高中化学 第17讲 有机化合物的合成奥赛辅导讲义
高中化学奥赛培训教程全集---之有机化学
黄冈中学化学奥赛培训教程系列(精致word 版)有机化学第一节 有机化学基本概念和烃1、下列构造式中:①指出一级、二级、三级碳原子各一个。
②圈出一级烷基、二级烷基、三级烷基各一个。
CH 3CCH 2CH 3CH 3C CHCH 3CH 3CH 3CHCH 2CH 3CH 3解析:↓1℃2℃3℃↑↑↑三级烷基三级烷基一级烷基CH 3CH 3CHCH 3CH 3CH 3CH 3CH 2CCH 3CCH CH 2CH 32、已知下列化合物的结构简式为:(1)CH 3CHClCHClCH 3 (2)CH 3CHBrCHClF (3)CH 3CHClCHCH 2CH 3CH 3分别用透视式、纽曼式写出其优势构象。
解析:用透视式和纽曼式表示构象,应选择C 2—C 3间化学键为键轴,其余原子、原子团相当于取代基。
这四个化合物透视式的优势构象为(见图)其纽曼式的优势构象见图3、(2000年广东省模拟题)用烃A分子式为C10H16,将其进行臭氧化后,水解得到HCHO和A催化加氢后得烃B,B化学式为C10H20,分子中有一个六元环,用键线式写出A,B的结构。
解析:从A催化加氢生成的B的化学式可推知,原A分子中有两个C=C键和一个六元环。
从水解产物可知,C1与C6就是原碳环连接之处HCHO的羰基,只能由C3支链上双键臭氧化水解生成。
所以A的结构为,B的结构为。
4、下列化合物若有顺反异构,写出异构体并用顺、反及E、Z名称命名。
5、(河南省98年竞赛题)写出符合C6H10的全部共轭二烯烃的异构体,并用E—Z命名法命名。
解析:6、用化学方法鉴别下列化合物:CH 3CH 2CH 2CH 3,CH 3CH 2CH=CH 2,CH 3CH 2C ≡CH 。
解析:(1)用Br 2,CH 3CH 2CH=CH 2与CH 3CH 2C ≡CH 可褪色,CH 3CH 2CH 2CH 3不反应。
(2)用[Ag(NH 3)2]+溶液,CH 3CH 2C ≡CH 可生成白色沉淀,CH 3CH 2CH=CH 2不反应。
2020高中化学竞赛—有机合成设计基础知识(共37张PPT)
❖ 立体选择性是合成设计过程中需要特别考虑的重要 因素之一。
获得单一构型的对映异构体通常有四种方法
❖ 第一个方法是以拆分为基础。这个方法包含使用手 性材料来拆分合成过程的一些中间体。
❖ 第二个常用方法是使用手性底物控制的立体选择性。 在底物控制的立体选择性中,反应的立体选择性是 由底物已有的手性中心控制或诱导。这类方法最大 的优点在于反应的起始原料一般来自于天然的手性 化合物或衍生物,具有很高的光学活性。
❖ 四种方法的绝对效率具如下顺序:手性拆分 < 天然 手性源 < 手性辅助剂 < 手性催化剂。
❖ 手性拆分仅仅利用了消旋体的一半。 ❖ 第二种方法的主要局限在于手性原料的种类和来源
比较有限。尽管天然起使原料能够100%的被利 用,但是一但被消耗掉,就不能再利用,而且往往 只有一种特定的构型易得,例如,糖只有D-型, 氨基酸则为L-构型。 ❖ 理论上,手性辅助剂能够被回收再使用,但它们需 要化学计量。 ❖ 最有效率的方法就是使用手性催化剂,理论上,手 性催化剂能够产生无限量的单一对映异构体材料。
❖ C)设计和合成预期有优异性能的或具有重大意义 的化合物。
有机合成的任务
有机合成工业(基本有机合成工业、精细有机合成工业)
基本有机合成工业:从廉价易得的天然资源(煤、石 油、天然气或农副产品,加工成如甲、乙、丙烷、 炔、苯、萘、乙醇、乙酸等)。
精细有机合成工业:用基本有机合成工业加工的有机 产品,合成较复杂、质量更高的化合物,主要应用 于合成药物、农药、染料和香料等。
有机合成的基本术语
❖ 目标分子(TM):又称“靶分子”(target molecule),就有机合成而言,凡需要合成的有机 分子均可称为目标分子。
《有机化合物的合成》 讲义
《有机化合物的合成》讲义一、有机化合物合成的基本概念在化学的广袤领域中,有机化合物的合成无疑是一座引人入胜的高峰。
简单来说,有机化合物的合成就是通过一系列的化学反应,将相对简单的起始原料转化为具有特定结构和功能的复杂有机化合物。
这一过程并非随机的拼凑,而是基于精确的化学原理和设计策略。
它要求我们对有机化学的各种反应类型、官能团的性质以及分子结构的变化有着深入的理解。
例如,我们知道醇可以通过醛或酮的还原反应得到,而羧酸可以通过醇的氧化来制备。
这些基本的转化关系是我们构建复杂有机分子的基石。
二、合成路线的设计成功的有机化合物合成关键在于合理的合成路线设计。
就像规划一次旅行,我们需要选择最优的路径,以最小的代价达到目的地。
首先,我们要明确目标化合物的结构和性质。
这包括确定其官能团、碳骨架以及可能存在的立体化学特征。
然后,根据目标化合物的结构,逆向分析可能的合成前体。
比如,如果目标化合物是一个酯,我们可以考虑从羧酸和醇的酯化反应来合成。
在设计路线时,还需要考虑反应的可行性、选择性、产率以及原料的易得性等因素。
有时候,可能有多种可行的路线,这就需要综合比较,选择最经济、高效的那一条。
例如,要合成一种含有多个手性中心的药物分子,我们不仅要考虑如何构建碳骨架,还要考虑如何控制手性中心的构型,以确保合成得到具有生物活性的正确异构体。
三、常见的有机合成反应1、加成反应加成反应是有机合成中非常重要的一类反应。
比如烯烃的加氢反应,可以将不饱和的双键转化为饱和的单键,增加分子的稳定性。
另一个常见的例子是烯烃与卤素的加成,这为引入卤素原子提供了简便的方法。
2、取代反应卤代烃的亲核取代反应在有机合成中应用广泛。
通过这类反应,可以将一个官能团替换为另一个官能团。
例如,卤代烃与醇钠反应可以生成醚。
3、消除反应醇在浓硫酸的作用下发生消除反应生成烯烃,这为构建碳碳双键提供了途径。
4、氧化还原反应醛可以被氧化为羧酸,而酮在一定条件下也可以被氧化。
人工合成有机化合物人教版高二年级化学课堂教辅PPT
n=
=500。
104
。
可得(C8H8)n=52 000,则
课堂篇 素养提升
探究一
简单有机化合物的合成方法
问题探究
有机化合物的官能团与有机化学反应有何关系?在有机合成中,涉及的常
见反应类型有哪些?
