;六月份的总收入为______元;(2)当x为多少时,才能使这两个月的票款收入持平?【答案】(1)11215a,641156a ax;(2)19.2.【解析】【分析】(1)根据五月份的票价总收入=五月份团体票的收入+五月份零售票的收入即可求解;根据六月份的票价总收入=六月份团体票的收入+六月份零售票的收入即可求解;(2)本题的等量关系为:五月份票款数=六月份票款数,据此列方程求解即可.【详解】(1)五月份的票价总收入为:23a ×35×12+13a ×12×16=11215a ; 六月份的票价总收入为:23a ×25×16+13a ×12×x =641156a ax +; (2)由题意得,11215a =641156a ax +, ∵a >0, ∴11215=641156x +, 解得x =19.2.∴六月份零售票应按每张19.2元定价.【点睛】本题考查了一元一次方程的应用,有多个未知数的问题要抓住所求问题设为主元,问题中所涉及的其他未知量设为参量.在解方程中必然能消去参量,求出主元x 的值.同学们掌握了这个方法,就不必再惧怕有多个未知量的问题了.25.(1)已知x=2是关于x 一元一次方程(a-1)x 2+(b+2)x=2的解,求a,b 的值(2)一个三角形的周长是48,第一边长为3a+2b ,第二边长比第一边的2倍少a ,求第三边长.【答案】(1)a=1,b=-1; (2)48-8a-6b.【解析】【分析】(1)根据一元一次方程的定义求出a 的值,然后把x =2代入(b +2)x =2可求出b 的值;(2)先根据第一边长为3a +2b ,第二边长比第一边的2倍少a 求出第二条边的长,然后用周长减去第一和第二条边的长即可求出第三条边的长.【详解】(1)∵方程(a -1)x 2+(b +2)x =2是一元一次方程,∴a -1=0,∴a =1;把x =2代入(b +2)x =2,得2(b +2)=2,解之得,b =-1;(2)第二边:2(3a +2b )-a = 5a +4b ,第三边:48-(3a +2b )-(5a +4b )=48-3a -2b -5a -4b=48-8a -6b .【点睛】本题考查了一元一次方程的定义及解法,整式加减的应用,熟练掌握一元一次方程的定义和整式的加减法则是解答本题的关键.26.燕尾槽的截面如图所示(1)用整式表示图中阴影部分的面积;(2)若x=5,y=2,求阴影部分的面积【答案】(1)y(x-y); (2)6.【解析】【分析】(1)由图可知,阴影部分是两个直角三角形,根据三角形的面积公式求解即可,(2)把x =5,y =2代入(1)中的结果计算即可.【详解】(1)()()122y x y y x y ⨯-=-; (2)把x =5,y =2代入y (x -y ),得y (x -y )=2×(5-2)=6.【点睛】本题考查了列代数式,仔细观察图形,得出阴影部分是两个直角三角形是解答本题的关键.。

七年级数学有理数全章测试题

七年级数学有理数全章测试题

七年级上册第一章《有理数》综合测试题一.选择题(每小题3分,共24分) 1.-2的相反数是( ) A .2 B .-2 C . 21 D . 21- 2.│3.14- π|的值是( ).A .0B .3.14- πC .π-3.14D .3.一个数和它的倒数相等,则这个数是( ) A .1 B .1- C .±1 D .±1和0 4.如果a a -=||,下列成立的是( ) A .0>a B .0<aC .0≥aD .0≤a5.用四舍五入法按要求对0.05019 A .0.1(精确到0.1) B .0.05C .0.05(保留两个有效数字) D .6.计算1011)2()2(-+-的值是( )A .2-B .21)2(-C .0D .102- 7.有理数a 、b 在数轴上的对应的位置如图所示: 则( )-11abA .a + b <0B .a + b >0C .a -b = 0D .a -b >08.下列各式中正确的是( ) A .22)2(2-= B .33)3(3-= C .|2| 222-=- D .|3| 333=- 二.填空(每题3分,共24分) 9.在数+8.3、 -4、-0.8、 51、0、 90、334-、|24|--中,________是正数,_________.,应记作_______________.d 互为倒数,则(a + b)3 .(cd)4 =__________. 1个分裂成2个,经过3小时后这种大肠杆菌由1个__________. 分))+(+5.6)18.÷-|97|2)4(31)5132(-⨯--四.解答题(每题8分,共40分) 19.把下列各数用“〉”号连接起来: 51- ,-0.5,51,5-- ,-(-0.55),+-20. 如图,先在数轴上画出表示2.5的相反数的点B,得到点C,求点B,C 表示的数,以及B,C21. 求2-x +7-x 的最小值22.某公司去年 1~3月平均每月亏损 1.5 万元,7~10 月平均每月赢利 1.7 万元,11~12 公司去年总的盈、亏情况如何?23.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:4502.5。

第一章-有理数全章综合测试(含答案)汇总

第一章-有理数全章综合测试(含答案)汇总

第一章有理数全章综合测试新修改一、选择题:3. 有理数a 、b 在数轴上的位置如图所示,那么下列式子中成立的是( )A . a > bB . a v bC . ab > 0D . a> 0b4 .在数轴上,原点及原点右边的点表示的数是()A .正数B .负数C .非正数D .非负数5 .如果一个有理数的绝对值是正数,那么这个数必定是 ()A .是正数B .不是0C .是负数D .以上都不 对 6 .下列各组数中,不是互为相反意义的量的是()A .收入200元与支出20元B .上升10米和下降7米C .超过0.05mm 与不足0.03mD .增大2岁与减少2升7.下列说法正确的是 ( )A . — a 一定是负数;B . a 定是正数;C . a —定不是负数;D . — a —定是负数1下列说法正确的是( )A .所有的整数都是正数 C . 0不是最小的有理数2. 1的相反数的绝对值是(B .不是正数的数一定是负数 D .正有理数包括整数和分数)C .一 2D . 18. 如果一个数的平方等于它的倒数.那么这个数一定是A . 0B . 1C . — 1D . ± 19. 如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数()A .互为相反数但不等于零B .互为倒数C .有一个等于零D .都等于零10.若0v m v 1, m 、m 2、—的大小关系是( )m2 1 2 1 1 2 1A . m v m vB . m v m vC . — v m v mD .—mmmm2v m v m11 . 4604608取近似值,保留三个有效数字,结果是( )A . 4.60 X 106B . 4600000C . 4.61 X 106D . 4.605X 10612 .下列各项判断正确的是 ( )A . a + b 一定大于a — bB .若一ab v 0,贝卩a 、b 异号C .若 a 3 = b 3,则 a = bD .若 a 2 = b 2,则 a = b13 .下列运算正确的是 ( )A . — 22宁(一 2) 2= l(4、B. 1-2-3:=—8 丄I 3丿27C. —5- 1X 3= —25 D . 31X(— 3.25)—6- X 3.253 54 4=-32.5.14.若a=-2X32, b=(- 2X 3) 2, c=-( 2X 4) 2,则下列大小关系中正确的是 ( )A. a>b>0B. b>c>aC. b>a>cD.c> a> b15.若x = 2, |y = 3,则x + y 的值为( )A. 5B. - 5 C . 5 或1 D .以上都不对二、填空题1.某地气温不稳定,开始是6C, —会儿升高4C,再过一会儿又下降11C,这时气温是______ 。

人教版七年级数学上册第一章《有理数》综合测试卷(含答案)

人教版七年级数学上册第一章《有理数》综合测试卷(含答案)

