一元二次方程公式法、配方法

合集下载

一元二次方程的概念和解法(直接开平方法、配方法、公式法)

一元二次方程的概念和解法(直接开平方法、配方法、公式法)

一元二次方程的概念和解法一、学习目标:1、掌握一元二次方程的概念和一般形式,会找出一元二次方程的各项及其系数;2、会用直接开平方法解一元二次方程。

二、旧知回顾与训练:1、什么叫方程?什么叫整式方程?什么叫方程的解?2、什么是一元一次方程?怎样理解方程“元”和“次”的含义?解一元一次方程的方法和步骤是怎样的?3、解方程:12223x x x -+-=-三、新知学习与训练:(一)一元二次方程的概念: 类比一元一次方程的概念得出一元二次方程的概念:只含有___个未知数,并且未知数的最高次数是___ 的 方程叫做一元二次方程。

思考:怎样理解一元二次方程的概念? 方法小结:1、方程必须是整式方程;2、方程中只能有一个未知数,并且未知数的最高次数只能为二次;3、方程化简后含未知数的二次项的系数不能为0。

练习:下列方程中,哪些是关于x 的一元二次方程?(1)250x -= ; (22x -= ;(3)21230x x+-=; (4)330x x -=; (5)230x xy +-=; (6)-x 2=0; (7)x (5x -2)=x (x +1)+4x 2 。

(二) 一元二次方程的一般形式:类比一元一次方程的一般形式得出一元二次方程的一般形式: 。

其中__、___、___分别叫做二次项、一次项和常数项; 、分别叫做二次项系数、一次项系数。

二次项系数、一次项系数、常数项都要包含它前面的符号。

思考:1、一元二次方程的一般形式的结构特征是什么?2、一元二次方程的一般形式:ax 2+bx +c =0(a ≠0)中,为什么“a ≠0”? 3、怎样把一元二次方程整理为一般形式?范例:例1、方程013)2(=+++mx x m m是关于x 的一元二次方程,求m 的值。

例2、把方程3x (x-1)=2(x +1)+8化成一般形式,并写出二次项,一次项系数及常数项?练习:1、下列关于x 的方程是否是一元二次方程?为什么?若是一元二次方程,请分别指出其二次项系数、一次项系数、常数项:032)1(2=++x ax ;023)2(2=+mx x ;0128)1)(3(2=----m mx x m ;(4)(b 2+1)x 2-bx +b =2;(5) 2tx (x -5)=7-4tx 。

公式法解一元二次方程全面版

公式法解一元二次方程全面版

25
x3 25 3 5
22
4
即: x1 2,x2
1 2
2 x 3 2 x 9 6 0
解: 原方 2 x 2 9 程 x 6 x 2 化 6 7 0为
整理 2x2 为 3x2: 10
a 2 ,b 3 ,c 21
公式法解一元二次方程
一、回顾
用配方法解方程:x2bxc0
x 解:移项得: 2bxc
x22b 2xb 22b 22c
则:
xb22
b2 4
c
当b2 c0时,方程有实.数解 4
二、公式的推导
a2x b x c0a0
解: a0x2 bxc0
关于一元二次方程 a2x bxc0a0 ,当
a,b,c满足什么条件时,方程的两根互
为相反数?
解:一元二次方程 a2x b xc0a0的解为:
x 1 b 2 b a 2 4 a,x c 2 b 2 b a 2 4 ac
x1x2
b b24acb b24ac
x__ 5_2 _7 ____
即x1: _1 _x_ 2_ _-6,___
2、用公式法解方程
1 x 2 2 x 5 2 6 t 2 13 t 5 0 3 3 x 2 1 x 1 0
22
4 x 2 2 2 x 3 0
2
3、想一想:
b24ac32 4221
9168
177
x3 177
22
即 :x13417,x7 234177
例3 解方程: x2323x
解: 原方x 程 2 23 x 化 30 为:
a 1 ,b 23 ,c 3

一元二次方程的解法(公式法3种题型)(解析版)

一元二次方程的解法(公式法3种题型)(解析版)

