高中数学27简单的线性规划问题1试题无答案苏教版必修5170725238
高中数学简单线性规划复习题及答案(最全面)
![高中数学简单线性规划复习题及答案(最全面)](https://img.taocdn.com/s3/m/f74295201eb91a37f1115c49.png)
简单线性规划复习题及答案(1)1、设,x y 满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥-020202y x y x y x ,则22y x ++的最大值为 452、设变量,x y 满足⎪⎩⎪⎨⎧≥-+≥-≤-+030201825y x y x y x ,若直线20kx y -+=经过该可行域,则k 的最大值为答案:13、若实数x 、y ,满足⎪⎩⎪⎨⎧≤+≥≥123400y x y x ,则13++=x y z 的取值范围是]7,43[.4、设y x z +=,其中y x ,满足⎪⎩⎪⎨⎧≤≤≤-≥+k y y x y x 0002,若z 的最大值为6,则z 的最小值为5、已知x 、y 满足以下条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则22z x y =+的取值范围是 4[,13]56、已知实数,x y 满足约束条件1010310x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,则22(1)(1)x y -+-的最小值为 127、已知,x y 满足约束条件1000x x y x y m -≥⎧⎪-≤⎨⎪+-≤⎩,若1y x +的最大值为2,则m 的值为 58、表示如图中阴影部分所示平面区域的不等式组是⎪⎩⎪⎨⎧≥-+≤--≤-+0623063201232y x y x y x9、若曲线y = x 2上存在点(x ,y )满足约束条件20,220,x y x y x m +-≤⎧⎪--≤⎨⎪>⎩,则实数m 的取值范围是 (,1)-∞10、已知实数y ,x 满足10103x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则3z x y =+的最小值为 -311、若,x y 满足约束条件10,0,40,x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩则x y的最小值为 13. 12、已知110220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩,则22(2)(1)x y ++-的最小值为___10_13、已知,x y 满足不等式0303x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则函数3z x y =+取得最大值是 1214、已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则z =2x +4y 的最小值是-615、以原点为圆心的圆全部在区域⎪⎩⎪⎨⎧≥++≤-+≥+-0943042063y x y x y x 内,则圆面积的最大值为 π51616、已知y x z k y x x y x z y x 42,0305,,+=⎪⎩⎪⎨⎧≥++≤≥+-且满足的最小值为-6,则常数k = 0 . 17、已知,x y 满足约束条件,03440x x y y ≥⎧⎪+≥⎨⎪≥⎩则222x y x ++的最小值是 118、在平面直角坐标系中,不等式组0,0,,x y x y x a +≥⎧⎪-≥⎨⎪≤⎩(a 为常数),表示的平面区域的面积是8,则2x y +的最小值 14-19、已知集合22{(,)1}A x y x y =+=,{(,)2}B x y kx y =-≤,其中,x y R ∈.若A B ⊆,则实数k 的取值范围是⎡⎣20、若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为 12-21、若实数x ,y 满足不等式组201020x y x y a -≤⎧⎪-≤⎨⎪+-≥⎩,目标函数2t x y =-的最大值为2,则实数a 的值是 222、已知点(,)P x y 满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩,若3z x y =+的最大值为8,则实数k = 6- .23、设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤-- 23.24、已知实数y x , 22222)(y x y y x +++的取值范围为 ⎥⎦⎤⎢⎣⎡+221,35.简单线性规划复习题及答案(2)1、设实数x,y 满足⎪⎩⎪⎨⎧≤-≥-+≤--0205202y y x y x 则y x x y z +=的取值范围是 10[2,]3由于yx表示可行域内的点()x y ,与原点(00),的连线的斜 率,如图2,求出可行域的顶点坐标(31)(12)A B ,,,, (42)C ,,则11232OA OB OC k k k ===,,,可见123y x ⎡⎤∈⎢⎥⎣⎦,,结合双勾函数的图象,得1023z ⎡⎤∈⎢⎥⎣⎦,,2、若实数,x y 满足不等式组22000x y x y m y ++≥⎧⎪++≤⎨⎪≥⎩,且2z y x =-的最小值等于2-,则实数m 的值等于 1-3、设实数x 、y 满足26260,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,则{}max 231,22z x y x y =+-++的取值范围是 [2,9]【解析】作出可行域如图,当平行直线系231x y z +-=在直线BC 与点A 间运动时,23122x y x y +-≥++,此时[]2315,9z x y =+-∈,平行直线线22x y Z ++=在点 O 与BC 之间运动时,23122x y x y +-≤++,此时,[]222,8z x y =++∈. ∴[]2,9z ∈图23 A yxOcB 634、佛山某家电企业要将刚刚生产的100台变频空调送往市内某商场,现有4辆甲型货车和8辆乙型货车可供调配。
苏教版高中数学必修五教案简单的线性规划问题(1)
![苏教版高中数学必修五教案简单的线性规划问题(1)](https://img.taocdn.com/s3/m/e1af0da57f1922791788e834.png)
简单的线性规划问题(2)【三维目标】:一、知识与技能1.巩固图解法求线性目标函数的最大、最小值的方法;2.会用画网格的方法求解整数线性规划问题.3.培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力二、过程与方法引导学生如何使用网格法 三、情感、态度与价值观1.培养学生学数学、用数学的意识,并进一步提高解决问题的的能力2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生创新 【教学重点与难点】:重点:用画网格的方法求解整数线性规划问题. 难点:用画网格的方法求解整数线性规划问题. 【学法与教学用具】:1. 学法:学生在建立数学模型中,应主要分清已知条件中,哪些属于约束条件,哪些与目标函数有关,列出正确的不等式组。
可采用分组讨论,各组竞争,自主总结,部分同学示范画图等方式,让学生更切身地在活动中探索出建模的一般规律,并在交流中找到自己的思维漏洞2.教学方法:讲授法,多媒体直观教学3.教学用具:直角板、投影仪 【授课类型】:新授课 【课时安排】:1课时 【教学思路】: 一、创设情景,揭示课题1.什么是目标函数?线形目标函数?线形规划?可行解?可行域?2.当,x y 满足不等式组1101x y y x ⎧-≤⎪≥⎨⎪≤+⎩时,目标函数t x y =+的最大值是二、研探新知,质疑答辩,排难解惑,发展思维例1 设,,x y z 满足约束条件组1320101x y z y z x y ++=⎧⎪+≥⎪⎨≤≤⎪⎪≤≤⎩,求264u x y z =++的最大值和最小值。
解:由1x y z ++=知1z x y =--+,代入不等式组消去z 得210101y x x y -≥⎧⎪≤≤⎨⎪≤≤⎩,Axy OB1 1代入目标函数得224u x y =-++,作直线0l :0x y -+=,作一组平行线l :x y u -+=平行于0l ,由图象知,当l 往0l 左上方移动时,u 随之增大,当l 往0l 右下方移动时,u 随之减小,所以,当l 经过(0,1)B 时,max 202146u =-⨯+⨯+=,当l 经过(1,1)A 时,min 212144u =-⨯+⨯+=,所以,max 6u =,min 4u =.例2 已知,x y 满足不等式组230236035150x y x y x y -->⎧⎪+-<⎨⎪--<⎩,求使x y +取最大值的整数,x y .解:不等式组的解集为三直线1l :230x y --=,2l :2360x y +-=,3l :35150x y --=所围成的三角形内部(不含边界),设1l 与2l , 1l 与3l ,2l 与3l 交点分别为,,A B C ,则,,A B C坐标分别为153(,)84A ,(0,3)B -,7512(,)1919C -,作一组平行线l :x y t +=平行于0l :0x y +=,当l 往0l 右上方移动时,t 随之增大,∴当l 过C 点时x y +最大为6319,但不是整数解,又由75019x <<知x 可取1,2,3,当1x =时,代入原不等式组得2y =-, ∴1x y +=-; 当2x =时,得0y =或1-, ∴2x y +=或1; 当3x =时,1y =-, ∴2x y +=,故x y +的最大整数解为20x y =⎧⎨=⎩或31x y =⎧⎨=-⎩.