蒙特卡罗方法 (Monte Carlo simulation)
蒙特卡洛(Monte Carlo)模拟法
当科学家们使用计算机来试图预测复杂的趋势和事件时, 他们通常应用一类需要长串的随机数的复杂计算。
设计这种用来预测复杂趋势和事件的数字模型越来越依赖于一种称为蒙特卡罗模似的统计手段, 而这种模拟进一步又要取决于可靠的无穷尽的随机数目来源。
蒙特卡罗模拟因摩纳哥著名的赌场而得名。
它能够帮助人们从数学上表述物理、化学、工程、经济学以及环境动力学中一些非常复杂的相互作用。
数学家们称这种表述为“模式”, 而当一种模式足够精确时, 他能产生与实际操作中对同一条件相同的反应。
但蒙特卡罗模拟有一个危险的缺陷: 如果必须输入一个模式中的随机数并不像设想的那样是随机数, 而却构成一些微妙的非随机模式, 那么整个的模拟(及其预测结果)都可能是错的。
最近, 由美国佐治亚大学的费伦博格博士作出的一分报告证明了最普遍用以产生随机数串的计算机程序中有5个在用于一个简单的模拟磁性晶体中原子行为的数学模型时出现错误。
科学家们发现, 出现这些错误的根源在于这5个程序产生的数串其实并不随机, 它们实际上隐藏了一些相互关系和样式, 这一点只是在这种微小的非随机性歪曲了晶体模型的已知特性时才表露出来。
贝尔实验室的里德博士告诫人们记住伟大的诺伊曼的忠告:“任何人如果相信计算机能够产生出真正的随机的数序组都是疯子。
”蒙特卡罗方法(MC)蒙特卡罗(Monte Carlo)方法:蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。
传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。
这也是我们采用该方法的原因。
蒙特卡罗方法的基本原理及思想如下:当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。
蒙特卡洛方法
蒙特卡洛方法1、蒙特卡洛方法的由来蒙特卡罗分析法(Monte Carlo method),又称为统计模拟法,是一种采用随机抽样(Random Sampling)统计来估算结果的计算方法。
由于计算结果的精确度很大程度上取决于抽取样本的数量,一般需要大量的样本数据,因此在没有计算机的时代并没有受到重视。
第二次世界大战时期,美国曼哈顿原子弹计划的主要科学家之一,匈牙利美藉数学家约翰·冯·诺伊曼(现代电子计算机创始人之一)在研究物质裂变时中子扩散的实验中采用了随机抽样统计的手法,因为当时随机数的想法来自掷色子及轮盘等赌博用具,因此他采用摩洛哥著名赌城蒙特卡罗来命名这种计算方法,为这种算法增加了一层神秘色彩。
蒙特卡罗方法提出的初衷是用于物理数值模拟问题, 后来随着计算机的快速发展, 这一方法很快在函数值极小化、计算几何、组合计数等方面得到应用, 于是它作为一种独立的方法被提出来, 并发展成为一门新兴的计算科学, 属于计算数学的一个分支。
如今MC 方法已是求解科学、工程和科学技术领域大量应用问题的常用数值方法。
2、蒙特卡洛方法的核心—随机数蒙特卡洛方法的基本理论就是通过对大量的随机数样本进行统计分析,从而得到我们所需要的变量。
因此蒙特卡洛方法的核心就是随机数,只有样本中的随机数具有随机性,所得到的变量值才具有可信性和科学性。
在连续型随机变量的分布中, 最基本的分布是[0, 1]区间上的均匀分布, 也称单位均匀分布。
由该分布抽取的简单子样ξ1,ξ2ξ3 ……称为随机数序列, 其中每一个体称为随机数, 有时称为标准随机数或真随机数, 独立性和均匀性是其必备的两个特点。
真随机数是数学上的抽象, 真随机数序列是不可预计的, 因而也不可能重复产生两个相同的真随机数序列。
真随机数只能用某些随机物理过程来产生, 如放射性衰变、电子设备的热噪音、宇宙射线的触发时间等。
实际使用的随机数通常都是采用某些数学公式产生的,称为伪随机数。
系统建模与仿真第12讲 Monte Carlo蒙特卡洛方法
Nicholas Metropolis (1915-1999)
Monte-Carlo, Monaco
引言(Introduction)
Monte Carlo模拟的应用: 自然现象的模拟: 宇宙射线在地球大气中的传输过程; 高能物理实验中的核相互作用过程; 实验探测器的模拟 数值分析: 利用Monte Carlo方法求积分
2
3.141528 3.141528 3.141509 3.141553 3.141506
3
3.141527 3.141521 3.141537 3.141527 3.141538
n
(i )2
si
i1
n 1
0.000012
0.0000032
s si / n
ua s t(0.683, n 1) 0.0000033
引言(Introduction)
Monte Carlo模拟在实际研究中的作用
引言(Introduction)
Monte Carlo模拟的步骤: 1. 根据欲研究的系统的性质,建立能够描述该系统特性的理 论模型,导出该模型的某些特征量的概率密度函数; 2. 从概率密度函数出发进行随机抽样,得到特征量的一些模 拟结果; 3. 对模拟结果进行分析总结,预言系统的某些特性。
k n 1
3.1415279
14
例1 在我方某前沿防守地域,敌人以一个炮排(含两 门火炮)为单位对我方进行干扰和破坏.为躲避我方 打击,敌方对其阵地进行了伪装并经常变换射击地 点.
经过长期观察发现,我方指挥所对敌方目标的指 示有50%是准确的,而我方火力单位,在指示正确 时,有1/3的射击效果能毁伤敌人一门火炮,有1/6 的射击效果能全部消灭敌人.