一元二次方程的解法(公式法3种题型)1.了解求根公式的推导过程.(难点)2.掌握用公式法解一元二次方程.(重点)3.理解并会用判别式求一元二次方程的根.4.会用判别式判断一元二次方程的根的情况一、公式引入一元二次方程20ax bx c ++=(0a ≠),可用配方法进行求解:得:2224()24b b acx a a −+=.对上面这个方程进行讨论:因为0a ≠,所以240a >①当240b ac −≥时,22404b aca−≥利用开平方法,得:x += 即:x = ②当240b ac −<时,22404b ac a −< 这时,在实数范围内,x 取任何值都不能使方程2224()24b b acx a a−+=左右两边的值相等,所以原方程没有实数根.二、求根公式一元二次方程20ax bx c ++=(0a ≠),当240b ac −≥时,有两个实数根:1x =2x =这就是一元二次方程20ax bx c ++=(0a ≠)的求根公式. 三、用公式法解一元二次方程一般步骤①把一元二次方程化成一般形式20ax bx c ++=(0a ≠); ②确定a 、b 、c 的值;③求出24b ac −的值(或代数式);④若240b ac −≥,则把a 、b 、c 及24b ac −的值代入求根公式,求出1x 、2x ;若240b ac −<,则方程无解.四、 根的判别式1.一元二次方程根的判别式:我们把24b ac −叫做一元二次方程20(0)ax bx c a ++=≠的根的判别式,通常用符号“∆”表示,记作2=4b ac ∆−.2.一元二次方程20(0)ax bx c a ++=≠, 当2=40b ac ∆−>时,方程有两个不相等的实数根; 当2=40b ac ∆−=时,方程有两个相等的实数根;当2=40b ac ∆−<时,方程没有实数根.五、根的判别式的应用(1)不解方程判定方程根的情况; (2)根据参数系数的性质确定根的范围; (3)解与根有关的证明题.题型1根的判别式例1.选择:(1) 下列关于x 的一元二次方程中,有两个不.相等的实数根的方程是( )(A )012=+x(B )0122=++x x (C )0322=++x x(D )0322=−+x x(2) 不解方程,判别方程25750x x −+=的根的情况是()(A )有两个相等的实数根 (B )有两个不相等的实数根 (C )只有一个实数根(D )没有实数根(3)方程2510x x −−=的根的情况是()(A )有两个相等实根 (B )有两个不等实根 (C )没有实根(D )无法确定(4) 一元二次方程2310x x +−=的根的情况为()(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )只有一个实数根(D )没有实数根【答案】(1)D ;(2)D ;(3)B ;(4)A .【答案】【答案】【解析】(1)A :1a =,0b =,1c =,2440b ac ∆=−=−<,方程无实根;B :1a =,2b =,1c =,240b ac ∆=−=,方程有两个相等实根; C :1a =,2b =,3c =,2480b ac ∆=−=−<,方程无实根;D :1a =,2b =,3c =−,24160b ac ∆=−=>,方程有两不等实根实根,故选D ;(2)5a =,7b =−,5c =,24510b ac ∆=−=−<,方程无实根,故选D ; (3)1a =,5b =−,1c =−,24290b ac ∆=−=>,方程有两不等实根,故选B ; (4)1a =,3b =,1c =−,24130b ac ∆=−=>,方程有两个相等实根,故选A .【总结】考查一元二次方程根的判别式判定方程根的情况,先列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根. 例2.不解方程,判别下列方程的根的情况: (1)24530x x −−=; (2)22430x x ++=;(3)223x +=;(4)22340x x +−=.【答案】(1)方程有两不等实根;(2)方程无实数根;(3)方程有两相等实根; (4)方程有两不等实根.【答案】【答案】【解析】(1)4a =,5b =−,3c =−,24730b ac ∆=−=>,方程有两不等实根;2a =,4b =,3c =,2480b ac ∆=−=−<,方程无实数根;2a =,b =−3c =,240b ac ∆=−=,方程有两相等实根;(4)2a =,3b =,4c =−,24410b ac ∆=−=>,方程有两不等实根.【总结】考查一元二次方程根的判别式判定方程根的情况,先将方程整理成一般形式,列出方程中的a 、b 、c ,再代值计算∆,根据∆与0的大小关系确定方程根的情况,注意a 、c 异号时则必有两不等实根.题型2用公式法解一元二次方程例3.(2022秋·江苏苏州·九年级校考期中)用公式法解方程:22720x x −+=.【答案】12x x ==【分析】根据公式法解一元二次方程即可求解.【详解】解:22720x x −+=,∴2,7,2a b c ==−=,244942233b ac ∆=−=−⨯⨯=,∴x ==,解得:12x x ==.【点睛】本题考查了公式法解一元二次方程,掌握一元二次方程的求根公式是解题的关键. 例4.用公式法解下列方程:(1)2320x x +−=;(2)25610x x −++=.【答案】(1)12x x ==;(2)12x x =.【解析】(1)132a b c ===−,,1742=−ac b ,则2173±−=x ,∴12x x ==;(2)561a b c =−==,,,则5642=−ac b ,则101426−±−=x ,∴123355x x −==,.【总结】本题主要考查一元二次方程求根公式x =的运用.例5.用公式法解下列方程:(1)291x +=;(220+−=.【答案】(1)12x x ==;(2)12x x ==【解析】(1)1,66,9=−==c b a ,则18042=−ac b ,则185666±=x ,∴原方程的解为:12x x ==;22,34,2−===c b a ,则6442=−ac b ,则22834±−=x ,∴原方程的解为:12x x ==【总结】本题主要考查一元二次方程求根公式的运用.题型3根的判别式的应用例6.(2022秋·江苏扬州·九年级校联考期中)关于x 的一元二次方程()21360x k x k +++−=.(1)求证:方程总有两个实数根;(2)若方程有一个根不小于7,求k 的取值范围. 【答案】(1)见解析. (2)5k ≤−.【分析】(1)计算根的判别式的值,利用配方法得到()25k ∆=−,根据非负数的性质得到0∆≥,然后根据判别式的意义得到结论; (2)利用求根公式得到13x =−,22kx =−.根据题意得到27k −≥,即可求得k 的取值范围.【详解】(1)解:()()21436k k ∆=+−−2211224k k k =++−+ 21025k k =−+()250k =−≥,∴方程总有实数根; (2)解:∵()250k ∆=−≥,∴()()152k k x −+±−=,解方程得:13x =−,22kx =−,由于方程有一个根不小于7, ∴27k −≥, 解得:5k ≤−.【点睛】本题考查的是根的判别式及一元二次方程的解的定义,在解答(2)时得到方程的两个根是解题的关键.例7.(2023·江苏苏州·统考一模)已知关于x 的一元二次方程22210x mx m −+−=. (1)若该方程有一个根是2x =,求m 的值;(2)求证:无论m 取什么值,该方程总有两个实数根. 【答案】(1)32m =(2)证明见解析【分析】(1)直接把2x =代入到原方程中得到关于m 的方程,解方程即可得到答案; (2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程22210x mx m −+−=的一个根为2x =,∴224210m m −+−=,∴32m =;(2)证明:由题意得,()()()222242421484410b ac m m m m m ∆=−=−−−=−+=−≥,∴无论m 取什么值,该方程总有两个实数根.【点睛】本题主要考查了一元二次方程的解和根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根;一元二次方程的解是使方程左右两边相等的未知数的值.例8.(2023秋·江苏扬州·九年级校考期末)关于x 的一元二次方程()23220x k x k −+++=.(1)求证:方程总有两个实数根;(2)若方程有一个根小于2,求k 的取值范围. 【答案】(1)见解析 (2)1k <【分析】(1)计算一元二次方程根的判别式,根据根的判别式进行判断即可得证;(2)根据公式法求得方程的解,得出122,1==+x x k ,根据题意列出不等式,解不等式即可求解. 【详解】(1)证明:关于x 的一元二次方程()23220x k x k −+++=,∴1,(3),22a b k c k ==−+=+ ∵[]224(3)41(22)−=−+−⨯⨯+b ac k k221k k =−+2(1)0k =−≥,∴此方程总有两个实数根; (2)∵()23220x k x k −+++=∵2(1)k ∆=−∴3(1)2+±−==k k x解得:122,1==+x x k ,∵方程有一个根小于2, ∴12k +<, 解得1k <.【点睛】本题考查了一元二次方程根的判别式,解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.一、单选题1.(2023·江苏徐州·统考一模)关于一元二次方程2430x x ++=根的情况,下列说法中正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法确定【答案】A【分析】直接利用一元二次方程根的判别式即可得.【详解】解:2430x x ++=其中1a =,4b =,3c =,∴2Δ441340=−⨯⨯=>,∴方程有两个不相等的实数根. 故选:A .【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键. 2.(2023·江苏徐州·校考一模)关于x 的一元二次方程240x x k −+=有实数根,则k 的值可以是( ) A .4 B .5 C .6 D .7【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −+=有实数根,∴()2440k ∆=−−≥,∴4k ≤,∴四个选项中只有A 选项符合题意, 故选A .【点睛】本题主要考查次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023秋·江苏盐城·九年级统考期末)若关于x 的一元二次方程240x x k −−=没有实数根,则k 的值可以是( ) A .5− B .4− C .3− D .2【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x k −−=无实数根,∴()2440k ∆=−+<,∴4k <−,∴四个选项中,只有A 选项符合题意, 故A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.4.(2023春·江苏盐城·九年级统考期末)若关于x 的一元二次方程220x x k −+=没有实数根,则k 的值可以是( ) A .2 B .1 C .0 D .1−【答案】A【分析】根据一元二次方程根的判别式进行求解即可.【详解】解:∵关于x 的一元二次方程220x x k −+=没有实数根,∴()2240k ∆=−−<,∴1k >,∴四个选项中,只有选项A 符合题意, 故选A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.5.(2023秋·江苏·九年级统考期末)若关于x 的一元二次方程2440x x k −−+=没有实数根,则k 的取值范围为( ) A .0k > B .4k > C .0k < D .4k <【答案】C【分析】根据一元二次方程根的判别式进行判断即可求解.【详解】解:∵关于x 的一元二次方程2440x x k −−+=没有实数根,∴()2416440b ac k ∆=−=−−<,解得:0k <故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题6.(2023·江苏常州·校考一模)若关于x 的一元二次方程()22210k x x −−−=有实数根,则实数k 的取值范围是______. 【答案】1k ≥且2k ≠【分析】根据一元二次方程的定义和判别式的性质计算,即可得到答案.【详解】∵关于x 的一元二次方程()22210k x x −−−=有实数根, ∴()()()22024210k k −≠⎧⎪⎨−−−⨯−≥⎪⎩ ∴21k k ≠⎧⎨≥⎩,即1k ≥且2k ≠. 故答案为:1k ≥且2k ≠.【点睛】本题考查了一元二次方程的定义和跟的判别式,解题的关键是熟练掌握一元二次方程的定义和判别式的性质,从而完成求解.7.(2023·江苏常州·统考一模)若关于x 的方程20x x m −+=(m 为常数)有两个相等的实数根,则m =______.【答案】14【分析】先根据方程有两个相等的实数根得出△0=,求出m 的值即可.【详解】解:关于x 的方程20(x x m m −+=为常数)有两个相等的实数根,∴△2(1)40m =−−=,解得14m =.故答案为:14.【点睛】本题考查的是根的判别式,孰知当△0=时,一元二次方程2(0)y ax bx c a =++≠有两个相等的实数根是解答此题的关键.8.(2023·江苏盐城·校考二模)已知关于x 的一元二次方程240x ax ++=有一个根为1,则a 的值为________.【答案】5a =−【分析】将1x =代入方程240x ax ++=,解方程即可得到a 的值.【详解】∵关于x 的一元二次方程240x ax ++=有一个根为1,∴将1x =代入方程240x ax ++=,得140a ++=,解得:5a =−, 故答案为:5−【点睛】本题主要考查一元二次方程的解,理解一元二次方程的解是使得方程左右两边相等的未知数的值是解题的关键.9.(2023·江苏宿迁·模拟预测)关于x 的方程()21210m x x −−+=有实数根,则m 的取值范围是______. 【答案】2m ≤/2m ≥【分析】分当10m −=时,当10m −≠,即1m ≠时,两种情况讨论求解即可. 【详解】解:当10m −=时,即1m =时,原方程即为210x −+=,解得12x =,符合题意;当10m −≠,即1m ≠时,∵关于x 的方程()21210m x x −−+= ∴()()22410m ∆=−−−≥,解得2m ≤且1m ≠; 综上所述,2m ≤, 故答案为:2m ≤.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.10.(2023·江苏·模拟预测)请填写一个常数,使得一元二次方程25x x −+____________0=没有实数根.【答案】7(答案不唯一)【分析】设这个常数为a ,根据根的判别式求出a 的取值范围即可得到答案. 【详解】解:设这个常数为a ,∴方程250x x a −+=没有实数根,∴()2540a ∆=−−<,∴254a >,∴7a =满足题意,故答案为:7(答案不唯一).【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.11.(2023秋·江苏无锡·九年级校联考期末)请填写一个常数,使得关于x 的方程24x x −+________=0有两个不相等的实数根. 【答案】1(答案不唯一)【分析】根据方程的系数结合根的判别式2=40b ac ∆−>,即可得出关于c 的不等式,求解即可得出答案.【详解】解:1a =,4b =−,设常数为c ,()22=44410b ac c ∆−=−−⨯⨯>4c ∴<故答案为:1(答案不唯一).【点睛】本题考查了根的判别式,牢记“当0∆>时,方程有两个不相等的实数根”是解题的关键. 三、解答题12.(2022秋·江苏淮安·九年级统考期末)求证:关于x 的方程2()0()x m n x mn m n +++=≠有两个不相等的实数根. 【答案】见解析【分析】根据224()41b ac m n mn ∆=−=+−⨯⨯,再判断出的符号,即可得出结论. 