说明:最优整数解常有两种处理方法,一种是通过打出网格求整点,关键是作图要准确;另一种是本题采用的方法,先确定区域内点的横坐标范围,确定x 的所有整数值,再代回原不等式组,得出y 的一元一次不等式组,再确定y 的所有相应整数值,即先固定x ,再用x 制约y .例2 某运输公司向某地区运送物资,每天至少运送180吨.该公司有8辆载重为6吨的A 型卡车与4辆载重为10吨的B 型卡车,有10名驾驶员.每辆卡车每天往返的次数为A 型车4次,B 型车3次.每辆卡车每天往返的成本费为A 型车320元,B 型车为504元.试为该公司设计调配车辆的方案,使公司花费的成本最低.解:设每天调出A 型车x 辆,B 型车y 辆,公司花费成本z 元,ACxy O1l3l2l则约束条件为*10463101800804,x y x y x y x y N ⎧+≤⎪⨯+⨯≥⎪⎪≤≤⎨⎪≤≤⎪⎪∈⎩,即*1045300804,x y x y x y x y N⎧+≤⎪+≥⎪⎪≤≤⎨⎪≤≤⎪⎪∈⎩,目标函数为320504z x y =+.作出可行域(图略,见课本第80页图3-3-11),当直线320504z x y =+经过直线4530x y +=与x 轴的交点(7.5,0)时,z 有最小值.但(7.5,0)不是整点.由图可知,经过可行域内的整点,且与原点距离最近的直线是3205042560x y +=,经过的整点是(8,0),它是最优解.因此,公司每天调出A 型车8辆时,花费成本最低.四、巩固深化,反馈矫正1.设,,x y z 满足约束条件组1320102x y z y z x y ++=⎧⎪+≥⎪⎨≤≤⎪⎪≤≤⎩,求364F x y z =++的最大值和最小值;五、归纳整理,整体认识1.本节课主要内容:(1)巩固图解法求线性目标函数的最大值、最小值的方法; (2)用画网格的方法求解整数线性规划问题。
高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)
![高中数学必修5:简单的线性规划问题 知识点及经典例题(含答案)](https://img.taocdn.com/s3/m/022dfdf081c758f5f71f6716.png)
简单的线性规划问题【知识概述】线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题.解决线性规划的数学问题我们要注意一下几点1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题;2.解决线性规划问题需要经历两个基本的解题环节(1)作出平面区域;(直线定”界”,特“点”定侧);(2)求目标函数的最值.(3)求目标函数z=ax+by最值的两种类型:①0b>时,截距最大(小),z的值最大(小);②0b>时,截距最大(小),z的值最小(大);【学前诊断】1.[难度] 易满足线性约束条件23,23,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y=+的最大值是()A.1B.32C.2D.32.[难度] 易设变量,x y满足约束条件0,0,220,xx yx y≥⎧⎪-≥⎨⎪--≤⎩则32z x y=-的最大值为( )A.0B.2C.4D.63. [难度] 中设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C .(1,3) D .(3,)+∞【经典例题】例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =+的最大值为( )A.5B.4C.1D.8例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( )A.4B.3C.2D.1例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最小值为8,则a b +的最小值为____________.例4. 在约束条件下0,0,,24,x y x y s x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )A.[]6,15B.[]7,15 C.[]6,8 D.[]7,8例5. 设不等式组1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,所表示平面区域是1,Ω平面区域2Ω与1Ω关于直线3490x y --=对称,对于1Ω中任意一点A 与2Ω中的任意一点B ,AB 的最小值等于( )A.285B.4C.125D.2例6.对于实数,x y ,若11,21,x y -≤-≤则21x y -+的最大值为_________.例7.在约束条件22240x y x y +++≤下,函数32z x y =+的最大值是___________.例8. 已知函数2()2(,)f x x ax b a b =++∈R ,且函数()y f x =在区间()0,1与()1,2内各有一个零点,则22(3)z a b =++的取值范围是( ).A.2⎫⎪⎪⎝⎭B.1,42⎛⎫ ⎪⎝⎭C.()1,2D.()1,4 例9. 奇函数()f x 在R 上是减函数,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,t s的取值范围是( ). A.1,14⎡⎫-⎪⎢⎣⎭ B.1,14⎡⎤-⎢⎥⎣⎦ C.1,12⎡⎫-⎪⎢⎣⎭ D.1,12⎡⎤-⎢⎥⎣⎦例10. 某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克 A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱(C )甲车间加工原料18箱,乙车间加工原料50箱(D )甲车间加工原料40箱,乙车间加工原料30箱【本课总结】线性规划是不等式和直线与方程的综合应用,是数形结合的和谐载体,也是高考中的重要考点,近几年的高考题中考查的频率较高,一般以考查基本知识和方法为主,属于基础类题,难度一般不高.1. 解决线性规划问题有一定的程序性:第一步:确定由二元一次不等式表示的平面区域;第二步:令z=0画直线0:0l ax by +=;第三步:平移直线0l 寻找使直线a z y x b b=-+截距取最值(最大或最小)的位置(最优解).第四步:将最优解坐标代入线性目标函数z ax by =+求出最值2. 解决线性规划问题要特别关注线性目标函数z ax by =+中b 的符号,若b >0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最大(小)值,若b <0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最小(大)值, b <0的情况是很多同学容易出现的盲点.3. 线性规划问题要重视数形结合思想的运用,善于将代数问题和几何问题相互转化,由线性规划问题引申的其它数形结合题目也要灵活掌握,如:将平面区域条件引申为:22240x y x y +++≤表示圆面等,将目标函数引申为:2224z x y x y =+++表示动点到定点的距离的最值问题;21y z x +=-表示动点与定点连线的斜率的最值问题等. 4. 线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则一般在区域顶点处取得最大或最小值5. 线性规划中易错点提示(1)忽视平面区域是否包括边界.一般最优解都处于平面区域的边界顶点处,若平面区域不包含边界,则可能不存在最值.(2)忽视对线性目标函数z ax by =+中b 的符号的区分.(3)代数问题向其几何意义的转化困难.【活学活用】1. [难度] 中若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( ) A.4,3⎡⎫+∞⎪⎢⎣⎭ B.(]0,1 C.41,3⎡⎤⎢⎥⎣⎦ D.(]40,1,3⎡⎫+∞⎪⎢⎣⎭2. [难度] 中 设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A .4B .11C .12D .143. [难度] 中 已知变量x 、y 满足约束条件 20,1,70,x y y x x x y -+≤⎧⎪≥⎨⎪+-≤⎩则的取值范围是( ) A .9,65⎡⎤⎢⎥⎣⎦ B .9,5⎛⎤-∞ ⎥⎝⎦∪[)6,+∞ C .(],3-∞∪[)6,+∞ D .[3,6]。
线性规划题及答案
![线性规划题及答案](https://img.taocdn.com/s3/m/39b503d250e79b89680203d8ce2f0066f433645f.png)
线性规划题及答案引言概述:线性规划是运筹学中的一种数学方法,用于寻觅最优解决方案。
在实际生活和工作中,线性规划问题时常浮现,通过对问题进行建模和求解,可以得到最优的决策方案。
本文将介绍一些常见的线性规划题目,并给出详细的答案解析。
一、生产规划问题1.1 生产规划问题描述:某工厂生产两种产品A和B,产品A每单位利润为100元,产品B每单位利润为150元。
每天工厂有8小时的生产时间,产品A每单位需要2小时,产品B每单位需要3小时。