提示 有机化学反应主要发生在官能团上,官能团对有机化合物的性质起决
定作用;碳碳双键(
)、碳碳三键(—C≡C—)、羟基(—OH)、羧基
塑料等。
指废旧塑料随意乱丢乱扔,难以降解处理,给生态环境造成的污染
【微思考2】已知乙炔(CH≡CH)与HCl在一定条件下可发生加成反应生成
氯乙烯(CH2==CHCl)。请用化学方程式表示以食盐、水、乙炔为原料合
成聚氯乙烯各步反应的化学方程式。
提示 2NaCl+2H2O
CH≡CH+HCl
nCH2==CHCl→
(4)乙烯与氯气反应、乙烷与氯气反应都能得到纯净的1,2-二氯乙烷( × )
(5)合成纤维、合成药物、合成橡胶并称三大合成材料( × )
2.下列对乙烯和聚乙烯的描述正确的是(
)
A. CH2—CH2 是由乙烯加聚生成的纯净物
B.乙烯与聚乙烯的组成相同,性质相同
C.常温下,乙烯和聚乙烯都是气体
D.等质量的乙烯和聚乙烯完全燃烧后生成CO2和H2O的物质的量相等
4.有机高分子合成领域的研究和解决的课题
(1)对重要的通用有机高分子材料继续进行改进和推广,如导电高分子的应
用研究等。
(2)研制具有特殊功能的高分子材料,如合成仿生和智能高分子材料等。
(3)研制用于物质分离、能量转换的高分子膜,如合成能将化学能转换成电
能的传感膜,合成将热能转换成电能的热电膜等。
高中化学奥赛培训教程全集---之有机化学
黄冈中学化学奥赛培训教程系列(精美wor d版)有机化学第一节 有机化学基本概念和烃1、下列构造式中:①指出一级、二级、三级碳原子各一个。
②圈出一级烷基、二级烷基、三级烷基各一个。
CH 3CCH 2CH 3CH 3C CHCH 3CH 3CH 3CHCH 2CH 3CH 3解析:↓1℃2℃3℃↑↑↑三级烷基三级烷基一级烷基CH 3CH 3CHCH 3CH 3CH 3CH 3CH 2CCH 3CCH CH 2CH 32、已知下列化合物的结构简式为:(1)CH 3CHClCHClCH 3 (2)C H3CHBrCHClF (3)CH 3CHClCHCH 2CH 3CH 3分别用透视式、纽曼式写出其优势构象。
解析:用透视式和纽曼式表示构象,应选择C 2—C 3间化学键为键轴,其余原子、原子团相当于取代基。
这四个化合物透视式的优势构象为(见图)其纽曼式的优势构象见图3、(2000年广东省模拟题)用烃A分子式为C10H16,将其进行臭氧化后,水解得到HCHO 和A催化加氢后得烃B,B化学式为C10H20,分子中有一个六元环,用键线式写出A,B的结构。
解析:从A催化加氢生成的B的化学式可推知,原A分子中有两个C=C键和一个六元环。
从水解产物可知,C1与C6就是原碳环连接之处HCHO的羰基,只能由C3支链上双键臭氧化水解生成。
所以A的结构为,B的结构为。
4、下列化合物若有顺反异构,写出异构体并用顺、反及E、Z名称命名。
5、(河南省98年竞赛题)写出符合C6H10的所有共轭二烯烃的异构体,并用E—Z命名法命名。
解析:6、用化学方法鉴别下列化合物:CH3CH2CH2CH3,CH3CH2CH=CH2,CH3CH2C≡CH。
解析:(1)用Br2,CH3CH2CH=CH2与CH3CH2C≡CH可褪色,CH3CH2CH2CH3不反应。
(2)用[Ag(NH3)2]+溶液,CH3CH2C≡CH可生成白色沉淀,CH3CH2CH=CH2不反应。
高中化学奥赛辅导课件有机化学课件〖无忧资源〗
聚合反应
烯烃参与的聚合反应的原理和应 用。
氢化反应
烯烃的氢化反应机理和实际应用。
芳香族化合物及其反应
1
芳香性质
芳香族化合物的特征和芳香性质,以及它们与环代烃的区别。
2
亲电取代反应
芳香族化合物中的亲电取代反应的机理和应用。
3
自由基取代反应
芳香族化合物的自由基取代反应和稳定性。
醇、酚及其衍生物反应
醚的合成与反应
胺及其衍生物反应
合成方法
胺的合成方法,包括亲电和亲核 取代反应。
衍生物反应
性质和应用
胺和胺衍生物的反应,包括酰化、 取代和烷化反应。
胺的常见性质和实际应用。
烷基卤代烃及其反应
1 卤代烃的合成与反应
烷基卤代烃的合成方法和常见反应。
2 卤代烃的亲电取代反应
卤代烃与亲电试剂的取代反应,包括醇和胺的亲核取代反应应。
芳基卤代烃及其反应
1
芳基卤代烃的取代反应
2
芳基卤代烃与亲电试剂的取代反应。
3
芳基卤代烃的合成与性质
芳基卤代烃的合成方法和化学性质。
芳基卤代烃的亲电取代反应
芳基卤代烃参与的亲电取代反应和衍生 物的合成。
碳酸酯、酰卤及其反应
酯的合成
碳酸酯的合成方法和应用。
醇与醚的合成方法和反应机 制。
酯的合成与反应
醇与酸的反应生成酯的机理 和应用。
酚的合成与反应
醇与酚的区别以及酚的合成 方法和反应。
醛、酮及其衍生物反应
1
加成与缩合反应
2
醛与酮参与的加成和缩合反应的应用。
3
醛与酮的性质
醛与酮的特性和性质,以及它们的物理 和化学特征。
最新中学化学竞赛辅导课件+《有机化学部分》word版本
4. 与水加成
直接水合制乙醇的工业法
H3PO4 /硅藻土 CH 2 CH 2 + H2O 300℃, 70atm
CH 3CH 2OH
CH
CH
+
H2O
HgSO4 H 2SO 4
O
CH 3 C H
RC
CH
+
H2O
HgSO4 H 2SO 4
O
R C CH 3
CH CH 2 OH
RC CH 2 OH
5. 加次卤酸
RCC3H Cl
3. 与硫酸的加成
❖ 烯烃与硫酸在较低温度下形成硫酸氢酯, 硫酸氢酯在水存在下加热水解生成醇 — — 间接水合法
CH2 CH2 + H2SO4(98%) CH3CH2OSO3H H2O CH3CH2OH + H2SO4
(CH3)2C CH2 + H2SO4(50%) (CH3)3COSO3H H2O (CH3)3COH + H2SO4
+
71%
CH3CH2C CH2 CH3 29%
遵从Zaitsev (Saytzeff)规律
3. 与金属的反应
无 水 乙 醚
R X + M g
R M g X G r ig n a r d 试 剂
Grignard 试剂的反应
RMgX +
Et2O C O 无水
H2O H
R C OH
R C OMgX
五.芳香烃的主要化学性质
有机化合物的命名
系统命名法
命名法
普通命名法
俗名
系统命名法
❖ IUPAC命名法 ❖ 中文系统命名法(CCS):由中国化
学会根据IUPAC命名法的原则, 结合中文特点而制定的 ❖ 系统命名法化合物名称的构成: 立体化学名+取代基名+母体名
高中化学竞赛有机化学要义精讲讲义
奥林匹克竞赛有机化学要义精讲一.有机物系统命名法根据IUPAC命名法及1980年中国化学学会命名原则,按各类化合物分述如下。
1.带支链烷烃主链选碳链最长、带支链最多者。
编号按最低系列规则。
从靠侧链最近端编号,如两端号码相同时,则依次比较下一取代基位次,最先遇到最小位次定为最低系统(不管取代基性质如何)。
例如,命名为2,3,5-三甲基己烷,不叫2,4,5-三甲基己烷,因2,3,5与2,4,5对比是最低系列。
取代基次序IUPAC规定依英文名第一字母次序排列。
我国规定采用立体化学中“次序规则”:优先基团放在后面,如第一原子相同则比较下一原子。
例如,称2-甲基-3-乙基戊烷,因—CH2CH3>—CH3,故将—CH3放在前面。
2.单官能团化合物主链选含官能团的最长碳链、带侧链最多者,称为某烯(或炔、醇、醛、酮、酸、酯、……)。
卤代烃、硝基化合物、醚则以烃为母体,以卤素、硝基、烃氧基为取代基,并标明取代基位置。
编号从靠近官能团(或上述取代基)端开始,按次序规则优先基团列在后面。
例如,3.多官能团化合物(1)脂肪族选含官能团最多(尽量包括重键)的最长碳链为主链。
官能团词尾取法习惯上按下列次序,—OH>—NH2(=NH)>C≡C>C=C如烯、炔处在相同位次时则给双键以最低编号。
例如,(2)脂环族、芳香族如侧链简单,选环作母体;如取代基复杂,取碳链作主链。
例如:(3)杂环从杂原子开始编号,有多种杂原子时,按O、S、N、P顺序编号。
例如:4.顺反异构体(1)顺反命名法环状化合物用顺、反表示。
相同或相似的原子或基因处于同侧称为顺式,处于异侧称为反式。
例如,(2)Z,E命名法化合物中含有双键时用Z、E表示。
按“次序规则”比较双键原子所连基团大小,较大基团处于同侧称为Z,处于异侧称为E。
次序规则是:(Ⅰ)原子序数大的优先,如I>Br>Cl>S>P>F>O>N>C>H,未共享电子对:为最小;(Ⅱ)同位素质量高的优先,如D>H;(Ⅲ)二个基团中第一个原子相同时,依次比较第二、第三个原子;(Ⅳ)重键分别可看作(Ⅴ)Z优先于 E,R优先于S。