【详解】解∶2222()412()m n mn m n mn m n ∆=+−⨯⨯=+−=−,m n ≠()2m n ∴−>∴方程有两个不相等的实数根.【点睛】本题考查了一元二次方程20(0)ax bx c a ++=≠的根的判别式2Δ4b ac =−:当0∆>,方程有两个不相等的实数根;当Δ0=,方程有两个相等的实数根;当Δ0<,方程没有实数根. 13.(2023·江苏盐城·校考一模)已知关于x 的一元二次方程210x ax a −+−=. (1)求证:方程总有两个实数根;(2)若该方程有一实数根大于4,求a 的取值范围. 【答案】(1)见解析 (2)5a >【分析】(1)根据一元二次方程根的判别式进行求解即可;(2)利用因式分解法解方程求出方程两个根为1211x x a ==−,,再根据该方程有一实数根大于4进行求解即可.【详解】(1)解:∵知关于x 的一元二次方程为210x ax a −+−=,∴()()()222414420a a a a a ∆=−−−=−+=−≥,∴方程总有两个实数根;(2)解:∵210x ax a −+−=,∴()()110x x a −+−=,∴10x −=或10x a +−=, 解得1211x x a ==−,,∵该方程有一实数根大于4, ∴14a −>, ∴5a >.【点睛】本题主要考查了一元二次方程根的判别式,解一元二次方程,灵活运用所学知识是解题的关键. 14.(2023秋·江苏南通·九年级统考期末)关于x 的一元二次方程2(23)10mx m x m ++++=有两个不等的实数根.(1)求m 的取值范围;(2)当m 取最小整数时,求x 的值. 【答案】(1)98m >−且0m ≠(2)10x =,21x =【分析】(1)由0∆>得到关于m 的不等式,解之得到m 的范围,根据一元二次方程的定义求得答案; (2)由(1)知1m =−,还原方程,利用因式分解法求解可得.【详解】(1)解:由题意得:2(23)4(1)0m m m +−+>, 解得:98m >−且0m ≠;(2)由(1)知,m 最小整数为1−,此时方程为:20x x −+=,解得:10x =,21x =.【点睛】本题主要考查一元二次方程的定义及根的判别式,解题的关键是熟练掌握方程的根的情况与判别式的值之间的关系.【答案】(1)28n m =−(2)见解析【分析】(1)根据根的判别式符号进行求解;(2)根据判别式以及一元二次方程的解法即可求出答案. 【详解】(1)由题意得:()242n m ∆=−⋅−28n m ∆=+方程有两个相等的实数根, 0∴∆=280n m ∴+= 28n m ∴=−(2)当2n m =−()228m m ∆=−+2Δ44m m =++()224420m m m ++=+≥∴方程始终有两个实数根【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的判别式.一、单选题1.(2023春·江苏南京·九年级南京市竹山中学校考阶段练习)一元二次方程2440x x +−=的根的情况是( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .无法确定【答案】B【分析】利用一元二次方程根的判别式求解即可. 【详解】解:由题意得,()24414320∆=−⨯⨯−=>,∴原方程有两个不相等的实数根, 故选B .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.2.(2022秋·江苏宿迁·九年级校考阶段练习)关于x 的一元二次方程250x ax −−=的根的情况是( ) A .有两个不相等的实数根 B .可能有实数根,也可能没有 C .有两个相等的实数根 D .没有实数根【答案】A【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程为250x ax −−=,∴()()22451200a a ∆=−−⨯−⨯=+>,∴关于x 的一元二次方程250x ax −−=有两个不相等的实数根,故答案为:A .【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.3.(2023春·江苏宿迁·九年级统考阶段练习)若关于x 的一元二次方程22(1)0x x k +−−=有实数根,则k 的取值范围是( ) A .0k > B .0k ≥ C .0k < D .0k ≤【答案】B【分析】根据一元二次方程有实数根,可知240b ac −≥,求出解即可.【详解】∵一元二次方程22(1)0x x k +−−=有实数根,∴240b ac −≥,即224[(1)]0k −−−≥, 解得0k ≥. 故选:B .【点睛】本题主要考查了一元二次方程根的判别式,掌握24b ac −与一元二次方程20(0)ax bx c a ++=≠的根的关系是解题的关键.即当240b ac −>时,一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根;当240b ac −=时,一元二次方程20(0)ax bx c a ++=≠有两个相等的实数根;当240b ac −<时,一元二次方程20(0)ax bx c a ++=≠没有实数根.5.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,则k 的取值范围是( ) A .1k >−B .1k <C .1k >−且0k ≠D .1k <且0k ≠【答案】C【分析】根据一元二次方程的定义,以及一元二次方程根的判别式得出不等式组,解不等式组即可求解.【详解】解:∵关于x 的一元二次方程2210kx x −−=有两个不相等的实数根,∴0k ≠且0∆>,即2(2)4(1)0k −−⨯⨯−>, 解得1k >−且0k ≠. 故选:C .【点睛】本题考查了一元二次方程20ax bx c ++= (0a a b c ≠,,,为常数)的根的判别式24b ac ∆=−,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程没有实数根. 二、填空题5.(2023春·江苏泰州·九年级校联考阶段练习)请填写一个常数,使得关于x 的方程22+−x x __________0=有两个相等的实数根. 【答案】1【分析】设这个常数为a ,利用一元二次方程根的判别式得出a 的方程,解方程即可得到答案. 【详解】解:设这个常数为a , ∵要使原方程有两个相等的实数根, ∴()2=240a ∆−−=,∴1a =,∴满足题意的常数可以为1, 故答案为:1.【点睛】本题考查了根的判别式,一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=−有如下关系:当0∆>时,方程有两个不相等的实数根;当Δ0=时,方程有两个相等的实数根;当Δ0<时,方程无实数根.6.(2023春·江苏泰州·九年级靖江市靖城中学校考阶段练习)方程220x x m −+=没有实数根,则m 的取值范围是______. 【答案】1m >/1m <【分析】根据一元二次方程无实数根得到Δ0<,代入即可得出答案.【详解】方程220x x m −+=没有实数根,4410m ∴∆=−⨯⨯<, 1m ∴>,故答案为:1m >.【点睛】本题考查一元二次方程有无实数根,熟记判别式24b ac ∆=−是解题的关键.三、解答题7.(2022秋·江苏连云港·九年级校考阶段练习)已知关于x 的一元二次方程210x ax a ++−=. (1)若该方程的一个根为2−,求a 的值及该方程的另一根; (2)求证:无论a 取何实数,该方程都有实数根. 【答案】(1)3a =,该方程的另一根为1− (2)证明见解析【分析】(1)先根据一元二次方程解的定义把2x =−代入到210x ax a ++−=中求出a 的值,再利用因式分解法解方程即可;(2)根据一元二次方程根的判别式进行求解即可.【详解】(1)解:∵关于x 的一元二次方程210x ax a ++−=的一个根为2−,∴4210a a −+−=, ∴3a =,∴原方程即为2320x x ++=,∴()()120x x ++=,解得=1x −或2x =−, ∴方程的另一个根为1−;(2)解:∵关于x 的一元二次方程为210x ax a ++−=,∴()()222414420a a a a a ∆=−−=−+=−≥,∴无论a 取何实数,该方程都有实数根.【点睛】本题主要考查了一元二次方程解的定义,解一元二次方程,一元二次方程判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.8.(2023春·江苏盐城·九年级校考阶段练习)关于x 的一元二次方程2430mx x -+=有实数根. (1)求m 的取值范围;(2)若m 为正整数,求出此时方程的根. 【答案】(1)43m ≤且0m ≠(2)11x =,23x =【分析】(1)由二次项系数非零及根的判别式0∆≥,可得出关于m 的一元一次不等式组,解之即可得出m 的取值范围;(2)由(1)的结论,结合m 为正整数,可得出m 的值,再其代入原方程,解之即可得出结论.【详解】(1)解:∵关于x 的一元二次方程2430mx x -+=有实数根,∴()20Δ4430m m ≠⎧⎪⎨=−−⨯⨯≥⎪⎩, 解得:43m ≤且0m ≠,∴m 的取值范围为43m ≤且0m ≠;(2)∵43m ≤且0m ≠,且m 为正整数, ∴1m =,∴原方程为2430x x −+=,即()()310x x −−=, 解得:11x =,23x =.【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义以及因式分解法解一元二次方程,解题的关键是:(1)利用二次项系数非零及根的判别式0∆≥,找出关于m 的一元一次不等式组;(2)代入m 的值,求出方程的解.9.(2022秋·江苏南京·九年级校考阶段练习)已知关于x 的方程()242440mx m x m +−+−=(m 为常数,且0m ≠)(1)求证:方程总有实数根; (2)若该方程有两个实数根;①不论m 取何实数,该方程总有一个不变的实数根为______; ②若m 为整数,且方程的两个实数根都是整数,求m 的值. 【答案】(1)证明见解析 (2)①2−;②1m =±或2m =±【分析】(1)利用一元二次方程根的判别式求解即可;(2)①利用公式法求出方程的两个实数根即可得到答案;②根据①所求两实数根,结合m 为整数,且方程的两个实数根都是整数进行求解即可. 【详解】(1)解:由题意得()()22=442444b ac m m m ∆−=−−−2216164161640m m m m =−+−+=>,∴方程总有实数根; (2)解:①∵关于x 的方程()242440mx m x m +−+−=有两个实数根,∴2422m x m −±==, ∴1224222242222m m m x x m m m −+−−−====−,,∴不论m 取何实数,该方程总有一个不变的实数根为2−, 故答案为:2−;②由①得,方程的两个实数根为12222mx x m −==−,,∵m 为整数,且方程的两个实数根都是整数, ∴2222m m m −=−为整数,∴1m =±或2m =±.【点睛】本题主要考查了一元二次方程根的判别式,公式法解一元二次方程,熟知一元二次方程的相关知识是解题的关键.10.(2022秋·江苏南通·九年级校考阶段练习)已知关于x 的方程2(1)(3)20m x m x +−++=. (1)证明:不论m 为何值时,方程总有实数根; (2)m 为何整数时,方程有两个不相等的正整数根. 【答案】(1)证明见解析(2)0m =【分析】(1)求出方程根的判别式,利用配方法进行变形,根据平方的非负性证明即可;(2)利用一元二次方程求根公式求出方程的两个根,根据题意求出m 的值.【详解】(1)(1)证明:①1m =−时,该方程为一元一次方程220x −+=,有实数根1x =;②1m ≠−时,该方程为一元二次方程,2(3)8(1)m m ∆=+−+221m m =−+2(1)m =−,不论m 为何值时,2(1)0m −…, ∴0∆…, ∴方程总有实数根;综上,不论m 为何值时,方程总有实数根.(2)解:解方程得,(3)(1)2(1)m m x m +±−=+, 11x =,221x m =+,方程有两个不相等的正整数根,m 为整数,0m ∴=.【点睛】本题考查的是一元二次方程根的判别式和求根公式的应用,掌握一元二次方程根的情况与判别式△的关系:0∆>⇔方程有两个不相等的实数根;0∆=⇔方程有两个相等的实数根;0∆<⇔方程没有实数根是解题的关键.【答案】22212x x x −−或【分析】根据分式的混合运算法则化简后,再求出x 的值,代入求值即可.【详解】解:221222121x x x x x x x ⎛⎫÷ ⎪⎝⎭−−−−+++()()()()()22112221121x x x x x x x x x x x ⎡⎤=÷⎢⎥⎣⎦+−−−−++++()()()()21211112x x x x x x +=⨯++−−()2211x x x =−− 22221x x x =−−∵210x x −−=,∴21x x −=,∴原式()2221x x x −=−2211x =−⨯12x =−, 对于210x x −−=来说,1,1,1,a b c ==−=−∵()()22414115b ac −=−−⨯⨯−=,∴x =,∴12x x ==,∴当x =时,原式12x =−,当x =时,原式12x =−=.【点睛】此题考查了分式的化简求值,解一元二次方程等知识,熟练掌握运算法则是解题的关键. 12.(2022秋·江苏盐城·九年级校考阶段练习)解下列方程:2231x x +=【答案】x x ==12,【分析】先将原方程化为一元二次方程的一般形式,然后用公式法求解即可;【详解】解:原方程可化为:22310x x +−=a b c ===−231 , ,()b ac −=−⨯⨯−=>2243421170x ∴==x x ==12,【点睛】本题考查了一元二次方程的解法,掌握一元二次方程的基本解法是解题的关键. 13.(2022秋·江苏无锡·九年级校联考阶段练习)已知关于x 的方程220x mx m +−=−.(1)当该方程的一个根为1−时,求m 的值及该方程的另一根;(2)求证:不论m 取何实数,该方程都有两个不相等的实数根.【答案】(1)1=2m ,方程的另一根为32(2)见解析【分析】(1)把1x =−代入原方程求得m 的值,进一步求得方程的另一个根即可;(2)计算出根的判别式,进一步利用配方法和非负数的性质证得结论即可.【详解】(1)解:把1x =−代入方程 220x mx m +−=−得 120m m ++−=∴1=2m ,把1=2m 代入到原方程得 213022x x −−=∴1x =−或3=2x 故答案为:1=2m ,方程的另一根为32;(2)证明:∵方程220x mx m +−=−,∴根的判别式()()()224224m m m ∆=−−−=−+∵()220m −≥∴()2240m ∆=−+> ∴不论m 取何实数,该方程都有两个不相等的实数根.【点睛】本题考查了一元二次方程的根的判别式的性质,对于一元二次方程()200ax bx c a ++=≠的根的判别式24b ac ∆=−:当0∆>,方程有两个不相等的实数根;当0∆=,方程有两个相等的实数根;当0∆<,方程没有实数根;熟练掌握一元二次方程根的判别式的性质是解本题的关键. 14.(2022秋·江苏常州·九年级校考阶段练习)用指定方法解下列一元二次方程:(1)2820x x −−=(配方法)(2)2320x x ++=(公式法)【答案】(1)14x =+24x =−(2)11x =−,22x =−【分析】(1)将常数项移至方程的右边,然后两边都加上一次项系数的一半的平方配方成完全平方后,再开方,即可得出结果;(2)利用公式法计算即可.【详解】(1)解:2820x x −−=移项,得:282x x −=,配方,得:2228424x x −+=+,即()2418x −=,由此可得:4x −=±14x =+24x =−(2)解:2320x x ++=1a =,3b =,2c =,224341210b ac ∆=−=−⨯⨯=>,方程有两个不等的实数根,3131212x −±−±===⨯,即11x =−,22x =−.【点睛】本题考查了解一元二次方程,解本题的关键在熟练掌握用配方法和公式法解一元二次方程.解一元二次方程的基本思路是:将二次方程转化为一次方程,即降次.。

