高数(高等微积分)复习资料

合集下载

高等数学一-微积分总结-知识归纳整理

高等数学一-微积分总结-知识归纳整理

导数微分学微分微积分不定积分积分学定积分无穷级数第一章函数及其特性1.1 集合一、定义:由具有共同特性的个体(元素)组成。

二、表达方式:集合A,B,C……(大写字母)元素a,b,c……(小写字母)A={a,b,c}元素的罗列无重复,无顺序。

a属于A记作a∈A,1不属于A记作1∉A或1∈A三、分类有限集无限集空集Ф四、集合的运算1、子集:存在A、B两个集合,如果A中所有元素都在B中,则A叫做B的子集,A⊆B或B⊇A(空集是任何集合的子集)。

2、交集:存在A、B两个集合,由既在A中又在B中的元素组成的集合。

A B,A B⊆A,A B⊆B,Ф B=Ф(空集与任何集合的交集是Ф)。

3、并集:存在A、B两个集合,由所有在A、B中的元素组成的集合。

A B,A B⊇A,A B⊇B,Ф B=B。

4、补集:存在A、B两个集合,且A⊆B,由在B当中但不在A中的元素组成的集合,叫A的补集,B叫全集。

记作AB或A CB, ABA=Ф,ABA=B五、数、数轴、区间、邻域1、数实数虚数: 规定i2= -1,i叫虚数单位,ii3332==-2、数轴:规定了原点、正方向和单位长度的直线。

3、区间知识归纳整理(1)闭区间a ≤x ≤b,x ∈[a, b] (2)开区间a< x< b, x ∈(a, b) (3)半开区间a ≤x< b, x ∈[a, b)a< x ≤b, x ∈(a, b](4)无限区间 x ≤a, x ∈(-∞, a]x ≥b, x ∈[ b, +∞) x ∈R, x ∈(-∞, +∞)4、邻域:以x = x 0为圆心,以δ> 0(δ为非常小的正数)为半径作圆,与数轴相交于A 、B 两点,x 0 -δ< x 0 < x 0 +δ叫x 0的δ邻域。

例1 已知A={x ∈ -2≤x< 3},B={x ∈ -1< x ≤5},求A B , A B 解:A 、B 集合中x 的取值范围在数轴表示如下所以A B={x ∈ -1< x< 3}, A B={x ∈ -2≤x ≤5} 例2 已知A 、B 为两非空集合,则A B=A 是A=B 的[ (2) ] (1)充分条件 (2)充分必要条件 (3)必要条件 (4)无关条件注:如果A 成立,这么B 成立,即“A ⇒B ”,这么条件A 是B 成立的充分条件;如要使B 成立,必须有条件A ,但惟独A 不一定能使B 成立,则称A 是B 成立的必要条件;如果“A ⇒B ”,又有“B ⇒A ”,则称条件A 是B 成立的充分必要条件。

高数微积分公式大全(考试必考)

高数微积分公式大全(考试必考)

高等数学微积分公式大全一、基本导数公式⑴()0c '= ⑵1x x μμμ-= ⑶()sin cos x x '= ⑷()cos sin x x '=- ⑸()2tan sec x x '= ⑹()2cot csc x x '=-⑺()sec sec tan x x x '=⋅ ⑻()csc csc cot x x x '=-⋅ ⑼()xxe e '= ⑽()ln xxa aa '= ⑾()1ln x x'=⑿()1log ln xax a'= ⒀()arcsin x '= ⒁()arccos x '=⒂()21arctan 1x x '=+ ⒃()21arc cot 1x x '=-+⒄()1x '=⒅'=二、导数的四则运算法则()u v u v '''±=± ()uv u v uv '''=+ 2u u v uv v v '''-⎛⎫= ⎪⎝⎭三、高阶导数的运算法则 (1)()()()()()()()n n n u x v x u x v x ±=±⎡⎤⎣⎦ (2)()()()()n n cu x cu x =⎡⎤⎣⎦(3)()()()()n n nu ax b a uax b +=+⎡⎤⎣⎦(4)()()()()()()()0nn n k k k n k u x v x c u x v x -=⋅=⎡⎤⎣⎦∑四、基本初等函数的n 阶导数公式 (1)()()!n nxn = (2)()()n ax b n ax b e a e ++=⋅ (3)()()ln n x x n a a a =(4)()()sin sin 2n n ax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (5) ()()cos cos 2n nax b a ax b n π⎛⎫+=++⋅⎡⎤ ⎪⎣⎦⎝⎭ (6)()()()11!1n n nn a n ax b ax b +⋅⎛⎫=- ⎪+⎝⎭+ (7) ()()()()()11!ln 1n n n na n axb ax b -⋅-+=-⎡⎤⎣⎦+五、微分公式与微分运算法则⑴()0d c = ⑵()1d x x dx μμμ-= ⑶()sin cos d x xdx =⑷()cos sin d x xdx =- ⑸()2tan sec d x xdx = ⑹()2cot csc d x xdx =-⑺()sec sec tan d x x xdx =⋅ ⑻()csc csc cot d x x xdx =-⋅⑼()x x d e e dx = ⑽()ln x xd a a adx = ⑾()1ln d x dx x=⑿()1logln xad dx x a =⒀()arcsin d x = ⒁()arccos d x =⒂()21arctan 1d x dx x =+ ⒃()21arc cot 1d x dx x=-+ 六、微分运算法则⑴()d u v du dv ±=± ⑵()d cu cdu = ⑶()d uv vdu udv =+ ⑷2u vdu udvd v v -⎛⎫= ⎪⎝⎭七、基本积分公式⑴kdx kx c =+⎰ ⑵11x x dx c μμμ+=++⎰ ⑶ln dx x c x =+⎰⑷ln xxa a dx c a=+⎰ ⑸x x e dx e c =+⎰ ⑹cos sin xdx x c =+⎰ ⑺sin cos xdx x c =-+⎰ ⑻221sec tan cos dx xdx x c x ==+⎰⎰⑼221csc cot sin xdx x c x ==-+⎰⎰⑽21arctan 1dx x c x =++⎰ ⑾arcsin x c =+八、补充积分公式tan ln cos xdx x c =-+⎰ cot ln sin xdx x c =+⎰ sec ln sec tan xdx x x c =++⎰ csc ln csc cot xdx x x c =-+⎰2211arctan x dx c a x a a=++⎰ 2211ln 2x adx c x a a x a-=+-+⎰arcsin xc a =+ln x c =+十、分部积分法公式⑴形如n ax x e dx ⎰,令n u x =,axdv e dx =形如sin n x xdx ⎰令nu x =,sin dv xdx =形如cos n x xdx ⎰令nu x =,cos dv xdx =⑵形如arctan n x xdx ⎰,令arctan u x =,ndv x dx =形如ln n x xdx ⎰,令ln u x =,ndv x dx =⑶形如sin ax e xdx ⎰,cos ax e xdx ⎰令,sin ,cos axu e x x =均可。