蒙特卡洛模拟方法
蒙特卡洛模拟方法蒙特卡洛模拟方法(Monte Carlo simulation)是一种基于随机过程的数值计算方法,通过生成大量随机数来模拟实际问题的概率分布和确定性结果。
它的原理是通过随机抽样和统计分析来近似计算复杂问题的解,适用于各种领域的问题求解和决策分析。
蒙特卡洛模拟方法最早于20世纪40年代在核能研究中出现,命名源于摩纳哥的蒙特卡洛赌场,因为其运作原理与赌场的概率计算类似。
它的核心思想是通过大量的重复实验来模拟问题的解空间,并基于统计原理对结果进行分析。
蒙特卡洛模拟方法的应用领域广泛,包括金融、工程、物理、统计学、风险管理等。
在金融领域,蒙特卡洛模拟方法可以用于模拟股票价格的变动,估计期权的价格和价值-at-risk(风险价值),帮助投资者进行风险管理和资产配置。
在工程领域,蒙特卡洛模拟方法可以用于模拟不同参数对产品性能的影响,优化产品设计和工艺流程。
在物理学中,蒙特卡洛模拟方法可以用于模拟粒子运动轨迹,研究核反应和量子系统的行为。
在统计学中,蒙特卡洛模拟方法可以用于估计未知参数的分布和进行概率推断。
1.明确问题:首先需要明确问题的目标和约束条件。
例如,如果要求估计一个金融产品的价值,需要明确产品的特征和市场环境。
2.设定模型:根据问题的特性,建立模型。
模型可以是概率模型、物理模型、统计模型等,用于描述问题的随机性和确定性因素。
3. 生成随机数:根据问题的特点,选择适当的随机数生成方法。
常见的随机数生成方法包括伪随机数生成器、蒙特卡洛(Monte Carlo)方法、拉丁超立方(Latin Hypercube)采样等。
4.进行实验:根据模型和随机数生成方法,进行大量的实验。
每次实验都是一次独立的抽样过程,生成一个样本,用于计算问题的目标函数或约束条件。
5.统计分析:对实验结果进行统计分析,得到问题的解或概率分布。
常用的统计分析方法包括均值、方差、最大值、最小值、分位数等。
还可以进行敏感性分析,评估输入参数对结果的影响程度。
蒙特卡洛方法
其中Dg s为N区域D N sDiN s的1g体(x积1(i),。x2 (这i), 是,数xs(值i))方法难以作到的。
另外,在具有随机性质的问题中,如考虑的系统 形状很复杂,难以用一般数值方法求解,而使用蒙特 卡罗方法,不会有原则上的困难。
通常,蒙特卡罗方法的误差ε定义为
N
上式中 与置信度α是一一对应的,根据问题的要 求确定出置信水平后,查标准正态分布表,就可以确 定出 。
下面给出几个常用的α与的数值:
α 0.5 0.05 0.003
0.674 1.96 3 5
关于蒙特卡罗方法的误差需说明两点:第一,蒙特
卡罗方法的误差为概率误差,这与其他数值计算方法 是有区别的。第二,误差中的均方差σ是未知的,必须 使用其估计值
• 对于任意离散型分布:
F(x) Pi xi x
• 其P离2散中,型x…1分,为布x相2,的应直…的接为概抽离率样散,方型根法分据如布前下函述:数直的接跳抽跃样点法,,P有1,
• 间接蒙特卡洛模拟方法。人为地构造出一 个合适的概率模型,依照该模型进行大量 的统计实验,使它的某些统计参量正好是 待求问题的解。
例:布冯(Buffon)投针实验
• 在平滑桌面上划一组相距为s的平行线,向 此桌面随意地投掷长度l=s的细针,那末从 针与平行线相交的概率就可以得到π的数值。
针与线相交概率
lim P
N
NXNE (X)x 2 1
xet2/2dt
x
平均值
当N充分大时,有如下的近似式
P X N E (X ) N 2 20 e t2/2 d t1
其中α称为置信度,1-α称为置信水平。
MonteCarlo(蒙特卡洛法)简介
一个例子 --
n=1000000; m=0; t=1; for i=1:n x=1; for k=1:7 ang=pi*rand; x=x+cos(ang); if x<0 l=0; t=0; end end if x>5 & t==1 l=1; else l=0; end m=m+l; t=1; end m/n
方差削减技术
对偶变量技术(适用正态分布函数) 取一组随机数Z_i,可得模拟值C_i ,i=1,2,..n 估计值为期平均C^ 再取Z_i 的对偶Z’_i=-Z_i,再生成估计值C’^ 然后去新的平均值C*=(C^+C’^)/2 则 varC*=1/2varC^+1/2cov(C^,C’^)< 1/2varC^+ 该技术使计算更稳定
随机数的取得
如果你对随机数有更高的要求,需要自己
编辑“随机数生成器” 最简单、最基本、最重要的一个概率分布 是(0,1)上的均匀分布(或称矩形分布) 例如在Matlab中,命令“rand()”将产生一 个(0,1)中均匀分布的随机数 你可以根据需要给随机数一个“种子”, 以求不同的数
基本思想和原理
基本思想:当所要求解的问题是某种事件出现
的概率,或者是某个随机变量的期望值时,它 们可以通过某种“试验”的方法,得到这种事 件出现的频率,或者这个随机变数的平均值, 并用它们作为问题的解。 原理:抓住事物运动的几何数量和几何特征, 利用数学方法来加以模拟,即进行一种数字模 拟实验。 它是以一个概率模型为基础,按照这个模型所 描绘的过程,通过模拟实验的结果,作为问题 的近似解。。
实现从已知概率分布抽样
蒙特卡罗(Monte Carlo)方法简介
蒙特卡罗(Monte Carlo)方法简介蒙特卡罗(Monte Carlo)方法简介蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数"的计算方法。