1.2.2 一元二次方程的解法-配方法(解析版)

1.2.2 一元二次方程的解法-配方法(解析版)

1.2.2 一元二次方程的解法-配方法考点一.配方法解一元二次方程: (1)配方法解一元二次方程: 将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法. (2)配方法解一元二次方程的理论依据是公式:. (3)用配方法解一元二次方程的一般步骤: ①把原方程化为的形式; ②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1; ③方程两边同时加上一次项系数一半的平方; ④再把方程左边配成一个完全平方式,右边化为一个常数; ⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.要点:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方.(3)配方法的理论依据是完全平方公式.考点二、配方法的应用1.用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.2.用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.3.用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值.4.用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用.题型1:配方法解一元二次方程1.用配方法解一元二次方程2620x x -+=,此方程可化为( )A .2(3)7x -=B .2(3)11x -=C .2(3)7x +=D .2(3)11x +=【答案】A 【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后可得答案.2222()a ab b a b ±+=±【解析】解:2620x x -+=Q ,262x x \-=-,则26929x x -+=-+,即()237x -=,故选:A .【点睛】本题主要考查解一元二次方程的能力,解题的关键是熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法.2.用配方法解一元二次方程23610x x +-=时,将它化为()2x a b +=的形式,则a b +的值为( )A .103B .73C .2D .433.用配方法解下列方程时,配方有错误的是( )A .22990x x --=化为2(1)100x -=B .2890x x ++=化为2(4)25x +=C .22740t t --=化为2781416t æö-=ç÷èøD .23420x x --=化为221039x æö-=ç÷èø【答案】B【分析】根据配方的步骤计算即可解题.【解析】()2222890,89,816916,47x x x x x x x ++=+=-++=-++=故B 错误.且ACD 选项均正确,故选:B【点睛】考查了用配方法解一元二次方程,配方步骤:第一步平方项系数化1;第二步移项,把常数项移到右边;第三步配方,左右两边加上一次项系数一半的平方;第四步左边写成完全平方式;第五步,直接开方即可.4.关于y 的方程249996y y -=,用___________法解,得1y =__,2y =__.【答案】 配方 102 98-【分析】利用配方法解一元二次方程即可得.【解析】249996y y -=,24499964y y -+=+,2(2)10000y -=,2100y -=±,1002y =±+,12102,98y y ==-,故答案为:配方,102,98-.【点睛】本题考查了利用配方法解一元二次方程即可得,熟练掌握配方法是解题关键.5.用配方法解方程ax 2+bx +c =0(a ≠0),四个学生在变形时得到四种不同结果,其中配方正确的是( )A .2224()24b ac b x a a -+=B .2224()22b b ac x a a -+=C .2224()24b b ac x a a -+=D .2222()22b b ac x a a ++=6.用配方法解方程22103x x -+=,正确的是( )A .212251()1,,333x x x -===-B .224(),39x x -==C .238(29x -=-,原方程无实数解D .2()1839x -=-,原方程无实数解7.用配方法解下列方程:(1)2352x x -=;(2)289x x +=;(3)212150x x +-=;(4)21404x x --=;(5)2212100x x ++=;(6)()22040x px q p q ++=-³.8.ABC D 的三边分别为a 、b 、c ,若8+=b c ,21252bc a a =-+,按边分类,则ABC D 是______三角形【答案】等腰【分析】将8+=b c ,代入21252bc a a =-+中得到关系式,利用完全平方公式变形后,根据非负数的性质求出a 与c 的值,进而求出b 的值,即可确定出三角形形状.【解析】解:∵8+=b c ∴8b c =- ,∴()288bc c c c c =-=-+,∴2212528bc a a c c =-+=-+,即2212361680a a c c -+++-=,整理得:()()22640a c -+-=,∵()260a -³,()240c -³,∴60a -=,即6a =;40c -=,即4c =,∴844b =-=,则△ABC 为等腰三角形.故答案是:等腰.【点睛】此题考查了配方法的应用,非负数的性质,以及等腰三角形的判定,熟练掌握完全平方公式是解本题的关键.9.如果一个三角形的三边均满足方程210250x x -+=,则此三角形的面积是______10.已知三角形的三条边为,,a b c ,且满足221016890a a b b -+-+=,则这个三角形的最大边c 的取值范围是( )A .c >8B .5<c <8C .8<c <13D .5<c <13【答案】C【分析】先利用配方法对含a 的式子和含有b 的式子配方,再根据偶次方的非负性可得出a 和b 的值,然后根据三角形的三边关系可得答案.【解析】解:∵a 2-10a +b 2-16b +89=0,∴(a 2-10a +25)+(b 2-16b +64)=0,∴(a -5)2+(b -8)2=0,∵(a -5)2≥0,(b -8)2≥0,∴a -5=0,b -8=0,∴a =5,b =8.∵三角形的三条边为a ,b ,c ,∴b -a <c <b +a ,∴3<c <13.又∵这个三角形的最大边为c ,∴8<c <13.故选:C .【点睛】本题考查了配方法在三角形的三边关系中的应用,熟练掌握配方法、偶次方的非负性及三角形的三边关系是解题的关键.题型3:配方法的应用2-比较整式大小与求值问题11.若M =22x -12x +15,N =2x -8x +11,则M 与N 的大小关系为( )A .M ≥NB .M >NC .M ≤ND .M <N 【答案】A【解析】∵M=22x -12x +15,N=2x -8x +11,∴M-N=222222(21215)(811)2121581144(2)x x x x x x x x x x x -+--+=-+-+-=-+=- .∵2(2)0x -³,∴M-N ³0,∴M ³N.故选A.点睛:比较两个含有同一字母的代数式的大小关系时,当无法直接比较两者的大小关系时,可以通过求出两者的“差”,再看“差”的值是“正数”、“负数”或“0”来比较两者的大小.12.已知下面三个关于x 的一元二次方程2ax bx c 0++=,2bx cx a 0++=,2cx ax b 0++=恰好有一个相同的实数根a ,则a b c ++的值为( )A .0B .1C .3D .不确定【答案】A【分析】把x =a 代入3个方程得出a •a 2+ba +c =0,ba 2+ca +a =0,ca 2+a •a +b =0,3个方程相加即可得出(a +b +c )(a 2+a +1)=0,即可求出答案.【解析】把x =a 代入ax 2+bx +c =0,bx 2+cx +a =0,cx 2+ax +b =0得:a •a 2+ba +c =0,ba 2+ca +a =0,ca 2+a •a +b =0,相加得:(a +b +c )a 2+(b +c +a )a +(a +b +c )=0,13.已知实数m ,n ,c 满足2104m m c -+=,22112124n m m c =-++,则n 的取值范围是( )A .74n ³-B .74n >-C .2n ³-D .2n >-14.若x 为任意实数时,二次三项式26x x c -+的值都不小于0,则常数c 满足的条件是( )A .0c ³B .9c ³C .0c >D .9c >【答案】B【分析】把二次三项式进行配方即可解决.【解析】配方得:226(3)9x x c x c -+=--+∵2(3)0x -³,且对x 为任意实数,260x x c -+³∴90c -+³∴9c ³故选:B【点睛】本题考查了配方法的应用,对于二次项系数为1的二次三项式,加上一次项系数一半的平方,再减去这个数即可配成完全平方式.15.无论x 、y 取任何实数,多项式x 2+y 2-2x -4y+16的值总是_______数.【答案】正【解析】x 2+y 2-2x -4y +16=(x 2-2x +1)+(y 2-4y +4)-1-4+16=(x -1)2+(y -2)2+11,由于(x -1)2≥0,(y -2)2≥0,故(x -1)2+(y -2)2+11≥11,所以x 2+y 2-2x -4y +16的值总是正数.故答案为正.点睛:要证明一个式子的值总是正数,可以用配方法将式子写成多个非负数之和与一个正数的和的形式即可证明.16.不论x ,y 为什么数,代数式4x 2+3y 2+8x ﹣12y +7的值( )A .总大于7B .总不小于9C .总不小于﹣9D .为任意有理数【答案】C【分析】先将原式配方,然后根据偶次方的非负性质,判断出代数式的值总不小于−9即可.【解析】解:4x 2+3y 2+8x ﹣12y +7=4x 2+8x +4+3y 2−12y +3=4(x 2+2x +1)+3(y 2−4y +1)=4(x +1)2+3(y 2−4y +4−4+1)=4(x +1)2+3(y −2)2−9,∵(x +1)2≥0,(y −2)2≥0,∴4x 2+3y 2+8x ﹣12y +7≥−9.即不论x 、y 为什么实数,代数式4x 2+3y 2+8x ﹣12y +7的值总不小于−9.故选:C .【点睛】此题主要考查了配方法的应用,以及偶次方的非负性质的应用,要熟练掌握.解决本题的关键是掌握配方法.17.若12123y z x +--==,则x 2+y 2+z 2可取得的最小值为( )A .3B .5914C .92D .618.关于代数式12a a ++,有以下几种说法,①当3a =-时,则12a a ++的值为-4.②若12a a ++值为2,则a =③若2a >-,则12a a ++存在最小值且最小值为0.在上述说法中正确的是( )A .①B .①②C .①③D .①②③19.我国南宋时期数学家秦九韶曾提出利用三角形的三边求面积的公式,此公式与古希腊几何学家海伦提出的公式如出一辙,即三角形的三边长分别为a ,b ,c ,记2a b c p ++=,则其面积S =.这个公式也被称为海伦—秦九韶公式.若3p =,2c =,则此三角形面积的最大值是_________.20.已知y=x,y均为实数),则y的最大值是______.21.已知152a b c +--=-,则a b c ++=____________22.已知212y x x c =+-,无论x 取任何实数,这个式子都有意义,则c 的取值范围_______.【答案】c <−1【分析】将原式分母配方后,根据完全平方式的值为非负数,只需−c−1大于0,求出不等式的解集即可得到c 的范围.【解析】原式分母为:x 2+2x−c =x 2+2x +1−c−1=(x +1)2−c−1,∵(x +1)2≥0,无论x 取任何实数,这个式子都有意义,∴−c−1>0,解得:c <−1.故填:c <−1【点睛】此题考查了配方法的应用,以及分式有意义的条件,灵活运用配方法是解本题的关键.23.(1)设220,3a b a b ab >>+=,求a b a b+-的值.(2)已知代数式257x x -+,先用配方法说明:不论x 取何值,这个代数式的值总是正数;再求出当x 取何值时,这个代数式的值最小,最小值是多少?24.选取二次三项式2(0)ax bx c a ++¹中的两项,配成完全平方式的过程叫作配方.例如①选取二次项和一次项配方:2242(2)2x x x -+=--;②选取二次项和常数项配方:2242(4)x x x x -+=+-或2242((4x x x x -+=+-+;③选取一次项和常数项配方:22242x x x -+=-.根据上述材料解决下面问题:(1)写出284x x -+的两种不同形式的配方.(2)已知22330x y xy y ++-+=,求y x 的值.(3)已知a 、b 、c 为三条线段,且满足()222214(23)a b c a b c ++=++,试判断a 、b 、c 能否围成三角形,并说明理由.25.若实数x ,y ,z 满足x <y <z 时,则称x ,y ,z 为正序排列.已知x =﹣m 2+2m ﹣1,y =﹣m 2+2m ,若当m 12>时,x ,y ,z 必为正序排列,则z 可以是( )A .m 14+B .﹣2m +4C .m 2D .1A.甲B.乙C.丙D.丁故选:D .【点睛】本题考查了解一元二次方程,掌握配方法是解题的关键.7.代数式243x x -+的最小值为( ).A .1-B .0C .3D .5【答案】A【分析】利用配方法对代数式做适当变形,通过计算即可得到答案.【解析】代数式()2224344121x x x x x -+=-+-=--∵()220x -³,∴()2211x --³-即代数式2|431x x -+³-,故选:A .【点睛】本题考查了完全平方公式和不等式的知识;解题的关键是熟练掌握完全平方公式和不等式的性质,从而完成求解.8.已知625N m =-,22M m m =-(m 为任意实数),则M 、N 的大小关系为( )A .M N<B .M N >C .M N =D .不能确定【答案】B 【分析】求出M N -的结果,再判断即可.【解析】根据题意,可知()22226258169490M N m m m m m m -=--+=-++=-+>,所以M N >.故选:B .【点睛】本题主要考查了整式的加减运算,配方法的应用,掌握配方法是解题的关键.9.若22242021p a b a b =++++,则p 的最小值是( )A .2021B .2015C .2016D .没有最小值【答案】C【分析】将等式右边分组,配成两个完全平方式,即可根据平方的非负性进行解答.【解析】解:22242021p a b a b =++++2221442016a ab b =++++++()()2221442016a ab b =++++++()()22120162a b ++=++,∵()210a +³,()220b +³,∴p 的最小值为2016,故选:C .【点睛】本题主要考查了配方法的应用,解题的关键是将原式分组配方.10.新定义:关于x 的一元二次方程21()0a x m k -+=与22()0a x m k -+=称为“同族二次方程”.如22021(3)40x -+=与23(3)40x -+=是“同族二次方程”.现有关于x 的一元二次方程22(1)10x -+=与()()22480a x b x ++-+=是“同族二次方程”,那么代数式22021ax bx ++能取的最小值是( )A .2013B .2014C .2015D .2016【答案】D【分析】根据同族二次方程的定义,可得出a 和b 的值,从而解得代数式的最小值.【解析】解:22(1)10x -+=Q 与2(2)(4)80a x b x ++-+=为同族二次方程.22(2)(4)8(2)(1)1a x b x a x \++-+=+-+,22(2)(4)8(2)2(2)3a x b x a x a x a \++-+=+-+++,∴42(2)83b a a -=-+ìí=+î,解得:510a b =ìí=-î.∴()22220215102021512016ax bx x x x ++=-+=-+\当1x =时,22021ax bx ++取最小值为2016.故选:D .【点睛】此题主要考查了配方法的应用,解二元一次方程组的方法,理解同族二次方程的定义是解答本题的关键.二、填空题11.将一元二次方程2410x x -+=变形为()2x h k +=的形式为______三、解答题。