问工厂每天应该生产多少单位的产品A 和产品B,才干使利润最大化?1.2 生产规划问题答案:设产品A的生产单位为x,产品B的生产单位为y,则目标函数为Max Z=100x+150y,约束条件为2x+3y≤8,x≥0,y≥0。
通过线性规划方法求解,得出最优解为x=2,y=2,最大利润为400元。
二、资源分配问题2.1 资源分配问题描述:某公司有两个项目需要投资,项目A每万元投资可获得利润2万元,项目B每万元投资可获得利润3万元。
公司总共有100万元的投资额度,问如何分配投资额度才干使利润最大化?2.2 资源分配问题答案:设投资项目A的金额为x万元,投资项目B的金额为y万元,则目标函数为Max Z=2x+3y,约束条件为x+y≤100,x≥0,y≥0。
通过线性规划方法求解,得出最优解为x=40,y=60,最大利润为240万元。
三、运输问题3.1 运输问题描述:某公司有两个仓库和三个销售点,每一个销售点的需求量分别为100、150、200,每一个仓库的库存量分别为80、120。
仓库到销售点的运输成本如下表所示,问如何安排运输方案使得总成本最小?3.2 运输问题答案:设从仓库i到销售点j的运输量为xij,则目标函数为Min Z=∑(i,j) cij*xij,约束条件为每一个销售点的需求量得到满足,每一个仓库的库存量不超出。
通过线性规划方法求解,得出最优的运输方案,使得总成本最小。
四、投资组合问题4.1 投资组合问题描述:某投资者有三种投资标的可选择,预期收益率和风险如下表所示。
高考数学一轮复习 3.3.3 简单的线性规划问题(一)备考练习 苏教版
![高考数学一轮复习 3.3.3 简单的线性规划问题(一)备考练习 苏教版](https://img.taocdn.com/s3/m/b6fcbe3f998fcc22bdd10db6.png)
3.3.3 简单的线性规划问题(一)一、基础过关1.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为________.2.已知点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧ x +y ≤4,y ≥x ,x ≥1,则x 2+y 2的最大值为________.3.已知x ,y ∈R ,则不等式组⎩⎪⎨⎪⎧ y ≥|x -1|y ≤-|x |+2x ≥0所表示的平面区域的面积是________.4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为______.5.已知实数x ,y 满足⎩⎪⎨⎪⎧x +2y -5≤0,x ≥1,y ≥0,x +2y -3≥0,则y x的最大值为____.6.在线性约束条件⎩⎪⎨⎪⎧x +3y ≥12,x +y ≤10,3x +y ≥12下,求z =2x -y 的最大值和最小值.二、能力提升7.已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________.(答案用区间表示)8.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D 上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为________.9.已知⎩⎪⎨⎪⎧2x +y -5≥03x -y -5≤0x -2y +5≥0,求x 2+y 2的最小值和最大值.10.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥-1,x +y ≥1,3x -y ≤3,求目标函数z =2x +3y 的最小值.三、探究与拓展11.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +6x +y -6≥01≤x ≤4.(1)求x 2+y 2-2的取值范围; (2)求yx -3的取值范围.答案1.9 2.10 3.544.3,-11 5.26.解 如图作出线性约束条件⎩⎪⎨⎪⎧x +3y ≥12,x +y ≤10,3x +y ≥12下的可行域,包含边界:其中三条直线中x +3y =12与3x +y =12交于点A (3,3),x +y =10与x +3y =12交于点B (9,1), x +y =10与3x +y =12交于点C (1,9),作一组与直线2x -y =0平行的直线l :2x -y =z .即y =2x -z ,然后平行移动直线l ,直线l 在y 轴上的截距为-z ,当l 经过点B 时,-z 取最小值,此时z 最大,即z max =2×9-1=17;当l 经过点C 时,-z 取最大值,此时z 最小,即z min =2×1-9=-7.∴z max =17,z min =-7. 7.(3,8) 8.4 9.解 作出不等式组⎩⎪⎨⎪⎧2x +y -5≥0,3x -y -5≤0,x -2y +5≥0,的可行域如图所示,由⎩⎪⎨⎪⎧x -2y +5=02x +y -5=0,得A (1,3), 由⎩⎪⎨⎪⎧x -2y +5=03x -y -5=0,得B (3,4),由⎩⎪⎨⎪⎧3x -y -5=02x +y -5=0,得C (2,1),设z =x 2+y 2,则它表示可行域内的点到原点的距离的平方,结合图形知,原点到点B 的距离最大,注意到OC ⊥AC , ∴原点到点C 的距离最小. 故z max =OB 2=25,z min =OC 2=5.10.解 作出约束条件的可行域,用数形结合法求出目标函数的最小值.约束条件的可行域如图阴影所示,作出直线l 0:2x +3y =0.平移直线2x +3y =0,当直线通过点(1,0)时,z 有最小值,z 最小值=2×1+3×0=2.11.解 (1)作出可行域如图,由x 2+y 2=(x -0)2+(y -0)2,可以看作区域内的点与原点的距离的平方,最小值为原点到直线x +y -6=0的距离的平方,即OP 2,最大值为OA 2,其中A (4,10),OP =|0+0-6|12+12=62=32, OA =42+102=116,∴(x 2+y 2-2)min =(32)2-2 =18-2=16,(x 2+y 2-2)max =(116)2-2 =116-2=114, ∴16≤x 2+y 2-2≤114.即x 2+y 2-2的取值范围为16≤x 2+y 2-2≤114.(2)y x -3=y -0x -3.可以看作是区域内的动点与点(3,0)连线的斜率.观察图象知 y x -3≥2-04-3或y x -3≤5-01-3, 即y x -3≥2或y x -3≤-52.∴yx -3的取值范围为⎝⎛⎦⎥⎤-∞,-52∪[2,+∞).。
苏教版数学高二高中数学苏教版必修5简单的线性规划问题作业
![苏教版数学高二高中数学苏教版必修5简单的线性规划问题作业](https://img.taocdn.com/s3/m/104a1205240c844768eaee03.png)
[学业水平训练]一、填空题1.给出下列命题:①线性规划中的最优解指的是使目标函数取得最大值或最小值的变量x 和y 的值; ②线性规划中的最优解指的是目标函数的最大值或最小值;③线性规划中的最优解指的是使目标函数取得最大值或最小值的可行域; ④线性规划中的最优解指的是使目标函数取得最大值或最小值的可行解. 其中正确的命题是________.(写出所有正确命题的序号) 答案:①④2.已知1≤a ≤2,-1≤b ≤3,则2a +b 的取值范围是________.解析:在平面直角坐标aOb 中画出可行域(图略),可得目标函数z =2a +b 的最小值和最大值分别为1与7,故2a +b 的取值范围是[1,7].答案:[1,7]3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≥2,y ≥3x -6,则目标函数z =2x +y 的最小值为________.解析:因为变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≥2,y ≥3x -6,在坐标系中画出可行域△ABC ,A (2,0),B (1,1),C (3,3),则使目标函数z =2x +y 取最小值的点是B 点,代入即可得z min =3.答案:34.满足约束条件⎩⎪⎨⎪⎧x +y ≤5,2x +y ≤6,x ≥0,y ≥0,并使目标函数z =6x +8y 取得最大值的点的坐标是________.解析:可行域(如图所示)是四边形OABC 及其内部的区域.作出l 0:6x +8y =0即3x +4y =0,平移直线l 0到l 的位置,由图形知,当l 过点C (0,5)时,z 取得最大值.答案:(0,5)5.若x,y满足约束条件⎩⎪⎨⎪⎧x+y≥1,x-y≥-1,2x-y≤2,目标函数z=ax+2y仅在点(1,0)处取得最小值,则a的取值范围是________.解析:作出可行域如图所示,直线ax+2y=z仅在点(1,0)处取得最小值,由图象可知-1<-a2<2,即-4<a<2.答案:(-4,2)6.(2014·浙江省嘉兴一中月考)已知x,y满足约束条件⎩⎪⎨⎪⎧x≥1x-y+1≤02x-y-2≤0,则x2+y2的最小值是________.解析:画出满足条件的可行域(如图),根据x2+y2表示可行域内一点到原点的距离,可知x2+y2的最小值是|AO|2.由⎩⎪⎨⎪⎧x=1x-y+1=0得A(1,2),所以|AO|2=5.答案:57.配制A,B两种药剂,需要甲、乙两种原料,已知配一剂A种药需甲料3 mg、乙料5 mg;配一剂B种药需甲料5 mg、乙料4 mg.今有甲料20 mg、乙料25 mg,若A,B两种药至少各配一剂,则不同的配制方法的种数是________.解析:设A,B两种药分别配x,y剂.