微积分大一考试必背知识点

微积分大一考试必背知识点

微积分大一考试必背知识点微积分是数学中重要的一个分支,是描述变化和运动的工具。

对于大一学习微积分的学生来说,掌握一些必备的知识点可以帮助他们更好地理解微积分的概念和应用。

下面是一些大一微积分考试中必背的知识点。

1. 无穷小与极限在微积分中,无穷小是一个基本概念。

对于函数f(x),当x趋向于某一点a时,如果f(x)的值趋近于0,那么f(x)就是无穷小。

极限是无穷小的重要概念,表示函数f(x)在某一点的值的趋近情况。

大一考试中,对于极限的求解是一个重点,学生需要了解极限的定义、性质和求解方法。

2. 导数与微分导数是微积分中的一个重要概念,表示函数在某一点上的变化率。

导数的求解是微积分的基本操作之一,对于大一学生来说,熟练掌握导数的计算方法是至关重要的。

此外,微分是导数的一个应用,表示函数在某一点上的线性近似。

在考试中,学生需要掌握导数和微分的定义、性质和计算方法。

3. 积分与不定积分积分是微积分的另一个重要概念,表示函数在某一区间上的累积效应。

不定积分是积分的一种形式,表示函数的原函数。

对于大一学生来说,了解积分和不定积分的定义、性质和计算方法是必须的。

在考试中,学生需要掌握积分和不定积分的基本性质和计算方法。

4. 微分方程微分方程是微积分的一个重要应用领域,用于描述变化和运动的规律。

对于大一学生来说,掌握解微分方程的方法是考试的一个重点。

学生需要了解一阶和二阶微分方程的基本概念和解法,并能够应用到实际问题中。

5. 泰勒展开与级数泰勒展开是微积分中的一个重要工具,用于将一个函数在某一点附近用无穷级数的形式表示。

对于大一学生来说,理解泰勒展开的思想和应用是必要的。

在考试中,学生需要掌握泰勒展开的定义和计算方法,并能够应用到函数的近似计算和函数性质的研究中。

6. 曲线的切线与法线切线和法线是微积分中常用的概念,用于描述曲线在某一点的特性。

对于大一学生来说,熟练掌握曲线的切线和法线的求解方法是必要的。

在考试中,学生需要了解切线和法线的定义和计算方法,并能够应用到曲线性质的研究中。

高数考前必看知识点

高数考前必看知识点

高数考前必看知识点
高数是大学中一门重要的基础课程,涉及到极限、导数、积分、微分方程等多个知识点。

以下是高数考前必看的一些知识点:
1. 函数与极限:函数的定义、性质和分类,极限的概念、性质和计算方法,无穷小量和无穷大量的概念和性质。

2. 导数与微分:导数的概念、几何意义和计算方法,微分的概念和计算方法,导数的应用(如求曲线的切线方程、速度、加速度等)。

3. 积分:积分的概念、性质和计算方法,不定积分和定积分的概念和计算方法,换元积分法和分部积分法,积分的应用(如求平面图形的面积、体积等)。

4. 微分方程:微分方程的概念和分类,一阶微分方程的求解方法(如分离变量法、常数变易法等),二阶线性微分方程的求解方法。

5. 向量与空间解析几何:向量的概念、运算和坐标表示,平面向量的线性相关性和向量组的极大无关组,空间直角坐标系和向量的坐标表示,平面和空间曲线的方程。

6. 多元函数微分学:多元函数的概念、极限和连续性,偏导数和全微分的概念和计算方法,多元函数的极值和条件极值。

7. 重积分:二重积分和三重积分的概念和计算方法,重积分的应用(如求曲面的面积、体积等)。

8. 曲线积分和曲面积分:第一类曲线积分和第一类曲面积分的概念和计算方法,第二类曲线积分和第二类曲面积分的概念和计算方法,格林公式和高斯公式。

以上是高数考前必看的一些知识点,当然,高数的知识点还有很多,需要根据自己的学习情况进行有针对性的复习。

同时,要注重做题,通过做题来加深对知识点的理解和掌握。

高数(微积分)复习word资料13页

高数(微积分)复习word资料13页

微积分期中复习第一章 函数与极限一、函数1、数轴、区间、领域2、函数的概念:设有两个变量x 和y ,如果当某非空集合D 内任取一个数值时, 变量y 按照一定的法则(对应规律)f ,都有唯一确定的值y 与之对应,则称y 是x 的函数。

记作()y f x =,其中变量x 称为自变量,它的取值范围D 称为函数的定义域;变量y 称为因变量,它的取值范围是函数的值域,记作()Z f ,即(){|(),}Z f y y f x x D ==∈。

函数的表示:函数的表示有三种。

公式法、表格法和图示法。

3、函数的几种特性函数的有界性、奇偶性、单调性和周期性。

4、初等函数(1) 基本初等函数① 幂函数:y x μ=(μ为任意实数), ② 指数函数:x y a =(0a >且1a ≠) ③ 对数函数:log a y x =(0a >且1a ≠)。

恒等式: log (0,1)a N a N a a =>≠ 换底公式: log log log c a c bb a=运算的性质:log log log a a a xy x y =+,log log log aa a yy x x=-。

④ 三角函数:sin ,cos ,tan ,cot ,sec ,csc y x y x y x y x y x y x ======。

⑤ 反三角函数:arcsin ,arccos ,arctan ,cot y x y x y x y arc x ====。

(2) 反函数: (3) 复合函数:5、常见的经济函数(1) 成本函数、收益函数和利润函数 (2) 需求函数与供给函数二、极限的概念与性质1、数列的极限 (1) 数列(2) 数列极限的定义 (3) 数列极限的几何意义 2、函数的极限(1) 当自变量x →∞时函数()f x 的极限 (2) 当自变量0x x →时函数()f x 的极限 (3) 左右极限3、函数极限的主要性质极限的唯一性、局部有界性、局部保号性。

微积分Ⅰ总复习 完整版

微积分Ⅰ总复习 完整版

无穷大: 绝对值无限增大的变量称为无穷大.
记作 lim f ( x ) (或 lim f ( x ) ).
x x0 x
无穷小与无穷大的关系
在同一过程中,无穷大的倒数为无穷小;恒不为 零的无穷小的倒数为无穷大.
无穷小的运算性质
定理1 在同一过程中,有限个无穷小的代数和 仍是无穷小.
un为常数
un
n 1

un为函数 un ( x )
常数项级数
一 般 项 级 数
在收敛 条件下
取 x x0
函数项级数
正 项 级 数
任 意 项 级 数
级数与数 相互转化
收 敛 半 径 R
幂级数 泰勒展开式
R( x ) 0
三角级数 傅氏展开式
满足狄 氏条件
泰勒级数 数或函数
傅氏级数
函 数

a 等式 x n a 都成立,那末就称常数 是数列x n a 的极限,或者称数列x n 收敛于 ,记为
lim x n a , 或 x n a ( n ).
n
" N "定义
0, N 0, 使n N时, 恒有 xn a .
定义 2



lim y 0
x x0
lim f ( x ) f ( x 0 )
间断点定义
左右连续
在区间[a,b] 上连续 非初等函数 的连续性
连续的 充要条件
连续函数的 运算性质 初等函数 的连续性
第一类 第二类 可跳 去跃 间间 断断 点点 无振 穷荡 间间 断断 点点
连续函数 的 性 质
关 dy y dy y dx y dy o( x ) 系 dx