人教版七年级数学上册第一章《有理数》综合测试卷(含答案)时间90分钟 满分120分 班级 姓名一.选择(每题4分,共计40分)1.在有理数1,-1,0,- 13中最小的数是( ).A.1B.-1C.0D. - 132.若有理数a 满足a-︱a ︱=2a,则( ).A.a ﹥0B. a ﹤0C. a ≥0D.a ≤03.下列各组数中互为相反数的是( ).A.-︱-2 ︱与-︱+2︱B.+(-14 )与-(+0.25)C. (-4)2与-42D.-7与-174.下列各数:+(-5.2),+1,-( - 32),0,-∣-2︱,-1.732中,非正数的个数是( ).A. 1个B. 2个C. 3个D. 4个5.某种面粉的袋子上保存的温度是(-8 ±2)℃,以下几个温度中,不适合储存这种食品的是( ).A.-5℃B. -6 ℃C. -7℃D.-8℃6.若a 的相反数是-1.5,则1a 的值是( ).A.23B. 32C.−23D.−327.计算(-2)2021+(-2)2022的结果是( ).A.- 22021B.22021C.-22022D.220228.下列说法正确的个数是( ).(1)任何数都不等于它的相反数.(2)互为相反数的两个数的的同一偶数次方相等.(3)如果a 大于b ,那么a 的倒数小于b 的倒数.(4)0的任何次幂都是0.A.1个B. 2个C. 3个D.4个9.把a 精确到百分位的近似数是3.27,则a 的取值范围是( ).A.3.265﹤a ﹤3.275B.3.265≤a ﹤3.275C.3.265﹤ a ≤3.275D.3.265≤a ≤3.27510.已知a,b 是有理数,若a 在数轴上的对应点的位置如图所示,且a+b ﹤0,有以下结论,①b ﹤0;②a-b ﹤0;③b ﹤-a ﹤a ﹤-b;④∣a ︱﹤∣b ∣.其中正确结论的个数是( ).A. 1个B. 2个C. 3个D.4个二.填空(每题5分,共计30分)11.我国倡导的“一带一路”建设促进我国与世界一些国家的互利合作,根据规划,“一带一路”地区覆盖总人口约为 4 400 000 000 ,用科学计数法表示为______________..12.绝对值不大于4.5的整数有_____________个.13.定义“¤”的运算法则为a ¤b=ab-b,如3¤2=3×2-2=4,那么(-4)¤(-7)=__________.14..若x,y 互为相反数,a,b 互为倒数,c 的绝对值等于1,则(x+y 3)2021 -(-ab )2022 +c 2021 =_____________.15.在数轴上,若点A 与表示-2的点相距7.5个单位,则A 表示的数是______________.16. 观察下面一列数,按规律在横线上填上适当的数12,-36,512,-720,____,_____. 三.解答题(每题10分,共计50分)17.计算:(1)︱-2︱×(-5)-(-1)5÷(−13)2(2)-0.54÷(-14)2+(334-1.375-213)÷(−124)˙˙0 a18.根据某地实验测得的数据表明,高度每增加1KM,气温大约下降6℃,已知该地面气温为21℃.(1)高空某处高度为8KM,求此处的温度是多少;(2 )高空某处温度为-24℃,求此处的高度.19.已知︱x︱=7,︱y︱=4.(1)若x﹥y,求x+y的值.(2)若︱x+y︱=︱x︱-︱y︱,求x,y的值.20.如图所示,在一条不完整的数轴上从左到右有点A,B,C.其中AB=2,BC=1,设点A,B,C 所对应的数之和是m,所对应数之积是n.(1)若以B 为原点,写出点A,C 所对应的数,并计算m 值;若以C 为原点,m 又是多少?(2)若原点O 在图中数轴上点C 的右边,且CO=4,求的值.21. 阅读例题,解决问题:例题:求1+2+22+23+24+···+2100的值.如何求它的值呢?解:设S=1+2+22+23+24+ (2100)则2S=2+22+23+24+···+2100+2101;两式相减得S=2101-1.请解决下面两个问题:(1)试求1+5+52+53+54+···+52021的值.(2)远望巍巍塔七层,红光点点倍加增,共灯三百八十一,试问尖头几盏灯?(注:红灯,指每层都挂着大红灯笼的灯光;倍加增,指每层灯盏数都是上一层的2倍,尖头,指塔顶层.问尖头有几盏灯.A B C参考答案一.选择:1-5. B D C D A 6-10.A B A B C二.填空:11. 4.4×10912. 9个 13.3514. 0或-2 15.-9.5或5.5 16.930 ;-114217.(1)-1; (2)-218.(1)-27℃; (2)7.5KM.19. (1)11或3; (2)x=7,y=-4或x=-7,y=4.20.(1)A,C 对应的数分别是-2,1,m=-1; A,B 对应的数分别为: -3,-1,m=-4.(2)n=-14021.(1)52022−14;(2)3盏.。