高中化学奥林匹克竞赛辅导讲座:第17讲《有机化合物的合成》
高中化学奥林匹克竞赛辅导讲座第17讲 有机化合物的合成【竞赛要求】有机合成的一般原则。
引进各种官能团(包括复合官能团)的方法。
有机合成中的基团保护。
导向基。
碳链增长与缩短的基本反应。
有机合成中的选择性。
【知识梳理】一、有机合成的一般原则有机合成是有机化学的重要组成部分,是建立有机化学工业的基础,有机合成一般都应遵循下列原则:1、反应步骤较少,总产率高。
一个每步产率为80%的十步合成的全过程产率仅为10.7%,而每步产率为40%的二步合成的全过程产率可达16%。
因此要尽可能压缩反应步骤,以免合成周期过长和产率过低。
2、每步的主要产物易于分离提纯。
要力求采用只生成一种或主要生成一种的可靠反应,避免生成各种产物的混合物。
3、原料易得价格便宜。
通常选择含四个或少于四个碳原子的单官能团化合物以及单取代苯等作为原料。
在实际合成中,若欲合成芳香族化合物时,一般不需要合成芳香环,尽量采用芳香族化合物作为起始物,再引入官能团;若欲合成脂肪族化合物时,关键的步骤是合成碳骨架并同时考虑官能团的引入,引入的官能团可能并非为所需产物中的官能团,但可以通过官能团的转变,形成所需产物中的官能团。
二、有机物的合成方法(包括碳架的建立、各种官能团引进等) (一)芳香族化合物的合成1、合成苯环上仅连有一个基团的化合物一般以苯为原料,通过芳香烃的亲电取代反应引入基团,如表 17-1;通过芳香重氮盐的亲核取代反应引入基团,如表17-2;也可以通过活化的芳香卤烃的亲核取代引入基团,如表17-3。
2、合成苯环上仅连有两个基团的化合物如果所需合成的化合物两个基团相互处于邻位或对位,则其中至少有一个基团属于邻、对位定位基;如果所需合成的化合物两个基团相互处于间位,则其中至少有一个基团属于间位定位基。
例如:NO 2ArArH合成苯环上含有两个基团的化合物时,如果两个两个基团相互处于邻位或对位,而两个基团都不是邻、对位定位基或两个基团相互处于间位,但都不是间位定位基,在这两种情况下,一般不能依靠其中一个基团的定位作用将另一个基团引入所需的位置上,而需要通过中间转化过程来实现。
高中化学奥林匹克竞赛 专题十七 有机化合物的合成练习
第17讲有机化合物的合成学号姓名得分1、由指定原料及其他必要的无机及有机试剂合成下列化合物:(1)由丙烯合成甘油。
(2)由丙酮合成叔丁醇。
(3)由1-戊醇合成2-戊炔。
(4)由乙炔合成CH3CH2CH2CH2CH2CH2CH3。
(5)由CH3CH2CH2CHO合成2、试用化学方程式表示以乙烯、为主要原料制备肉桂醛()的过程。
3、用一步或几步反应完成下列甾体化合物的转化。
4、已知苯磺酸在稀硫酸中可以水解而除去磺酸基:又知苯酚与浓硫酸易发生磺化反应:请用化学方程式表示苯、水、溴、铁、浓硫酸及烧碱等为原料,合成的过程。
5、由甲苯为原料,加入必要的有机、无机试剂合成6、以C2H5OH为原料,加入必要的无机试剂合成CH3CH2CH2CH2OH。
7、以BrCH2CH(CH3)2为原料制取2-甲基-1,2-丙二醇。
8、环氧树脂(一种黏合剂)的重要原料是环氧氯丙烷(),试以丙烯为原料加必要的试剂合成之。
9、用你掌握的苯及其衍生物性质的有关知识,写出以最短的流程制备苯甲酸乙酯以及o–、m–、p–氨基苯甲酸反应的化学方程式。
10、请用苯及任选无机试剂合成3,5-二溴硝基苯。
11、以丙二酸二乙酯制备2-苄基丁二酸。
12、请使用不超过4个碳原子的开链有机化合物及任选无机试剂合成2,4-甲基戊酸。
13、(1)写出(CH3)2CHOCH2CH3的两种合成方法,并解释哪种合成法较好;(2)今需合成甲基叔丁基醚 [CH3OC(CH3)3],有人用甲醇钠 [CH3ONa] 加到叔丁基氯[(CH3)3CCl] 中来制备,未能得到所需产物。
指出在此反应中得到了什么产物?应该怎样合成甲基叔丁基醚?14、动物之间的信息传递除了声音、光电信号外,在低等动物中,如昆虫,还能分泌化学物质作为种群个体之间的通讯工具,这就是所谓“化学通讯”。
棉铃象(一种象鼻虫)的性引诱剂就是这类化学物质。
它是混合物,含有单环萜烯醇E和萜烯醛F和H。
人工合成棉铃象性引诱剂是杀灭这种棉花害虫的绿色农药。
高中化学竞赛培训讲义有机物常识烃
有机物常识 烃【竞赛要求】有机化合物基本类型及系统命名.烷、烯、炔、环烃、芳香烃的基本性质及相互转化.异构现象.C=C 加成.马可尼科夫规则.取代反应.芳香烃取代反应及定位规则.芳香烃侧链的取代反应和氧化反应.【知识梳理】一、有机化合物的分类和命名(一)有机化合物的分类1、按基本骨架分类(1)脂肪族化合物:分子中碳原子相互结合成碳链或碳环.(2)芳香族化合物:碳原子连接成特殊的芳香环.(3)杂环化合物:这类化合物具有环状结构,但是组成环的原子除碳外,还有氧、硫、氮等其他元素的原子.2、按官能团分类官能团是决定某类化合物的主要性质的原子、原子团或特殊结构.显然,含有相同官能团的有机化合物具有相似的化学性质.表13-1 常见的官能团及相应化合物的类别 碳碳双键 烯烃碳碳叁键 炔烃 卤素原子 —X 卤代烃羟基 —OH 醇、酚 醚基 醚 醛基 醛 羰基 酮等 羧基 羧酸 酰基 酰基化合物氨基 —NH 2 胺硝基 —NO 2 硝基化合物磺酸基 —SO 3H 磺酸巯基 —SH 硫醇、硫酚氰基 —CN 腈(二)有机化合物的命名1、烷烃的命名烷烃通常用系统命名法,其要点如下:C C C C C O C C H OC OC OH OC R O(1)直链烷烃根据碳原子数称“某烷”,碳原子数由1到10用甲、乙、丙、丁、戊、己、庚、辛、壬、癸表示,如CH3CH2CH2CH3叫丁烷,自十一起用汉数字表示,如C11H24,叫十一烷. (2)带有支链烷烃的命名原则:A.选取主链.从烷烃构造式中,选取含碳原子数最多的碳链为主链,写出相当于这一碳链的直链烷烃的名称.B.从最靠近取代基的一端开始,用1、2、3、4……对主链进行编号,使取代基编号“依次最小”.C.如果有几种取代基时,应依“次序规则”排列.D.当具有相同长度的碳链可选做主链时,应选定具有支链数目最多的碳链为主.例如:2、脂环烃的命名脂环烃分为饱和的脂环烃和不饱和的脂环烃.饱和的脂环烃称为环烷烃,不饱和的脂环烃称环烯烃或环炔烃.它们的命名是在同数目碳原子的开链烃的名称之前加冠词“环”.连有取代基的环烷烃,命名时使取代基的编号最小.取代的不饱和环烃,要从重键开始编号,并使取代基有较小的位次.环之间有共同碳原子的多环化合物叫多环烃.根据环中共用碳原子的不同可分为螺环烃和桥环烃.螺环烃分子中两个碳环共有一个碳原子.螺环烃的命名是根据成环碳原子的总数称为螺某烷,在螺字后面的方括号内,用阿拉伯数字标出两个碳环除了共有碳原子以外的碳原子数目,将小的数字排在前面,编号从较小环中与螺原子(共有碳原子)相邻的一个碳原子开始,经过共有碳原子而到较大的环进行编号,在此编号规则基础上使取代基及官能团编号较小.如脂环烃分子中两个或两个以上碳环共有两个或两个以上碳原子的称为桥环烃.桥环烃中多个环共用的两个碳原子称为“桥头碳”,命名使先确定“桥”,并由桥头碳原子之一开始编号,其顺序是先经“大桥”再经“小桥”.环数大写于前,方括号内标出各桥的碳原子数,最后写某烷.如3、含单官能团化合物的命名含单官能团化合物的命名按下列步骤:(1)选择主链:选择含官能团的最长碳链为主链作为母体,称“某烯”、“某炔”、“某醇”、“某醛”、“某酸”等(而卤素、硝基、烷氧基则只作取代基),并标明官能团的位置.(2)编号:从靠近官能团(或取代基)的一端开始编号.(3)词头次序:同支链烷烃,按“次序规则”排列.如:4、含多官能团的化合物命名含多官能团的化合物按下列步骤命名:(1)选择主链(或母体):开链烃应选择含尽可能多官能团(尽量包含碳碳双键或碳碳三键)的最长碳链为主链(或母体);碳环,芳环,杂环以环核为母体.按表13-2次序优先选择一个主要官能团作词尾,即列在前面的官能团,优先选作词尾.表13-2 引用作词尾和词头的官能团名称 官能团 词 尾 词 头 (某)酸 羧基—SO 3H (某)磺酸 磺基 (某)酸(某)酯 酯基 (某)酰卤 卤甲酰基 (某)酰胺 氨基甲酰基 C OH O C OR OC X OC NH 2O—CN (某)腈氰基(某)醛甲酰基(某)酮羰基—OH (某)醇羟基—SH (某)醇(或酚)巯基—NH2 (某)胺氨基= NH (某)亚胺亚氨基(某)烯双键(某)炔三键(2)开链烃编号从靠近主要官能团(选为词尾的官能团)的一端编起;碳环化合物,芳香环使主要官能团的编号最低.