则⎩⎪⎨⎪⎧x≥1,y≥1,3x+5y≤20,作出可行域(如图).5x+4y≤25,x,y∈N.上述不等式组的解集是可行域中的整点.运用画网格的方法,可得这个区域内的整点为:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),(3,2),(4,1),所以在至少各配一剂的情况下,共有8种不同的配制方法.答案:8二、解答题8.在约束条件⎩⎪⎨⎪⎧x≥0y≥0x+y≤sy+2x≤4下,当3≤s≤5时,求目标函数z=3x+2y的最大值的变化范围.解:如图,由⎩⎪⎨⎪⎧x+y=sy+2x=4,得⎩⎪⎨⎪⎧x=4-sy=2s-4,交点为B(4-s,2s-4),其他各交点分别为A(2,0),C(0,s),C′(0,4).(1)当3≤s<4时,可行域是四边形OABC,此时7≤z max<8;(2)当4≤s≤5时,可行域是△OAC′,此时z max=8.由(1),(2)可知目标函数z=3x+2y的最大值的变化范围是[7,8].9.一个农民有田2亩,根据他的经验,若种水稻,则每亩每期产量为400千克;若种花生,则每亩每期产量为100千克,但水稻成本较高,每亩每期需240元,而花生只要80元,且花生每千克可卖5元,稻米每千克只卖3元,现在他只能凑足400元,问这位农民对两种作物各种多少亩,才能得到最大利润?解:设水稻种x亩,花生种y亩,得到的利润为P,则由题意得⎩⎪⎨⎪⎧x+y≤2,240x+80y≤400,x≥0,y≥0.而利润P=(3×400-240)x+(5×100-80)y=960x+420y(目标函数),可行域如图所示,可联立⎩⎪⎨⎪⎧x+y=2,240x+80y=400,得交点B(1.5,0.5).故当x=1.5,y=0.5时,P max=960×1.5+420×0.5=1650,即水稻种1.5亩,花生种0.5亩时所得到的利润最大.[高考水平训练]一、填空题1.某公司招收男职员x名,女职员y名,x和y需满足约束条件⎩⎪⎨⎪⎧5x-11y≥-222x+3y≥92x≤11,则z=10x+10y的最大值是________.解析:先画出满足约束条件的可行域,如图中阴影部分所示.由⎩⎪⎨⎪⎧5x -11y =-22,2x =11,解得⎩⎪⎨⎪⎧x =5.5,y =4.5, 但x ∈N *,y ∈N *,结合图知当x =5,y =4时,z max =90. 答案:902.(2014·湖北省襄阳四中期中考试)若不等式组⎩⎪⎨⎪⎧x -y +5≥0y ≥a0≤x ≤2表示的平面区域是一个三角形,则a 的取值范围是________.解析:作出满足条件的可行域(如图),当y =a 过点A (0,5)时表示的平面区域为△ABC ;当5<a <7时表示的平面区域均为三角形.综上,5≤a <7.答案:5≤a <7 二、解答题3.某工厂生产甲、乙两种产品,已知生产甲种产品1 t ,需矿石4 t 、煤3 t ,生产乙种产品1 t ,需矿石5 t 、煤10 t ,每1 t 甲种产品的利润是7万元,每1 t 乙种产品的利润是12万元,工厂在生产这两种产品的计划中,要求消耗矿石不超过200 t ,煤不超过300 t ,问:甲、乙两种产品应各生产多少,能使利润总额达到最大?解:设生产甲、乙两种产品分别为x t 、y t ,利润总额为z 万元,则z =7x +12y ,且⎩⎪⎨⎪⎧4x +5y ≤200,3x +10y ≤300,x ≥0,y ≥0,作出不等式组所表示的平面区域,如图所示.由⎩⎪⎨⎪⎧4x +5y =200,3x +10y =300,得P (20,24). ∴当x =20,y =24时,z 取得最大值.所以应生产甲种产品20 t ,乙种产品24 t ,能使利润总额达到最大.4.某工厂在甲、乙两地的两个分厂各生产某种机器12台和6台,现销售给A 地10台、B 地8台.已知从甲地调运1台至A 地、B 地的运费分别为400元和800元,从乙地调运1台至A 地、B 地的运费分别为300元和500元.请你设计调运方案,使总运费不超过9 000元.解:设从甲地调x 台给A 地,则给B 地(12-x )台;从乙地调y 台给A 地,则给B 地(6-y )台.由题意得⎩⎪⎨⎪⎧x +y =10,400x +800(12-x )+300y +500(6-y )≤9 000,0≤x ≤12,0≤y ≤6,x ,y ∈N ,即⎩⎪⎨⎪⎧x +y =10,2x +y ≥18,0≤x ≤12,0≤y ≤6,x ,y ∈N .作出可行域如图所示.由图知,符合条件的x ,y 为⎩⎪⎨⎪⎧x =8,y =2或⎩⎪⎨⎪⎧x =9,y =1或⎩⎪⎨⎪⎧x =10,y =0.所以为使运费不超过9 000元,可有三种调运方案.方案1 从甲地调8台给A 地、4台给B 地;再从乙地调2台给A 地、4台给B 地. 方案2 从甲地调9台给A 地、3台给B 地;再从乙地调1台给A 地、5台给B 地. 方案3 从甲地调10台给A 地,2台给B 地,再从乙地调6台给B 地.。
线性规划题及答案
![线性规划题及答案](https://img.taocdn.com/s3/m/b0d18503e55c3b3567ec102de2bd960591c6d956.png)
线性规划题及答案引言概述:线性规划是一种优化问题求解的方法,广泛应用于经济学、管理学、工程学等领域。
本文将介绍线性规划题的基本概念和解题方法,并给出相关题目及其答案。
正文内容:1. 线性规划的基本概念1.1 目标函数:线性规划的目标是最大化或者最小化一个线性函数,称为目标函数。
目标函数常用来表示利润、成本等经济指标。
1.2 约束条件:线性规划的解必须满足一系列线性等式或者不等式,称为约束条件。
约束条件可以表示资源限制、技术限制等。
1.3 变量:线性规划的解是一组变量的取值,这些变量表示决策变量,用来描述问题的决策方案。
2. 线性规划的解题方法2.1 图形法:对于二维线性规划问题,可以使用图形法求解。
通过绘制目标函数和约束条件的图形,找到目标函数的最优解。
2.2 单纯形法:对于多维线性规划问题,可以使用单纯形法求解。
该方法通过迭代计算,逐步逼近最优解。
2.3 整数线性规划:当决策变量需要取整数值时,可以使用整数线性规划方法求解。
这种方法在实际问题中更具实用性。
3. 线性规划题目及答案3.1 例题1:某工厂生产两种产品,产品A每单位利润为10元,产品B每单位利润为15元。
生产A产品需要2小时,B产品需要3小时。
工厂每天有8小时的生产时间。
求如何安排生产,使得利润最大化。
答案:假设生产A产品x单位,B产品y单位,则目标函数为10x + 15y,约束条件为2x + 3y ≤ 8,x ≥ 0,y ≥ 0。
通过计算可得最优解为x = 2,y = 2,最大利润为70元。
3.2 例题2:某公司有两个部门,部门A和部门B。
部门A每月产生利润10万元,部门B每月产生利润15万元。
公司规定,部门A的人数不能超过100人,部门B的人数不能超过80人。
求如何分配人力资源,使得利润最大化。
答案:假设部门A的人数为x人,部门B的人数为y人,则目标函数为10x + 15y,约束条件为x ≤ 100,y ≤ 80,x ≥ 0,y ≥ 0。
高中数学线性规划练习题及讲解
![高中数学线性规划练习题及讲解](https://img.taocdn.com/s3/m/5814055a4b7302768e9951e79b89680202d86b6b.png)
高中数学线性规划练习题及讲解线性规划是高中数学中的一个重要概念,它涉及到资源的最优分配问题。
以下是一些线性规划的练习题,以及对这些题目的简要讲解。
### 练习题1:资源分配问题某工厂生产两种产品A和B,每生产一件产品A需要3小时的机器时间和2小时的人工时间,每生产一件产品B需要2小时的机器时间和4小时的人工时间。
工厂每天有机器时间100小时和人工时间80小时。
如果产品A的利润是每件50元,产品B的利润是每件80元,工厂应该如何安排生产以获得最大利润?### 解题思路:1. 首先,确定目标函数,即利润最大化。
设生产产品A的数量为x,产品B的数量为y。
2. 目标函数为:\( P = 50x + 80y \)。
3. 根据资源限制,列出约束条件:- 机器时间:\( 3x + 2y \leq 100 \)- 人工时间:\( 2x + 4y \leq 80 \)- 非负条件:\( x \geq 0, y \geq 0 \)4. 画出可行域,找到可行域的顶点。
5. 计算每个顶点的目标函数值,选择最大的一个。
### 练习题2:成本最小化问题一家公司需要生产两种产品,产品1和产品2。
产品1的原材料成本是每单位10元,产品2的原材料成本是每单位15元。
公司每月有原材料预算3000元。
如果公司希望生产的产品总价值达到最大,应该如何分配生产?### 解题思路:1. 设产品1生产x单位,产品2生产y单位。
2. 目标函数为产品总价值最大化,但题目要求成本最小化,所以实际上是求成本最小化条件下的产品组合。
3. 约束条件为原材料成本:\( 10x + 15y \leq 3000 \)4. 非负条件:\( x \geq 0, y \geq 0 \)5. 画出可行域,找到顶点。
6. 根据实际情况,可能需要考虑产品1和产品2的市场价格,以确定最大价值。
### 练习题3:运输问题一个农场有三种作物A、B和C,需要运输到三个市场X、Y和Z。
苏教版高中数学必修5-3.3典型例题:简单的线性规划问题
![苏教版高中数学必修5-3.3典型例题:简单的线性规划问题](https://img.taocdn.com/s3/m/818ac236de80d4d8d05a4f0b.png)
典型例题
【例1】求不等式|x-1|+|y-1|≤2表示的平面区域的面积.