一起源这一方法源于美国在第二次世界大战进研制原子弹的"曼哈顿计划"。
Monte Carlo方法创始人主要是这四位:Stanislaw Marcin Ulam, Enrico Fermi, John von Neumann(学计算机的肯定都认识这个牛人吧)和Nicholas Metropolis。
Stanislaw Marcin Ulam是波兰裔美籍数学家,早年是研究拓扑的,后因参与曼哈顿工程,兴趣遂转向应用数学,他首先提出用Monte Carlo方法解决计算数学中的一些问题,然后又将其应用到解决链式反应的理论中去,可以说是MC方法的奠基人;Enrico Fermi是个物理大牛,理论和实验同时都是大牛,这在物理界很少见,在“物理大牛的八卦”那篇文章里提到这个人很多次,对于这么牛的人只能是英年早逝了(别说我嘴损啊,上帝都嫉妒!);John von Neumann可以说是计算机界的牛顿吧,太牛了,结果和Fermi一样,被上帝嫉妒了;Nicholas Metropolis,希腊裔美籍数学家,物理学家,计算机科学家,这个人对Monte Carlo方法做的贡献相当大,正式由于他提出的一种什么算法(名字忘了),才使得Monte Carlo方法能够得到如此广泛的应用,这人现在还活着,与前几位牛人不同,Metropolis很专一,他一生主要的贡献就是Monte Carlo方法。
蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特•罗方法正是以概率为基础的方法。
与它对应的是确定性算法。
二解决问题的基本思路Monte Carlo方法的基本思想很早以前就被人们所发现和利用。
早在17世纪,人们就知道用事件发生的"频率"来决定事件的"概率"。
蒙特·卡罗方法(MonteCarlomethod)
蒙特·卡罗⽅法(MonteCarlomethod)蒙特·卡罗⽅法(Monte Carlo method),也称统计模拟⽅法,是⼆⼗世纪四⼗年代中期由于科学技术的发展和电⼦计算机的发明,⽽被提出的⼀种以概率统计理论为指导的⼀类⾮常重要的数值计算⽅法。
是指使⽤随机数(或更常见的伪随机数)来解决很多计算问题的⽅法。
与它对应的是确定性算法。
这个⽅法的发展始于20世纪40年代,和原⼦弹制造的曼哈顿计划密切相关,当时的⼏个⼤⽜,包括乌拉姆、冯.诺依曼、费⽶、费曼、Nicholas Metropolis,在美国洛斯阿拉莫斯国家实验室研究裂变物质的中⼦连锁反应的时候,开始使⽤统计模拟的⽅法,并在最早的计算机上进⾏编程实现。
现代的统计模拟⽅法最早由数学家乌拉姆提出,被Metropolis命名为蒙特卡罗⽅法,蒙特卡罗是著名的赌场,赌博总是和统计密切关联的,所以这个命名风趣⽽贴切,很快被⼤家⼴泛接受。
被不过据说费⽶之前就已经在实验中使⽤了,但是没有发表。
说起蒙特卡罗⽅法的源头,可以追溯到18世纪,布丰当年⽤于计算π的著名的投针实验就是蒙特卡罗模拟实验。
统计采样的⽅法其实数学家们很早就知道,但是在计算机出现以前,随机数⽣成的成本很⾼,所以该⽅法也没有实⽤价值。
随着计算机技术在⼆⼗世纪后半叶的迅猛发展,随机模拟技术很快进⼊实⽤阶段。
(类⽐深度学习,感叹~)对那些⽤确定算法不可⾏或不可能解决的问题,蒙特卡罗⽅法常常为⼈们带来希望。
蒙特卡罗基本思想:利⽤⼤量采样的⽅法来求解⼀些难以直接计算得到的积分。
例如,假想你有⼀袋⾖⼦,把⾖⼦均匀地朝这个图形上撒,然后数这个图形之中有多少颗⾖⼦,这个⾖⼦的数⽬就是图形的⾯积。
当你的⾖⼦越⼩,撒的越多的时候,结果就越精确。
借助计算机程序可以⽣成⼤量均匀分布坐标点,然后统计出图形内的点数,通过它们占总点数的⽐例和坐标点⽣成范围的⾯积就可以求出图形⾯积。
蒙特卡洛仿真法
蒙特卡洛仿真法
蒙特卡洛仿真法(Monte Carlo Simulation)是一种基于随机抽样的数值计算方法,用于模拟和估计复杂系统或过程的行为和特性。
它通过生成大量随机数,并利用这些随机数对系统进行多次模拟,从而获得系统的统计特征或输出结果。
蒙特卡洛仿真法的基本思想是基于概率分布的采样。
首先,需要确定系统中各个变量或参数的概率分布函数。
然后,通过随机生成符合这些概率分布的样本值,来代表系统在不同情况下的可能状态。
接下来,对每个生成的样本进行计算或模拟,得到相应的输出结果。
通过重复这个过程多次(通常是数千或数万次),可以获得大量的样本结果。
根据这些样本结果,可以计算出系统的统计指标,如均值、标准差、概率分布等,从而对系统的行为进行估计和预测。
蒙特卡洛仿真法的优点包括:
1. 能够处理复杂的系统和不确定性问题;
2. 可以提供系统的统计特征和概率分布信息;
3. 适用于难以通过解析方法求解的问题。
蒙特卡洛仿真法在许多领域都有广泛的应用,如金融工程、风险管理、物理科学、工程设计等。
它可以帮助决策者在不确定性环境下进行风险评估、优化设计和决策制定。
需要注意的是,蒙特卡洛仿真法的准确性和可靠性取决于所选择的概率分布函数、抽样次数以及对结果的统计分析方法。
在实际应用中,需要合理选择和验证这些参数和方法,以确保模拟结果的有效性和可靠性。
monto carlo仿真方法
monto carlo仿真方法蒙特卡洛仿真方法简介蒙特卡洛仿真方法是一种基于随机数生成的统计模拟方法,用于解决复杂问题和评估不确定性。
它通过大量的随机抽样和模拟运算来近似计算数学问题的解决方案。
原理蒙特卡洛仿真方法基于概率统计理论和计算机模拟技术。
其主要思想是通过对模型中的随机变量进行抽样和模拟,计算大量的样本数据,从而得到目标问题的近似解。