而苯环上的2–位、3–位、4–位常分别用邻位、间位和对位表示.(3)不选作主要官能团的其他官能团以及取代基一律作词头.其次序排列按“次序规则” . 例如:醛基(–CHO)在羟基(–OH)前,所以优先选择–CHO 为主要官能团作词尾称“己醛”,–CH2CH3、–OH、–CH3、–Br 作词头,根据“次序规则”,其次序是甲基、乙基、羟基、溴.编号从主要官能团开始,并使取代基位次最小.所以命名为:4 –甲基–2–乙基–3–羟基–5 –溴己醛.主要官能团是– COOCH3 ,所以叫苯甲酸甲酯.– OH、– NO2作词头,其次序是硝基、羟基.编号从主要官能团开始,并使取代基位次最小.所以命名为:3 –硝基– 2 –羟基苯甲酸.二、烷烃(一)烷烃的组成和结构烷烃的通式为C n H2n+2,其分子中各元素原子间均以单键即σ–键相结合,其中的碳原子均为sp3杂化形式.由于单键可以旋转,所以烷烃的异构有碳架异构和构象异构(见第16讲立体化学).(二)烷烃的物理性质烷烃随着碳原子数增加,其熔点、沸点均呈上升趋势,常温下甲烷至丁烷为气体,戊烷至十六烷为液体,十七以上者为固体,但同碳数的异构烷烃,其溶沸点往往也有很大区别.例如:含五个碳原子的开链烷烃的三个异构体戊烷,2–甲基丁烷和新戊烷,其沸点分别为36.1℃、25℃、9℃,七熔点分别为–130℃、–160℃、–17℃.C HOCOC CC C(三)烷烃的化学性质烷烃从结构上看,没有官能团存在,因而在一般条件下它是很稳定的.只有在特殊条件下,例如光照和强热情况下,烷烃才能发生变化.这些变化包括碳链上的氢原子被取代,碳 – 碳键断裂,氧化或燃烧.烷烃的化学反应:1、取代反应CH 4 +Cl 2 CH 3Cl + HCl CH 3Cl + Cl 2 CH 2Cl 2 + HCl CH 2Cl 2 + Cl 2 CHCl 3 + HClCHCl 3 + Cl 2 CCl 4 + HCl卤素反应的活性次序为:F 2 >Cl 2 > Br 2 > I 2对于同一烷烃,不同级别的氢原子被取代的难易程度也不是相同的.大量的实验证明叔氢原子最容易被取代,伯氢原子最难被取代.卤代反应机理:实验证明,甲烷的卤代反应机理为游离基链反应,这种反应的特点是反应过程中形成一个活泼的原子或游离基.其反应过程如下:(1)链引发:在光照或加热至250 ~ 400℃时,氯分子吸收光能而发生共价键的均裂,产生两个氯原子游离基,使反应引发.Cl 2 2Cl •(2)链增长:氯原子游离基能量高,反应性能活泼.当它与体系中浓度很高的甲烷分子碰撞时,从甲烷分子中夺取一个氢原子,结果生成了氯化氢分子和一个新的游离基——甲基游离基.Cl • + CH 4 HCl + CH 3•甲基游离基与体系中的氯分子碰撞,生成一氯甲烷和氯原子游离基.CH 3• + Cl 2 CH 3Cl + Cl •反应一步又一步地传递下去,所以称为链反应.CH 3Cl + Cl • CH 2Cl • + HClCH 2Cl • + Cl 2 CH 2Cl 2 + Cl •(3)链终止:随着反应的进行,甲烷迅速消耗,游离基的浓度不断增加,游离基与游离基之间发生碰撞结合生成分子的机会就会增加.Cl • + Cl • Cl 2CH 3• + CH 3• CH 3CH 3CH 3• + Cl • CH 3Cl2、热裂反应+ CH 2=CHCH 3 CH 3CH 2CH 2CH 3 CH 3CH 3 + CH 22=CHCH 2CH 3 + H 23、异构化反应CH 3CH 2CH 2CH 3 4、氧化反应:烷烃很容易燃烧,燃烧时发出光并放出大量的热,生成CO 2和 H 2O. CH 4 + 2O 2 CO 2 + 2H 2O + 热量三、烯烃(一)烯烃的组成和结构点燃 h υh υ h υh υ h υ AlCl 3 加热、加压 CH 3CHCH 3 CH 3烯烃的通式为C n H 2n ,分子中含碳碳双键,形成双键的两个碳均发生sp 2杂化.以乙烯的形成为例:碳原子的1个2s 轨道与2个2p 轨道进行杂化,组成3个能量完全相等、性质相同的sp2杂化轨道.在形成乙烯分子时,每个碳原子各以2个sp 2杂化轨道形成2个碳氢σ键,再以1个sp 2杂化轨道形成碳碳σ键.5个σ键都在同一个平面上,2个碳原子未参加杂化的2p 轨道,垂直于5个σ键所在的平面而互相平行.这两个平行的p 轨道,侧面重叠,形成一个π键.因乙烯分子中的所有原子都在同一个平面上,故乙烯分子为平面分子.由于烯烃的双键可处于碳链的不同位置上,导致了位置异构的出现;由于π键不能自由旋转,又导致烯烃存在顺反异构(见第16讲 立体化学)(二)烯烃的性质烯烃的物理性质基本上类似于烷烃,即不溶于水而易溶于非极性溶剂,比重小于水.一般说,四个碳以下的烯为气体,十九个碳以上者为固体.烯烃于烷烃相比,分子中出现了双键官能团.由于双键中的π键重叠程度小,容易断裂,故烯烃性质活泼.烯烃的化学反应1、加成反应(1)催化加氢在催化剂作用下,烯烃与氢发生加成反应生成相应的烷烃.CH 2=CH 2 + H 2 CH 3CH 3 (2)加卤素CH 2=CH 2 + Br 2 CH 2BrCH 2Br 将乙烯通入溴的四氯化碳溶液中,溴的颜色很快褪去,常用这个反应来检验烯烃.(3)加卤化氢CH 2=CH 2 + HI CH 3CH 2I同一烯烃与不同的卤化氢加成时,加碘化氢最容易,加溴化氢次之,加氯化氢最难.(4)加硫酸(加水)烯烃能与浓硫酸反应,生成硫酸氢烷酯.硫酸氢烷酯易溶于硫酸,用水稀释后水解生成醇.工业上用这种方法合成醇,称为烯烃间接水合法.CH 3CH=CH 2 + H 2SO 4 CH 3CH(OSO 3H)CH 3 CH 3CH(OH)CH3 + H 2SO4 (5)加次卤酸烯烃与次卤酸加成,生成β– 卤代醇.由于次卤酸不稳定,常用烯烃与卤素的水溶液反应.如:CH 2=CH 2 + HOCl CH 2(OH)CH 2Cl2、氧化反应(1)被高锰酸钾氧化用碱性冷高锰酸钾稀溶液作氧化剂,反应结果使双键碳原子上各引入一个羟基,生成邻二醇. CH 2=CH 2 + KMnO 4 + H 2O CH 2(OH)CH 2(OH) + MnO 2 + KOH若用酸性高锰酸钾溶液氧化烯烃,则反应迅速发生,此时不仅π键打开,σ键也可断裂.双键断裂时,由于双键碳原子连接的烃基不同,氧化产物也不同.CH 2=CH 2 + KMnO 4 + H 2SO 4 2CO 2 + MnO 2CH 3CH=CH 2 + KMnO 4 + H 2SO 4 CH 3COOH + CO 2CH 3CH=CHCH 3 + KMnO 4 + H 2SO 4 2CH 3COOHCH 3C(CH 3)=CHCH 3 + KMnO 4 + H 2SO 4 CH 3COOH +CH 3COCH 32、臭氧化NiCCl 4Δ 碱性在低温时,将含有臭氧的氧气流通入液体烯烃或烯烃的四氯化碳溶液中,臭氧迅速与烯烃作用,生成粘稠状的臭氧化物,此反应称为臭氧化反应.如:臭氧化物在还原剂存在的条件下水解(为了避免生成的醛被过氧化氢继续氧化为羧酸),可以得到醛或酮.例如:烯烃经臭氧化再水解,分子中的CH 2= 部分变为甲醛,RCH= 部分变成醛,R 2C= 部分变成酮.这样,可通过测定反应后的生成物而推测原来烯烃的结构. 3、聚合反应4、α– H 的活性反应双键是烯烃的官能团,与双键碳原子直接相连的碳原子上的氢,因受双键的影响,表现出一定的活泼性,可以发生取代反应和氧化反应.例如,丙烯与氯气混合,在常温下是发生加成反应,生成1,2–二氯丙烷.而在500℃的高温下,主要是烯丙碳上的氢被取代,生成3–氯丙烯. CH 3CH=CH 2 + Cl 2 CH 3CHClCH 2ClCH 3CH=CH 2 + Cl 2 CH 2ClCH=CH 2(三)烯烃加成反应的反应机理1、亲电加成反应机理将乙烯通入含溴的氯化钠水溶液,反应产物除了BrCH 2CH 2Br 外,还有少量BrCH 2CH 2Cl 生成,但没有ClCH 2CH 2Cl.CH 2=CH 2 + Br 2 CH 2BrCH 2Br + CH 2BrCH 2Cl 这一实验表明,乙烯与溴的加成反应,不是简单地将乙烯的双键打开,溴分子分成两个溴原子,同时加到两个碳原子上这样一步完成的.如果是这样的话,则生成物应该只有BrCH 2CH 2Br,不应该有BrCH 2CH 2Cl,因Cl - 是不能使BrCH 2CH 2Br 转变为BrCH 2CH 2Cl 的.