用配方法解一元二次方程的方法总结

用配方法解一元二次方程的方法总结

用配方法解一元二次方程的方法总结:大家知道,解一元二次方程的方法很多,有直接开平分法,配方法,公式法和因式分解法等。

其中,配方法是解一元二次方程很好的方法,下面我就分情况对此方法进行讲解。

(一)二次项系数为1的情况:例:用配方法解方程x²-2x-3=0解:x²-2x-3=0,移项,得x²-2x=3,配方,得x²-2x+1²=3+1²,即(x-1)²=4,x -1=±2,x=3或x=-1(二)二次项系数为非1的正数的情况:例:用配方法解方程3x²+6x-24=0解:3x²+6x-24=0,3(x²+2x)-24=0,移项,得3(x²+2x)=24,配方,得3(x²+2x+1²)=24+3×1²,即3(x+1)²=27,即(x+1)²=9,x+1=±3,x=2或x=-4(三)二次项系数为负数的情况:例:用配方法解方程-2x²+4x+6=0解:-2x²+4x+6=0,-2(x²-2x)+6=0,移项,得-2(x²-2x)=-6,配方,得-2(x²-2x+1²)=-6-2×1²,即-2(x-1)²=-8,即(x-1)²=4,x-1=±2,x=3或x=-1综上所述:用配方法解一元二次方程的思路如下:(1)化二次项系数为1。

(2)移项:使方程左边为二次项和一次项,右边为常数项。

(3)配方:方程两边都加上一次项系数一半的平方,原方程变为(x+m)²=p的形式。

(4)直按开平方:求出方程的解。

同学们:看完我的讲述,用配方法解一元二次方程,你们学会了吗?。

一元二次方程的解法-公式法

一元二次方程的解法-公式法

x=
= 22 = 4 .
即 x1= -2, x2=
3
2
求根公式 : X=
(a≠0, b2-4ac≥0)
用公式法解方程x2+4x=2
解:移项,得 x2+4x-2=0
这里的a、b、c 的值是什么?
a= 1 ,b= 4 ,c = -2 .
b2-4ac= 42-4×1×(-2) = 24 . 0
x=
b2 -4ac<0,那么方程有实数根吗?为什么?
在一元二次方程
ax2 bx c 0 (a 0)
中,如果b2-4ac<0,那么方程无实数根,这是
由于 b 2 4ac 无意义
用公式法解一元二次方程的前提是:
1.必需是一般形式的一元二次方程: ax2+bx+c=0(a≠0). 2.b2-4ac≥0.
a=1,b=-2 ,c=3
b2-4ac=(-2 )2-4×1×3=0
∴b2-4ac=(-3) 2-4×2×(-2)=25. 0∴x=
=
∴x=
=
=
=
x 3 5 或x 3 5
4
4
x 2或x 1 2
即 x1=2, x2= -
= x1 = x2 =
当 b2-4ac=0 时,一 元二次方程有两个相等
知识回顾
3.如何用配方法解一般形式的一元二次
方程ax2+bx+c = 0(a≠0)呢?
解:因为a≠0 ,所以方程两边都除以a,得
x2 b x c 0 aa
移项,得 x2 b x c aa
配方,得 x2 2 b x ( b )2 c ( b )2
2a
2a

一元二次方程配方法公式

一元二次方程配方法公式

一元二次方程配方法公式
一元二次方程的公式是:x=−b±b2−4ac2a(b2−4ac≥0)。

只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。

一元二次方程经过整理都可化成一般形式ax+bx+c=0(a ≠0)。

其中ax叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。

一元二次方程的求解方法
1、公式法
在一元二次方程y=ax²+bx+c(a、b、c是常数)中,当△=b²-4ac>0时,方程有两个解,根据求根公式x=(-b±√(b²-4ac))/2a即刻求出结果;△=b²-4ac=0时,方程只有一个解x=-b/2a;△=b²-4ac<0时,方程无解。

2、配方法
将一元二次方程化成顶点式的表达式y=a(x-h)²+k(a≠0),再移项化简为(x-h)²=-k/a,开方后可得方程的解。

3、因式分解法
通过因式分解,把一元二次方程化成两个一次因式的积等于零的形式,即交点式的表达式y=a(x-x1)(x-x2),再分别令这两个因式等于0,它们的解就是原方程的解。

解一元二次方程(直接开方法配方法公式法因式分解法)

解一元二次方程(直接开方法配方法公式法因式分解法)