大学高等数学第二册复习资料

大学高等数学第二册复习资料

大学高等数学第二册复习资料第一章一元函数微分学1. 函数的极限1.1 无穷大与无穷小在微积分中,我们常常需要研究函数在某一点附近的变化情况。

为此,引入了极限的概念。

在这一小节中,我们将学习无穷大与无穷小的定义以及它们之间的关系。

1.2 极限的定义极限的定义是微积分的基础,我们通过一些具体的例子来介绍极限的概念和求解方法。

1.3 一些重要的极限在微积分的应用中,有一些特殊的极限需要我们掌握。

这些极限在求解一些复杂问题时经常会出现,并且在证明一些定理时也起到关键作用。

2. 导数与微分2.1 导数的概念导数是一元函数微分学中的重要概念,它描述了函数在某一点的变化率。

2.2 导数的计算我们将介绍一些计算导数的方法,例如使用定义计算导数、使用基本导数公式以及利用导数的运算法则等。

2.3 高阶导数和隐函数求导在实际问题中,我们常常需要求解高阶导数或者对隐函数进行求导。

这些都是导数计算的一些扩展应用。

3. 微分学的基本定理与应用3.1 微分学的基本定理微分学的基本定理是微积分中的一些重要定理,它们建立了微积分的基础和框架。

3.2 微分学的应用微积分的应用非常广泛,例如在物理学、工程学、经济学等领域,都会用到微积分的相关概念和方法。

第二章一元函数积分学1. 不定积分与积分的定义1.1 不定积分的概念不定积分是微积分的重要内容,它是导数运算的逆运算。

1.2 积分的定义与性质我们将介绍积分的几何意义、定义和一些基本性质,例如积分的线性性、积分中值定理等。

2. 定积分2.1 定积分的概念定积分是微积分中的重要工具,在实际问题中有着广泛的应用。

2.2 定积分的计算我们将介绍一些定积分的计算方法,例如分部积分法、换元积分法、定积分的性质等。

2.3 定积分的应用定积分在几何学、物理学等领域有着广泛的应用,例如计算曲线的长度、面积等。

3. 微积分基本定理与应用3.1 微积分基本定理微积分基本定理是微积分中的重要定理,它将微积分的导数和积分联系起来。

高数复习知识点及公式

高数复习知识点及公式

高数复习知识点及公式一、知识点1、 求直线方程和平面方程2、 求条件极值3、 二重积分4、 曲线积分(弧长积分、坐标积分)5、 曲面积分6、 格林公式7、 高斯公式→空间闭曲面 ※8、 幂级数(求收敛半径、判断正项级数收敛性) 9、 傅里叶级数二、公式空间解析几何和向量代数:。

代表平行六面体的体积为锐角时,向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。

是向量在轴上的投影:点的距离:空间ααθθθϕϕ,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(2222222212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a kj ib ac b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u j z z y y x x M Md zyx z y xzy xzyxz y xzy x z y x zz y y x x z z y y x x u u⋅⨯==⋅⨯=⨯=⋅==⨯=++⋅++++=++=⋅=⋅+=+=-+-+-==(马鞍面)双叶双曲面:单叶双曲面:、双曲面:同号)(、抛物面:、椭球面:二次曲面:参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程:113,,22211};,,{,1302),,(},,,{0)()()(1222222222222222222220000002220000000000=+-=-+=+=++⎪⎩⎪⎨⎧+=+=+===-=-=-+++++==++=+++==-+-+-cz b y a x c z b y a x q p z q y p x c z b y a x ptz z nty y m tx x p n m s t p z z n y y m x x C B A DCz By Ax d c zb y a x D Cz By Ax z y x M C B A n z z C y y B x x A多元函数微分法及应用zy z x y x y x y x y x F F y zF F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy yvdx x v dv dy y u dx x u du y x v v y x u u xvv z x u u z x z y x v y x u f z tvv z t u u z dt dz t v t u f z y y x f x y x f dz z dz zu dy y u dx x u du dy y z dx x z dz -=∂∂-=∂∂=⋅-∂∂-∂∂=-==∂∂+∂∂=∂∂+∂∂===∂∂⋅∂∂+∂∂⋅∂∂=∂∂=∂∂⋅∂∂+∂∂⋅∂∂==∆+∆=≈∆∂∂+∂∂+∂∂=∂∂+∂∂=, , 隐函数+, , 隐函数隐函数的求导公式: 时,,当 :多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22),(),(1),(),(1),(),(1),(),(1),(),(0),,,(0),,,(y u G F J y v v y G F J y u x u G F J x v v x G F J x u G G F F vG uG v FuFv u G F J v u y x G v u y x F vu v u ∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂∂∂⋅-=∂∂=∂∂∂∂∂∂∂∂=∂∂=⎩⎨⎧== 隐函数方程组:微分法在几何上的应用:),,(),,(),,(30))(,,())(,,())(,,(2)},,(),,,(),,,({1),,(0),,(},,{,0),,(0),,(0))(())(())(()()()(),,()()()(000000000000000000000000000000000000000000000000000z y x F z z z y x F y y z y x F x x z z z y x F y y z y x F x x z y x F z y x F z y x F z y x F n z y x M z y x F G G F F G G F F G G F F T z y x G z y x F z z t y y t x x t M t z z t y y t x x z y x M t z t y t x z y x z y x z y x yx yx x z x z z y z y -=-=-=-+-+-==⎪⎩⎪⎨⎧====-'+-'+-''-='-='-⎪⎩⎪⎨⎧===、过此点的法线方程::、过此点的切平面方程、过此点的法向量:,则:上一点曲面则切向量若空间曲线方程为:处的法平面方程:在点处的切线方程:在点空间曲线ωψϕωψϕωψϕ方向导数与梯度:上的投影。

高等数学知识点总结

高等数学知识点总结

高等数学知识点总结高等数学知识点总结(上)一、微积分微积分是数学中的一个重要分支,包括微分和积分两部分。

微分是研究函数变化率和极值,积分是求解曲线下面的面积。

1.导数和微分导数是函数变化率的衡量指标,定义为函数在一点处的切线斜率。

微分是导数的微小增量,通常用dx来表示。

常见的微分公式:(1)(x^n)' = nx^(n-1)(2)(sinx)’=cosx(3)(cosx)’=-sinx(4)(ex)’=ex2.微分应用微分在科学工程中的应用非常广泛,如曲线的近似计算、变化率的分析和优化问题的求解等。

常见的微分应用题:(1)求解函数在某个点处的导数;(2)求解曲线y=f(x)在某一点x=x0处的切线方程;(3)求解函数极值的位置;(4)求解函数的最大值和最小值。

3.积分积分是微积分的另一大分支,通常被用来求解曲线下的面积。

三种积分:(1)定积分(2)不定积分(3)曲线积分常见的定积分计算方法:(1)换元法(2)分部积分法(3)长条法4.积分应用积分在工程科学中的应用非常广泛,如求解曲线下的面积、物理量的计算、概率分布的求解等。

常见的积分应用题:(1)求解曲线下的面积;(2)求解物理量的分布规律;(3)求解概率分布函数。

二、数学分析数学分析是研究实数域函数极限、连续、可导性以及积分的方法和应用的分支。

可分为实数的函数分析和向量的函数分析两部分。

1.实数的函数分析实数函数的极限,连续性以及可导性是实数的函数分析中研究的重点。

常见的函数分析公式:(1)函数极限的定义(2)连续函数的定义(3)可导函数的定义2.向量的函数分析向量的函数分析是研究向量值函数的极限、连续、可导性以及曲线积分的方法和应用。

常见的向量的函数分析公式:(1)向量函数的极限(2)向量函数的连续性(3)向量函数的导数(4)向量函数的曲线积分3.数列和级数数列和级数是数学分析中的重要概念,常用于求解无限积分与求和等问题。

常见的数列公式:(1)数列极限的定义(2)数列序列收敛定理(3)调和数列发散定理常见的级数公式:(1)级数收敛的定义(2)级数收敛和发散判定标准(3)比值判别法和根值判别法三、线性代数线性代数是数学中的一个重要分支,主要研究向量、矩阵、行列式和线性方程组等内容。