由此可知,乙烯与溴的加成反应不是一步完成的,而是分步进行的.当溴分子接近双键时,由于π电子的排斥,使非极性的溴–溴键发生极化,离π键近的溴原子带部分正电荷,另一溴原子带部分负电荷.带部分正电荷的溴原子对双键的亲电进攻,生成一个缺电子的碳正离子.而碳正离子中,带正电荷的碳原子的空p 轨道,可与其邻位碳原子上的溴原子带有末共用电常温 500℃ NaCl 水 C C O O O C C O 3 + C C R H H H C O R H C O H H O 3 Zn + C C R H R R C O R HC O R R O 3 Zn + CH 2 CH 2 n [CH 2CH 2] n C C Br Br C CBr +子对的p轨道相互重叠,形成一个环状的溴正离子.可用下式表示:接着溴负离子进攻溴正离子中的一个碳原子,得到加成产物.从上述的反应过程可以看出:(1)在这个有机反应过程中,有离子的生成及其变化,属于离子型反应.(2)两个溴原子的加成是分步进行的,而首先进攻碳碳双键的是溴分子中带部分正电荷的溴原子,在整个反应中,这一步最慢,是决定反应速度的一步.所以这个反应称为亲电性离子型反应,溴在这个反应中作亲电试剂.(3)两个溴原子先后分别加到双键的两侧,属于反式加成.2、马尔科夫尼要夫规则当乙烯与卤化氢加成时,卤原子或氢原子不论加到哪个碳原子上,产物都是相同的.因为乙烯是对称分子.但丙烯与卤化氢加成时,情况就不同了,有可能生成两种加成产物:CH3CH2CH2XCH3CH=CH2 + HXCH3CHXCH3实验证明,丙烯与卤化氢加成时,主要产物是2–卤丙烷.即当不对称烯烃与卤化氢加成时,氢原子主要加到含氢较多的双键碳原子上,这一规律称为马尔科夫尼可夫规则,简称马氏规则.马氏规则可用烯烃的亲电加成反应机理来解释.由于卤化氢是极性分子,带正电荷的氢离子先加到碳碳双键中的一个碳原子上,使碳碳双键中的另一个碳原子形成碳正离子,然后碳正离子再与卤素负离子结合形成卤代烷.其中第一步是决定整个反应速度的一步,在这一步中,生成的碳正离子愈稳定,反应愈容易进行.一个带电体系的稳定性,取决于所带电荷的分布情况,电荷愈分散,体系愈稳定.碳正离子的稳定性也是如此,电荷愈分散,体系愈稳定.以下几种碳正离子的稳定性顺序为:CH3+ < CH3CH2+ < (CH3)2CH+ < (CH3)3C+甲基与氢原子相比,前者是排斥电子的基团.当甲基与带正电荷的中心碳原子相连接时,共用电子对向中心碳原子方向移动,中和了中心碳原子上的部分正电荷,即使中心碳原子的正电荷分散,而使碳正离子稳定性增加.与中心碳原子相连的甲基愈多,碳正离子的电荷愈分散,其稳定性愈高.因此,上述4个碳正离子的稳定性,从左至右,逐步增加.四、炔烃(一)炔烃的组成和结构炔烃的通式为C n H2n-2,分子中含碳碳三键,形成三键的两个碳均发生sp杂化.以乙炔为例:两个碳原子采用sp杂化方式,即一个2s轨道与一个2p轨道杂化,组成两个等同的sp杂化轨道,sp杂化轨道的形状与sp2、sp3杂化轨道相似,两个sp杂化轨道的对称轴在一条直线上.两个以sp杂化的碳原子,各以一个杂化轨道相互结合形成碳碳σ键,另一个杂化轨道各与一个氢原子结合,形成碳氢σ键,三个σ键的键轴在一条直线上,即乙炔分子为直线型分子.每个碳原子还有两个末参加杂化的p轨道,它们的轴互相垂直.当两个碳原子的两p轨道分别平行时,两两侧面重叠,形成两个相互垂直的π键.由于碳碳三键为直线型,所以炔烃无顺反异构.(二)炔烃的性质炔烃的物理性质与烯烃相似,乙炔、丙炔和丁炔为气体,戊炔以上的低级炔烃为液体,高级炔烃为固体.简单炔烃的沸点、熔点和相对密度比相应的烯烃要高.炔烃难溶于水而易溶于有机溶剂.炔烃中的官能团是碳碳三键.因此三键的结构及其对分子中其他部位的影响,将决定炔烃的化学行为.炔烃的化学反应主要有:1、加成反应(1)催化加氢HC≡CH + H 2 CH 2=CH 2 CH 3CH 3 (2)加卤素 HC≡CH + Br 2 CHBr=CHBr CHBr 2CHBr 2 虽然炔烃比烯烃更不饱和,但炔烃进行亲电加成却比烯烃难.这是由于sp 杂化碳原子的电负性比sp 2杂化碳原子的电负性强,因而电子与sp 杂化碳原子结合和更为紧密,不容易提供电子与亲电试剂结合,所以叁键的亲电加成反应比双键慢.例如烯烃可使溴的四氯化碳溶液很快褪色,而炔烃却需要一两分钟才能使之褪色.故当分子中同时存在双键和三键时,与溴的加成首先发生在双键上.+ Br 2 CH 2BrCHBrC≡CH(3)加卤化氢 炔烃与卤化氢的加成,加碘化氢容易进行,加氯化氢则难进行,一般要在催化剂存在下才能进行.不对称炔烃加卤化氢时,服从马氏规则.例如:+ HI CH 3CI=CH 2 CH 3CI 2CH 3 在汞盐的催化作用下,乙炔与氯化氢在气相发生加成反应,生成氯乙烯.HC≡CH + HCl CH 2=CHCl 在光或过氧化物的作用下,炔烃与溴化氢的加成反应,得到反马氏规则的加成产物.如: (4)加水在稀酸(10℅H 2SO 4)中,炔烃比烯烃容易发生加成反应.例如,在10℅H 2SO 4和5℅硫酸汞溶液中,乙炔与水加成生成乙醛,此反应称为乙炔的水化反应或库切洛夫反应.汞盐是催化剂. HC≡CH + H 2O CH 3CHO其他的炔烃水化得到酮.如+ H 2O CH 3CH 2COCH 3 (5)加醇在碱性条件下,乙炔与乙醇发生加成反应,生成乙烯基乙醚.HC≡CH + CH 3CH 2OH CH 2=CHOCH 2CH 3 2、氧化反应炔烃被高锰酸钾或臭氧氧化时,生成羧酸或二氧化碳.如:R C≡CH + KMnO 4 RCOOH + CO 2 R C≡C R + KMnO 4 RCOOH + RCOOH 3、聚合反应在不同的催化剂作用下,乙炔可以分别聚合成链状或环状化合物.与烯烃的聚合不同的是,炔烃一般不聚合成高分子化合物.例如,将乙炔通入氯化亚铜和氯化铵的强酸溶液时,可发生二聚或三聚作用.CH CH 3C HI HgCl 2碱酸性催化剂 催化剂 H 2 Br 2CH CH CH 2 C CH CH 3CH 2C CHBr CH 3CH 2CH CH 3CH 2CH 2CH 2CHBr 2 HgSO 4 HgSO 4 CH CH 3CH 2C 酸性 Cu 2Cl 2CHCHHC≡CH + HC≡CH 乙烯基乙炔在高温下,三个乙炔分子聚合成一个苯分子.3 HC≡CH C 6H 64、炔化物的生成与三键碳原子直接相连的氢原子活泼性较大.因sp 杂化的碳原子表现出较大的电负性,使与三键碳原子直接相连的氢原子较之一般的碳氢键,显示出弱酸性,可与强碱、碱金属或某些重金属离子反应生成金属炔化物.乙炔与熔融的钠反应,可生成乙炔钠和乙炔二钠:CH≡CH + Na HC≡C Na Na C≡C Na 丙炔或其它末端炔烃与氨基钠反应,生成炔化钠:R C≡CH + NaNH 2 R C≡C Na 炔化钠与卤代烃(一般为伯卤代烷)作用,可在炔烃分子中引入烷基,制得一系列炔烃同系物.如:R C≡C Na + RX R C≡C R + NaX 末端炔烃与某些重金属离子反应,生成重金属炔化物.例如,将乙炔通入硝酸银的氨溶液或氯化亚铜的氨溶液时,则分别生成白色的乙炔银沉淀和红棕色的乙炔亚铜沉淀:HC≡CH + Ag(NH 3)2NO 3 Ag C≡C Ag + NH 4NO 3 + NH 3HC≡CH + Cu(NH 3)2Cl Cu C≡C Cu + NH 4Cl + NH 3上述反应很灵敏,现象也很明显,常用来鉴别分子中的末端炔烃.利用此反应,也可鉴别末端炔烃和三键在其他位号的炔烃.如:R C≡CH + Ag(NH 3)2NO 3 R C≡C AgR C≡C R + Ag(NH 3)2NO 3 不反应五、二烯烃(一)二烯烃的组成和分类分子中含有两个或两个以上碳碳双键的不饱和烃称为多烯烃.二烯烃的通式为C n H 2n -2,故二烯烃与同碳数的炔烃互为同分异构体.根据二烯烃中两个双键的相对位置的不同,可将二烯烃分为三类:1、累积二烯烃:两个双键与同一个碳原子相连接,即分子中含有C=C=C 结构的二烯烃称为累积二烯烃.例如:丙二烯 CH 2=C=CH 2 .2、隔离二烯烃:两个双键被两个或两个以上的单键隔开,即分子骨架为C=C –(C)n –C=C 的二烯烃称为隔离二烯烃.例如,1、4–戊二烯 CH 2=CH –CH 2–CH=CH 2.3、共轭二烯烃:两个双键被一个单键隔开,即分子骨架为C=C –C=C 的二烯烃为共轭二烯烃.例如,1,3–丁二烯 CH 2=CH –CH=CH 2.本讲重点讨论的是共轭二烯烃.