2022年人教版七年级数学上册第1章《有理数》综合测试卷附答案解析

2022年人教版七年级数学上册第1章《有理数》综合测试卷附答案解析

2022年七年级数学上册第1章《有理数》综合测试卷一.选择题(共10小题)1.若气温零上2℃记作+2℃,则气温零下3℃记作()A.﹣3℃B.﹣1℃C.+1℃D.+5℃2.在0,﹣3,|﹣1|,这四个数中,最大的数是()A.0B.﹣3C.|﹣1|D.3.北京时间2022年4月16日09时56分,神舟十三号载人飞船返回舱在东风着陆场成功着陆,神舟十三号载人飞行任务取得圆满成功.神舟十三号乘组共在轨飞行183,约为264000分钟,创造了中国航天员连续在轨飞行时间的最长记录.将264000用科学记数法表示应为()A.264×103B.2.64×106C.2.64×105D.0.264×1064.如图,数轴的单位长度为1,如果点B表示的数是4,那么点A表示的数是()A.1B.0C.﹣2D.﹣45.早在1700多年前,数学家刘辉就提出了正数和负数的概念,他用红色、黑色算筹(小棍形状的记数工具)分别表示正数和负数.如图1表示的算式是(+1)+(﹣2),根据这种表示方法,可推算出图2所表示的算式是()A.(﹣3)+(﹣4)B.(﹣3)+(+4)C.(+3)+(﹣4)D.(+3)+(+4)6.a、b两数在一条隐去原点的数轴上的位置如图所示,下列4个式子:①a﹣b<0;②a+b<0;③ab<0;④b>0中一定成立的有()A.4个B.3个C.2个D.1个7.如图,小明在3×3的方格纸上写了九个式子(其中的n是正整数),每行的三个式子的和自上而下分别记为A1,A2,A3,每列的三个式子的和自左至右分别记为B1,B2,B3,其中值可以等于732的是()A.A1B.B1C.A2D.B38.如图,在一个由6个圆圈组成的三角形里,把﹣25到﹣30这6个连续整数分别填入图的圆圈中,要求三角形的每条边上的三个数的和S都相等,那么S的最小值是()A.﹣84B.﹣85C.﹣86D.﹣879.设abc≠0,且a+b+c=0,则+++的值可能是()A.0B.±1C.±2D.0或±210.如图,已知A,B(B在A的左侧)是数轴上的两点,点A对应的数为4,且AB=6,动点P从点A 出发,以每秒2个单位长度的速度沿数轴向左运动,在点P的运动过程中,M,N始终为AP,BP的中点,设运动时间为t(t>0)秒,则下列结论中正确的有()①B对应的数是2;②点P到达点B时,t=3;③BP=2时,t=2;④在点P的运动过程中,线段MN的长度不变.A.①③④B.②③④C.②③D.②④二.填空题(共5小题)11.﹣的绝对值是.12.若x﹣1与2﹣y互为相反数,则(x﹣y)2022=.13.如图所示是某地2022年4月5日的天气预报图,则这天该地的温差是℃.14.三个相邻偶数之积是一个六位数,这个六位数的首位数字是8,末位数字是2,则这三个偶数是.15.某校七年级举办的趣味“体育节”共设计了五个比赛项目,每个项目都以班级为单位参赛,且每个班级都需要参加全部项目,规定:每项比赛中,只有排在前三名的班级记成绩(没有并列班级),第一名的班级记a分,第二名的班级记b分,第三名的班级记c分(a>b>c,a、b、c均为正整数);各班比赛的总成绩为本班每项比赛的记分之和.该年级共有四个班,若这四个班在本次“体育节”的总成绩分别为21,6,9,4,则a+b+c=,a的值为.三.解答题(共6小题)16.(1)(﹣5.3)+(﹣3.2)﹣(﹣5.3)﹣(+4.8).(2).(3)().(4)|﹣|﹣×(﹣4)2.17.已知a,b互为相反数,c,d互为倒数,|m|=2,求3(a+b﹣1)+(﹣cd)2022﹣2m的值.18.司机小王沿东西大街跑出租车,约定向东为正,向西为负,某天自A地出发到收工时,行走记录为(单位:千米):+8、﹣9、+7、﹣2、+5、﹣10、+7、﹣3,回答下列问题:(1)收工时小王在A地的哪边?距A地多少千米?(2)若每千米耗油0.2升,问从A地出发到收工时,共耗油多少升?19.观察下列运算过程:22=2×2=4,;,=;…(1)根据以上运算过程和结果,我们发现:22=;()2=;(2)仿照(1)中的规律,判断()3与()﹣3的大小关系;(3)求(﹣)﹣4×()4÷()﹣3的值.20.自行车厂要生产一批相同型号的自行车,计划每天生产220辆.但由于各种原因,实际每天的生产量与计划量相比会有所差异.下表是工人在某周的生产情况:(超过220辆记为正,不足220辆记为负)星期一二三四五六日增减(辆)+5﹣2﹣4+13﹣10+16﹣9(1)根据记录可知,前三天共生产了辆;(2)生产量最多的一天比生产量最少的一天多生产了辆;(3)该厂实行计件工资制,每生产一辆得100元,对于每天的计划生产量,若每多生产一辆再额外奖20元,若每少生产一辆则要扣20元,求工人这一周的工资总额是多少元.21.25×11=275,13×11=143,48×11=528,74×11=814.观察上面的算式我们可以发现两位数乘11的速算方法:头尾一拉,中间相加,满十进一.请根据上面的速算方法,回答下列问题.(一)填空:①54×11=;②87×11=;③95×(﹣11)=;(二)已知一个两位数,十位上的数字是a,个位上的数字是b,将这个两位数乘11.(1)若a+b<10;①计算结果的百位、十位、个位上的数字分别是、、,这个三位数可表示为.②请通过化简①中所表示的三位数并计算该两位数乘11的结果验证该速算方法的正确性.(2)若a+b≥10,请直接写出计算结果的百位、十位、个位上的数字.参考答案与试题解析一.选择题(共10小题)1.【解答】解:∵气温是零上2摄氏度记作+2℃,∴气温是零下3摄氏度记作﹣3℃.故选:A.2.【解答】解:∵|﹣1|=1,∴|﹣1|,∴最大的数是|﹣1|.故选:C.3.【解答】解:264000=2.64×105,故选:C.4.【解答】解:∵数轴的单位长度为1,如果点B表示的数是4,∴点A表示的数是4﹣6=﹣2,故选:C.5.【解答】解:由题意得,图2所表示的算式是(+3)+(﹣4).故选:C.6.【解答】解:∵a<b,∴a﹣b<0,故①符合题意;若b<0,则a+b<0;若﹣1<0<b,|a|>|b|,则a+b<0;综上所述,②符合题意;若a<0,b>0,则ab<0,故③不符合题意;若原点在b的右侧,则b<0,故④不符合题意;故选:C.7.【解答】解:A=2n﹣2+2n﹣4+2n﹣6=732,1整理可得:2n=248,n不为整数;A=2n﹣8+2n﹣10+2n﹣12=732,2整理可得:2n=254,n不为整数;B=2n﹣2+2n﹣8+2n﹣14=732,1整理可得:2n=252,n不为整数;=2n﹣6+2n﹣12+2n﹣18=732,B3整理可得:2n=256,n=8;故选:D.8.【解答】解:如图,∴S=﹣29﹣27﹣28=﹣84,故选:A.9.【解答】解:∵abc≠0,且a+b+c=0,∴a、b与c中可能有1个字母小于0,也可能有2个字母小于0.当a、b与c中有1个字母小于0,如a<0,则b>0,c>0,∴+++=﹣1+1+1﹣1=0.当a、b与c中有2个字母小于0,如a<0,b<0,则c>0,∴+++=﹣1﹣1+1+1=0.综上:+++=0.故选:A.10.【解答】解:∵已知A,B(B在A的左侧)是数轴上的两点,点A对应的数为4,且AB=6,∴B对应的数为:4﹣6=﹣2;故①是不符合题意的;∵6÷2=3,故②是符合题意的;∵当BP=2时,t=2或t=4,故③是不符合题意的;∵在点P的运动过程中,MN=3,故④是符合题意的;故选:D.二.填空题(共5小题)11.【解答】解:|﹣|=;故答案为:.12.【解答】解:∵x﹣1与2﹣y互为相反数,∴x﹣1+2﹣y=0,∴x﹣y=﹣1,∴原式=(﹣1)2022=1.故答案为:1.13.【解答】解:5﹣(﹣7)=12℃,故答案为:12.14.【解答】解:∵三个相邻偶数之积的末位为2,∴这三个数的末位只能是4×6×8.∵这三个相邻偶数之积是一个六位数,这个六位数的首位数字是8,∴这三个数的积在800000和900000之间.∵90×90×90=729000<800000,100×100×100=100000000>800000,∴这三个数大于90,小于100.∵这三个数为连续偶数,∴这三个数为94,96,98.故答案为:94,96,98.15.【解答】解:设本次“体育节”五个比赛项目的记分总和为m,则m=5(a+b+c),∵四个班在本次“体育节”的总成绩分别为21,6,9,4,∴m=21+6+9+4=40.∴5(a+b+c)=40,∴a+b+c=8.∵a>b>c,a、b、c均为正整数,∴当c=1时,b=2,则a=5;当c=1时,b=3,则a=4,此时,第一名的班级五个比赛项目都是第一,总得分为20<21分,不符合题意舍去;当c=2时,b=3,则a=3,不满足a>b,舍去;当c=3时,b=4,则a=1,不满足a>b,舍去.综上所得:a=5,b=2,c=1.故答案为:a+b+c=8,a=5.三.解答题(共6小题)16.【解答】解:(1)(﹣5.3)+(﹣3.2)﹣(﹣5.3)﹣(+4.8)=(﹣5.3)+(﹣3.2)+5.3+(﹣4.8)=(﹣5.3+5.3)+(﹣3.2﹣4.8)=0+(﹣8)=﹣8;(2)=(10﹣)×(﹣9)=﹣10×9+×9=﹣90+0.5=﹣89.5;(3)()=()×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)|﹣|﹣×(﹣4)2=÷﹣×16=﹣×16==﹣.17.【解答】解:根据题意得:a+b=0,cd=1,m=2或﹣2,当m=2时,原式=3×(0﹣1)+(﹣1)2022﹣2×2=﹣3+1﹣4=﹣6;当m=﹣2时,原式=3×(0﹣1)+(﹣1)2022﹣2×(﹣2)=﹣3+1+4=2.18.【解答】解:(1)8+(﹣9)+7+(﹣2)+5+(﹣10)+7+(﹣3)=3(千米),∴收工时小王在A地的东边,距A地3千米;(2)0.2×(8+|﹣9|+7+|﹣2|+5+|﹣10|+7+|﹣3|)=0.2×51=10.2(升),∴从A地出发到收工时,共耗油10.2升.19.【解答】解:(1)∵22=2×2=4,,∴;∵,=,∴,故答案为:;;(2)()3=()﹣3,理由:∵==,==,∴()3=()﹣3.(3)原式=×÷23=×=16×=2.20.【解答】解:(1)由表格可得,(220+5)+(220﹣2)+(220﹣4)=225+218+216=659(辆),即前三天共生产了659辆,故答案为:659;(2)由表格可得,生产量最多的一天比生产量最少的一天多生产了16﹣(﹣10)=16+10=26(辆),故答案为:26;(3)220×7×100+[5+(﹣2)+(﹣4)+13+(﹣10)+16+(﹣9)]×120=154000+9×120=154000+1080=155080(元),答:工人这一周的工资总额是155080元.21.【解答】解:(一)①54×11=594;②87×11=957;③95×(﹣11)=﹣1045;故答案为:594,957,﹣1045;(二)(1)①a;a+b;b;100a+10(a+b)+b;②∵100a+10(a+b)+b=100a+10a+10b+b=110a+11b(10a+b)×11=110a+11b,∴100a+10(a+b)+b=(10a+b)×11,∴该速算方法是正确的;(2)百位、十位、个位上的数字分别为:a+1,a+b﹣10,b。