步骤1.建立模型:首先需要将目标问题抽象成一个数学模型,明确问题的目标、约束和变量。
2.设定随机变量:为模型中的不确定变量设定随机分布,并生成大量的随机数。
3.进行抽样:根据设定的随机分布,抽取一定数量的随机数,并代入模型进行计算。
4.模拟运算:根据模型的计算规则,对每个随机数进行运算,得到相应的结果。
5.统计与分析:对得到的结果进行统计分析,得出问题的近似解、概率分布、置信区间等。
6.反馈与优化:根据分析结果,对模型进行优化和调整,进一步提高计算的准确性和效率。
应用领域蒙特卡洛仿真方法在各个领域都有广泛应用,包括但不限于: - 金融领域:用于风险评估、衍生品估值、投资组合优化等。
- 工程领域:用于可靠性分析、结构优化、系统建模等。
- 生物医学领域:用于药物研发、流行病传播模拟、生物统计等。
- 物理学领域:用于高能物理实验模拟、粒子轨迹模拟等。
优点与限制蒙特卡洛仿真方法具有如下优点: - 适用范围广,可以解决各种类型的问题; - 能够处理复杂和高维的问题; - 可以提供概率分布和置信区间等统计信息。
然而,蒙特卡洛仿真方法也有一些限制: - 需要大量的计算资源和时间; - 对模型中的不确定性敏感,需要合理设定概率分布; - 结果的准确性受到样本数量的限制。
总结蒙特卡洛仿真方法是一种基于随机数生成的统计模拟方法,可以解决复杂问题和评估不确定性。
它通过随机抽样和模拟运算来近似计算问题的解决方案。
该方法在多个领域都有广泛应用,同时也具有一定的优点和限制。
通过合理的模型建立和参数设定,蒙特卡洛仿真方法可以成为解决实际问题的有力工具。
Monte-Carlo(蒙特卡洛方法)解析
常用的线性同余生成器
Modulus m 2^31-1
=2147483647
2147483399 2147483563
Multiplier a 16807
在 n 次中出现的频率。假如我们取 fn ( A) 作为 p P(A) 的估计,即 pˆ fn ( A) 。
然后取 ˆ
2l afn ( A)
作为
的估计。根据大数定律,当 n 时,
pˆ
fn ( A) a.s.
p.
从而有ˆ 2l P 。这样可以用随机试验的方法求得 的估计。历史上 afn ( A)
(2) 计算 X F -1(U ) ,则 X 为来自 F(x) 分布的随机数.
例 1 :设 X ~ U (a,b) ,则其分布函数为
0
F
(
x)
x b
a a
1,
xa a xb
xb
F -1( y) a (b a) y , 0 y 1
生成 U (0,1) 随机数 U,则 a (b - a)U 是来自
算法实现
许多程序语言中都自带生成随机数的方法, 如 c 中的 random() 函数, Matlab中的rand()函数等。 但这些生成器生成的随机数效果很不一样, 比如 c 中的函数生成的随机数性质就比较差, 如果用 c , 最好自己再编一个程序。Matlab 中的 rand() 函数, 经过了很多优化。可以产生性质很好的随 机数, 可以直接利用。
U (a,b) 的随机数。
例 2:
设 X ~ exp( ) 服从指数分布,则 X 的分布函数为:
蒙特卡洛采样步骤
蒙特卡洛采样步骤1背景介绍蒙特卡洛采样(Monte Carlo Sampling)是一种广泛应用于计算机科学、概率论和统计学等领域中的随机抽样方法。
一般情况下,使用蒙特卡洛采样时,我们需要研究的对象具有无法通过几何或代数方式处理的特性。
比如,我们可以将分子的运动方式看成是一种需要蒙特卡洛采样的随机过程。
获得对分子运动规律的理解,有助于我们更好地设计化学反应等相关工作。
下面,我们来详细介绍下蒙特卡洛采样的步骤。
2蒙特卡洛采样的步骤蒙特卡洛采样,一般可以分成以下四个步骤:2.1构造概率分布密度函数在蒙特卡洛采样过程中,需要明确需要采样的随机变量的概率分布密度函数。
这一步骤是最为关键的一步,因为只有构造好合适的概率分布密度函数,才能保证采样的有效性和准确性。
2.2生成随机样本生成随机样本是蒙特卡洛采样的核心步骤。
在这一步骤中,我们需要运用概率分布密度函数,通过计算机程序生成随机样本。
根据概率分布密度函数的不同,生成出来的随机样本也是不同的。
2.3计算随机样本的函数值在生成随机样本之后,我们需要计算每个随机样本对应的函数值。
因为蒙特卡洛采样中,我们最终需要得出的是一个函数的期望值或积分值。
所以,我们必须对每个随机样本在函数中对应的数值进行计算。
2.4计算函数的期望值或积分值计算每个随机样本的函数值之后,我们需要通过数学公式来计算出函数的期望值或积分值。
这个过程一般比较简单,我们只需要将每个随机样本的函数值相加,并除以总的样本数,最终得到的结果即为所求。
3总结通过以上步骤,我们可以使用蒙特卡洛采样方法来解决一些无法通过几何或代数方式处理的问题。
在实际应用中,蒙特卡洛采样方法具有高效、精确、可靠等优点,被广泛应用于物理学、工程学、计算机科学、金融学等领域中。
Monte Carlo(蒙特卡洛方法)解析
于是有: l p P( X sin ) 2 0
l sin 2
0
2 2l dxd a a
2l ap
若我们独立重复地作 n 次投针试验,记 n ( A) 为 A 发生的次数。 fn ( A) 为 A
U(0,1)随机数的生成
乘同余法:
xi 1 axi
mod m
ui 1 xi 1 / m 其中 xi , a, m 均为整数, x0 可以任意选取。
x0称为种子,a 是乘因子,m是模数
一个简单的例子
当 x0 1 时,得到序列: 1,6,3,7,9,10,5,8,4,2,1,6,3......