(二)共轭二烯烃的结构1,3–丁二烯分子中,4个碳原子都是以sp 2杂化,它们彼此各以1个sp 2杂化轨道结合形成碳碳σ键,其余的sp 2杂化轨道分别与氢原子的s 轨道重叠形成6个碳氢σ键.分子中所有σ键和全部碳原子、氢原子都在一个平面上.此外,每个碳原子还有1个末参加杂化的与分子平面垂直的p 轨道,在形成碳碳σ键的同时,对称轴相互平行的4个p 轨道可以侧面重叠形成一个包含4个碳原子的离域键,也称大π键.像这样具有离域键的体系称为共轭体系.在共轭体系中,由于原子间的相互影响,使整个分子电子云的分布趋于平均化的倾向称为共轭效应.由π电子离域而体现的共轭效应称为π-π共轭效应.共轭效应与诱导效应是不相同的.诱导效应是由键的极性所引起的,可沿σ键传递下去,这种作用是短程的,一般只在和作用中心直接相连的碳原子中表现得最大,相隔一个原子,所受的作用力就很小了.而共轭效应是由于p 电子在整个分子轨道中的离域作用所引起的,其作用300℃ 液氨液氨Na可沿共轭体系传递.共轭效应不仅表现在使1,3–丁二烯分子中的碳碳双键健长增加,碳碳单键健长缩短,单双键趋向于平均化.由于电子离域的结果,使化合物的能量降低,稳定性增加,在参加化学反应时,也体现出与一般烯烃不同的性质.(三)1,3 –丁二烯的性质1、稳定性物质的稳定性取决于分子内能的高低,分子的内能愈低,其分子愈稳定.分子内能的高低,通常可通过测定其氢化热来进行比较.例如:CH 2=CHCH 2CH=CH 2 +2H 2 CH 3CH 2CH 2CH 2CH 3 ΔH = –255kJ ·mol -1CH 2=CHCH=CHCH 3 + 2H 2 CH 3CH 2CH 2CH 2CH 3 ΔH = –227kJ ·mol -1从以上两反应式可以看出,虽然1,4-戊二烯与1,3 – 戊二烯氢化后都得到相同的产物,但其氢化热不同,1,3 – 戊二烯的氢化热比1,4 –戊二烯的氢化热低,即1,3 – 戊二烯的内能比1,4 – 戊二烯的内能低,1,3 – 戊二烯较为稳定.2、亲电加成与烯烃相似,1,3 –丁二烯能与卤素、卤化氢和氢气发生加成反应.但由于其结构的特殊性,加成产物通常有两种.例如,1,3 –丁二烯与溴化氢的加成反应:CH 3CHBrCH=CH 2 3–溴–1–丁烯CH 2=CHCH=CH 2 + HBr CH 3CH=CHCH 2Br 1–溴–2–丁烯这说明共轭二烯烃与亲电试剂加成时,有两种不同的加成方式.一种是发生在一个双键上的加成,称为1,2–加成另一种加成方式是试剂的两部分分别加到共轭体系的两端,即加到C 1和C 4两个碳原子上,分子中原来的两个双键消失,而在C 2与C 3之间,形成一个新的双键,称为1,4–加成.共轭二烯烃能够发生1,4–加成的原因,是由于共轭体系中π电子离域的结果.当1,3–丁二烯与溴化氢反应时,由于溴化氢极性的影响,不仅使一个双键极化,而且使分子整体产生交替极化.按照不饱和烃亲电加成反应机理,进攻试剂首先进攻交替极化后电子云密度;较大的部位C 1和C 3,但因进攻C 1后生成的碳正离子比较稳定,所以H + 先进攻C 1.CH 2=CHC +HCH 3 ①CH 2=CHCH=CH 2 + H +C +H 2CH 2CH=CH 2 ②当H + 进攻C 1时,生成的碳正离子①中C 2的p 轨道与双键可发生共轭,称为p –π共轭.电子离域的结果使C 2上的正电荷分散,这种烯丙基正碳离子是比较稳定的.而碳正离子②不能形成共轭体系,所以不如碳正离子①稳定.在碳正离子①的共轭体系中,由于π电子的离域,使C 2和C 4都带上部分正电荷.反应的第二步,是带负电荷的试剂Br - 加到带正电荷的碳原子上,因C 2和C 4都带上部分正电荷,所以Br - 既可以加到C 2上,也可以加到C 4上,即发生1,2 – 加成或1,4 – 加成.3、双烯合成共轭二烯烃与某些具有碳碳双键的不饱和化合物发生1,4-加成反应生成环状化合物的反应称为双烯合成,也叫狄尔斯-阿尔德(Diels-Alder )反应.这是共轭二烯烃特有的反应,它将链状化合物转变成环状化合物,因此又叫环合反应.CH 2 CH CH CH 3 4 3 2 1δ+ δ+ 200℃+ CH 2=CH 2。
高二化学有机合成 讲义(非常全面)
高二化学有机物推断及知识点总结对于有机推断题首先要熟悉各种官能团的性质,其次对各类有机反应的条件要记牢。
解答有机推断题的常用方法有:1.根据物质的性质推断官能团,如:能使溴水反应而褪色的物质含碳碳双双键、三键“-CHO”和酚羟基;能发生银镜反应的物质含有“-CHO”;能与钠发生置换反应的物质含有“-OH”;能分别与碳酸氢钠镕液和碳酸钠溶液反应的物质含有“-COOH”;能水解产生醇和羧酸的物质是酯等。
2.根据性质和有关数据推知官能团个数,如:-CHO→2Ag→Cu20;2-0H→H2;2-COOH(CO32-)→CO23.根据某些反应的产物推知官能团的位置,如:(1)由醇氧化得醛或羧酸,-OH一定连接在有2个氢原子的碳原子上;由醇氧化得酮,-OH接在只有一个氢原子的碳原子上。
(2)由消去反应产物可确定“-OH”或“-X”的位置。
(3)由取代产物的种数可确定碳链结构。
(4)由加氢后碳的骨架,可确定“C=C”或“C≡C”的位置。
能力点击:以一些典型的烃类衍生物(溴乙烷、乙醇、乙酸、乙醛、乙酸乙酯、脂肪酸、甘油酯、多羟基醛酮、氨基酸等)为例,了解官能团在有机物中的作用.掌握各主要官能团的性质和主要化学反应,并能结合同系列原理加以应用.注意:烃的衍生物是中学有机化学的核心内容,在各类烃的衍生物中,以含氧衍生物为重点.教材在介绍每一种代表物时,一般先介绍物质的分子结构,然后联系分子结构讨论其性质、用途和制法等.在学习这一章时首先掌握同类衍生物的组成、结构特点(官能团)和它们的化学性质,在此基础上要注意各类官能团之间的衍变关系,熟悉官能团的引入和转化的方法,能选择适宜的反应条件和反应途径合成有机物.有机化学知识点总结1.需水浴加热的反应有:(1)、银镜反应(2)、乙酸乙酯的水解(3)苯的硝化(4)糖的水解(5)、酚醛树脂的制取(6)固体溶解度的测定凡是在不高于100℃的条件下反应,均可用水浴加热,其优点:温度变化平稳,不会大起大落,有利于反应的进行。
2021年湖南高考化学复习练习讲义:专题17 高分子化合物与有机合成
专题17高分子化合物与有机合成备考篇提纲挈领【考情探究】课标解读考点高分子化合物有机合成与有机推断解读1.了解合成高分子的组成与结构特点,能依据简单合成高分子的结构分析其链节和单体2.了解合成高分子在高新技术领域的应用以及在发展经济、提高生活质量方面中的贡献1.了解加聚反应和缩聚反应的含义2.掌握官能团的引入、消除和衍变及碳骨架增减的方法3.能根据信息设计有机化合物的合成路线考情分析有机合成与有机推断通常以陌生有机物(新材料、新药品、新染料等)的合成为命题素材,给出陌生有机物的合成路线;要求根据有机化学基础知识,结合题给合成路线或新反应情境,进行考查有机物的分子式和结构简式、有机反应类型、反应条件、方程式的书写、同分异构体、官能团的检验和鉴别以及合成路线设计等问题备考指导增强对陌生有机信息的学习运用能力、整合处理能力的训练,加强利用已知信息设计简单有机物的合成路线的训练,解决有机合成的实际问题【真题探秘】基础篇固本夯基【基础集训】考点一高分子化合物1.(2019湖南雅礼中学月考五,9)下列关于有机物的说法中,正确的一组是()①淀粉、油脂、蛋白质在一定条件下都能发生水解反应②“乙醇汽油”是在汽油中加入适量乙醇而制成的一种燃料,它是一种新型化合物③除去乙酸乙酯中残留的乙酸,加过量饱和碳酸钠溶液振荡后,静置分液④石油的分馏和煤的气化都发生了化学变化⑤淀粉遇碘酒变蓝色;在加热条件下,葡萄糖能与新制Cu(OH)2悬浊液发生反应⑥塑料、橡胶和纤维都是合成高分子材料A.③④⑤B.①②⑥C.①③⑤D.②③④答案C2.(2019湖南雅礼中学月考七,10)格列卫是治疗白血病和多种癌症的一种抗癌药物,在其合成过程中的一种中间产物结构如下:下列有关该中间产物的说法正确的是()A.分子中含有两种官能团B.碱性条件下水解的产物之一,经酸化后自身可以发生缩聚反应C.该物质易溶于水D.水解产物的单个分子中,苯环上都有3种不同化学环境的氢原子答案B3.(2020浙江新高考联盟模考,20)功能高分子P的合成路线如下:(1)葡萄糖分子式为。
高二化学精品课件 有机化合物的合成
4、在分子中引入羧基的反应有:①烯烃及苯的
小结:分子中引入羧基的途径: 同系物被氧化
(6)
—CH2CH3
1、氧化反应