人教版七年级上册数学第一章有理数《单元综合检测卷》含答案

人教版七年级上册数学第一章有理数《单元综合检测卷》含答案

精品数学单元测试卷一、选择题(共 8 小题 ,每小题 3 分 ,共 24 分 )1. 四个数-3.14,0,1,2中为负数的是( )A. -3.14B. 0C. 1D. 2 2.在227-,π,0,0.33四个数中,有理数的个数为( ) A. 1个B. 2个C. 3个D. 4个 3.已知a ,b 两数在数轴上对应的点如图所示,下列结论正确的是( )A. a+b>0B. |a|>|b|C. a-b<0D. a+b<04.下列说法正确的是( )A. 符号相反的两个数叫做互为相反数B. 规定了原点、正方向和长度单位的直线叫做数轴C. 1-是有理数D. 若m n =,则m n =5.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)㎏、(25±0.2)㎏、(25±0.3)㎏的字样,从中任意购买两袋,它们的质量最多相差( ).A. 0.8㎏B. 0.6㎏C. 0.5㎏D. 0.4㎏6.下列说法正确的是( )A. 数轴上的点表示的都是有理数B. 若0a b +=,则a 与b 互为相反数C. 在数轴上表示数的点离原点越远,这个数越大D. 两个数中,较大的那个数的绝对值较大7.数轴上A 、B 、C 三点所代表的数分别是a 、1、c ,且11c a a c ---=-.若下列选项中,有一个表示A 、B 、C 三点在数轴上的位置关系,则此选项为何?( )A.B.CD.8.下列说法正确的是()A. 正、负号相反的两个数叫做互为相反数B. 有理数的绝对值一定是正C. 0是有理数D. 若a b=,则a b=二、填空题(共10 小题,每小题 3 分,共30 分)9. 数轴上距离原点2个单位长度的点表示的数是______.10.从海拔12m的地方到10m-,下降了________m.11.设a的相反数是最大的负整数,b的绝对值是最小的数,则b-a =_______.12.最大的负整数是________,绝对值最小的有理数是________.13.-3的相反数是___,绝对值是___,倒数是_____14.早晨的气温为5C-,中午上升了5C,半夜又下降了8C,则半夜的气温是________C.15.化简: 43ππ-+-=________16.如果0xy<且x2=4,y2 =9,那么x+y=______.17.若0a<,0b>,0c>,a b c>+,则a b c++________0.18.如图,点A,B在数轴上对应的有理数分别为1-,a,则A,B间的距离是________.(用含a的式子表示)三、解答题(共6 小题,每小题12 分,共72 分)19.()212432⎡⎤⎛⎫-+-⨯---⎪⎢⎥⎝⎭⎣⎦.20.()1如果两个有理数ab满足关系式()()110a b--<,那么它们与1的大小关系如何,能判断吗?若能判断,请说明理由;若不能判断,请举例说明.()2如果两个有理数ab满足关系式()()110a b-->,那么他们一定大于1吗?若能判断,请说明理由,若不能判断,试问再加什么条件后,能使它们都大于1.21.已知:a,b互为相反数,c,d互为倒数,x的绝对值是1,求:()a b cd x⎡⎤-++⎣⎦的值.22.若a 、b 互为相反数,c 、d 互为倒数,3x =,求()2125802a b x cdx +⨯-+的值. 23.对于任意非零有理数a 、b ,定义运算如下,*2a b a b =+,求()5*3-的值.24.请阅读下列材料: 计算:12112()()3031065-÷-+- 解法一:原式=12111112()()()()3033010306305-÷--÷+-÷--÷=111112035126-+-+=; 解法二:原式=1211215111()[()()]()()3303610530623010-÷+-+=-÷-=-⨯=-; 解法三:原式的倒数为211212112()()()(30)310653031065-+-÷-=-+-⨯- =-20+3-5+12=-10; 故原式=-110. 上述得出的结果不同,肯定存在错误的解法,你认为解法________是错误的.请你根据上述材料,选择适当的方法计算:11322()()4261437-÷-+-.参考答案一、选择题(共8 小题,每小题 3 分,共24 分)1. 四个数-3.14,0,1,2中为负数的是()A. -3.14B. 0C. 1D. 2【答案】A【解析】试题分析:负数是指比零小的数,在一个正数的前面添加“-”号,就变成了负数,本题中-3.14是负数,1和2是正数.考点:负数的定义.2.在227-,π,0,0.33四个数中,有理数的个数为()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】根据有理数的概念,整数和分数都是有理数,反之,就一定不是有理数.【详解】227-是分数所以是有理数,π=3.141 592 6…是无限不循环小数,它不能化成分数形式,所以π不是有理数.0是整数所以是有理数.0.33可化为分数,所以是有理数.【点睛】掌握有理数的概念,整数和分数都是有理数,整数容易判断,其他非整数可检验其是否能化为分数,若能则一定是有理数,但切记分数不一定是有理数.3.已知a,b两数在数轴上对应的点如图所示,下列结论正确的是()A. a+b>0B. |a|>|b|C. a-b<0D. a+b<0【答案】D【解析】【分析】根据数轴的性质和有理数的运算规则来解决该题.【详解】A、由数轴得a与b均在原点左侧所以都是负数,两个负数相加依旧是负数,故错;B、右边的点表示的数总比左边的点表示的数大,因为两个负数之间较小的负数绝对值大,所以应该是|a|<|b|,故错;C 、a 在b 得左边所以a 大于b,一个大的数减去一个小的数结果应该大于0,故错;D 、a 和b 都是负数相加结果一定是小于0的负数,故正确.故选D.【点睛】数轴上的点表示的数,右边的点表示的数总比左边的点表示的数大,因此,可借助数轴比较有理数的大小.表示正数的点在数轴原点的右边,表示负数的点在数轴原点的左边,原点表示数0.4.下列说法正确的是( )A. 符号相反的两个数叫做互为相反数B. 规定了原点、正方向和长度单位的直线叫做数轴C. 1-是有理数D. 若m n =,则m n =【答案】C【解析】【分析】根据相反数、数轴、有理数、绝对值的定义和性质一次解决四个选项.【详解】A 、符号相反的两个数叫做互为相反数,错误,例如2和-4不是相反数;B 、规定了原点、正方向和单位长度的直线叫做数轴,故错误;C 、-1是有理数,正确;D 、若|m|=|n|,则m=n 或m 与n 互为相反数,故错误;故选C .【点睛】本题考查了相反数、数轴、绝对值,解决本题的关键是熟记相反数、数轴、绝对值的定义. 5.某粮店出售的三种品牌的面粉袋上分别标有质量为(25±0.1)㎏、(25±0.2)㎏、(25±0.3)㎏的字样,从中任意购买两袋,它们的质量最多相差( ).A. 0.8㎏B. 0.6㎏C. 0.5㎏D. 0.4㎏【答案】B【解析】【分析】 根据题意给出三袋面粉的质量波动范围,从而求出任意两袋质量相差的最大数.【详解】解:根据题意从中找出两袋质量波动最大的(25±0.3)kg ,则相差0.3-(-0.3)=0.6kg . 故选:B .【点睛】此题主要考查了正数和负数表示的意义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.6.下列说法正确的是( )A. 数轴上的点表示的都是有理数B. 若0a b +=,则a 与b 互为相反数C. 在数轴上表示数的点离原点越远,这个数越大D. 两个数中,较大的那个数的绝对值较大【答案】B【解析】【分析】根据数轴的定义性质、相反数的定义、有理数的运算规则解决该题.【详解】A 、∵实数与数轴上的点是一一对应的,∴数轴上的点表示的数是实数.所以此选项错误; B 、∵a+b=0,∴a 与b 互为相反数,所以此选项正确;C 、数轴上原点的右边,离原点越远的点表示的数越大;数轴上原点的左边,离原点越远的点表示的数越小,所以此选项错误;D 、两个数中,较大的那个数的绝对值不一定大,例如,|-3|>|2|,但-3<2.所以此项错误,故选B .【点睛】本题考查了相反数、数轴、绝对值,解决本题的关键是熟记相反数、数轴、绝对值的定义. 7.数轴上A 、B 、C 三点所代表的数分别是a 、1、c ,且11c a a c ---=-.若下列选项中,有一个表示A 、B 、C 三点在数轴上的位置关系,则此选项为何?( )A.B.C.D.【答案】A【解析】【分析】从选项数轴上找出a 、B 、c 的关系,代入|c ﹣1|﹣|a ﹣1|=|a ﹣c|.看是否成立.【详解】∵数轴上A 、B 、C 三点所代表的数分别是a 、1、c ,设B 表示的数为b ,∴b=1,∵|c ﹣1|﹣|a ﹣1|=|a ﹣c|.∴|c ﹣b|﹣|a ﹣b|=|a ﹣c|.A 、b <a <c ,则有|c ﹣b|﹣|a ﹣b|=c ﹣b ﹣a+b=c ﹣a=|a ﹣c|.正确,B 、c <b <a 则有|c ﹣b|﹣|a ﹣b|=b ﹣c ﹣a+b=2b ﹣c ﹣a≠|a ﹣c|.故错误,C 、a <c <b ,则有|c ﹣b|﹣|a ﹣b|=b ﹣c ﹣b+a=a ﹣c≠|a ﹣c|.故错误.D 、b <c <a ,则有|c ﹣b|﹣|a ﹣b|=c ﹣b ﹣a+b=c ﹣a≠|a ﹣c|.故错误.故选A .【点睛】熟记数轴定义以及运用有理数的运算规则是解决本题关键.更应该理解掌握验证等式是否成立的方法,若等式成立则必须左边运算结果等于右边运算结果.8.下列说法正确的是( )A. 