1 确定行为的模拟
例:曲线下的面积
本节以曲线下的面 积为例说明蒙特卡罗 模拟在确定行为建模 中的应用.
下面的算法给出了用蒙特卡罗方法求曲线下面积 的计算机模拟的计算格式.
在给定区间上曲线y=cosx下面积的真值是2.注意到即使对 于产生的相当多的点数,误差也是可观的.对单变量函数,一般 说来,蒙特卡罗方法无法与在数值分析中学到的积分方法相比, 没有误差界以及难以求出函数的上界M也是它的缺点.然而,蒙 特卡罗方法可以推广到多变量函数,在那里它变得更加实用.
ˆ f n ( A) 。 在 n 次中出现的频率。假如我们取 fn ( A) 作为 p P( A) 的估计,即 p
ˆ 然后取 2l a.s. ˆ fn ( A) 作为 的估计。根据大数定律,当 n 时, p p. af n ( A) 2l P 。这样可以用随机试验的方法求得 的估计。历史上 af n ( A)
蒙特卡罗(Monte Carlo method)方法知识详解
蒙特卡罗(Monte Carlo method)方法知识详解蒙特卡罗方法(英语:Monte Carlo method),也称统计模拟方法,是1940年代中期由于科学技术的发展和电子计算机的发明,而提出的一种以概率统计理论为指导的数值计算方法。
是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。
20世纪40年代,在冯·诺伊曼,斯塔尼斯拉夫·乌拉姆和尼古拉斯·梅特罗波利斯在洛斯阿拉莫斯国家实验室为核武器计划工作时,发明了蒙特卡罗方法。
因为乌拉姆的叔叔经常在摩纳哥的蒙特卡洛赌场输钱得名,而蒙特卡罗方法正是以概率为基础的方法。
与它对应的是确定性算法。
蒙特卡罗方法在金融工程学、宏观经济学、生物医学、计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)机器学习等领域应用广泛。
一、蒙特卡罗方法的基本思想通常蒙特卡罗方法可以粗略地分成两类:一类是所求解的问题本身具有内在的随机性,借助计算机的运算能力可以直接模拟这种随机的过程。
例如在核物理研究中,分析中子在反应堆中的传输过程。
中子与原子核作用受到量子力学规律的制约,人们只能知道它们相互作用发生的概率,却无法准确获得中子与原子核作用时的位置以及裂变产生的新中子的行进速率和方向。
科学家依据其概率进行随机抽样得到裂变位置、速度和方向,这样模拟大量中子的行为后,经过统计就能获得中子传输的范围,作为反应堆设计的依据。
另一种类型是所求解问题可以转化为某种随机分布的特征数,比如随机事件出现的概率,或者随机变量的期望值。
通过随机抽样的方法,以随机事件出现的频率估计其概率,或者以抽样的数字特征估算随机变量的数字特征,并将其作为问题的解。
这种方法多用于求解复杂的多维积分问题。
假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。
蒙特卡罗方法基于这样的思想:假想你有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。
统计方法4 随机模拟2
统计方法4 随机模拟随机模拟(random simulation)方法,又称为蒙特卡洛(Monte Carlo,MC )方法。
它的基本思想是为了求解实践中问题,首先建立一个概率模型或随机过程,使它的参数等于问题的解,然后通过对模型的抽样试验获得这些参数的统计特征,最后给出解的近似值。
解的精确度由估计值得标准误差来表示。
其基本数学原理为强大数定律。
Monte Carlo 方法最早产生于二战期间美国研发原子弹的曼哈顿工程。
电子计算机的出现使得模拟随机试验成为了重要的科学方法。
图:赌城Monte CarloMonte Carlo 方法可以处理的问题基本可以可以分为两类:第一类是随机性的问题。
这一类问题往往直接利用概率法则通过随机抽样进行模拟。
如核物理问题,随机服务系统中的排队问题,生物种群的繁衍与竞争,传染病的传播等都属于这一问题。
第二类是确定性的问题。
首先建立一个与所求问题有关的概率模型,使所求解是该概率模型中的概率分布或者数学期望。
然后对这个模型进行随机抽样。
用算术平均值作为所求解的估计值。
如求解多重积分,解线性方程组,解偏微分方程积分方程等复杂数学问题。
第一节 生成随机数 1.生成随机数的基本数学原理较为普遍应用的产生随机数的方法是选取一个函数)(x g ,使其将整数变换为随机数。
以某种方法选取0x ,并按照)(1k k x g x =+产生下一个随机数。
最一般的方程)(x g 具有如下形式:c ax x g mod)()(+= (8.1)其中0x 初始值或种子(00>x )=a 乘法器(0≥a )=c 增值(0≥c )=m 模数对于t 数位的二进制整数,其模数通常为t 2。
例如,对于31位的计算机m 即可取1312-。
这里a x ,0和c 都是整数,且具有相同的取值范围0,,x m c m a m >>>。
所需的随机数序{}n x 便可由下式得m c ax x n n mod )(1+=+ (8.2) 该序列称为线性同余序列。
monte+carlo(蒙特卡洛方法)解析
蒙特卡洛方法是一种基于随机抽样的数值计算方法,广泛应用于金融学、物理学、工程学和计算机科学等领域。
它的原理是通过随机抽样来估计数学模型的结果,通过大量重复实验来逼近真实值。
在本文中,我们将探讨蒙特卡洛方法的原理、应用和局限,并共享个人对这一方法的理解和观点。
1. 蒙特卡洛方法的原理蒙特卡洛方法的核心思想是利用随机数来处理问题。
它通过生成大量的随机数,利用这些随机数的统计特性来近似求解问题。
在金融衍生品定价中,我们可以使用蒙特卡洛方法来模拟股票价格的随机漫步,从而估计期权合约的价格。
通过不断模拟股票价格的变化,并计算期权合约的价值,最终得到一个接近真实值的结果。
2. 蒙特卡洛方法的应用蒙特卡洛方法在金融领域被广泛应用于期权定价、风险管理和投资组合优化等问题。