【例2】某矿山车队有4辆载重量为10 t的甲型卡车和7辆载重量为6 t的乙型卡车,有9名驾驶员此车队每天至少要运360 t矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次甲型卡车每辆每天的成本费为252元,乙型卡车每辆每天的成本费为160元.问每天派出甲型车与乙型车各多少辆,车队所花成本费最低?
参考答案
例1:
【分析】依据条件画出所表达的区域,再根据区域的特点求其面积.
【解】|x-1|+|y-1|≤2可化为
或或或
其平面区域如图:
∴面积S=×4×4=8
【点拨】画平面区域时作图要尽量准确,要注意边界.
例2:
【分析】弄清题意,明确与运输成本有关的变量的各型车的辆数,找出它们的约束条件,列出目标函数,用图解法求其整数最优解.
【解】设每天派出甲型车x辆、乙型车y辆,车队所花成本费为z元,那么
z=252x+160y,
作出不等式组所表示的平面区域,即可行域,如图
作出直线l0:252x+160y=0,把直线l向右上方平移,使其经过可行域上的整点,且使在y轴上的截距最小.
观察图形,可见当直线252x+160y=t经过点(2,5)时,满足上述要求.
此时,z=252x+160y取得最小值,即x=2,y=5时,
zmin=252×2+160×5=1304.
答:每天派出甲型车2辆,乙型车5辆,车队所用成本费最低.
【点拨】用图解法解线性规划题时,求整数最优解是个难点,对作图精度要求较高,平行直线系f(x,y)=t的斜率要画准,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点.。
高三数学线性规划试题
![高三数学线性规划试题](https://img.taocdn.com/s3/m/5f0777b0c850ad02df8041a5.png)
高三数学线性规划试题1.若点满足线性约束条件,则的取值范围是.【答案】【解析】作出不等式组所表示的平面区域,如图:作出直线x-y=0,对该直线进行平移,可以发现当直线经过点(0,0)时,Z取得最大值0,当直线经过点(-2,0)时,Z取得最小值-2,所以Z的取值范围为[-2,0).故答案为:[-2,0).【考点】简单线性规划.2.已知点、的坐标满足不等式组,若,则的取值范围是()A.B.C.D.【答案】D【解析】作出不等式组所表示的可行域如下图所示,假设点为上的一点,过点作直线的垂线,需使得垂线与与可行域有公共点,结合图象知,当点,时,在方向上的投影最大,此时,且取最大值,此时;同理当点,,此时,此时取最小值,,故的取值范围是,故选D.【考点】线性规划3.已知变数满足约束条件目标函数仅在点处取得最大值,则的取值范围为_____________.【答案】【解析】由题意知满足条件的线性区域如图所示:,点,而目标函数仅在点处取得最大值,【考点】线性规划、最值问题.4.已知实数满足:,,则的取值范围是( )A.B.C.D.【答案】C【解析】画出约束条件限定的可行域为如图阴影区域,令,则,先画出直线,再平移直线,当经过点,时,代入,可知,∴,故选.【考点】线性规划.5.设是定义在上的增函数,且对于任意的都有恒成立.如果实数满足不等式,那么的取值范围是【答案】(9,49)【解析】是定义在上的增函数,且对于任意的都有恒成立.所以可得函数为奇函数.由可得,..满足m,n如图所示.令.所以的取值范围表示以原点O为圆心,半径平方的范围,即过点A,B两点分别为最小值,最大值,即9和49.【考点】1.线性规划的问题.2.函数的单调性.3.函数的奇偶性.4.恒成立的问题.6.已知实数满足,则的取值范围是【答案】【解析】由不等式,得,在平面直角坐标系中用虚线画出圆,再作出虚线,则的可行域是由虚线与此虚线的右半圆围成的区域(不包括边界),又目标函数可化为,则当直线过可行域的上顶点时,有,当直线与半圆相切于点时,目标函数有最大值,将目标函数化为,则此时有,解得,如图所示,所以正确答案为.【考点】直线与圆、线性规划.7.已知点满足约束条件,为坐标原点,则的最大值为_______________.【答案】5【解析】作出可行域,得到当位于时,最大,其值为5.【考点】线性规划.8.设实数x、y满足,则的取值范围是( ) A.B.C.D.【答案】B【解析】作出可行域如图,当平行直线系在直线BC与点A间运动时,,此时,平行直线线在点O与BC之间运动时,,此时,. .选B【考点】线性规划9.不等式组所表示的平面区域的面积是________.【答案】25【解析】直线x-y+4=0与直线x+y=0的交点为A(-2,2),直线x-y+4=0与直线x=3的交点为B(3,7),直线x+y=0与直线x=3的交点为C(3,-3),则不等式组表示的平面区域是=×5×10=25.一个以点A(-2,2)、B(3,7)、C(3,-3)为顶点的三角形,所以其面积为S△ABC10.已知点A(a,b)与点B(1,0)在直线3x-4y+10=0的两侧,给出下列说法:①3a-4b+10>0;②当a>0时,a+b有最小值,无最大值;③>2;④当a>0且a≠1,b>0时,的取值范围为∪.其中正确的个数是( )A.1B.2C.3D.4【答案】B【解析】因为点A(a,b),B(1,0)在直线3x-4y+10=0的两侧,所以(3a-4b+10)(3-0+10)<0,即3a-4b+10<0,故①错误;因为a>0时,点(a,b)对应的平面区域如图(不含边界),所以a+b既没有最小值,也没有最大值,故②错误;因为原点到直线3x-4y+10=0的距离为=2,而点(a,b)在直线3x-4y+10=0的左上方,所以>2,故③正确;的几何意义是点(a,b)与(1,0)的连线的斜率,由图可知,取值范围是∪,故④正确.11.若x,y满足条件当且仅当x=y=3时,z=ax-y取最小值,则实数a的取值范围是________.【答案】【解析】画出可行域,如图所示,得到最优解(3,3).把z=ax-y变为y=ax-z,即研究-z的最大值.当a∈时,y=ax -z均过(3,3)时截距-z最大.12.若满足,则的最小值为 .【答案】3【解析】由已知不等式得出区域如图所示,目标函数在点处取得最小值,且最小值为3.【考点】线性规划.13.设实数满足约束条件,若目标函数的最大值为9,则的最小值为__ ___.【答案】【解析】有可行域与目标函数形式可知,只能在点取得最大值,即,整理得:,所以,故.【考点】1、线性规划, 2、基本不等式.14.若,满足约束条件,则的最大值是.【答案】1【解析】根据题意,作出,满足约束条件的平面区域,那么结合三角形区域可知当过点(1,1)点时,则目标函数平移过程中截距最小,此时函数值最大,故答案为1.【考点】线性规划知识点评:本题主要考查了利用线性规划知识的简单应用,属于基础试题,解题的关键是明确目标函数的几何意义15.已知变量x、y,满足的最大值为【答案】3【解析】由复合对数函数的性质,欲使函数最大,即最大。
苏教版高中数学必修五3.3 二元一次不等式组与简单的线性规划问题.doc
![苏教版高中数学必修五3.3 二元一次不等式组与简单的线性规划问题.doc](https://img.taocdn.com/s3/m/cc194e5a3169a4517723a3bd.png)