正、负号相反的两个数叫做互为相反数B. 有理数的绝对值一定是正C. 0是有理数D. 若a b =,则a b =【答案】C【解析】【分析】根据相反数的定义、有理数的定义和绝对值的概念解决该题.【详解】解:A 、正数2与负数-1不是互为相反数,故选项错误;B 、0是有理数0的绝对值依旧是0,而0不是正数,故选项错误;C 、0是整数,整数都是有理数,所以0是有理数,故选项正确;若a 和b 互为相反数则结论错误,如|-2|=|2|而-2≠2,故选项错误;故选C .【点睛】熟记相反数的定义、有理数的定义和绝对值的概念解决该题的关键.可尝试找出与选项不符的例子来说明选项的错误,如上题的A 、B 、D 详解.二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )9. 数轴上距离原点2个单位长度的点表示的数是______.【答案】-2或2.【解析】试题分析:设数轴上与原点的距离等于2的点所表示的数是x ,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.-,下降了________m.10.从海拔12m的地方到10m【答案】22【解析】【分析】-,既然是下降那就用最初的高度减去下降后的高的即可.从海拔12m的地方到10m【详解】解:12-(-10)=12+10=22m.故答案为:22.【点睛】熟练运用有理数的运算规则是解决本题关键.11.设a的相反数是最大的负整数,b的绝对值是最小的数,则b-a =_______.【答案】-1【解析】【分析】首先根据题意确定a、b的值,再进一步根据有理数的运算法则进行计算.【详解】∵a的相反数是最大的负整数,b是绝对值最小的数,∴-a=-1,b=0,∴a=1,∴b-a=0-1=-1.故答案为-1.【点睛】本题考查了相反数、绝对值的概念以及有理数的减法法则,解题的关键是知道最大的负整数是-1,绝对值最小的数是0.12.最大的负整数是________,绝对值最小的有理数是________.-(2). 0【答案】(1). 1【解析】【分析】根据数的大小比较法则和绝对值的意义填空.【详解】解:最大的负整数是-1;绝对值最小的有理数是0.故答案为:1;0.【点睛】本题考查数的大小比较和绝对值的意义,比较简单.13.-3的相反数是___,绝对值是___,倒数是_____【答案】 (1). 3 (2). 3 (3). 13-【解析】试题解析:根据相反数的定义,只有符号不同的两个数是互为相反数,−3的相反数是3;根据绝对值的定义,一个数的绝对值等于表示这个数的点到原点的距离,−3的绝对值是3根据倒数的定义,互为倒数的两数乘积为1,-3×(-13)=1.所以-3的倒数是-13. 故答案为3,3,-13. 14.早晨的气温为5C -,中午上升了5C ,半夜又下降了8C ,则半夜的气温是________C .【答案】8-【解析】【分析】根据有理数的运算法则进行解答.【详解】早晨的气温为﹣5℃,中午上升了5℃,则为−5+5=0℃.半夜又下降了8℃,则为0-8=﹣8℃.【点睛】本题主要考察有理数的运算中加法与减法的运算法则,熟练掌握此类知识即可解答此题. 15.化简: 43ππ-+-=________【答案】1【解析】【分析】因为π≈3.142,所以π-4<0,3-π<0,然后根据绝对值定义即可化简|π-4|+|3-π|.【详解】∵π≈3.142,∴π-4<0,3-π<0,∴|π-4|+|3-π|=4-π+π-3=1,故答案为1.【点睛】本题主要考查了实数的绝对值的化简,解题关键是掌握绝对值的规律,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.16.如果0xy <且x 2=4,y 2 =9,那么x +y =______.【答案】±1 【解析】∵2249x y ==,,∴23x y =±=±,,又∵0xy <,∴(1)当2x =时,3y =-,此时2(3)1x y +=+-=-; (2)当2x =-时,3y =,此时231x y +=-+=;综上所述,1x y +=或1-.故答案为:±1.17.若0a <,0b >,0c >,a b c >+,则a b c ++________0.【答案】<【解析】【分析】根据绝对值的代数意义来计算.【详解】解:∵0a <∴a a =- 又∵0b >,0c >∴,b b c c ==∴-a b c >+即0a b c ++<故答案为:<.【点睛】本题考查了绝对值的代数意义,熟悉绝对值的代数意义并且正确应用绝对值的计算是解决本题的关键.18.如图,点A ,B 在数轴上对应的有理数分别为1-,a ,则A ,B 间的距离是________.(用含a 的式子表示)【答案】1a +【解析】【分析】求数轴上两点间的距离,应该是大的数减去小的数.【详解】解:根据图像可知,B 在A 点的右边,所以B 表示的数比A 表示的数大.A ,B 两点间的距离为a -(-1)=a +1.【点睛】本题考查的是数轴上两点间的距离求法,数轴上两点间的距离应该是大的数减去小的数.三、解答题(共 6 小题 ,每小题 12 分 ,共 72 分 )19.()212432⎡⎤⎛⎫-+-⨯--- ⎪⎢⎥⎝⎭⎣⎦. 【答案】-5【解析】【分析】考查有理数的运算规则,先计算大括号.【详解】解:原式4235=-+-=-.【点睛】注意负数的平方是带括号的,所以本式子第一项计算结果是-4,而不是4.20.()1如果两个有理数ab 满足关系式()()110a b --<,那么它们与1的大小关系如何,能判断吗?若能判断,请说明理由;若不能判断,请举例说明.()2如果两个有理数ab 满足关系式()()110a b -->,那么他们一定大于1吗?若能判断,请说明理由,若不能判断,试问再加什么条件后,能使它们都大于1.【答案】(1)1 1a b <⎧⎨>⎩或11a b >⎧⎨<⎩;()2不一定,理由详见解析. 【解析】【分析】(1)()()110a b --<成立的话有必须(a-1)和(b-1)的运算结果符号相反,所以分情况讨论即可.(2)可根据()()110a b -->不等式得到a 与b 的取值范围.从而判断结论的正确性.【详解】()1∵()()110a b --<,∴1010a b -<⎧⎨->⎩或1010a b ->⎧⎨-<⎩∴11a b <⎧⎨>⎩或11a b >⎧⎨<⎩. ()2不一定,理由:∵()()110a b -->,∴1010a b ->⎧⎨->⎩或1010a b -<⎧⎨-<⎩ ∴11a b >⎧⎨>⎩或11a b <⎧⎨<⎩. 当再加上1a -与1b -为正数,能使它们都大于1.【点睛】熟练掌握不等式、有理数的运算规则是解决该题的关键.分类讨论是解决该题的必备技巧. 21.已知:a ,b 互为相反数,c ,d 互为倒数,x 的绝对值是1,求:()a b cd x ⎡⎤-++⎣⎦的值.【答案】±1【解析】【分析】根据a ,b 互为相反数得到a +b =0,c ,d 互为倒数得到cd =1,x =±1,从而求()a b cd x ⎡⎤-⎣⎦++的值.【详解】解:∵a ,b 互为相反数,∴0a b +=,∵c ,d 互为倒数,∴1cd =,∵x 的绝对值为1,∴1x =±,∴当1x =时,()[]0111a b cd x ⎡⎤-++=-+⨯=-⎣⎦;当1x =-时,()[]()0111a b cd x ⎡⎤-++=-+⨯-=⎣⎦.【点睛】本题考查的是相反数、倒数、绝对值的概念,熟练掌握相反数、倒数、绝对值的概念是本题的解题关键.22.若a 、b 互为相反数,c 、d 互为倒数,3x =,求()2125802a b x cdx +⨯-+的值. 【答案】-3.【解析】【分析】由a 与b 互为相反数得到0a b += ,c 与d 互为倒数得到1cd = ,利用绝对值的意义求出m 的值带入所求式子中计算题可求出值.【详解】解:根据题意得:0a b +=,1cd =,3x =,则原式0963=-+=-.【点睛】此题主要考查代数式求值,相反数以及导数,熟练掌握各自的定义是接本题的关键. 23.对于任意非零有理数a 、b ,定义运算如下,*2a b a b =+,求()5*3-的值.【答案】7.【解析】【分析】用题目中的特殊运算定义进行求解.【详解】解:根据题中的新定义得:()5*32531037-=⨯-=-=.【点睛】本题主要考查对新的定义运算的理解.24.请阅读下列材料: 计算:12112()()3031065-÷-+- 解法一:原式=12111112()()()()3033010306305-÷--÷+-÷--÷=111112035126-+-+=; 解法二:原式=1211215111()[()()]()()3303610530623010-÷+-+=-÷-=-⨯=-; 解法三:原式的倒数为211212112()()()(30)310653031065-+-÷-=-+-⨯- =-20+3-5+12=-10; 故原式=-110. 上述得出的结果不同,肯定存在错误的解法,你认为解法________是错误的.请你根据上述材料,选择适当的方法计算:11322()()4261437-÷-+-. 【答案】114- 【解析】【分析】 首先运用乘法分配律求出11323()()4261437-÷-+- 的倒数为多少,然后根据算式的倒数,求算式的值是多少即可.【详解】(1) ①除法当中的除式不能进行加减法分解,因此①错误,②③都为正确,但③运用了倒数的知识使得运算比较简便.(2)原式的倒数为132311323()()()(42)7928188 614374261437-+-÷--+-⨯--+-+-=== .【点睛】本题主要考查四则运算和分配律,以及导数,熟练掌握解运算方法是解题的关键.。