在物理学中,蒙特卡洛方法可以用于模拟粒子的运动,求解无法用解析方法求解的复杂系统。
在工程学和计算机科学中,蒙特卡洛方法可以用于求解概率分布、优化问题和模拟系统行为。
3. 蒙特卡洛方法的局限虽然蒙特卡洛方法有着广泛的应用,但也存在一些局限性。
蒙特卡洛方法通常需要大量的随机抽样,计算成本较高。
随机性导致了结果的不确定性,需要进行大量的实验才能得到可靠的结果。
蒙特卡洛方法在高维问题和高精度要求下计算效率低下,需要借助其他数值方法进行辅助。
4. 个人观点和理解个人认为蒙特卡洛方法是一种非常强大的数值计算方法,能够解决复杂问题和高维问题。
它的随机性使得结果更加贴近真实情况,有利于处理实际情况中的不确定性和风险。
但是在实际应用中,需要注意随机抽样的方法和计算成本,并且需要结合其他数值方法进行验证和辅助,以确保结果的准确性和可靠性。
总结回顾蒙特卡洛方法是一种基于随机抽样的数值计算方法,通过大量重复实验来逼近真实值。
它在金融学、物理学、工程学和计算机科学等领域有着广泛的应用。
然而,蒙特卡洛方法也存在一些局限性,需要结合其他数值方法来弥补其不足。
个人认为蒙特卡洛方法是一种强大的数值计算方法,能够处理复杂和高维问题,但在实际应用中需要注意其随机性和计算成本。
蒙特卡洛法
蒙特卡罗方法【蒙特卡罗方法】(Monte Carlo method)蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。
这一方法源于美国在第二次世界大战中研制原子弹的“曼哈顿计划”。
该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。
Monte Carlo方法的基本思想很早以前就被人们所发现和利用。
早在17世纪,人们就知道用事件发生的“频率”来决定事件的“概率”。
19世纪人们用投针试验的方法来决定圆周率π。
本世纪40年代电子计算机的出现,特别是近年来高速电子计算机的出现,使得用数学方法在计算机上大量、快速地模拟这样的试验成为可能。
考虑平面上的一个边长为1的正方形及其内部的一个形状不规则的“图形”,如何求出这个“图形”的面积呢?Monte Carlo方法是这样一种“随机化”的方法:向该正方形“随机地”投掷N个点,有M个点落于“图形”内,则该“图形”的面积近似为M/N。
可用民意测验来作一个不严格的比喻。
民意测验的人不是征询每一个登记选民的意见,而是通过对选民进行小规模的抽样调查来确定可能的优胜者。
其基本思想是一样的。
科技计算中的问题比这要复杂得多。
比如金融衍生产品(期权、期货、掉期等)的定价及交易风险估算,问题的维数(即变量的个数)可能高达数百甚至数千。
对这类问题,难度随维数的增加呈指数增长,这就是所谓的“维数的灾难”(Curse of Dime nsionality),传统的数值方法难以对付(即使使用速度最快的计算机)。
Monte Carl o方法能很好地用来对付维数的灾难,因为该方法的计算复杂性不再依赖于维数。
以前那些本来是无法计算的问题现在也能够计算量。
为提高方法的效率,科学家们提出了许多所谓的“方差缩减”技巧。
另一类形式与Monte Carlo方法相似,但理论基础不同的方法—“拟蒙特卡罗方法”(Quasi-Monte Carlo方法)—近年来也获得迅速发展。
蒙特卡洛方法的原理
蒙特卡洛方法的原理1. 前言蒙特卡洛方法(Monte Carlo method)是一类利用随机数(或者伪随机数)进行数值计算的方法,它根据概率统计的规律来获得结果近似值。
该方法背后的思想是利用随机抽样来代替计算复杂度较高的积分和求和运算,从而简化计算过程。
本文将从蒙特卡洛方法的原理、应用和优缺点等方面进行分析,帮助读者理解蒙特卡洛方法的实现及其应用场景。
2. 原理蒙特卡洛方法以概率论为基础,利用随机数方法获得问题的近似解。
其基本思想是先对随机事件进行模拟,然后利用模拟数据来计算问题的一个近似解。
其核心算法包括概率抽样、期望值估计、变量转化和分布构造等。
具体分为以下几个步骤:2.1 随机抽样随机抽样是指使用随机数从建立的数据集中进行抽取的过程。
抽样的数据数量与问题的复杂度和要求的精度有关。
最简单的样本是在一个区间内随机生成的随机数,随着问题的复杂度增加,抽样将会变得更加复杂。
2.2 求解问题利用抽取的数据来解决问题。
随着抽样数量的增加,问题的解决精度将逐渐提高。
2.3 误差分析计算得到近似解后,需要进行误差分析,确定解决方案的可靠性。
对计算误差的分析可优化算法,从而提高解决方案的准确性。
3. 应用蒙特卡洛方法适用于各种领域,如金融、计算化学、物理学、统计学、机器学习等。
在金融领域,蒙特卡洛方法可用于风险评估和资产定价。
例如,在期权定价中,该方法可提供理论定价和波动率估算。
在机器学习领域,蒙特卡洛方法常用于求解无法求解的积分问题。
通过采样方法,在高维空间中进行采样将问题转化为随机评估,从而客观估计真实值的近似解。
4. 优缺点蒙特卡洛方法的优点在于简化了过于复杂的计算,解决了许多传统方法难以解决的问题。
它还具有适用性广泛、可扩展性强、计算速度快、容易实现等特点。
但是,在某些情况下,蒙特卡洛方法可能需要大量的计算量才能获得令人满意的结果,也可能受到抽样误差的影响。
5. 结论蒙特卡洛方法的基本思想是利用随机数抽样来近似计算问题的解。
蒙特卡罗方法MonteCarlosimulation
第六章 引言(Introduction)
Monte Carlo模拟在物理研究中的作用
第六章 引言(Introduction)
Monte Carlo模拟的步骤: 1. 根据欲研究的物理系统的性质,建立能够描述该系统特性 的理论模型,导出该模型的某些特征量的概率密度函数; 2. 从概率密度函数出发进行随机抽样,得到特征量的一些模 拟结果; 3. 对模拟结果进行分析总结,预言物理系统的某些特性。