高等数学微积分知识整理

高等数学微积分知识整理

f -1 f f f n nn n高等数学微积分知识整理第一章 极限与连续一、函数1、函数的定义与要素(定义域、对应法则;函数相等的条件)2、函数的性质:单调性,奇偶性,周期性,有界性 *单调性的定义(以递增为例):∀x 1 , x 2 ∈ D f ,若x 1<x 2时f (x 1 ) ≤ f (x )在D f 上严格单调递增。

f (x 2 ),则f (x )在D f 上单调递增;将≤ 改为<,则*有界的定义: ∃M >0,对于∀x ∈ A ⊆ D f ,都有| f (x ) |≤ M ,则f (x )在A 上有界。

(f (x )≥m ∈R ,则 f (x )下有界;反之则上有界。

只有既上有界又下有界的函数才是有界函数。

)3、函数的运算:四则运算、复合运算、反函数*题型:判断某个函数由哪些基本初等函数复合而成。

*反函数存在的可能情况:①y 与 x 一一对应;②f (x )是某区间上的严格单调函数 (反函数的单调性与原来的函数相同)* D = R ;当x ∈ D 时,f -1 ( f (x )) = x ;当x ∈ R 时,f ( f -1 (x )) = x 。

4、初等函数:包括 6 大基本初等函数(常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数)以及它们的有限次四则、复合运算构成的函数。

二、数列的极限1、数列的定义及表示方法2、数列的性质:单调性、有界性3、数列极限的定义:ε-N 语言(存在性命题要学会寻找充分条件,即增加对 N 的限制,从而找到 N ;绝对值不等式与不等式放缩也很重要)4、极限的四则运算5、无穷小量的性质(1) 若lim a = A ,则{a - A }是无穷小量。

(一种证明极限的方法) n →∞(2)有限个无穷小量相加、相乘还是无穷小量。

(3)无穷小量乘以有界量还是无穷小量。

6、收敛数列的性质 (1) 收敛数列必然有界 (2) 收敛数列的任一子列与该数列收敛于同一极限。

大学高数复习资料大全

大学高数复习资料大全

高等数学第一章 函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★)(){},|U a x x a δδ=-<(){},|0U a x x a δδ=<-<第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞= 【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >, ∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>, ∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的;(∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第五节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<()()()()000lim 00x x f x g x f x g x →⎧⎪⎪⎪=∞⎨⎪⎪⎪⎩()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311limlim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点倘若运用罗比达法则求解(详见第三章第二节):解:()()0233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦ 【题型示例】求值:93lim 23--→x x x【求解示例】36x →===第六节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★) 第一个重要极限:1sin lim 0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim0=→x x x 0000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===⎛⎫⎪⎝⎭(特别地,000sin()lim1x x x x x x →-=-)○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x ee e e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫⎪+⎝⎭====第七节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★)1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1UU U U U U U e +- 2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→ 【求解示例】()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim,0,000020=++=+⋅+=++⋅+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为第八节 函数的连续性○函数连续的定义(★)()()()000lim lim x x x x f x f x f x -+→→==○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=x a e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数?【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第九节 闭区间上连续函数的性质 ○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续;2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0fg C ξξ--=(10<<ξ) 4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=b ax e x f x1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩ ∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()()1y f a x a f a -=--' 第二节 函数的和(差)、积与商的求导法则○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数()x f1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D上单调、可导,且()0≠'x f ;∴()()11fx f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】(22arcsi y ex a e e e ''='⎛⎫' ⎪+=⎝⎛⎫⎪ =⎝⎭=解:⎛ ⎝第四节 高阶导数 ○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ()()()()()2311121y x x --'⎡⎤'''=-⋅+=-⋅-⋅+⎣⎦……()1(1)(1)(1)nn n y n x --=-⋅-⋅+!第五节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★) 【题型示例】试求:方程ye x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由ye x y +=两边对x 求导即()y y x e '''=+化简得1yy e y ''=+⋅∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''= 2.()22dy d y dx dxt ϕ'⎛⎫⎪⎝⎭=' 第六节 变化率问题举例及相关变化率(不作要求)第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★) ()dx x f dy ⋅'=第三章 中值定理与导数的应用第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★) 【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈, 使得()()cos sin 0ff ξξξξ'+=成立【证明示例】1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导;2.又∵()()00sin00f ϕ==()()sin 0f ϕπππ== 即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,xe e x >⋅ 【证明示例】1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立,又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-,化简得x e e x >⋅,即证得:当1x >时,xe e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +< 【证明示例】1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+;2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立,化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,xe e x >⋅第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件 A .属于两大基本不定型(0,0∞∞)且满足条件,则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】()10000201ln ln lim ln lim lim lim 111lim 0x x L x x x x x x x x x x x x x a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解: (一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭【求解示例】200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解:()()()()000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法)【题型示例】求值:0lim xx x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】()()()()()1000000lim ln ln 10ln cos sin cos sin ,ln ,ln cos sin ln 0limln limln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x xx x L x x yy x x x x y x x y xx x y x y xx x x x x x x y e e e e→→→'→→→→+=+=+→='+⎡⎤--⎣⎦====++'===解:令两边取对数得对求时的极限,从而可得⑸0∞型(对数求极限法) 【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】()()tan 00200020*******,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln lim limlim 1sec 1tan tan tan sin sin lim lim li xx x x L x x x L x y y x x x y x y x x x xx x x xx x x x x →→∞∞'→→→'→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫-⎪ ⎪⎝⎭⎝⎭'==='解:令两边取对数得对求时的极限,00lim ln ln 002sin cos m 0,1lim =lim 1x x yy x x x xy e e e →→→→⋅====从而可得○运用罗比达法则进行极限运算的基本思路(★★)00001∞⎧⎪∞-∞−−→←−−⋅∞←−−⎨∞⎪∞⎩∞(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★) 【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数f x 的单调递增区间为,1,2,-∞+∞; 单调递减区间为()1,2【题型示例】证明:当0x >时,1xe x >+ 【证明示例】1.(构建辅助函数)设()1x x e x ϕ=--,(0x >)2.()10xx e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1xe x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩3.(四行表)x(,0)-∞ 0(0,1) 1(1,2) 2(2,)+∞y '-++- y '' ++--y1 (1,3) 5 4.⑴函数13y x x =+-单调递增区间为(0,1),(1,2)单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸;⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],ab 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值 【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= .(三行表)x1- ()1,1-1 (]1,3()f x ' 0+-()f x极小值极大值4.又∵12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====- 第六节 函数图形的描绘(不作要求) 第七节 曲率(不作要求)第八节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质 ○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★)()()()()1212k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ 第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰【题型示例】求221dx a x +⎰【求解示例】222211111arctan 11x x dx dx d Ca x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求【求解示例】()()121212x x C=+=+=○第二类换元法(去根式)(★★)(()dx x f dy ⋅'=的正向应用)⑴对于一次根式(0,a b R ≠∈):t =,于是2t b x a-=,则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<),于是arctan xt a=,则原式可化为sec a t ;⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsin xt a=,则原式可化为cos a t ;bsec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ;【题型示例】求(一次根式) 【求解示例】2221t x t dx tdttdt dt t C Ct =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】()()2sin ()2222arcsincos 22cos 1cos 221sin 2sin cos 222x a t t xt adx a ta a tdt t dta a t t C t t t C ππ=-<<==−−−−−−→=+⎛⎫=++=++ ⎪⎝⎭⎰⎰第三节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=) ⑶使用分部积分公式:udv uv vdu =-⎰⎰⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果); b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰【求解示例】()()222222222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C⋅===-=-⋅=-⋅=-+=-++⎰⎰⎰⎰⎰⎰⎰解:【题型示例】求sin x e xdx ⋅⎰【求解示例】()()()()sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x xx x x x x x x x x x e xdx e d x e x xd ee x e xdx e x e d x e x e x xd e e x e x e xdx⋅=-=-+=-+=-+=-+-=-+-⎰⎰⎰⎰⎰⎰⎰解:()sin cos sin sin x x x x e xdx e x e x xd e ⋅=-+-⎰⎰即:∴()1sin sin cos 2xxe xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分 ○有理函数(★)设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<);即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m =-22b c ax bx c a x x a a ⎛⎫++=++ ⎪⎝⎭则参数,b cp q a a ==⑵则设有理函数()()P x Q x 的分拆和式为:()()()()()()122k lP x P x P x Q x x a x px q =+-++其中()()()()1122...k kkP x A A A x a x a x a x a =+++----()()()()2112222222...ll llP x M x N M x N x px q x px q x px q M x N x px q ++=++++++++++++参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】()()()221111111111ln 112x x x x dx dx x dx x x x xdx dx dx x x x Cx +-++⎛⎫==-+ ⎪+++⎝⎭=-+=-++++⎰⎰⎰⎰⎰⎰第五节 积分表的使用(不作要求)第五章 定积分极其应用第一节 定积分的概念与性质 ○定积分的定义(★)()()01lim nbiiai f x dx f x I λξ→==∆=∑⎰(()f x 称为被积函数,()f x dx 称为被积表达式,x则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★)⑴()()b baaf x dx f u du =⎰⎰ ⑵()0a af x dx =⎰ ⑶()()b ba akf x dx k f x dx =⎡⎤⎣⎦⎰⎰⑷(线性性质)()()()()1212b b ba a a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ ⑸(积分区间的可加性)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0baf x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b baaf x dxg x dx ≤⎰⎰;(推论二)()()b baaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求) 第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则()()()baf x dx F b F a =-⎰○变限积分的导数公式(★★★)(上上导―下下导)()()()()()()()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎡⎤⎡⎤⎣⎦⎣⎦⎰ 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】()2211cos cos 2002lim lim 解:t t x x x L x d e dt e dt dx x x--'→→='⎰⎰()()()()2222221cos cos000cos 0cos cos 0cos 010sin sin limlim 22sin lim 2cos sin 2sin cos lim21lim sin cos 2sin cos 21122xxx x xL x xxx x x e ex x e xxdx e dx x x ex ex xe x x x x e e---→→-'→--→-→-⋅-⋅-⋅==⋅='⋅+⋅⋅=⎡⎤=+⋅⎣⎦=⋅=第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)()()()()b ba a f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 【题型示例】求20121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足: a .,αβ∃,使得()(),a b ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续 则:()()()baf x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰。