高中数学学习材料唐玲出品3.3 二元一次不等式组与简单的线性规划问题(苏教版必修5)建议用时 实际用时满分实际得分45分钟100分一、填空题(每小题5分,共30分)1.已知点P x y (,)在不等式组20,10,220x y x y -≤⎧⎪-≤⎨⎪+-≥⎩表示的平面区域上运动,则z x y =-的取值范围是.2.若不等式组50,,02x y y a x -+≥⎧⎪≥⎨⎪≤≤⎩表示的平面区域是一个三角形,则实数a 的取值范围是.3.如果点P 在不等式组120x y x y ≥⎧⎪≤⎨⎪-≤⎩,,表示的平面区域上,点M 的坐标为(3,0),那么PM 的最小值是.4.若,x y 均为整数,且满足约束条件20,20,0,x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩则2z x y =+的最大值为,最小值为.5.不等式组0,0,4312x y x y >⎧⎪>⎨⎪+<⎩表示的平面区域内的整点(横坐标和纵坐标都是整数的点)共有个.6.某人上午7时乘摩托艇以匀速 km/h(420)v v ≤≤从A 港出发到距50km 的B 港去,然后乘汽车以匀速 km/h(30100)w w ≤≤自B 港向距300km 的C 市驶去.应该在同一天下午4时至晚上9时之间到达C 市.设乘摩托艇、汽车所需要的时间分别是 h x 、 h y .如果所需的经费为1003(5)2(8)p y x +-+-=元,那么此人所需的最少经费为元.二、解答题(共70分)7.(15分)画出不等式组240,2,x yx yy+-≤⎧⎪>⎨⎪≥⎩所表示的平面区域.8.(15分)用不等式组表示由直线20,2x y x y++=+10,210x y+=++=围成的三角形区域(包括边界).9.(20分)医院用甲、乙两种原料为手术后的病人配营养餐.甲种原料每10 g含5单位蛋白质和10单位铁质,售价3元;乙种原料每10 g含7单位蛋白质和4单位铁质,售价2元.若病人每餐至少需要35单位蛋白质和40单位铁质.试问:应如何使用甲、乙两种原料,才能满足既营养,又使费用最省?10.(20分)某玩具生产工厂每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润w(元).(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?3.3二元一次不等式组与简单的线性规划问题(苏教版必修5)答题纸得分:一、填空题1. 2. 3. 4. 5. 6.二、解答题7.8.9.10.3.3二元一次不等式组与简单的线性规划问题(苏教版必修5)参考答案1.[-1,2] 解析:作出可行域(如图所示),因为目标函数z x y =-中y 的系数-1<0,而直线y x z =-表示斜率为1的一族直线,所以当它过点(2,0)时,在y 轴上的截距最小,此时z 取最大值2;当它过点(0,1)时,在y 轴上的截距最大,此时z 取最小值-1,所以z x y =-的取值范围是[-1,2].第1题图 第2题图2.57a ≤<解析:作出如图所示图形,根据图形可知57a ≤<.3.322解析:点P 所在的可行域如图中阴影部分所示,点M 到点(11)A ,,(22)B ,的距离分别为5,5.又点M (3,0)到直线0x y -=的距离为322,故PM 的最小值为322.第3题图 第4题图4.4 -4 解析:作出满足约束条件的可行域(如图阴影部分所示),可知在可行域内的整点有(-2,0),(-1,0),(0,0),(1,0),(2,0),(-1,1),(0,1),(1,1),(0,2),分别代入2z x y =+可知当20x y ==,时,z 的最大值为4;当20x y =-=,时,z 的最小为-4.5.3 解析:(1,1),(1,2),(2,1),共3个.6.93 解析:依题意得504203003010091400x yx y x y ⎧≤≤⎪⎪⎪≤≤⎨⎪≤+≤⎪⎪>>⎩,,,,,考查23z x y =+的最大值,作出可行域,平移直线230x y +=,当直线经过点(4,10)时,z 取得最大值38.故当12.530v w ==,时所需要的经费最少,此时所需的经费为93元.7.解:先画出直线240x y +-=,由于含有等号,所以画成实线.取直线240x y +-=左下方的区域的点(0,0),由于2×0+0-4<0,所以不等式240x y +-≤表示直线240x y +-=及其左下方的区域.同理对另外两个不等式选取合适的测试点,可得不等式2x y >表示直线2x y =右下方的区域,不等式0y ≥表示x 轴及其上方的区域.取三个区域的重叠部分,就是上述不等式组所表示的平面区域,如图所示.第7题图 第8题图8.解:画出三条直线,并用阴影表示三角形区域,如图所示. 取原点(0,0),将00x y ==,代入2x y ++得2>0,代入21x y ++,得1>0,代入21x y ++得1>0.结合图形可知,三角形区域用不等式组可表示为20,210,210.x y x y x y ++≥⎧⎪++≤⎨⎪++≤⎩9.解:设甲、乙两种原料分别用10x g 和10y g ,总费用为z 元,则5735,10440,0,0,x y x y x y +≥⎧⎪+≥⎪⎨≥⎪⎪≥⎩目标函数为32z x y =+,作出可行域如图所示.第9题图把32z x y =+变形为322zy x =-+,得到斜率为32-,在y 轴上的截距为2z ,随z 变化的一族平行直线.由图可知,当直线322zy x =-+经过可行域上的点A 时,截距2z 最小,即z 最小.由10440,5735,x y x y +=⎧⎨+=⎩得14,35A ⎛⎫ ⎪⎝⎭.∴min 1432314.45z =⨯+⨯=. ∴选用甲种原料145×10=28(g ),乙种原料3×10=30(g )时,费用最省. 10.解:(1)依题意每天生产的伞兵个数为100x y --,所以利润563(100)23300w x y x y x y =++--=++.(2)约束条件574(100)600100000(,)x y x y x y x y x y ++--≤⎧⎪--≥⎨⎪≥≥∈⎩,,,,N整理,得320010000(,).x y x y x y x y +≤⎧⎪+≤⎨⎪≥≥∈⎩,,,N目标函数为23300w x y =++.作出可行域(如图中阴影部分中的整点).第10题图初始直线0230l x y +=:,平移初始直线经过点A 时,w 有最大值. 由3200100x y x y +=⎧⎨+=⎩,,得5050.x y =⎧⎨=⎩,最优解为(5050)A ,,所以max w =550.答:每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,为550元.。
苏教版数学高二苏教版必修5学案 简单的线性规划问题(一)
![苏教版数学高二苏教版必修5学案 简单的线性规划问题(一)](https://img.taocdn.com/s3/m/026e73c35f0e7cd185253656.png)
3.3.3 简单的线性规划问题(一)明目标、知重点 1.了解线性规划的意义.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题.1.线性规划中的基本概念(1)约束条件:变量x ,y 满足的一组条件.(2)线性约束条件:由x ,y 的二元一次不等式(或方程)组成的不等式组. (3)目标函数:欲求最大值或最小值所涉及的变量x ,y 的解析式. (4)线性目标函数:目标函数是关于x ,y 的二元一次解析式. (5)可行域:作出约束条件所表示的平面区域,这一区域称为可行域. (6)线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 2.目标函数的最值线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是zb ,当z 变化时,方程表示一组互相平行的直线.当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值.[情境导学]已知1≤x +y ≤5,-1≤x -y ≤3,求2x -3y 的取值范围.解答时容易错误的利用不等式中的加法法则,由原不等式组得到x ,y 的范围,再分别求出2x 及-3y 的范围,然后相加得2x -3y 的取值范围.由于不等式中的加法法则不具有可逆性,从而使x ,y 的取值范围扩大,得出错误的2x -3y 的取值范围.如果把1≤x +y ≤5,-1≤x -y ≤3看作变量x ,y 满足的条件,把求2x -3y 的取值范围看作在满足上述不等式的情况下,求z =2x -3y 的取值范围,就成了本节要研究的一个线性规划问题. 探究点一 求目标函数的最大值或最小值思考1 经过这几节的学习,你认为本章第3.3节开始提出的问题实质上是什么问题? 答 在约束条件⎩⎪⎨⎪⎧4x +y ≤10,4x +3y ≤20,x ≥0,y ≥0下,如何探求目标函数P =2x +y 的最大值?思考2 目标函数P =2x +y 的几何意义是什么?答 将目标函数P =2x +y 变形为y =-2x +P ,它表示斜率为-2,在y 轴上的截距为P 的一条直线.思考3怎样求目标函数P=2x+y的最大值?答如图所示,平移直线y=-2x+P,当它经过两直线4x+y=10与4x+3y=20的交点A(1.25,5)时,直线在y轴上的截距P最大.