解一元二次方程(直接开方法、配方法、公式法、因式分解法)一元二次方程知识讲解只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.【例题讲解】例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.解:去括号,得: 40-16x-10x+4x2=18 移项,得:4x2-26x+22=0其中二次项系数为4,一次项系数为-26,常数项为22.小试牛刀1. 将方程(x+1)2+(x-2)(x+2)=?1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.2求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.10一元二次方程的解叫做一元二次方程的根解一元二次方程:直接开方法配方法公式法因式分解法【例题讲解】例1:解方程:x+4x+4=1 解:由已知,得:(x+2)2=1 直接开平方,得:x+2=±1 即x+2=1,x+2=-1所以,方程的两根x1=-1,x2=-3例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4 (1+x)2=1.44直接开平方,得1+x=±1.2 即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为增长率应为正的,因此,x2=-2.2应舍去.即,每年人均住房面积增长率应为20%.例题共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.?我们把这种思想称为“降次转化思想”直接开方法:由应用直接开平方法解形如x2=p(p≥0),那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±p,达到降次转化之目的.【小试牛刀】1. 求出下列方程的根吗?102(1)x2-64=0 (2)3x2-6=0 (3)x2-3x=02.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?例题讲解例1. 解下列方程(1)x2+6x+5=0 (2)2x2+6x-2=0 (3)(1+x)2+2(1+x)-4=0 解:(1)移项,得:x2+6x=-5 配方:x+6x+3=-5+3(x+3)=4 由此可得:x+3=±2,即x1=-1,x2=-5 (2)移项,得:2x2+6x=-2二次项系数化为1,得:x2+3x=-1 配方x2+3x+(由此可得x+32335)=-1+()2(x+)2= 2224222355353=±,即x1=-,x2=-- 222222 (3)去括号,整理得:x2+4x-1=0 移项,得x2+4x=1配方,得(x+2)2=5 ,x+2=±5,即x1=5-2,x2=-5-2从以上例题可以看出,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.配方法:总结用配方法解一元二次方程的步骤10(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m)2=n的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.【小试牛刀】用配方法解以下方程(1)3x2-5x=2.(2)x2+8x=9(3)x2+12x-15=0 (4)【课堂引入】例1. 用配方法解下列方程(1)6x2-7x+1=0 (2)4x2-3x=52例2.某数学兴趣小组对关于x的方程(m+1)xm212x-x-4=0 4?2+(m-2)x-1=0提出了下列问题.若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.解:存在.根据题意,得:m2+1=2 ,即m2=1 m=±1 当m=1时,m+1=1+1=2≠010当m=-1时,m+1=-1+1=0(不合题意,舍去)∴当m=1时,方程为2x2-1-x=0 a=2,b=-1,c=-1b2-4ac=(-1)2-4×2×(-1)=1+8=9 x=1?(?1)?91?3 即 x1=1,x2=- ?22?241. 2 因此,该方程是一元二次方程时,m=1,两根x1=1,x2=-公式法:一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac≥0时,?b?b2?4ac?将a、b、c代入式子x=就得到方程的根.2a (2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程最多有两个实数根.小试牛刀1.用公式法解下列方程.(1)2x2-4x-1=0 (2)5x+2=3x2 (3)(x-2)(3x-5)=0 (4)4x2-3x+1=0 因式分解法因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A・B=0A=0或B=0.【例题精讲】例1:用因式分解法解下列方程:10感谢您的阅读,祝您生活愉快。

一元二次方程公式法、配方法[修改版]

一元二次方程公式法、配方法[修改版]