《高等数学(一)微积分》讲义

《高等数学(一)微积分》讲义
f −1 : f (D) → D
5. 复合函数
给定函数链 f : D1 → f (D1) g : D → g(D) ⊂ D1
则复合函数为 f o g : D → f [g(D) ]
6. 初等函数 由基本初等函数经有限次四则运算与复合而成的由一个表达式表示的函
数。
4/69
二、 极限 (1.概念回顾 2、极限的求法,)
=
lim
x→π
1 cos x
sin x
-2 ⋅ 2(π

2 x)=
lim
x→π
1 -4 sin
cos x
x(π − 2x)
2
2
2
=
lim
x→π
1 -4 sin
x

cos
lxi→mπ(π −
2xx )=
1 -4
lim
x→π

sin −2
x =

1 8
2
2
2
13/69
注:使用洛必达法则必须判断所求的极限是分式型的未定式 ∞ 、 0 。 ∞0
例 5:
求 lim x→∞
x+5 x2 − 9

解:
lim
x→∞
x+5 x2 − 9
=
lim
x→∞
1 x
+
5 x2
1−
9 x2
=
1 lim( x→∞ x
+
5 x2
)
=
0
=
0.
lim(1 −
x→∞
9 x2
)
1
知识点:设a0 ≠ 0, b0 ≠ 0, m, n ∈ N ,

(完整版)微积分复习资料

(完整版)微积分复习资料

基本知识复习一、 不定积分1. 不定积分概念,第一换元积分法(1) 原函数与不定积分概念设函数()F x 与()f x 在区间(),a b 内有定义,对任意的(),x a b ∈,有()()'F x f x =或()()dF x f x dx =,就称()F x 是()f x 在(),a b 内的一个原函数。

如果()F x 是函数()f x 的一个原函数,称()f x 的原函数全体为()f x 的不定积分,记作()(),f x dx F x C =+⎰(2) 不定积分得基本性质1.()()df x dx f x dx=⎰2。