第一章 有理数单元综合检测(解析版)

第一章 有理数单元综合检测(解析版)

第一章有理数单元综合检测满分:100分时间:60分钟一、选择题(共10小题,满分30分)1.2023的相反数是( )A.2023B.2023-C.12023D.2023±【分析】根据互为相反数的两数之和为0和只有符号不同的两个数是相反数进行判断即可.【解析】2023的相反数是2023-;故选:B.2.下列说法正确的是( )A.有理数分为正数、负数和零B.分数包括正分数、负分数和零C.一个有理数不是整数就是分数D.整数包括正整数和负整数【分析】直接利用有理数的有关定义分析判断即可.【解析】A、有理数包括正有理数、负有理数和零,故此选项错误;B、分数包括正分数、负分数,故此选项错误;C、一个有理数不是整数就是分数,故此选项正确;D、整数包括正整数、负整数0和零,故此选项错误.故选:C.3.下列各组数中互为相反数的是( )A.12-与2-B.1-与(1)-+C.(3)--与3-D.2与|2|-【分析】符号不同,绝对值相等的两个数互为相反数,据此即可得出答案.【解析】12-与2-不是相反数,则A不符合题意;(1)1-+=-,则B不符合题意;(3)3--=,它与3-互为相反数,则C符合题意;|2|2-=,则D不符合题意;故选:C.4.北京与巴黎的时差为7小时,例如:北京时间13:00,同一时刻的巴黎时间是早上6:00.笑笑和霏霏分别在北京和巴黎,她们相约在各自当地时间13:00~22:00之间选择一个时刻开始通话,这个时刻可以是北京时间( )A.14:00B.16:00C.21:00D.23:00【分析】根据巴黎时间比北京时间早7小时解答即可.【解析】由题意得,巴黎时间比北京时间早7小时,当巴黎时间为13:00,则北京时间为20:00;当北京时间为22:00,则巴黎时间为15:00;所以这个时间可以是北京时间的20:00到22:00之间,故选:C.5.下列各组数中,互为倒数的有( )①12和(2)-;②115-和56-;③|4|--和14-;④0和0;⑤1和1-;⑥3.2和516.A.1组B.2组C.3组D.4组【分析】对于①,11(2)(2)1122´-=-´=-¹,据此即可作出判断;接下来利用同样的方法,判断其它几个.注意:0没有倒数.【解析】对于①,11(2)(2)1122´-=-´=-¹,故①不互为倒数,对于②,1565(1)(15656-´-=´=,故②互为倒数,对于③,111(|4|)()(4)()41444--´-=-´-=´=,故③互为倒数,对于④,0没有倒数,故④不互为倒数,对于⑤1,1(1)11´-=-¹,故⑤不互为倒数,对于⑥,51653.2116516´=´=,故⑥互为倒数,故互为倒数的两个数有3组.故选:C.6.下列等式成立的是( )A .235222´=B .236222´=C .238222´=D .239222´=【分析】将2322´进行运算后判断即可.【解析】232352222+´==,故选:A .6. 计算20212022(2)(2)-+-的结果是( )A .2-B .2C .20212D .20212-【分析】根据乘法分配律计算即可求解.【解析】20212022(2)(2)-+-20212021(2)(2)(2)=-+-´-2021(12)(2)=-´-20211(2)=-´-20212=.故选:C .7. 下列说法不正确的是( )A .0.5-不是分数B .0是整数C .12不是整数D .2-是既是负数又是整数【分析】利用有理数的分类对各选项进行分析,即可得出结果.【解析】A 、0.5-是负分数,也是分数,故A 说法错误,符合题意;B 、0是整数,正确,故B 说法正确,不符合题意;C 、12是分数,不是整数,故C 说法正确,不符合题意;D 、2-是负数,也是负整数,故D 说法正确,不符合题意.故选:A .8. 袁隆平院士被誉为“杂交水稻之父”,经过他带领的团队多年艰苦努力,目前我国杂交水稻种植面积达2.4亿亩,每年增产的粮食可以养活8000万人,将数据8000万用科学记数法表示为810n ´,则n 的值为( )A .7B .8C .9D .10【分析】科学记数法的表示形式为10n a ´的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10…时,n 是正数;当原数的绝对值1<时,n 是负数.【解析】8000Q 万780000000810==´,7n \=,故选:A .9. 定义一种正整数n 的“T ”运算:①当n 为奇数时,结果为31n +;②当n 为偶数时,用n 连续除以2,直到结果为奇数停止,并且运算重复进行.例如,当18n =时,运算过程如下:若21n =,则第2021次“T ”运算的结果是( )A .1B .2C .3D .4【分析】根据题意,可以写出前几次输出的结果,然后即可发现数字的变化规律,从而可以得到2021次“T ”运算的结果.【解析】由题意可得,当21n =时,第1次输出的结果为64,第2次输出的结果为1,第3次输出的结果为4,第4次输出的结果为1,第5次输出的结果为4,¼,\从第2次开始,这列数以1,4不断循环出现,(20211)2202021010-¸=¸=Q ,2021\次“T ”运算的结果4,故选:D .二.填空题(共6小题,满分16分)11.(3分) 一次数学测试,如果96分为优秀,以96分为基准简记,例如106分记为10+分,那么85分应记为 11- 分.【分析】高于96分记作正数,那么低于96分记作负数,85比96低11分,故记作11-.【解析】859611-=-,故答案为:11-.10. (3分)写出所有比 3.5-大的负整数: 3-,2-,1- .【分析】根据负整数的意义写出即可.【解析】比 3.5-大的负整数有3-,2-,1-.故答案为:3-,2-,1-.13.(3分)计算:21(0.4)3-¸-= 256 .【分析】直接利用有理数的除法运算法则计算得出答案.【解析】原式5235=¸5532=´256=.故答案为:256.14.(3分)若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为3,则235a b m cd ++-= 26. .【分析】直接利用互为相反数以及倒数、绝对值的性质分别化简得出答案.【解析】a Q 、b 互为相反数,c 、d 互为倒数,m 的绝对值为3,0a b \+=,1cd =,3m =±,29m =,则235a b m cd ++-0391=+´-271=-26=.故答案为:26.15. (3分)近似数1.25万是精确到 百 位.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解析】1.25万中,5在百位上,则精确到了百位.故答案为:百.16. (3分)如图,数轴上A ,B 两点所表示的数分别为a ,b ,有下列各式:①(1)(1)0a b -->;②(1)(1)0a b -+>;③(1)(1)0a b ++>.其中,正确式子的序号是 ①②? .【分析】因为数轴上右边的数总比左边的大,大数减小数差为正,小数减大数差为负.再根据乘法运算同号得正,异号得负.【解析】1a <Q ,10a \-<.1b <Q ,10b \-<.(1)(1)0a b \-->.\①正确,故①符合题意.1b <-Q ,(1)0b \--<.即10b +<,(1)(1)0a b \-+>.\②正确,故②符合题意.0a >Q ,10a \+>,又1b <-Q ,10b \+<,(1)(1)0a b \++<.\③错误.故③不合题意.故答案为:①②?.三.解答题(共8小题,满分42分)17.(4分) 计算:221(3)[2(6)(4)]4-+´´---.【分析】先算乘方,再算乘法,最后算加减;如果有括号,要先做括号内的运算.【解析】221(3)[2(6)(4)]4-+´´---19(1216)4=+´--19(28)4=+´-97=-2=.18.(8分)计算:(1)626172((()5353-+-´-+-´;(2)20232241(1)(3)||4(2)9-+-´--¸-.【分析】(1)先算乘法,再算加减即可;(2)先算乘方,再算乘除,最后算加减即可.【解析】(1)原式434255=-+-10434555=-+-63455=--405=-8=-;(2)原式11916169=-+´-¸111=-+-1=-.19.