因此,当x=1.25,y=5时,目标函数取得最大值2×1.25+5=7.5,即甲、乙两种产品分别生产1.25 t和5 t时,可获得最大利润7.5万元.小结(1)作出约束条件所表示的平面区域,这一区域称为可行域.(2)线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题.探究点二生活中的线性规划问题例1投资生产A产品时,每生产一百吨需要资金200万元,需场地200 m2,可获利润300万元;投资生产B产品时,每生产一百米需要资金300万元,需场地100 m2,可获利润200万元.现某单位可使用资金1 400万元,场地900 m2,问:应作怎样的组合投资,可使获利最大?解设生产A产品x百吨,生产B产品y百吨,利润为S百万元,则约束条件为⎩⎪⎨⎪⎧2x+3y≤14,2x+y≤9,x≥0,y≥0,目标函数为S=3x+2y.作出可行域如图所示,将目标函数S=3x+2y变形为y=-32x+S2,这是斜率为-32,随S变化的一族直线.S2是直线在y轴上的截距,当S2最大时S最大,但直线要与可行域相交.由图可知,使3x+2y取得最大值(x,y)是两直线2x+y=9与2x+3y=14的交点(3.25,2.5).此时S=3×3.25+2×2.5=14.75.答 生产A 产品325 t ,生产B 产品250 t 时,获利最大,且最大利润为1 475万元. 反思与感悟 解线性规划问题的关键是准确地作出可行域,正确理解z 的几何意义,对一个封闭图形而言,目标函数的最值一般在可行域的边界上取得,在解题中也可由此快速找到最大值点或最小值点.跟踪训练1 若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤1,x +y ≥0,x -y -2≤0,则z =x -2y 的最大值为________.答案 3解析 作出可行域如图所示,把z =x -2y 变形为y =x 2-z 2,得到斜率为12,在y 轴上的截距为-z 2,随z 变化的一族平行直线.由图可知,当直线y =x 2-z 2经过点A 时,-z2最小,即z 最大,解方程组⎩⎪⎨⎪⎧x +y =0x -y -2=0,得A 点坐标为(1,-1),所以z max =1-2×(-1)=3.例2 某运输公司向某地区运送物资,每天至少运送180 t .该公司有8辆载重为6 t 的A 型卡车与4辆载重为10 t 的B 型卡车,有10名驾驶员.每辆卡车每天往返次数为A 型车4次,B 型车3次,每辆卡车每天往返的成本费A 型车为320元,B 型车为504元.试为该公司设计调配车辆方案,使公司花费的成本最低.解 设每天调出A 型车x 辆,B 型车y 辆,公司花费成本z 元,则约束条件为⎩⎪⎨⎪⎧x +y ≤10,4x ×6+3y ×10≥180,0≤x ≤8,0≤y ≤4,即⎩⎪⎨⎪⎧x +y ≤10,4x +5y ≥30,0≤x ≤8,0≤y ≤4,x ,y ∈Z .目标函数为z =320x +504y . 作出可行域如图所示,当直线320x +504y =z 经过直线4x +5y =30与x 轴的交点(7.5,0)时,z 有最小值. 由于(7.5,0)不是整点,故不是最优解.由图可知,经过可行域内的整点,且与原点距离最近的直线是320x +504y =2 560,经过的整点是(8,0),它是最优解.答 公司每天调出A 型车8辆时,花费的成本最低.反思与感悟 图解法是解决线性规划问题的有效方法.其关键在于平移目标函数对应的直线ax +by =0,看它经过哪个点(或哪些点)时最先接触可行域和最后离开可行域,则这样的点即为最优解,再注意到它的几何意义,从而确定是取得最大值还是最小值.跟踪训练2 营养学家指出,成人良好的日常饮食应该至少提供0.075 kg 的碳水化合物,0.06 kg 的蛋白质,0.06 kg 的脂肪,1 kg 食物A 含有0.105 kg 碳水化合物,0.07 kg 蛋白质,0.14 kg 脂肪,花费28元;而1 kg 食物B 含有0.105 kg 碳水化合物,0.14 kg 蛋白质,0.07 kg 脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A 和食物B 多少kg? 食物/kg 碳水化合物/kg蛋白质/kg 脂肪/kg A 0.105 0.07 0.14 B0.1050.140.07解设每天食用x kg 食物A ,y kg 食物B ,总成本为z ,那么⎩⎪⎨⎪⎧0.105x +0.105y ≥0.0750.07x +0.14y ≥0.060.14x +0.07y ≥0.06x ≥0y ≥0⇒⎩⎪⎨⎪⎧7x +7y ≥57x +14y ≥614x +7y ≥6x ≥0y ≥0目标函数为z =28x +21y .作出二元一次不等式组所表示的平面区域,把目标函数z =28x +21y 变形为y =-43x +z 21,它表示斜率为-43且随z 变化的一族平行直线.z21是直线在y 轴上的截距,当截距最小时,z 的值最小.如图可见,当直线z =28x +21y 经过可行域上的点M 时,截距最小,即z 最小.解方程组⎩⎪⎨⎪⎧7x +7y =5,14x +7y =6得M 点的坐标为x =17,y =47.所以z min =28x +21y =16.答 每天食用食物A 约143 g ,食物B 约571 g ,能够满足日常饮食要求,又使花费最低,最低成本为16元.1.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则x +2y 的最大值是________.答案 53解析 画出可行域如图.设z =x +2y ,平行移动直线y =-12x +12z ,当直线y =-12x +z 2过点B ⎝⎛⎭⎫13,23时,z 取最大值53,所以(x +2y )max =53. 2.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3,则目标函数z =2x +3y 的最小值为________.答案 7解析 作出可行域如图所示.由图可知,z =2x +3y 经过点A (2,1)时,z 有最小值,z 的最小值为7. 3.若x ≥0,y ≥0,且x +y ≤1,则目标函数z =x +2y 的最大值是________. 答案 2解析 可行域如图所示,∵z =x +2y ,∴y =-x 2+z2,∵-12>-1,∴当直线z =x +2y 经过点B (0,1)时,z 取到最大值,且z max =2.4.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z =x +ay 取得最小值的最优解有无数个,则a 的一个可能值为________.(填序号)①-3;②3;③-1;④1 答案 ①解析 -1a =2-14-1=13,∴a =-3.[呈重点、现规律]1.用图解法解决简单的线性规划问题的基本步骤: (1)寻找线性约束条件,线性目标函数;(2)作图——画出约束条件(不等式组)所确定的平面区域和目标函数所表示的平行直线系中的任意一条直线l ;(3)平移——将直线l 平行移动,以确定最优解所对应的点的位置;(4)求值——解有关的方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. 2.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解. 3.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可迅速解决相关问题.一、基础过关1.若点(x ,y )位于曲线y =|x |与y =2所围成的封闭区域,则2x -y 的最小值为________. 答案 -6解析 如图,曲线y =|x |与y =2所围成的封闭区域如图中阴影部分,令z =2x -y ,则y =2x -z ,作直线y =2x ,在封闭区域内平行移动直线y =2x ,当经过点A (-2,2)时,z 取得最小值,此时z =2×(-2)-2=-6.2.若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为________.答案 9解析 画出可行域如图:当直线y =-x +z 过点A 时,z 最大.由⎩⎪⎨⎪⎧2x -y -3=0,x -y +1=0得A (4,5), ∴z max =4+5=9.