KMnO(45)(6)(11—)(C1O2O)(H20②)(2醛3)的(1氧) 化
(23() C1H)3C烯HO烃+2;Cu((O2H))2苯→△ 的CH同3CO系OH物+C;u2(O+32)H2醛O ; (202)、CH酯3C的OO水CH解2CH3+H2O(酸性)→CH3COOH③+C酯H3的CH水2O16解H
[O]
浓H2SO4
CHO [O] COOH
O O=C CH2
O=C CH2 O
CHO
COOH
19
常见官能团间转化示意图
CH2=CH2
CH3CH2X
H+
浓
硫
CH3CHO
酸
170
Cu
℃
Δ
CH3CH2OH
浓 硫 酸
Δ
KMnO4 (H+)
CH3COOC2H5
CH3COOH
20
常见官能团间转化示意图
HX
CH3CH2X
KMnO4
LiAlH4 (H+)
Δ
CH3COOC2H5
H+, Δ 浓硫酸, Δ
CH3COOH
26
练一练:
某同学将乙醛和丁酮(CH3CH2COCH3)溶于碱性溶液 中,并微热,通过该过程不可能得到下列哪种有机化 合物: A.CH3CH2C(CH3)=CHCHO B.CH3CH2COCH=CHCH3 C.CH3CH(OH)(CH2)2COCH3 D.CH3CH(OH)CH(CH3)COCH3
高中化学奥林匹克竞赛有机化学讲座.ppt
C H 3
+ C H NC H IC H 2 6 5 6 5
C H 3
+ I C H C H N C H 6 5 6 5 2
C H = C H C H 2 2
C H C H = C H 2 2
P+
Br C6H4OH
C6H5
Br C6H5 P+ HOC6H4
CH3 C6H5 N O O C2H5
CH3 N C6H5 C2H5
对映体
专题二 立体化学
1 根据碳原子在形成有机物的过程中的典 型成键方式,以甲烷分子中的正四面体结 构、乙烯分子中的平面结构和乙炔分子中 的线性结构(或碳原子的SP3、SP2、SP杂 化结构理论)为基础,推测和判断有机分 子的空间构型。
系统命名法
1、 按官能团的优先次序来确定分子所属的主官能团类 -COOH、-SO3H、-COOR、-COX、 -CONH2、-CN、-CHO、-COR、-OH、 -SH、-NH2、 -OR、C≡C、C=C、R 、 2、 选取含有主官能团在内的碳链最长的取代基最多的侧 链位次最小的主链作为母体 3、 将母体化合物进行编号,使主官能团位次尽量小 4、 确定取代基位次及名称,按次序规则*给取代基列出 次序,较优基团后列出 5、按系统命名的基本格式写出化合物名称
碳环化合物的对映异构
2-羟甲基-1-环丙烷羧酸的立体异构
HOH2C H
³ Ê Ë ½ Ô Ó ¶ ³ Ì å
COOH H
HOOC H
CH2OH HOH2C H
´ Ê · ½
H COOH
H HOOC
´ Ê · ½ Ô Ó ¶ ³ Ì å
CH2OH H
(I)
H I) (I
有机化学竞赛辅导教案
有机化学竞赛辅导教案第一章绪论一.有机化合物和有机化学有机化合物是指碳氢化合物及其衍生物。
有机化学是研究有机合物的结构特征.合成方法和理化性质等的化学。
二.有机化合物的特点碳原子的价电子层1S22S22P2因此,有机物分子是共价键结合。
1.可燃性:绝大多数有机物都是可燃的。
2.耐热性、熔点、沸点低:3.水溶性:小,原理依据,相似相溶原理、与水形成氢键的能力。
4.导电性能:差。
5.反应速度:慢。
6.反应产物:常有副产物,副反应。
7.普遍在同分异构体同分异构体是指分子式相同结构式不同,理化性质不同的化分物。
三.有机化合物的结构理论1858年凯库勒和古柏尔提出有机化合物分子中碳原子是四价及碳原子之间相互连接成碳链的概念,成为有机化合物分子结构的,最原始和最基础的理论。
1861年布特列洛夫对有机化合物的结构提出了较完整的的概念,提出原子之间存在着相互的影响。
1874年范荷夫和勒贝尔建立分子的立体概念,说明了对映异构和顺反异构现象。
*碳原子总是四价的,碳原子自相结合成键,构造和构造式分子中原子的连接顺序和方式称为分子的构造.表示分子中各原子的连接顺序和方式的化学式叫构造式(结构式).用两小点表示一对共用电子对的构造式叫电子式,用短横线(-)表示共价键的构造式叫价键式.有时可用只表达官能团结构特点的化学式,既结构简式.四.共价键的性质1. 键长:形成共价键的两个原子核间距离。
2. 键角:两个共价键之间的夹角。
3. 键能:指断单个特定共价键所吸收的能量,也称为该键的离解能。
共价键的键能是断裂分子中全部同类共价键所需离解能的平均值。
4. 键的极性:键的极性与键合原子的电负性有关,一些元素电负性数值大的原子具有强的吸电子能力。
常见元素电负性为:H C N O F Si P S Cl Br I2.1 2.53.0 3.54.0 1.8 2.1 2.5 3.0 2.5 2.0对于两个相同原子形成的共价键来说,可以认为成键电子云是均匀的分布在两核之间,这样的共价键没有极性,为非极性共价键。
高中化学奥赛辅导有机化学全套课件
“有机化学”部分
初赛基本要求:
有机化合物基本类型—烷、烯、炔、环烃、芳香烃、 卤代烃、醇、酚、醚、醛、酸、酯、胺、酰胺、硝基 化合物、磺酸的系统命名、基本性质及相互转化。异 构现象。C=C加成。取代反应。芳环香烃取代反应及 定位规则。芳香烃侧链的取代反应和氧化反应。碳链 增长与缩短的基本反应。分子的手性及不对称碳原子 的R、S构型判断。糖、脂肪、蛋白质的基本概念、通 式和典型物资、基本性质、结构特征以及结构表达式。
a
c
CC
a>b
b
b
c>d
(Z)-构型
Zusammen (同)
a
d
CC
b
c
(E)-构型
Entgegen(对)
次序规则:
(1)取代基的原子按原子序数大小排列,大者为“较 优”基团。
I>Br>Cl>S>P>F>O>N>C>D(氘1中子)>H -Br > -OH > -NH2 > -CH3 > -H
(2)若两个基团第一个原子相同(如C ),则比较与 它直接相连的几个原子,余类推。如:
(A) 若只有一个不饱和碳上有侧链,该不饱和碳编号为1; (B) 若两个不饱和碳都有侧链或都没有侧链,则碳原子编
号顺序除双键所在位置号码最小外,还要同时以侧链位 置号码的加和数为最小.
CH3
1
6
2
5
3
4
1-甲基-1-环己烯
H3C 3 2 1
4
6
5
3-甲基-1-环己烯
CH3
6 CH3
5
1
4
2
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的合成奥赛辅导讲义【竞赛要求】有机合成的一般原则。
引进各种官能团(包括复合官能团)的方法。
有机合成中的基团保护。
导向基。
碳链增长与缩短的基本反应。
有机合成中的选择性。
【知识梳理】一、有机合成的一般原则有机合成是有机化学的重要组成部分,是建立有机化学工业的基础,有机合成一般都应遵循下列原则:1、反应步骤较少,总产率高。
一个每步产率为80%的十步合成的全过程产率仅为10.7%,而每步产率为40%的二步合成的全过程产率可达16%。
因此要尽可能压缩反应步骤,以免合成周期过长和产率过低。
2、每步的主要产物易于分离提纯。
要力求采用只生成一种或主要生成一种的可靠反应,避免生成各种产物的混合物。
3、原料易得价格便宜。
通常选择含四个或少于四个碳原子的单官能团化合物以及单取代苯等作为原料。
在实际合成中,若欲合成芳香族化合物时,一般不需要合成芳香环,尽量采用芳香族化合物作为起始物,再引入官能团;若欲合成脂肪族化合物时,关键的步骤是合成碳骨架并同时考虑官能团的引入,引入的官能团可能并非为所需产物中的官能团,但可以通过官能团的转变,形成所需产物中的官能团。
二、有机物的合成方法(包括碳架的建立、各种官能团引进等)(一)芳香族化合物的合成1、合成苯环上仅连有一个基团的化合物一般以苯为原料,通过芳香烃的亲电取代反应引入基团,如表17-1;通过芳香重氮盐的亲核取代反应引入基团,如表17-2;也可以通过活化的芳香卤烃的亲核取代引入基团,如表17-3。
2、合成苯环上仅连有两个基团的化合物如果所需合成的化合物两个基团相互处于邻位或对位,则其中至少有一个基团属于邻、对位定位基;如果所需合成的化合物两个基团相互处于间位,则其中至少有一个基团属于间位定位基。
例如:(1)对于亲电取代反应,在合成顺序中,若会形成邻、对位定位基中间体,则进行亲电取代反应,例如由苯合成对硝基苯甲酮。
(2)引入一种基团,这种基团具有一定的定位作用,待第二基团引入后,再除去这种基团,例如由苯合成间二溴苯。