()()'F x dx F x C =+⎰ 3。

()()()().Af x Bg x dx A f x dx B g x dx +=+⎡⎤⎣⎦⎰⎰⎰(3)基本不定积分公式表一()()122222(1)2)1,13ln C,x (4)arctan ,1(5)arcsin ,(6)cos sin ,(7)sin cos ,(8)sec tan ,cos (9)csc cot ,sin (10)sec t kdx kx C k x x dx C dx x dx x C x x C xdx x C xdx x C dx xdx x C x dxxdx x C x x μμμμ+=+=+≠-+=+=++=+=+=-+==+==-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰是常数,(1()22an sec ,(11)csc cot csc ,(12),ln (13),(14),1(15),1(16).xxxdx x C x xdx x C a a dx C ashxdx chx C chxdx shx C dx thx C ch x dx cthx C sh x =+=-+=+=+=+=+=-+⎰⎰⎰⎰⎰⎰⎰(3) 第一换元积分法(凑微分法)设()f u 具有原函数, ()u x ϕ=可导,则有换元公式()()()()'.u x f x x dx f u du ϕϕϕ=⎡⎤=⎡⎤⎣⎦⎣⎦⎰⎰2. 第二换元积分法,分部积分法(1) 第二换元积分法设()x t ψ=是单调的、可导的函数,并且()'0t ψ≠.又设()()'f t t ψψ⎡⎤⎣⎦具有原函数,则有换元公式()()()()1',t x f x dx f t t dt ψψψ-=⎡⎤=⎡⎤⎣⎦⎣⎦⎰⎰其中()1x ψ-是()x t ψ=的反函数.(2) 分部积分法设函数()u u x =及()v v x =具有连续导数,那么,()''',uv u v uv =+移项,得 ()'''.uv uv u v =-对这个等式两边求不定积分,得''.uv dx uv u vdx =-⎰⎰这个公式称为分部积分公式.它也可以写成以下形式:.udv uv vdu =-⎰⎰(3) 基本积分公式表二(2222(17)tan ln cos )cot ln sin ,sec ln sec tan C,(20)csc ln csc cot ,1(21)arctan ,1(22)ln ,2(23)arcsin ,(24)ln ,(2xdx x C xdx x C xdx x xdx x x C dx x C a x a a dx x adx C x a a x a xC a x C =-+=+=++=-+=++-=+-+=+=++⎰⎰⎰⎰⎰⎰,(18(19)5)ln .x C =+ (3)有理函数的积分,三角函数有理式的积分,某些简单无理式的积分一、有理函数的积分 两个多项式的商()()P x Q x 称为有理函数,又称为有理分式.我们总假定分子多项式()P x 与分母多项式()Q x 之间是没有公因式的.当分子多项式()P x 的次数小于分母多项式()Q x 的次数时,称这有理函数为真分式,否则称为假分式.利用多项式的除法,总可以将一个假分式化成一个多项式与一个真分式之和的形式,由于多项式的积分容易求,故我们将重点讨论真分式的积分方法.对于真分式()()n m P x Q x ,首先将()m Q x 在实数范围内进行因式分解,分解的结果不外乎两种类型:一种是()kx a -,另外一种是()2lx px q ++,其中,k l 是正整数且240p q -<;其次,根据因式分解的结果,将真分式拆成若干个分式之和.具体的做法是:若()m Q x 分解后含有因式()kx a -,则和式中对应地含有以下k 个分式之和:()()()122,k kA A A x a x a x a +++---L 其中:1,,k A A L 为待定常数.若()m Q x 分解后含有因式()2lx px q ++,则和式中对应地含有以下l 个分式之和:()()()11222222,l l l M x N M x N M x N x px q x px q x px q ++++++++++++L 其中:(),1,2,,i i M N i l =L 为待定常数.以上这些常数可通过待定系数法来确定.上述步骤称为把真分式化为部分分式之和,所以,有理函数的积分最终归结为部分分式的积分.二、可化为有理函数的积分举例 例4 求()1sin .sin 1cos xdx x x ++⎰解 由三角函数知道,sin x 与cos x 都可以用tan2x的有理式表示,即 222222222tan 2tan22sin 2sin cos ,22sec 1tan 221tan 1tan 22cos cos sin .22sec 1tan 22x x x x x x xx xx x x x x ===+--=-==+如果作变换()tan2xu x ππ=-<<,那么 22221sin ,cos ,11u u x x u u -==++ 而2arctan ,x u =从而22.1dx du u =+ 于是()22222221sin sin 1cos 2211121111112212ln 2211tan tan ln tan .42222xdx x x u du u u u u u u u du u u u u C x x xC ++⎛⎫+ ⎪++⎝⎭=⎛⎫-+ ⎪++⎝⎭⎛⎫=++ ⎪⎝⎭⎛⎫=+++ ⎪⎝⎭=+++⎰⎰⎰例5求. 解u =,于是21,2,x u dx udu =+=从而所求积分为()222222111212arctan 12.u u dx udu dux u u du u u C u C =⋅=++⎛⎫=-=-+ ⎪+⎝⎭=+⎰⎰⎰⎰ 例6求解u =,于是322,3,x u dx u du =-=从而所求积分为223113113ln 13ln 1.2u duu u duu u u u C C =+⎛⎫=-+ ⎪+⎝⎭⎛⎫=-+++=+ ⎪⎝⎭⎰⎰例7 求解 设6x t =,于是56,dx t dt =从而所求积分为()()52223266111616arctan 16arctan .t t dt dt t t tdt t t C t C ==++⎛⎫=-=-+ ⎪+⎝⎭=+⎰⎰⎰例8求.解t =,于是()2222112,,,11x tdtt x dx x t t +===---从而所求积分为 ()()()22222222*********ln 1122ln 1ln 12ln 1ln .t t t t dt dtt t t dt t Ct t t t t C x C -=-⋅=----⎛⎫=-+=--+ ⎪-+⎝⎭=-++--+⎫=-++⎪⎪⎭⎰⎰⎰二、 定积分(1) 定积分概念,微积分基本定理,定积分得基本性质 (1) 定积分的概念1。

高等数学-一-微积分-考试必过归纳总结-要点重点

高等数学-一-微积分-考试必过归纳总结-要点重点

高等数学(一)微积分一元函数微分学( 第三章、第四章)一元函数积分学(第五章)第一章函数及其图形第二章极限和连续多元函数微积分(第六章)高数一串讲教材所讲主要内容如下:全书内容可粗分为以下三大部分:第一部分 函数极限与连续〔包括级数〕 第二部分 导数及其应用〔包括多元函数〕第三部分 积分计算及其应用 〔包括二重积分和方程〕第一部分 函数极限与连续一、关于函数概念及特性的常见考试题型: 1、求函数的自然定义域。

2、判断函数的有界性、周期性、单调性、奇偶性。

3、求反函数。

4、求复合函数的表达式。

二、 极限与连续 常见考试题型:1、求函数或数列的极限。

2、考察分段函数在分段点处极限是否存在, 函数是否连续。

3、函数的连续与间断。

4、求函数的渐进线。

5、级数的性质及等比级数。

6、零点定理。

每年必有的考点第三部分导数微分及其应用常见考试题型:1、导数的几何意义;2、讨论分段函数分段点的连续性与可导性。

3、求函数的导数:复合函数求导,隐含数求导,参数方程求导;4、讨论函数的单调性和凹凸性,求曲线的拐点;5、求闭区间上连续函数的最值;6、实际问题求最值。

每年必有的考点第四部分积分计算及应用考试常见题型1、不定积分的概念与计算;2、定积分的计算;3、定积分计算平面图形的面积;4、定积分计算旋转体的体积;5、无穷限反常积分6、二重积分7、微分方程最近几年考题中,积分计算的题目较多,而且也有一定的难度。

第一部分函数极限与连续一、关于函数概念及特性的常见考试题型:1、求函数的自然定义域。

2、判断函数的有界性、周期性、单调性、奇偶性。

3、求反函数。

4、求复合函数的表达式。

例1..函数___________.知识点:定义域约定函数的定义域是使函数的解析表达式有意义的一切实数所构成的数集。

解 要使根式函数有意义必须满足23log log 0x ≥,要使23log log 0x ≥成立, 只有3log 1x ≥,即3x ≥.注:我们所求定义域的函数一般都是初等函数,而初等函数:由基本初等函数,经过有限次的+-×÷运算及有限次的复合得到的函数称为初等函数。

(完整word版)高等数学复习资料大全

(完整word版)高等数学复习资料大全

(完整word版)高等数学复习资料大全《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-x x x x x x x x (等价小量与洛必达) 2.已知2030) (6lim 0)(6sin limxx f x x xf x x x +=+>->-,求解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>- 解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim 22=?>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a 解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-?x xt x edte x (洛必达与微积分性质)第二讲导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导)会求平面曲线的切线与法线方程2.微分中值定理理解Roll 、Lagrange 、Cauchy 、Taylor 定理会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图会计算曲率(半径)二、题型与解法A.导数微分的计算基本公式、四则、复合、高阶、隐函数、参数方程求导1.??=+-==52arctan )(2te ty y t x x y y 由决定,求dxdy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=13.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。

微积分复习要点

微积分复习要点

微积分复习要点第一章函数一、内容提要1、函数(1)定义:设有两个变量x与y。

当变量x在给定的某一变域中任意取定一值时,另一变量y就按某一确定的法则有一个确定值与x的这个值相对应,那末变量y称为变量x的函数,记作y=f(x)。

(2)定义中两要素:定义域与对应法则。

定义域:自变量x的取值范围。

对应法则:自变量x与因变量y的对应规则。

(3)注意两点:①两个函数只有当它们的定义域和对应法则都相同时,才能说它们是相同的函数。

②在不同区间上用不同数学表达式来表示的函数称为分段函数。

分段函数是一个函数而不是几个函数。

2、反函数(1)定义:设已知y是x的函数y=f(x),如果将y当作自变量,x 当函数,则由关系式y=f(x)所确定的函数x=ϕ(y)就叫做函数f(x)的反函数,由于通常总把自变量记作x,函数记作y,因此习惯上称y=ϕ(x)为函数f(x)的反函数,记作f -1(x),而f(x)叫做直接函数。