(8分)计算:(1)7531()(96436+-¸-;(2)22222(3)()4|4|3-+-´--¸-.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可;(2)先算乘方和去绝对值,然后算乘除法、最后算加减法.【解析】(1)7531()()96436+-¸-753()(36)964=+-´-753(36)(36)(36)964=´-+´--´-28(30)27=-+-+31=-;(2)22222(3)()4|4|3-+-´--¸-249(1643=-+´--¸4(6)4=-+--14=-.20. (6分)兴趣小组遇到这样一个问题:任意选取一个数,用这个数乘以2后加8,然后除以4,再减去一开始选取的数的12,则结果为多少?小组内4位成员分别令这个数为5-、3、4-、2发现结果一样.(1)请从上述4个数中任取一个数计算结果.(2)有一个成员猜想:无论这个数是几,其计算结果都一样,这个猜想对吗?请说明理由.如果你觉得这个猜想不对,请你提出一个新的猜想.【分析】(1)令这个数为3,根据已知条件列式计算即可;(2)设取的有理数为a ,根据已知条件列式计算,发现结果是定值,所以猜想正确.【解析】(1)令这个数为3,则1(328)43144 1.522´+¸-´=¸-=;(2)猜想正确,理由是:设取的有理数为a ,则:1111(28)224222a a a a +-=+-=,所以猜想是正确的.21. (8分)3-,2.5,0,4+,32-.(1)画数轴并在数轴上标出上面各数;(2)把上面各数用“>”连接起来.【分析】(1)在数轴上表示各数即可;(2)根据在数轴上右边的点表示的数大于左边的点表示的数从大到小的顺序用“>”连接起来即可.【解析】(1)如图所示:(2)根据在数轴上右边的点表示的数大于左边的点表示的数,可得34 2.5032+>>>->-.22. (6分)已知有理数a 、b 、c 在数轴上的位置.(1)a b + < 0;a c + 0;b c - 0;(用“>,<,=”填空)(2)试化简||2||||a b a c b c +-+--.【分析】(1)根据数轴确定a ,b ,c 的范围,即可解答;(2)根据绝对值的性质,即可解答.【解析】(1)由数轴可得:0c a b <<<,且||||a b >,0a b \+<,0a c +<,0b c ->,故答案为:<;<;>;(2)0a b +<Q ,0a c +<,0b c ->,||2||||a b a c b c \+-+--2()()a b a c b c =--++--22a b a c b c=--++-+23a b c =-+.23.(6分)有10袋小麦,每袋以90kg 为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如表:袋号12345678910重量()kg 1+1+ 1.5+1- 1.2+ 1.3+ 1.3- 1.2- 1.8+ 1.1+(1)请通过计算说明这10袋小麦总计超过多少kg 或不足多少kg ?(2)若每千克小麦2.5元,求10袋小麦一共可以卖多少元?【分析】(1)“正”和“负”相对,超过的千克数记为正数,不足的千克数记为负数,把称重记录的数据相加,和为正说明超过了,和为负说明不足;(2)先求10袋小麦的总重量,即乘单价即可求解.【解析】(1)11 1.51 1.2 1.3 1.3 1.2 1.8 1.1 5.4()kg +++-++--++=.故这10袋小麦总计超过5.4kg ;(2)(9010 5.4) 2.52263.5´+´=(元).故10袋小麦一共可以卖2263.5元.24.(6分)阅读理解:观察等式1122133-=´+,2255133-=´+¼发现,一对有理数a ,b 满足1a b ab -=+,那么我们把这对有理数a ,b 叫做“共生有理数对”,记为[a ,]b .如:有理数对[1,1]3和[5,2]3都是“共生有理数对”.(1)下列四对有理数中,不是“共生有理数对”的是 D .A .[3,12B .[3-,2]C .1[5,2]3-D .[2-,13-(2)若[4,1]m -是“共生有理数对”,请你求出该“共生有理数对”.(3)若[x ,1]x -是“共生有理数对”,请你判断[1x -,]x -是不是“共生有理数对”,并说明理由.【分析】(1)根据“共生有理数对”的定义即可判断;(2)根据“共生有理数对”的定义,构建方程即可解决问题;(3)根据“共生有理数对”的定义即可解决问题.【解析】(1)A .113222-=Q ,11131112222´+=+=,[3\,12是“共生有理数对”;B .325--=-Q ,321615-´+=-+=,[3\-,2]是“共生有理数对”,C .Q 1213()5315--=,12213()11531515´-+=-+=,1[5\,2]3-是“共生有理数对”;D.212(133 ---=-Q,1222()111333-´-+=+=,[2 \-,1]3-不是“共生有理数对”.故答案为:D;(2)[4Q,1]m-是“共生有理数对”,4(1)4(1)1m m\--=-+,解得85m=,则831155m-=-=.\该“共生有理数对”是[4,35;(3)[1x-,]x-是“共生有理数对”,理由:[xQ,1]x-是“共生有理数对”,(1)(1)1x x x x\--=-+,(1)0x x\-=,1()1x x---=Q,(1)1(1)1011x x x x--+=-+=+=,1()(1)1x x x x\---=--+,[1x\-,]x-是“共生有理数对”.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章有理数全章综合测试一、选择题:
1.下列说法正确的是()
A.所有的整数都是正数B.不是正数的数一定是负数C.0不是最小的有理数D.正有理数包括整数和分数2.1
2
的相反数的绝对值是()
A.-1
2B.2 C.一2 D.1
2
3.有理数a、b在数轴上的位置如图所示,那么下列式子中成立的是()A.a>b B.a <b C.ab>0 D.a
b
>0
4.在数轴上,原点及原点右边的点表示的数是()
A.正数B.负数C.非正数D.非负数
5.如果一个有理数的绝对值是正数,那么这个数必定是()A.是正数B.不是0 C.是负数D.以上都不对
6.下列各组数中,不是互为相反意义的量的是()
A.收入200元与支出20元B.上升l0米和下降7米
C.超过0.05mm与不足0.03m D.增大2岁与减少2升
7.下列说法正确的是()
A.-a一定是负数;B.a定是正数;
C.a一定不是负数;D.-a一定是负数
8.如果一个数的平方等于它的倒数.那么这个数一定是()A.0 B.1 C.-1 D.±1
9.如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数()A.互为相反数但不等于零B.互为倒数C.有一个等于零D.都等于零10.若0<m<1,m、m2、1
m
的大小关系是()
A.m<m2<1
m B.m2<m<1
m
C.1
m
<m<m2D.1
m
<m2<m
11.4604608取近似值,保留三个有效数字,结果是()A.4.60 ×106B.4600000 C.4.61 ×106D.4.605 ×106 12.下列各项判断正确的是()
A.a+b一定大于a-b B.若-ab<0,则a、b异号
C.若a3=b3,则a=b D.若a2=b2,则a=b
13.下列运算正确的是()
A.-22÷(一2)2=l B.
3
1
2
3
⎛⎫
- ⎪
⎝⎭
=-81
27
C.-5÷1
3×3
5
=-25 D.31
4
×(-3.25)-63
4
×3.25=-32.5.
14.若a=-2×32,b=(-2×3)2,c=-(2×4)2,则下列大小关系中正确的是()A.a>b>0 B.b>c>a C.b>a>c D.c>a>b 15.若x=2,y=3,则x y+的值为()
A.5 B.-5 C.5或1 D.以上都不对
二、填空题
1.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降1l℃,这时气温是___。