3、当用取代苯作为起始物时,可通过改变起始物取代基转化的先后顺序来决定最终产物分子中基团的相对位置,例如由甲苯合成硝基苯甲酸。
显然第一条途径较好,在引入致活基团—C2H5后有利于第二步反应;而第二条途径引入的Br 是致钝基团,下一步付–克反应不能进行。
(二)脂肪族化合物的合成在合成脂肪族化合物时,首先要考虑的问题是如何建立碳架;其次若还有官能团存在,则在建立碳架的同时,还需要考虑官能团的建立。
一般是将两个或三个预先形成的碎片按一定的方式连接,使形成的官能团恰好在所需的位置,这一步是整个合成步骤中最关键的一步。
通过亲核加成反应形成碳–碳键和通过亲核取代反应形成碳–碳键的典型反应如下。
1、通过亲核加成反应形成碳–碳键的反应2、通过亲核取代反应形成碳–碳键的反应3、形成双官能团化合物的反应(1)1,1 –双官能团化合物(2)1,2 –双官能团化合物(3)1,3 –双官能团化合物(4)1,4 –双官能团化合物三、有机合成中的基团保护、导向基(一)基团保护在有机合成中,些不希望起反应的官能团,在反应试剂或反应条件的影响下而产生副反应,这样就不能达到预计的合成目标,因此,必须采取对这些基团进行保护,完成合成后再除去保护基,使其复原。
对保护措施一定要符合下列要求:①只对要保护的基团发生反应,而对其他基团不反应;②反应较容易进行,精制容易;③保护基易脱除,在除去保护基时,不影响其他基团。
下面只简略介绍要保护的基团的方法。
1、羟基的保护在进行氧化反应或某些在碱性条件进行的反应,往往要对羟基进行保护。
如防止羟基受碱的影响,可用成醚反应。
防止羟基氧化可用酯化反应。
2、对氨基的保护氨基是个很活泼的基团,在进行氧化、烷基化、磺化、硝化、卤化等反应时往往要对氨基进行保护。
(1)乙酰化(2)对NR2可以加H+ 质子化形成季铵盐,– NH2也可加H+ 成– NH3而保护。
3、对羰基的保护羰基,特别是醛基,在进行氧化反应或遇碱时,往往要进行保护。
对羰基的保护一般采用缩醛或缩酮反应。
4、对羧基的保护羧基在高温或遇碱性试剂时,有时也需要保护,对羧基的保护最常用的是酯化反应。
5、对不饱和碳碳键的保护碳碳重键易被氧化,对它们的保护主要要加成使之达到饱和。
(二)导向基在有机合成中,往往要“借”某个基团的作用使其达到预定的目的,预定目的达到后,再把借来的基团去掉,恢复本来面貌,这个“借”用基团我们叫“导向基”。
当然这样的基团,要符合易“借”和易去掉的原则,如由苯合成1,3,5 –三溴苯,在苯的亲电取代反应中,溴是邻、对位取代基,而1,3,5 –三溴苯互居间位,显然不是由溴的定位效应能引起的。
但如苯上有一个强的邻、对位定位基存在,它的定位效应比溴的定位效应强,使溴进入它的邻、对位,这样溴就会呈间位,而苯环上原来并无此类基团,显然要在合成时首先引入,完成任务后,再把它去掉,恰好氨基能完成这样的任务,因为它是一个强的邻、对位定位基,它可如下引入:– H →– NO2 →– NH2 ,同时氨基也容易去掉:– NH2 →– N +2→– H因此,它的合成路线是:根据导向基团的目的不同,可分为下列几种情况:1、致活导向假如要合成可以用但这种方法产率低,因为丙酮两个甲基活性一样,会有副反应发生:但在丙酮的一个甲基上导入一个致活基团,使两个甲基上的氢的活性有显著差别,这可用一个乙酯基(–COOC2H5)导入丙酮的一个甲基上,则这个甲基的氢有较大的活性,使这个碳成为苄基溴进攻的部位,因此,利用乙酰乙酸乙酯而不用丙酮,完成任务后,把乙酯基水解成羧基,利用β–酮酸易于脱羧的特性将导向基去掉,于是得出合成路线为:2、致钝导向活化可以导向,有时致钝也能导向,如合成氨基是很强的邻、对位定位基,进行取代反应时容易生成多元取代物:如只在苯胺环上的氨基的对位引入一个溴,必须将氨基的活性降低,这可通过乙酰化反应来达到,同时乙酰氨基是一个邻、对位定位基,而此情况下对位产物是主要产物:3、利用封闭特定位置来导向例如合成,用苯胺为起始原料,用混酸硝化,一方面苯胺易被硝酸氧化,另一方面,苯胺与硫酸还会生成硫酸盐,而是一个间位定位基,硝化时得到,所以苯胺硝化时,要把苯胺乙酰化后,再硝化。
由于乙酰基此时主要是对位产物,所以仍不能达到目的。
如果导向一个磺酸基,先把氨基的对位封闭,再硝化,可以得到满意结果:四、碳链增长与缩短的基本反应1、碳链增长的反应起始原料反应及产物烯类炔类卤代烃环氧乙烷羰基化合物丙二酸二乙酯乙酰乙酸乙酯有机金属化合物2、碳链缩短的反应(1)不饱和化合物的氧化(2)卤仿反应(3)霍夫曼降级反应(4)羧酸反应(5)芳香族化合物氧化五、有机合成中的选择性在有机合成中,还需要考虑选择性,这些选择大致有下列几类。
1、化学选择分子中的几个基团,有时不需要加以保护和特殊的活化,某一基团本身就有选择性的反应,相同基团当处于分子中的不同部位时,就可能产生反应的差异性,这在有机合成中可以利用,例如可以通过对反应条件的控制来控制反应进行的程序:第三个酯基要在更强烈的条件下,如在NaOH和高沸点溶剂乙二醇中回流才能水解。
不同的官能团对同一试剂的反应是不同的,有的能够与之作用,有的却不能,即使能够作用的,也有反应性强弱的差异,表现在反应有快慢和难易的区别,这些差别,在有机合成中也是有用的。
例如,烯烃和炔烃虽然都能与卤素加成,但炔烃的反应却远弱于烯烃,以致可以同时含有烯键和炔键的化合物中实现选择加成,如:选择性试剂在合成中也经常用到。
例如有机锂倾向于1,2—加成。
2、方位选择性苯乙烯和溴化氢加成时,全部生成 –溴乙苯,这是一个方位选择性很强的反应。
在双烯合成中,方位选择性也很强。
芳香族化合物的二元取代反应,实际上也是一种方位选择性反应。
3、立体化学选择性当反应产物可能是一种以上的立体异构体时,就有必要设计一种只产生所要的产物的合成法,即必须采用立体有择反应或立体专一反应,所有的立体专一的反应,一定是立体有择反应。
而立体有择反应不一定是立体专一性反应。
受立体化学控制的反应常见的有以下几类:(1)卤化烃的SN2反应,产生构型翻转产物。
(2)炔烃的加成:(3)烯烃的氧化(4)卤素与烯烃加成(5)硼氢化——氧化反应(6)卤代烷的E2反应(7)羰基加成当羰基两边的空间条件不同时,其中一种加成产物可能占优势,如【典型例题】例1、设计的合成路线。
分析:解答有机合成题时,常常采用倒推法,即从合成目标分子出发,由后往前逆推,推导出目标分子的前体,并同样的找出前体的前体,直至到达较简单的起始原料为止。
在倒推法中,“合成子”法是一种常用的分析手段。
我们可以把目标分子中的某个键切断,目标分子切断成两个片段,这两个片段又可以继续切断成新的片段,直至达到简单的片段。
这些片段叫“合成子”,它可能是些并非实际存在的分子,但我们可以找出作用与之相当的试剂,变成合成子的等价物。
最后,把切断过程倒过来,并使用切断所得的相当试剂,就成了合成方法了。
下面我们就用“合成子”法分析此题的合成路线。
在目标分子的键a处或键b处(如下图)进行切断,分别可得到两个等价物(符号~ 表示切断, 表示逆过程):这样就有两条路线均可以合成目标分子,哪条路线优越?要根据所给原料而定。
解:例2、设计的合成路线分析:再把分析过程颠倒过来,便得到如下的合成路线。
解:例3、设计的合成路线分析:解:通过分析,便可得出合成目标分子的起始原料,通过两次麦克尔反应和一次分子内的羟醛缩合,就可完成这一合成,但是为了使麦克尔加成有足够的活性,醛(或酮)通过形成烯胺使其α-位活性增加,使反应更容易进行,这样就得出了目标分子的合成路线。
–酮酯合成法,根据分析:这里合成目标分子是一种较特殊的酮类,我们很容易想到用乙酰乙酸乙酯的酮式分解,在产物中可以引入。
但目标分子是结构的酮,所以要用为原料,目标分子的前体是:于是得出目标分子的合成路线。
解:例5、设计的合成路线。
分析:由于目标分子具有菲的碳架,所以最容易想到的是由菲部分加氢,但是直接加氢会各种加氢的混合物,所以不能用此法,我们再对目标分子进行分析:于是得出目标分子的合成路线。
解:A是主要产物,B只有少量,这是由于在①处关环从产物的几何上是不利的。
例6、由苯酚合成分析:于是得出目标合成路线。
解:例7、设计的合成路线分析:目标分子可从(a)(b)两处进行切断卤代烷在醇钠的作用下,脱卤化氢的倾向是2°>1°,为了减少此副反应,所以(b)处切断优越于(a)处切断。
解:例8、用C3化合物合成分析:解:由于频钠醇重排前后碳架的变化是:例9、由苯合成对溴乙苯分析:这两种合成法中,应选用(a)法,因(b)法先引入的–Br为致钝基团,不利于第二步反应的进行。