(2)附注:反函数的定义域与直接函数的值域相同。

3隐函数定义:凡能够由方程F(x,y)=0确定的函数关系,称为隐函数。

4、函数的简单性质有界性,奇偶性,单调性与周期性。

5、复合函数(1)定义:设y是u的函数y=f(u),而u又是x的函数u=ϕ(x),而且当x在某一区间I取值时相应的u值可使y有定义,则称y是x 的一个定义于区间I上的复合函数,记作y=f[ϕ(x)]。

(2)几个注意的问题:①复合函数可以简单地理解为函数的函数。

有了复合函数的概念,可以把一个较复杂的函数分解成几个简单的函数。

例如,函数y=sinx2可以看作由函数y=sinu和u=x2复合运算而产生的。

②要使复合函数y=f[ϕ(x)]有意义,必须满足函数u=ϕ(x)的值域包含在函数y=f(u)的定义域中。

6、基本初等函数与初等函数(1)基本初等函数幂函数、指数函数、对数函数、三角函数和反三角函数统称为基本初等函数。

(2)初等函数由基本初等函数与常数经过有限次的四则运算和复合构成的,并能用一个解析式表示的函数称为初等函数。

高数复习知识点

高数复习知识点

高等数学上册知识点一、 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数;4、 函数的连续性与间断点;(重点)函数)(x f 在0x 连续)()(lim 00x f x f xx =→第一类:左右极限均存在.间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在. 无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理(重点)、介值定理及其推论.(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f xx +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量1) 定义:若lim 0α=则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限:(重点)a) 1sin lim 0=→x x x b) e xx xx xx =+=++∞→→)11(lim )1(lim 15) 无穷小代换:(0→x )(重点)a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c)x e x ~1- (a x a x ln ~1-)d) x x ~)1ln(+ (axx a ln ~)1(log +)e)x x αα~1)1(-+二、 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率.3、 可导与连续的关系:4、 求导的方法1) 导数定义;(重点) 2) 基本公式; 3) 四则运算;4) 复合函数求导(链式法则);(重点) 5) 隐函数求导数;(重点) 6) 参数方程求导;(重点)7) 对数求导法. (重点) 5、 高阶导数1) 定义:⎪⎭⎫⎝⎛=dx dy dx d dx y d 22 2)Leibniz 公式:()∑=-=nk k n k k n n v u C uv 0)()()( (二) 微分1) 定义:)()()(00x o x A x f x x f y ∆+∆=-∆+=∆,其中A 与x ∆无关.2) 可微与可导的关系:可微⇔可导,且dx x f x x f dy )()(00'=∆'=三、 微分中值定理与导数的应用 (一) 中值定理1、 Rolle 定理:(重点)若函数)(x f 满足:1)],[)(b a C x f ∈; 2)),()(b a D x f ∈; 3))()(b f a f =;则0)(),,(='∈∃ξξf b a 使.2、 Lagrange 中值定理:若函数)(x f 满足:1)],[)(b a C x f ∈; 2)),()(b a D x f ∈;则))(()()(),,(a b f a f b f b a -'=-∈∃ξξ使.3、 Cauchy 中值定理:若函数)(),(x F x f 满足:1)],[)(),(b a C x F x f ∈; 2)),()(),(b a D x F x f ∈;3)),(,0)(b a x x F ∈≠'则)()()()()()(),,(ξξξF f a F b F a f b f b a ''=--∈∃使(二) 洛必达法则(重点) (三) T aylor 公式(不考) (四) 单调性及极值1、 单调性判别法:(重点)],[)(b a C x f ∈,),()(b a D x f ∈,则若0)(>'x f ,则)(x f 单调增加;则若0)(<'x f ,则)(x f 单调减少.2、 极值及其判定定理:a) 必要条件:)(x f 在0x 可导,若0x 为)(x f 的极值点,则0)(0='x f . b) 第一充分条件:(重点))(x f 在0x 的邻域内可导,且0)(0='x f ,c) 则①若当0x x <时,0)(>'x f ,当0x x >时,0)(<'x f ,则0x 为极大值点;②若当0x x <时,0)(<'x f ,当0x x >时,0)(>'x f ,则0x 为极小值点;③若在0x 的两侧)(x f '不变号,则0x 不是极值点.d) 第二充分条件:(重点))(x f 在0x 处二阶可导,且0)(0='x f ,0)(0≠''x f ,e) 则①若0)(0<''x f ,则0x 为极大值点;②若0)(0>''x f ,则0x 为极小值点.3、 凹凸性及其判断,拐点1))(x f 在区间I 上连续,若2)()()2(,,212121x f x f x x f I x x +<+∈∀,则称)(x f 在区间I 上的图形是凹的;若2)()()2( ,,212121x f x f x x f I x x +>+∈∀,则称)(x f 在区间I 上的图形是凸的.2)判定定理(重点):)(x f 在],[b a 上连续,在),(b a 上有一阶、二阶导数,则 a) 若0)(),,(>''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凹的;b) 若0)(),,(<''∈∀x f b a x ,则)(x f 在],[b a 上的图形是凸的.3)拐点:设)(x f y =在区间I 上连续,0x 是)(x f 的内点,如果曲线)(x f y =经过点))(,(00x f x 时,曲线的凹凸性改变了,则称点))(,(00x f x 为曲线的拐点.(五) 不等式证明1、 利用微分中值定理;2、 利用函数单调性;(重点)3、 利用极值(最值). (六) 方程根的讨论1、 连续函数的介值定理;2、 Rolle 定理;3、 函数的单调性;4、 极值、最值;5、 凹凸性. (七) 渐近线1、 铅直渐近线:∞=→)(lim x f ax ,则a x =为一条铅直渐近线; 2、 水平渐近线:b x f x =∞→)(lim ,则b y =为一条水平渐近线; 3、 斜渐近线:k xx f x =∞→)(lim b kx x f x =-∞→])([lim 存在,则b kx y +=为一条斜 渐近线.(八) 图形描绘四、 不定积分 (一) 概念和性质1、 原函数:在区间I 上,若函数)(x F 可导,且)()(x f x F =',则)(x F 称为)(x f 的一个原函数. (重点)2、 不定积分:在区间I 上,函数)(x f 的带有任意常数的原函数称为)(x f 在区间I 上的不定积分.3、 基本积分表(P188,13个公式);(重点)4、 性质(线性性).(二) 换元积分法(重点)1、 第一类换元法(凑微分):[])()(d )()]([x u du u f x x x f ϕϕϕ=⎰⎰='2、 第二类换元法(变量代换):[])(1d )()]([)(x t t t t f dx x f -='=⎰⎰ϕϕϕ(三) 分部积分法:⎰⎰-=vdu uv udv (重点)(四) 有理函数积分 1、“拆”;2、变量代换(三角代换、倒代换、根式代换等).五、 定积分 (一) 概念与性质:1、 定义:∑⎰=→∆=ni i i bax f dx x f 1)(lim )(ξλ2、 性质:(7条)性质7 (积分中值定理) 函数)(x f 在区间],[b a 上连续,则],[b a ∈∃ξ,使))(()(a b f dx x f ba-=⎰ξ (平均值:ab dx x f f ba-=⎰)()(ξ)(二) 微积分基本公式(N —L 公式)(重点)1、 变上限积分:设⎰=Φxadt t f x )()(,则)()(x f x =Φ'推广:)()]([)()]([)()()(x x f x x f dt t f dx d x x ααβββα'-'=⎰ 2、 N —L 公式:若)(x F 为)(x f 的一个原函数,则)()()(a F b F dx x f ba-=⎰(三) 换元法和分部积分(重点)1、 换元法:⎰⎰'=βαϕϕt t t f dx x f bad )()]([)(2、 分部积分法:[]⎰⎰-=babab a vdu uv udv (四) 反常积分1、 无穷积分:⎰⎰+∞→+∞=tat a dx x f dx x f )(lim )( ⎰⎰-∞→∞-=btt bdx x f dx x f )(lim)(⎰⎰⎰+∞∞-+∞∞-+=0)()()(dx x f dx x f dx x f2、 瑕积分:⎰⎰+→=btat ba dx x f dx x f )(lim )((a 为瑕点) ⎰⎰-→=tabt badx x f dx x f )(lim )((b 为瑕点)两个重要的反常积分:1) ⎪⎩⎪⎨⎧>-≤∞+=-∞+⎰1 ,11,d 1p p a p x x p a p 2) ⎪⎩⎪⎨⎧≥∞+<--=-=--⎰⎰1,1 ,1)()(d )(d 1q q q a b x b x a x x qb a q b a q六、 定积分的应用 (一) 平面图形的面积1、 直角坐标:⎰-=badx x f x fA )]()([12(重点)2、 极坐标:⎰-=βαθθϕθϕd A )]()([212122(二) 体积1、 旋转体体积:(重点)a)曲边梯形x b x a x x f y ,,),(===轴,绕x 轴旋转而成的旋转体的体积:⎰=bax dx x f V )(2πb)曲边梯形x b x a x x f y ,,),(===轴,绕y 轴旋转而成的旋转体的体积:⎰=bay dx x xf V )(2π (柱壳法)2、 平行截面面积已知的立体:⎰=badx x A V )((三) 弧长1、 直角坐标:[]⎰'+=badx x f s 2)(12、 参数方程:[][]⎰'+'=βαφϕdt t t s 22)()(3、 极坐标:[][]⎰'+=βαθθρθρd s 22)()(七、 微分方程 (一) 概念1、 微分方程:表示未知函数、未知函数的导数及自变量之间关系的方程. 阶:微分方程中所出现的未知函数的最高阶导数的阶数.2、 解:使微分方程成为恒等式的函数.通解:方程的解中含有任意的常数,且常数的个数与微分方程的阶数相同. 特解:确定了通解中的任意常数后得到的解.(二) 变量可分离的方程(重点)dx x f dy y g )()(=,两边积分⎰⎰=dx x f dy y g )()((三) 齐次型方程)(x y dx dy ϕ=,设x y u =,则dxdu x u dx dy +=; 或)(y x dy dx φ=,设y x v =,则dydv y v dy dx += (四) 一阶线性微分方程(重点))()(x Q y x P dxdy =+ 用常数变易法或用公式:⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C dx e x Q e y dx x P dx x P )()()( (五) 可降阶的高阶微分方程1、)()(x f y n =,两边积分n 次;2、),(y x f y '=''(不显含有y ),令p y =',则p y '='';3、),(y y f y '=''(不显含有x ),令p y =',则dy dp p y =''(六) 线性微分方程解的结构1、21,y y 是齐次线性方程的解,则2211y C y C +也是;2、21,y y 是齐次线性方程的线性无关的特解,则2211y C y C +是方程的通解;3、*2211y y C y C y ++=为非齐次方程的通解,其中21,y y 为对应齐次方程的线性无关的解,*y 非齐次方程的特解.(七) 常系数齐次线性微分方程(重点)二阶常系数齐次线性方程:0=+'+''qy y p y特征方程:02=++q pr r ,特征根: 21,r r(八) 常系数非齐次线性微分方程)(x f qy y p y =+'+''1、)()(x P e x f m x λ=(重点)设特解)(*x Q e x y m x k λ=,其中 ⎪⎪⎩⎪⎪⎨⎧=是重根是一个单根不是特征根, λ, λ, λk 210 2、()x x P x x P e x f n l x ωωλsin )(cos )()(+=设特解[]x x R x x R e x y m m x k ωωλsin )(cos )()2()1(*+=,其中 } ,max{n l m =,⎪⎩⎪⎨⎧++=是特征根不是特征根i i k ωλωλ ,1 ,0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲函数、连续与极限
一、理论要求
1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)
几类常见函数(复合、分段、反、隐、初等函数)
2.极限极限存在性与左右极限之间的关系
夹逼定理和单调有界定理
会用等价无穷小和罗必达法则求极限
3.连续函数连续(左、右连续)与间断
理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法
A.极限的求法(1)用定义求
(2)代入法(对连续函数,可用因式分解或有理化消除零因子)
(3)变量替换法
(4)两个重要极限法
(5)用夹逼定理和单调有界定理求
(6)等价无穷小量替换法
(7)洛必达法则与Taylor级数法
(8)其他(微积分性质,数列与级数的性质)
1.
(等价小量与洛必达)
2.
已知
(洛必达)3.
(重要极限)
4.已知a、b为正常数,
(变量替换)5.
解:令
6.
(变量替换)
7.已知在x=0连续,求a
解:令(连续性的概念)
三、补充习题(作业)
1.(洛必达)
2.(洛必达或Taylor)
第二讲导数、微分及其应用
一、理论要求
1.导数与微分导数与微分的概念、几何意义、物理意义
会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导)
会求平面曲线的切线与法线方程
2.微分中值定理理解Roll、Lagrange、Cauchy、Taylor定理
会用定理证明相关问题
3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图
会计算曲率(半径)
二、题型与解法
A.导数微分的计