2.一个数的相反数的倒数是-11
3
,这个数是____________.
3.数轴上到原点的距离是3个单位长度的点表示的数是__________.
4.-2的4次幂是_________,144是___________的平方数.
5.若a-=5,则a=__________.
6.若ab>0,bc<0,则ac______0.
7.绝对值小于5的所有的整数的和________.
8.用科学记数法表示13040000应记作_______________;若保留三个有效数字,则近似值为_____________。

9.若1
x-+(y+2)2=0,则x-y=________;
三、解答题
1.列式计算:
(1)-4、-5、+7三个数的和比这三个数绝对值的和小多少?
(2)从-l中减去-5
12,-7
8
,-3
4
的和,所得的差是多少?
2.计算题:
(1)(-12)÷4×(-6)÷2; (2)(-
58)×(-4)2-0.25×(-5)×(-4)3;
(3)11131112
3124244⎛⎫⎛⎫⎛⎫⎛⎫--+----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
(4)(-3)2÷2
14×(-23)2+4-22×(-13)
(5)()()242126353
+⨯-÷--+24+(-3)2×(-5)
(6)1+3+5+…+99-(2+4+6+…+98).
3.若a=2,b=-3,c是最大的负整数,求a+b-c的值。

4.李老师在学校西面的南北路上从某点A出发来回检查学生的植树情况,设定向南的路程记为正数.向北的路程记为负数,那么李老师所行路程依次为(单位:百米):+12,-l0,+10,-8,-6,-5,-3.
(1)求李老师最后是否回到出发点A?(2)李老师离开出发点A最远时有多少千米? (3)李老师共走了多少千米?
5.在一条东西走向的马路旁,有青少年宫、党校、商场、医院四家公共场所.已知青少年宫在学校东300m处,商场在学校西200m处,医院在学校东500m处,若将马路近似地看作一条直线,以学校为原点,向东为正方向,用1个单位长度表示100m.(1)在数轴上表示四家公共场所的位置.
(2)列式计算青少年宫与商场之间的距离.
6.已知2a +(b+1)4=0,求(a+b)(a2-ab+b2)的值.
7.甲数的绝对值是乙数绝对值的2倍,在数轴上甲、乙两数在原点的同侧,并且对应两点的距离等于10,求这两个数.
8.电视台的体育频道经常播放篮球比赛,张明同学在收看比赛时,当解说员介绍每个队员的身高后,张明同学能用简便方法很快的把这个球队的队员平均身高计算出来.你行吗?请做出下题:某球队10名队员的身高如下(单位:cm):173,171,175,177,180,178,179,174,184,190.求这10名队员的平均身高.
9.检修组乘汽车,沿公路检修线路,约定向东为正.向西为负,某天自A出发,到收工时,行走记录为(单位:千米):
+8、-9、+4、+7、-2、-10、+18、-3、+7、+5 回答下列问题:
(1)收工时在A地的哪边?距A地多少千米?
(2)若每千米耗油0.3升,问从A地出发到收工时,共耗油多少升?。

相关文档
最新文档