第六章 引言(Introduction)
Monte Carlo方法简史 简单地介绍一下Monte Carlo方法的发展历史
1、Buffon投针实验: 1768年,法国数学家Comte de Buffon利用投针实验估计的值
L
d
p
2L d
第六章 引言(Introduction)
Problem of Buffon’s needle: If a needle of length l is dropped at random on the middle of a horizontal surface ruled with parallel lines a distance d>l apart, what is the probability that the needle will cross one of the lines?
第六章 引言(Introduction)
Solution:
The positioning of the needle relative to nearby lines can be described with a random vector which
[0, )
The random vector is uniformly distributed on the region [0,d)×[0,). Accordingly, it has probability density function 1/d.
tm值计算公式例子
tm值计算公式例子
蒙特卡洛模拟法(Monte Carlo Simulation,简称MCS)是一种以概率统计理论为基础,广泛应用于风险评估、投资决策分析等复杂系统中的经典计算模型。
它能够计算出复杂系统
中若干因变量之间的联合统计分布,而这一统计分布是衡量一个复杂系统在其各参数变化时,它们之间可能出现的所有概率性关系。
借助这种统计工具,能够为用户给出系统各种变化时的实际情况,并也是当下市场部分定量分析的重要手段\。
TM(TMMW)指标的值的计算公式如下:
TM= (期望值-实验值)/实验偏差
TMW指标是一种描述一个复杂系统内部变异程度的指标,它提供了未知概率的一种反应
度量。
它衡量的是给定的实验要素和实验偏差之间差异程度,值越接近于1意味着概率变
化程度越小,即真实变化程度越小。
TMW指标用于提取MCS模拟中的统计学义,衡量复杂系统的变异程度。
它也可以用于跟
踪实验中给定的变量之间的统计关系,并评估其在模拟中的效果。
在实际应用中,用户通过输入TM值,得出该系统变异程度的分数,以此来指导投资决策或风险评估等行为。
举一个TM值计算公式例子,假设期望值为10,实际值为20,则实验偏差=20-10=10,因此TM值= (10-20)/10=-1
以上就是TM值计算公式的原理,和例子。
可以看出,TM值计算公式是一种在复杂系统
中衡量变异程度的有效工具,它为投资决策、风险评估等提供了定量的计算方法。
不仅如此,在未知概率的反应度量如何评估时,也可以使用TM值计算公式进行计算。
总而言之,TM值计算公式可以借此快速精确的判断出复杂系统的变异情况,并作为实验的指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[0, )
• The random vector is uniformly distributed on the region [0,d)×[0,). Accordingly, it has probability density function 1/d. • The probability that the needle will cross one of the lines is given by the integral
2014-8-27
Monte Carlo模拟
18
4.Monte Carlo算法的主要组成部分
Monte Carlo算法的主要组成部分 概率密度函数(pdf) 必须给出描述一个物理系统的一组概率密度函数;
随机数产生器 能够产生在区间[0,1]上均匀分布的随机数 抽样规则 如何从在区间[0,1]上均匀分布的随机数出发,随机抽 取服从给定的pdf的随机变量;
p
2014-8-27
0
l sin
0
1 d
2l dAd d
Monte Carlo模拟 8
2.Monte Carlo方法简史 Enrico Fermi
• 1930年,利用Monte Carlo方法研究中子的扩散 • 并设计了一个Monte Carlo机械装置,Fermiac,用于计算核 反应堆的临界状态
2014-8-27
Monte Carlo模拟
12
Monte Carlo模拟
第一章 引言 (Introduction)
1. 2. 3. 4. Monte Monte Monte Monte Carlo方法 Carlo方法简史 Carlo模拟的应用 Carlo算法的主要组成部分
2014-8-27
Monte Carlo模拟
1
Monte Carlo模拟
第一章 引言 (Introduction)
1. 2. 3. 4. Monte Monte Monte Monte Carlo方法 Carlo方法简史 Carlo模拟的应用 Carlo算法的主要组成部分
2014-8-27
Monte Carlo模拟
2
1.Monte Carlo方法
模拟结果记录
记录一些感兴趣的量的模拟结果
2014-8-27 Monte Carlo模拟 19
4.Monte Carlo算法的主要组成部分
误差估计 必须确定统计误差(或方差)随模拟次数以及其它一些 量的变化; 减少方差的技术 利用该技术可减少模拟过程中计算的次数; 并行和矢量化 可以在先进的并行计算机上运行的有效算法
17
4.Monte Carlo算法的主要组成部分
Monte Carlo模拟的步骤: 1. 根据欲研究的物理系统的性质,建立能够描述该系统特性 的理论模型,导出该模型的某些特征量的概率密度函数; 2. 从概率密度函数出发进行随机抽样,得到特征量的一些模 拟结果; 3. 对模拟结果进行分析总结,预言物理系统的某些特性。