第一篇:一元二次方程公式法、配方法一元二次方程公式法、配方法【主体知识归纳】4.直接开平方法形如x=a(a≥0)的方程,因为x是a的平方根,所以x=±,即x1=a,x2=-a.这种解一元二次方程的方法叫做直接开平方法.2b2b4ac25.配方法将一元二次方程ax+bx+c=0(a≠0)化成(x+)=的形式后,当b-4ac≥0时,用直22a4a22接开平方法求出它的根,这种解一元二次方程的方法叫做配方法.用配方法解已化成一般形式的一元二次方程的一般步骤是:(1)将方程的两边都除以二次项的系数,把方程的二次项系数化成1;(2)将常数项移到方程右边;(3)方程两边都加上一次项系数一半的平方;(4)当右边是非负数时,用直接开平方法求出方程的根.b24ac26.公式法用一元二次方程ax+bx+c=0(a≠0)的求根公式x=(b-4ac≥0),这种解一元二2a2次方程的方法叫做公式法.【例题精讲】2例1:用配方法解方程2x+7x-4=0.剖析:此题考查对配方法的掌握情况.配方法最关键的步骤是:(1)将二次项系数化为1;(2)将常数项与二次项、一次项分开在等式两边;2(3)方程两边都加上一次项系数一半的平方,即可化为(x+a)=k的形式,然后用开平方法求解.解:把方程的各项都除以2,得x+即(x+277772728122x-2=0.移项,得x+x=2.配方,得x+x+()=2+()=,22244167281)=.416817791=±,x+=±.即x1=,x2=-4.164442解这个方程,得x+说明:配方法是一种重要的数学方法,除了用来解一元二次方程外,还在判断数的正、负,代数式变形、恒等式22的证明中有着广泛的应用,例如证明不论x为何实数,代数式2x-4x+3的值恒大于零,可以做如下的变形:2x-224x+3=2x-4x+2+1=2(x-1)+1.例6:用公式法解下列方程:2(1)2x+7x=4;2解:(1)方程可变形为2x+7x-4=0.22∵a=2,b=7,c=-4,b-4ac=7-4×2×(-4)=81>0,77242(4)791∴x=.∴x1=,x2=-4.2 242【同步达纲练习】1.选择题(1)下列方程中是一元二次方程的是()x2x=0B.23(2)下列方程不是一元二次方程的是()24A.2=0xxA.C.x+2xy+1=0D.5x=3x-112x=1B.0.01x2+0.2x-0.1=0C.2 x2-3x=02(3)方程3x-4=-2x的二次项系数、一次项系数、常数项分别为()D.121x-x=(x2+1) 22A.3,-4,-2B.3,2,-4C.3,-2,-4D.2,-2,0(4)一元二次方程2x-(a+1)x=x(x-1)-1的二次项系数为1,一次项系数为-1,则a的值为() A.-1B.1C.-2D.222(5)若方程(m-1)x+x+m=0是关于x的一元二次方程,则m的取值范围是()A.m≠0B.m≠1C.m≠1且m≠-1D.m≠1或m≠-1 (6)方程x(x+1)=0的根为()A.0B.-1C.0,-1D.0,1(7)方程3x-75=0的解是()A.x=5B.x=-5C.x=±5D.无实数根(8)方程(x-5)=6的两个根是() A.x1=x2=5+6B.x1=x2=-5+6 D.x1=5+6,x2=5-6C.x1=-5+6,x2=-5-6(9)若代数式x-6x+5的值等于12,那么x的值为()A.1或5B.7或-1C.-1或-5(10)关于x的方程3x-2(3m-1)x+2m=15有一个根为-2,则m的值等于() A.2B.-D.-7或112C.-2D.1 22.把下列方程化成一元二次方程的一般形式,再写出它的二次项系数、一次项系数及常数项:(1)4x+1=9x;(2)(x+1)(x-3)=2x-3;(3)(x+3)(x-3)=2(x-3);(4)3y-2y=2y-3y+5.223.当m满足什么条件时,方程(m+1)x-4mx+4m-2=0是一元二次方程?当x=0时,求m的值.4.用直接开平方法解下列方程:(1)x=229;4(2)x=1.96;(5)(x-1)=144;(3)3x-48=0;(6)(6x-7)-9=0.(4)4x-1=0;5.用配方法解下列方程:(1)x+12x=0;(4)9x+6x-1=0;(2)x+12x+15=0(3)x-7x+2=0;(5)5x-2=-x;(6)3x-4x=2.6.用公式法解下列方程:(1)x-2x+1=0;(5)4x-1=0;22(2)x(x+8)=16;(3)x-x=2;3(4)0.8x+x=0.3;(6)x=7x;(7)3x+1=23x;(8)12x+7x+1=0.7.(1)当x为何值时,代数式2x+7x-1与4x+1的值相等?22(2)当x为何值时,代数式2x+7x-1与x-19的值互为相反数?8.已知a,b,c均为实数,且a22a1+|b+1|+(c+3)=0,解方程ax+bx+c=0.9.已知a+b+c=0.求证:1是关于x的一元二次方程ax+bx+c=0的根.10.用配方法证明:22(1)3y-6y+11的值恒大于零;(2)-10x-7x-4的值恒小于零.2211.证明:关于x的方程(a-8a+20)x+2ax+1=0,不论a为何实数,该方程都是一元二次方程.参考答案【同步达纲练习】1.(1)B (2)D (3)B (4)B (5)C (6)C(7) C (8)D (9)B (10)D2.(1)9x2-4x-1=0,9,-4,-1;(2)x2-4x=0,1,-4,0;(3)x2-12x+27=0,1,-12,27;(4)(-2)y2+(-2)y-5=0,-2,3-2,-.3.m≠-1,m=4.(1)x1=,x2=-;(2)x1=-1.4,x2=1.4;(3)x1=-4,x2=4;(4)x1=-,x2=;(5)x1=13,x2=-11;(6)x1=,x2=.5.(1)x1=0,x2=-12;(2)x1=-6-21,x2=-6+21;741741,x2=;22121 2(4)x1=,x2=;33141141(5)x1=,x2=;101022(6)x1=,x2=.33323212122353(3)x1=6.(1)x1=x2=1;(2)x1=-4-42,x2=-4+42;597513,x2=;(4)x1=,x2=-;664211(5)x1=,x2=-;(6)x1=0,x2=7;22(7)x1=x2=;311(8)x1=-,x2=-.347.(1)x=-2或x=;25(2)x=-4或x=.(3)x1=8.x1=11,x2=.229把1代入ax2+bx+c中,得ax2+bx+c=a+b+c=0∴1是方程ax2+bx+c=0的一个根.10(1)∵3y2-6y+11=3y2-6y+3+8=3(y-1)2+8又(y-1)2≥0,∴3(y-1)2+8>0.即3y2-6y+11的值恒大于零.(2)∵-10x2-7x-4=-10(x2+72111)+]400207111=-10(x+)2-.20407又-10(x+)2≤0,201117∴-10(x+)2-<0.402074x+) 1010=-10[(x+即-10x2-7x-4的值恒小于零.11∵a2-8a+20=(a-4)2+4>0∴该方程是一元二次方程第二篇:用配方法和公式法解一元二次方程用配方法和公式法解一元二次方程一.教学内容:用配方法和公式法解一元二次方程1.知道配方法的意义及用配方法解一元二次方程的主要步骤,能够熟练地用配方法解系数较简单的一元二次方程.2.理解用配方法推导出一元二次方程的求根公式,了解求根公式中的条件b2-4ac≥0的意义,知道b2-4ac的值的符号与方程根的情况之间的关系.3.能熟练地运用求根的公式解简单的数字系数的一元二次方程.二. 知识要点:1.形如x2=p或(mx+n)2=p(p≥0)的方程用开平方法将一元二次方程降次转化为两个一元一次方程.通过配方,方程的左边变形为含x的完全平方形式(mx+n)=p(p≥0),可直接开平方,将一个一元二次方程转化为两个一元一次方程.这样解一元二次方程的方法叫做配方法.3.用配方法解一元二次方程的步骤:(1)把二次项系数化为1;(2)移项,方程的一边为二次项和一次项,另一边为常数项;(3)方程两边同时加上一次项系数一半的平方;(4)用直接开平方法求出方程的根.2(3)当b-4ac<0时,方程没有实数根.2三. 重点难点:本讲重点是用配方法和公式法解一元二次方程,难点是配方的过程和对求根公式推导过程的理解.例2. 用配方法解方程:(1)x2+2x-5=0;(2)4x2-12x-1=0;(3)(x+1)2-6(x+1)2-45=0.分析:方程(1)是一元二次方程的一般形式,且二次项系数为1,所以直接移项、配方、求解即可;方程(2)要先把二次项系数化为1;方程(3)不要急于打开括号,可把(x+1)2看成一个整体合并,可避免重复配方.(3)将方程整理得(x+1)2-6(x+1)2=45,-5(x+1)2=45,(x+1)2=-9,由于x取任意实数时(x+1)2≥0,则上式都不成立,所以原方程无实数根.评析:配方法作为一种求解的方法,与其他方法比显得复杂些,为此,除非题目有特别指明用配方法解外,一般不用这种方法,但配方法是一种重要的数学方法,应用很广,应力争掌握好.例4. 不解方程判断下列方程根的情况.(1)4x2-11x=2;(2)4x2-x+5=0;(3)y2+14y+49=0;(4)x2+(m+2)x+m=0.分析:判断一元二次方程的根的情况应先把方程转化成一般形式,再计算b2-4ac的值.解:(1)原方程化为4x2-11x-2=0,a=4,b=-11,c=-2,b2-4ac=(-11)2-4×4×(-2)=153>0,所以原方程有两个不相等的实数根.(2)a=4,b=-1,c=5,b2-4ac=(-1)2-4×4×5=-79<0,所以原方程没有实数根.(3)a=1,b=14,c=49,b2-4ac=142-4×1×49=0,原方程有两个相等的实数根.(4)a=1,b=m+2,c=m,b2-4ac=(m+2)2-4×1×m=m2+4m+4-4m=m2+4,无论m取何值,m2+4>0,∴b2-4ac >0,原方程有两个不相等的实数根.评析:(1)b2-4ac是对一元二次方程一般形式而言的,计算前必须把方程化成一般形式;(2)当讨论含有字母系数的方程根的情况时,通常把计算结果化成(通过配方)(m+n)2+p的形式,由平方数的非负性说明它的符号.例5. 先用配方法说明:不论x取何值,代数式x2-5x+7的值总大于0.再求出当x取何值时,代数式x2-5x+7的值最小?最小值是多少?分析:准确配方,利用完全平方公式的非负性确定值的非负性及最小值.解:x2-5x+7=(x-2.5)2+0.75>0.当x=2.5时,代数式x2-5x+7的值最小,最小值是例6. 某农场要建一个矩形的养鸭场,养鸭场的一边靠墙,竹栏长为40m.(1)养鸭场的面积能达到150m2吗?能达到200m2吗?(2)能达到250m2吗?如果能,请你给出设计方案;如果不能,请说明理由.分析:根据题意列出方程,利用配方法或求根公式解方程,义,则满足要求,否则,不能满足要求.解:设与墙垂直的一边长为x m,则另一边长(40(1)当面积为150m2时,x(40-2x)=150,整理得:x2-20x+75=0,即(x-10)2=25.解得x1=5,x2=15.此时的设计方案为:与墙垂直的一边长为5m,另一边长为15m,另一边长为10m.而当面积为200m2时,x(40-2x)=200,解得x1=x2=10.此时的设计方案为:与墙垂直的边长为10m,另一边长为(2)当面积为250m2时,x(40-2x)=250,此方程无解.所以养鸭场的面积不能达到250m2.0.75.墙长25m,另三边用竹栏围成,如果方程有解且符合实际意2x)m.30m,或与墙垂直的边长为20m.-【预习导学】(用因式分解法解一元二次方程)一. 预习前知1. 想一想,因式分解有几种方法?2. 分解因式:(1)25(7x-3)2-16;(2)5x(2x+7)-3(2x+7);(3)x2-4x+4;(4)(x-1)2+2x(x-1).二. 预习导学1. 根据“ab=0,则a=0或b=0”解下列方程.(1)(x-1)(2x+3)=0;(2)x(x+1)=0;(3)(x-2)(x+1)=0.2. 用因式分解法解下列方程.(1)x2+x=0;(2)(3x-1)2-1=0;(3)x2-2x+1=0.反思:(1)用因式分解法适合解什么样的一元二次方程?(2)用因式分解法解一元二次方程的基本步骤是什么?【模拟试题】(答题时间:60分钟)一. 选择题1. 下列方程不能用开平方法求解的是()A. x2-6x+9=0B. (x-5)2=7C. 4x2=1D. 2y2+4y+4=0 3. 用配方法解方程x+3=4x时,这个方程可化为()2A. (x-2)2=7 B. (x+2)2=1 C. (x-2)2=1 D. (x+2)2=2 *4. 方程x2+x-1=0的根精确到0.1的近似值是()A. 0.6,1.6B. 0.6,-1.6C. -0.6,1.6D. -0.6,-1.6 5. 一元二次方程x2-2x-3=0的根是()A. x1=1,x2=3B. x1=-1,x2=3C. x1=-1,x2=-3D. x1=1,x2=-3 *6. 用配方法解方程时,下列配方错误的是()*7. 下列关于x的一元二次方程中有两个不相等的实数根的是()A. x2+1=0B. x2+2x+1=0C. x2+2x+3=0D. x2+2x-3=0 **8. 若x2-2(k+1)x+k2+5是一个完全平方式,则k等于()A. -1B. 2C. 1D. -2 二. 填空题1. 如果(x-2)2=9,则x=__________.2. 方程(2y+1)2-16=0的根是__________.3. 方程(x+m)2=n有解的条件是__________.4. 填空:(1)x2+10x+__________=(x+__________)2;(2)m2-8m+__________=(m-__________)2;(3)x2+3x+__________=(x+__________)2;(4)x2+1/2x+__________=(x+__________)2;(5)x2-mx+__________=(x-__________)2.*5. 把下列各式化为(x+m)2+n的形式:(1)x2-4x+7=__________;(2)x2+2x-3=__________;6. 方程x+5x+3=0中,b-4ac=_______,由求根公式可得方程的根是x1=_______,x2=_______.7. 如果关于x的方程x2+4x+a=0有两个相等的实数根,那么a=__________.三. 解答题1. 用直接开平方法解下列一元二次方程:(1)(x-1)2=4;(2)4m2-4m=-1;(3)3(4x-1)2=48;(4)y2-2y-8=0.2. 用配方法解方程:(1)x2-6x-7=0;(2)x2-2x-1=0;(3)2x2+x=0;(4)(x+1)2=x-1.3. 关于x的二次三项式x2+2mx+4-m2是一个完全平方式,求m的值.4. 如图,一个5m长的梯子斜靠在墙上,梯子的顶端距离地面3m,如果顶端下滑1m,那么,梯子的底端也将滑动1m吗?请你用所学知识来解释.25. 若关于x的方程x+(2k-1)x+k-7/4=0有两个相等的实数根,求k的值.6. 方程x2+kx-6=0的一个根是2,试求另一个根及k的值.7. 用100m长的铁丝围成一个长方形,面积是600m2,长、宽分别是多少?能否再围成一个面积是800m2的长方形呢?22第三篇:初三数学一元二次方程解法练习题配方法公式法分解因式法配方法1、x22x802、x242x3、3y26y2404、4x27x205、12x22x906、2x23x507、2x25x308、用配方法证明:方程x2x10无解9、用配方法证明:方程x2x10的值恒大于零公式法1、32t24t102、x23、x23x1104、2x23x 185、3x212x6、已知x23x40的根为x1,x2,求x1x2,x1x2,1122x,x1x2 1x2配方法1、4x2x32x2、9x26x103、x2 293x124、2x2 24x25、92x3 242x5 24x1207、4x3 254x3608、2x1x13x1x19、x x1x20第四篇:配方法解一元二次方程“配方法解一元二次方程”说课于晓静:北京市十一学校中学高级一、教材的地位和作用配方法是以配方为手段、以平方根定义为依据解一元二次方程的一种基本方法,其中所涉及的完全平方式、求一个非负数的平方根以及解一元一次方程等都是学生已有的知识与技能,为本节课的学习奠定了知识技能方面的基础。

一元二次方程求根公式和常见解法

一元二次方程求根公式和常见解法

⼀元⼆次⽅程求根公式和常见解法
⼀、⼀元⼆次⽅程的概述
1、定义:等号两边都是等式,只含有⼀个未知数,未知数的最⾼次数是2且最⾼次项的系数不为0,这样的整式⽅程叫做⼀元⼆次⽅程.
2、求根公式:$x=\frac{-b\pm \sqrt{b^2-4ac}}{2a}(b^2-4ac \ge 0)$。

3、⼀元⼆次⽅程的⼀般形式:
⼀元⼆次⽅程的⼀般形式是$ax^2+bx+c=0(a\not=0)$.其中$ax^2$是⼆次项,$a$ 是⼆次项系数;$bx$ 是⼀次项,$b$ 是⼀次项系数;$c$ 是常数项.
4、⼀元⼆次⽅程的根:
使⽅程左右两边相等的未知数的值就是这个⼀元⼆次⽅程的解,也叫做⼀元⼆次⽅程的根.
5、⼀元⼆次⽅程的常见解法:
(1)直接开平⽅法
(2)配⽅法
(3)公式法
(4)因式分解法
(5)利⽤根与系数的关系
⼆、⼀元⼆次⽅程的例题
例:如果⽅程$(m-\sqrt{2})x^{m^2}+3mx-1=0$ 是关于$x$ 的⼀元⼆次⽅程,那么 $m$ 的值是____.
答案:$-\sqrt{2}$
解析:由⼀元⼆次⽅程的定义知 $m^2=2$,即 $m=\pm\sqrt{2}$,⼜ $\because m-\sqrt{2}\not=0,\therefore m
\not=\sqrt{2},\therefore m=-\sqrt{2}$.。