基本公式、四则、复合、高阶、隐函数、参数方程求导
1.决定,求
2.决定,求
解:两边微分得x=0时,将x=0代入等式得y=1
3.决定,则
B.曲线切法线问题5.f(x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。

求f(x)在(6,f(6))处的切线方程。

解:需求,等式取x->0的极限有:f(1)=0
C.导数应用问题
6.已知,
,求点的性质。

解:令,故为极小值点。

7.,求单调区间与极值、凹凸区间与拐点、渐进线。

解:定义域
8.求函数的单调性与极值、渐进线。

解:,
D.幂级数展开问
题10.求
解:
=
E.不等式的证明
11.设,
证:1)令
2)令
F.中值定理问题
12.设函数具有三阶连续导数,且,
,求证:在(-1,1)上存在一点
证:
其中
将x=1,x=-1代入有
两式相减:
13.,求证:
证:


(关键:构造函数)三、补充习题(作业)
1.
2.曲线
3.
4.证明x>0时,
证:令
第一章:1、极限(夹逼准则)
2、连续(学会用定义证明一个函数连续,判断间断点类型)
第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续
2、求导法则(背)
3、求导公式也可以是微分公式
第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节)
2、洛必达法则
3、泰勒公式拉格朗日中值定理
4、曲线凹凸性、极值(高中学过,不需要过多复习)
5、曲率公式曲率半径
第四章、第五章:积分
不定积分:1、两类换元法 2、分部积分法(注意加C )
定积分: 1、定义 2、反常积分
第六章:定积分的应用
主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难
1、方向余弦
2、向量积
3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面
4、空间旋转面(柱面)。

相关文档
最新文档