2014-8-27
Monte Carlo模拟
20
2014-8-27
Monte Carlo模拟
10
2.Monte Carlo方法简史
Nicholas Metropolis (1915-1999)
The algorithm by Metropolis (and A Rosenbluth, M Rosenbluth, A Teller and E Teller, 1953) has been cited as among the top 10 algorithms having the "greatest influence on the development and practice of science and engineering in the 20th century."
2014-8-27 Monte Carlo模拟 16
Monte Carlo模拟
第一章 引言 (Introduction)
1. 2. 3. 4. Monte Monte Monte Monte Carlo方法 Carlo方法简史 Carlo模拟的应用 Carlo算法的主要组成部分
2014-8-27
Monte Carlo模拟
• Monte Carlo方法:
亦称统计模拟方法(statistical simulation method)
一种采用统计抽样理论近似地求解物理或数学问 题的方法
2014-8-27
Monte Carlo模拟
3
1.Monte Carlo方法
• 基本思想:
1. 建立与待解问题相似或相关联的概率模型或概率过程, 利用这种相似性把概率模型的某些特征量与待求解问题 的解联系起来: 概率模型: 随机事件的概率 随机变量的数学期望值
待求解问题的解: 定积分的值
微分方程的解
2. 对概率模型进行随机模拟或统计抽样,用所得样本得到 这些特征量的估计值问题的近似解
2014-8-27
Monte Carlo模拟
4
Monte Carlo模拟
第一章 引言 (Introduction)
1. 2. 3. 4. Monte Monte Monte Monte Carlo方法 Carlo方法简史 Carlo模拟的应用 Carlo算法的主要组成部分
Monte Carlo模拟在物理研究中的作用
2014-8-27
Monte Carlo模拟
15
3.Monte Carlo模拟的应用
注意以下两点: Monte Carlo方法与数值解法的不同:
Monte Carlo方法利用随机抽样的方法来求解物理 问题;
数值解法:从一个物理系统的数学模型出发,通过 求解一系列的微分方程来的导出系统的未知状态; Monte Carlo方法并非只能用来解决包含随机的过程的问题: 许多利用Monte Carlo方法进行求解的问题中并不包含随 机过程 例如:用Monte Carlo方法计算定积分. 对这样的问题可将其转换成相关的随机过程, 然后用 Monte Carlo方法进行求解
2014-8-27
Monte Carlo模拟
5
2.Monte Carlo方法简史 Buffon投针实验
1768年,法国数学家Comte de Buffon利用投针实验估 计的值
d
2L
Monte Carlo模拟
6
2.Monte Carlo方法简史
Problem of Buffon’s needle: If a needle of length l is dropped at random on the middle of a horizontal surface ruled with parallel lines a distance d > l apart, what is the probability that the needle will cross one of the lines?
2014-8-27
Monte Carlo模拟
9
2.Monte Carlo方法简史
Stanislaw Ulam (1909-1984)
S. Ulam is credited as the inventor of Monte Carlo method in 1940s, which solves mathematical problems using statistical sampling.
2014-8-27
Monte Carlo模拟
7
2.Monte Carlo方法简史
Solution: • The positioning of the needle relative to nearby lines can be described with a random vector which has components:
Monte Carlo模拟
1. 引言(introduction) 2. 均匀随机数的产生(Random number generation) 3. 任意分布的随机变量的抽样 4. Monte Carlo积分法 5. 常用Monte Carlo模拟软件的使用
2014-8-27
Monte Carlo模拟
2014-8-27 Monte Carlo模拟 11
2.Monte Carlo方法简史
The Name of the Game
Metropolis coined the name “Monte Carlo”, from its gambling Casino.
Monte-Carlo, Monaco
13
3.Monte Carlo模拟的应用
Monte Carlo模拟的应用: 自然现象的模拟: 宇宙射线在地球大气中的传输过程; 高能物理实验中的核相互作用过程;
实验探测器的模拟
数值分析:
利用Monte Carlo方法求积分
2014-8-27
Monte Carlo模拟
14
3.Monte Carlo模拟的应用