一元二次方程解题步骤

一元二次方程解题步骤

一元二次方程解题步骤
解题步骤:在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。

解题步骤:在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。

1、直接开平方法
直接开平方法就是用直接开平方求解一元二次方程的方法。

用直接开平方法解形如(x-m)^2;=n (n≥0)的方程,其解为x=±√n+m.
2.配方法
用配方法解方程ax^2+bx+c=0(a≠0)
先将常数c移到方程右边:ax^2+bx=-c
将二次项系数化为1:x^2+b/ax=-c/a
方程两边分别加上一次项系数的一半的平方:x^2+b/ax+(b/2a)^2=-c/a+(b/2a)^2;
方程左边成为一个完全平方式:(x+b/2a)2=-c/a﹢﹙b/2a﹚2
当b2-4ac≥0时,x+b/2a=±√﹙﹣c/a﹚﹢﹙b/2a﹚2
∴x=﹛﹣b±[√﹙b2﹣4ac﹚]﹜/2a(这就是求根公式)
3.公式法
把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=[-b±√
(b2-4ac)]/(2a),(b2-4ac≥0)就可得到方程的根。

4.因式分解法
把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

这种解一元二次方程的方法叫做因式分解法。

一元二次方程的解法公式法

一元二次方程的解法公式法
2
解:原方程中 a = 1, b = − 1, c = − 3 b − 4 ac = ( − 1) − 4 × 1 × ( − 3) = 13
2 2
− b ± b − 4 ac − 1 ± 13 x= = 2a 2 − 1 + 13 − 1 − 13 ∴ x1 = , x2 = 2 2
2
辨 析
2、解方程:2 x + x − 2 = 0
2
2
当b − 4ac ≥ 0时,它有两个实数根:
+ bx + c = 0(a ≠ 0)
− b + b2 − 4ac − b − b2 − 4ac x1 = , x2 = 2a 2a
这就是一元二次方程 ax +bx+c = 0(a ≠ 0)
2
的求根公式.
在解一元二次方程时,只要把方程化为一般式
ax + bx + c = 0(a ≠ 0)
辨 析
小马虎在学完用公式法解一元二次方程 觉得非常简单,也非常高兴, 后,觉得非常简单,也非常高兴,很快就做好 了作业,可是他马虎的毛病到底改了没有呢? 了作业,可是他马虎的毛病到底改了没有呢? 1、解方程: x − x − 3 = 0
2
解:原方程中 a = 1, b = − 1, c = − 3 b − 4 ac = ( − 1) − 4 × 1 × ( − 3) = 13
2
b − 4ac = (−4) − 4 ×1× 4 = 0
2 2
− b ± b − 4ac 4 ± 0 x= = =2 2a 2 ∴x = 2
2
辨 析
2 4、解方程: x + x + 2 = 0
2
解:原方程中 a = 2, b = 1, c = 2 b − 4 ac = 1 − 4 × 2 × 2 = −15

22.2 降次-解一元二次方程-配方法,公式法,因式分解法

22.2 降次-解一元二次方程-配方法,公式法,因式分解法
2
2 3 2 3 y1 1 , y2 1 . 3 3
(1)3 x 2 x 5 0;
2
(2)2 y y 6 0;
2
(3)3 x 6 x 1.
2
1.熟悉配方法解方程的步骤 2.体会转化的数学思想.
解下列方程:
(1)t 2t 48;
2
(2)2 x 4 x 5 0.
x 3 5, x1 3 5 , x2 3 5.
解: x 2 5 x 6,
(2)
5 5 x 5x 6 , 2 2
2
2
2
x 5x 6 0.
2
5 25 x 6 , 2 4 5 49 x , 2 4 5 7 5 7 x1 , x2 , 2 2 2 2 x1 1, x2 6.
课时总结
(1)、可直接开方解形如 x p ( p 0) 的方程,那么 x p 达到降次的目的;
2
(2)、可直接开方解形如 ( mx n) p ( p 0) 的方程,那么 mx n p 达到降次的目 的;
2
一元二次方程配方的一般步骤: 化简:把方程化简为一般形式, 把二次项系数化为1 配方:方程两边都加上一次项系数一半的平方 开方:根据平方根意义,方程两边开平方 求解:解一元二次方程 定解:写出原方程的解
2
(2) 可直接开方解形如 (mx n) p ( p 0) 的方程, 那么 mx n p 达到降次的目的;
2
问题2 要使一块矩形场地的长比宽多6m , 并且 面积为16 m2 ,场地的长和宽应各是多少?
解:设场地的宽为 x m ,长为( x 6) m .根据 2 矩形面积为16 m ,列方程

02一元二次方程的解法——配方法和求根公式法

02一元二次方程的解法——配方法和求根公式法

一元二次方程的解法——配方法和求根公式法[知识要点]1.一般的一元二次方程,可用配方法求解。

其步骤是:①化二次项系数为1,并把常数项移项到方程的另一侧,即把方程化为q px x -=+2的形式; ②方程两边都加上22⎪⎭⎫ ⎝⎛p ,把方程化为44222q p p x -=⎪⎭⎫ ⎝⎛+; ③当042≥-q p 时,利用开平方法求解。

2.一元二次方程()002≠=++a c bx ax 的求根公式是: ()042422≥--±-=ac b a ac b b x 3.解一元二次方程,直接开平方法是一种特殊方法,配方法与求根公式法是一般方法,对于任何一元二次方程都可使用。

解题的关键是要根据方程系数的特点及方程的不同形式,选择适当的方法,使解法简捷。

[典型例题]例1. 用配方法解下列方程:(1)0542=--x x (2)01322=-+x x(3)07232=-+x x (4)01842=+--x x(5)0222=-+n mx x类题练习:用配方法解下列方程:(1)01722=++x x (2)()00222>=--m m mx x例2.用公式法解下列应用题(1) 01522=+-x x (2) 1842-=--x x(3)02322=--x x (4) ()()()0112=-++-y y y y类题练习:用公式法解下列方程:(1)3631352=+x x (2)()()213=-+y y[巩固练习]1.把方程0562=+-x x 化成()k m x =+2的形式,则m =_______,k =_________。

2.将方程01232=-+x x 配方成()_______2=+x ,从而求得此方程的根是 。

3.把下列各式配成完全平方式(1)()22_________21-=+-x x x (2)()22___________32+=++x x x (3)()22__________-=+-x x ab x (4)()22____25____-=+-x x x 4.把关于x 的方程()x n m n m m n x 44332+=+,()0≠mn 化成一般式02=++c bx ax ,则ac b 42-= 。

解一元二次方程五种方法

解一元二次方程五种方法

解一元二次方程五种方法解一元二次方程五种方法一元二次方程是高中数学中比较重要的一种方程类型,解题方法也非常多样。

下面介绍五种解一元二次方程的方法。

方法一:配方法配方法是一种比较常用的解一元二次方程的方法。

通过给方程两边添加一个适当的常数,使得方程左边变成一个平方式,从而利用完全平方公式求解。

例如,将方程x^2+6x-7=0配成(x+3)^2-16=0的形式,然后利用完全平方公式(x+3)^2=a^2-b^2=(a+b)(a-b)求解方程。

方法二:公式法公式法是一种利用一元二次方程求根公式解方程的方法。

一元二次方程的求根公式为x=(-b±√(b^2-4ac))/2a。

例如,对于方程x^2+6x-7=0,利用公式x=(-6±√(6^2-4×1×(-7)))/2×1,化简得到x=-3±√16,即x=-7或x=1。

方法三:因式分解当一元二次方程的系数a,b,c都是整数时,可以尝试使用因式分解的方法解方程。

主要思路是将方程左边化成一个二次式的乘积。

例如,对于方程x^2+6x-7=0,可以将其因式分解为(x-1)(x+7)=0,从而解得x=1或x=-7。

方法四:图解法图解法是一种利用平面直角坐标系中的图形来解一元二次方程的方法。

主要思路是将方程左边的二次式与右边的常数b进行比较,从而确定图形的形状。

例如,对于方程x^2+6x-7=0,将其化为x^2+6x=7,可以发现这是一个开口向上的抛物线,与y=7的直线交于两点,即方程的两个解。

方法五:牛顿迭代法牛顿迭代法是一种利用曲线的切线来近似求解方程的方法。

它的基本思路是从一个初始值开始,利用切线和方程的导数来逐步逼近方程的解。

例如,对于方程x^2+6x-7=0,可以选取一个初始值x0,然后通过迭代公式x=x0-(x0^2+6x0-7)/(2x0+6)来不断逼近方程的解。

当相邻两次迭代值的差小于一定精度时,可以认为迭代已经收敛,此时的迭代值即为方程的解。

05.公式法解一元二次方程

05.公式法解一元二次方程

b
x1

x2

; 2a
(3)当 b2 4ac 0时,一元二次方程 ax2 bx c 0 (a 0)没有实数根.
一般地,式子b2-4ac叫做方程ax2+bx+c=0(a≠0) 根的判别式。通常用希腊字母△表示它,
即△= b2-4ac
x1 b
b2 2a
4ac
, x2
作业
课本P17 4、5、13
x b b 2 4ac . b 2 4ac 0 . 时,方程有实
2a
数根吗
上面这个式子称为一元二次方程的求根公式. 用求根公式解一元二次方程的方法称为公式法
学习是件很愉快的事
公式法
例2:用公式法解方程 (1)x2-4x-7=0 1.变形:化已知方
解:a 1,b 4,c 7 程为一般形式;
方程有两个相等的实数根。
x 1

x 2

b 2a


2
2
2 1

2
结论:当 △ b2 4ac 0时,一元二次方程有两个 相等的实数根.
例2、 (3)x 2 17 8x
解:原方程可化为x2 8x 17 0
a 1, b 8, c 17
△ b2 4ac (8)2 4 117 4<0
△ b 2 4 a c 4 2 4 1 ( 7 ) 4 4 0 . 2.确定系数:用
∴方程有两个不相等的实数根。
a,b,c写出各项系数;
x1

b 2a


4 44 21

2
11
x2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档