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为________.答案 -7解析 可行域如图阴影部分(含边界)令z =0,得直线l 0:y -2x =0,平移直线l 0知,当直线l 过D 点时,z 取得最小值.由⎩⎪⎨⎪⎧y =3,x -y -2=0得D (5,3).∴z min =3-2×5=-7. 4.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为________. 答案 3,-11解析 作出可行域如图阴影部分所示,由图可知z =3x -4y 经过点A 时z 有最小值,经过点B 时z 有最大值.易求A (3,5),B (5,3).∴z 最大=3×5-4×3=3,z 最小=3×3-4×5=-11.5.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________(答案用区间表示). 答案 [3,8]解析 作出不等式组⎩⎪⎨⎪⎧-1≤x +y ≤42≤x -y ≤3表示的可行域,如图中阴影部分所示.在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值,z min =2×3-3×1=3; 当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值,z max =2×1+3×2=8.所以z∈[3,8].6.在线性约束条件⎩⎪⎨⎪⎧x+3y≥12,x+y≤10,3x+y≥12下,求z=2x-y的最大值和最小值.解如图作出线性约束条件⎩⎪⎨⎪⎧x+3y≥12,x+y≤10,3x+y≥12下的可行域,包含边界:其中三条直线中x+3y=12与3x+y=12交于点A(3,3),x+y=10与x+3y=12交于点B(9,1),x+y=10与3x+y=12交于点C(1,9),作一族与直线2x-y=0平行的直线l:2x-y=z.即y=2x-z,然后平行移动直线l,直线l在y轴上的截距为-z,当l经过点B时,-z取最小值,此时z最大,即z max=2×9-1=17;当l经过点C时,-z取最大值,此时z最小,即z min=2×1-9=-7.∴z max=17,z min=-7.7.某营养师要为某个儿童预订午餐和晚餐,已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?解设需要预订满足要求的午餐和晚餐分别为x个单位和y个单位,所花的费用为z元,则依题意,得z=2.5x+4y,且x,y满足⎩⎪⎨⎪⎧x≥0,y≥0,12x+8y≥64,6x+6y≥42,6x+10y≥54,即⎩⎪⎨⎪⎧x≥0,y≥0,3x+2y≥16,x+y≥7,3x+5y≥27.让目标函数表示的直线2.5x+4y=z在可行域上平移,由此可知z=2.5x+4y在B(4,3)处取得最小值.因此,应当为该儿童预订4个单位的午餐和3个单位的晚餐,就可满足要求.二、能力提升8.已知a>0,x,y满足约束条件⎩⎪⎨⎪⎧x≥1,x+y≤3,y≥a(x-3),若z=2x+y的最小值为1,则a=________.答案12解析作出不等式组表示的可行域,如图(阴影部分).易知直线z=2x+y过交点B时,z取最小值,由⎩⎪⎨⎪⎧x=1,y=a(x-3),得⎩⎪⎨⎪⎧x=1,y=-2a,∴z min=2-2a=1,解得a=12.9.已知平面直角坐标系xOy上的区域D由不等式组⎩⎨⎧0≤x≤2,y≤2,x≤2y给定.若M(x,y)为D 上的动点,点A的坐标为(2,1),则z=OM→·OA→的最大值为________.答案4解析由线性约束条件⎩⎪⎨⎪⎧0≤x≤2,y≤2,x≤2y,画出可行域如图阴影部分所示,目标函数z=OM→·OA→=2x+y,将其化为y=-2x+z,结合图形可知,目标函数的图象过点(2,2)时,z最大,将点(2,2)代入z=2x+y得z的最大值为4.10.已知1≤x+y≤5,-1≤x-y≤3,求2x-3y的取值范围.解作出二元一次不等式组⎩⎪⎨⎪⎧1≤x+y≤5,-1≤x-y≤3所表示的平面区域(如图)即为可行域.设z=2x-3y,变形得y=23x-13z,则得到斜率为23,且随z变化的一族平行直线.-13z是直线在y轴上的截距,当直线截距最大时,z的值最小,当然直线要与可行域相交,即在满足约束条件时,目标函数z=2x-3y取得最小值.由图可见,当直线z=2x-3y经过可行域上的点A时,截距最大,即z最小.解方程组⎩⎪⎨⎪⎧x-y=-1x+y=5得A的坐标为(2,3),∴z min=2x-3y=2×2-3×3=-5.当直线z=2x-3y经过可行域上的点B时,截距最小,即z最大.解方程组⎩⎪⎨⎪⎧x-y=3x+y=1得B的坐标为(2,-1).∴z max=2x-3y=2×2-3×(-1)=7.∴-5≤2x-3y≤7,即2x-3y的取值范围是[-5,7].11.某公司计划在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.假定甲、乙两个电视台为该公司所做的每分钟广告能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大.最大收益是多少万元?解设公司在甲电视台和乙电视台做广告的时间分别为x分钟和y分钟,总收益为z元,由题意得⎩⎪⎨⎪⎧x+y≤300,500x+200y≤90 000,x≥0,y≥0.即⎩⎪⎨⎪⎧x+y≤300,5x+2y≤900,x≥0,y≥0.目标函数为z=3 000x+2 000y.作出可行域如图所示:作直线l:3 000x+2 000y=0,即3x+2y=0.平移直线l,由图可知当l过点M时,目标函数z取得最大值.由⎩⎪⎨⎪⎧x+y=300,5x+2y=900.得M(100,200).∴z max=3 000×100+2 000×200=700 000(元).答该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.三、探究与拓展12.如果点P在平面区域⎩⎪⎨⎪⎧2x-y+2≥0,x+y-2≤0,2y-1≥0上,点Q在曲线x2+(y+2)2=1上,求PQ的最小值.解画出不等式组⎩⎪⎨⎪⎧ 2x -y +2≥0,x +y -2≤0,2y -1≥0所表示的平面区域,x 2+(y +2)2=1所表示的曲线为以(0,-2)为圆心,1为半径的一个圆.如图所示,只有当点P 在点A ⎝⎛⎭⎫0,12,点Q 在点B (0,-1)时,PQ 取最小值32.。
苏教版高中数学必修五3.3.3 简单的线性规划问题(一).docx
![苏教版高中数学必修五3.3.3 简单的线性规划问题(一).docx](https://img.taocdn.com/s3/m/0835fe1658fafab069dc02a6.png)
3.3.3 简单的线性规划问题(一)课时目标 1.了解线性规划的意义.2.会求一些简单的线性规划问题.线性规划中的基本概念名称 意义约束条件由变量x ,y 组成的不等式或方程 线性约束条件由x ,y 的一次不等式(或方程)组成的不等式组 目标函数欲求最大值或最小值所涉及的变量x ,y 的函数解析式 线性目标函数关于x ,y 的一次解析式 可行解满足线性约束条件的解(x ,y ) 可行域 约束条件表示的平面区域 最优解 使目标函数取得最大值或最小值的可行解线性规划问题求线性目标函数在__________条件下的最大值或最小值问题一、填空题1.若实数x ,y 满足不等式组⎩⎨⎧ x +3y -3≥0,2x -y -3≤0,x -y +1≥0,则x +y 的最大值为________.2.已知点P (x ,y )的坐标满足条件⎩⎨⎧x +y ≤4,y ≥x ,x ≥1,则x 2+y 2的最大值为________.3.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥3,x -y ≥-1,2x -y ≤3.则目标函数z =2x +3y 的最小值为________.4.已知-1<x +y <4且2<x -y <3,则z =2x -3y 的取值范围是________.(答案用区间表示)5.已知实数x ,y 满足⎩⎪⎨⎪⎧x +2y -5≤0,x ≥1,y ≥0,x +2y -3≥0,则yx的最大值为____________. 6.设变量x ,y 满足约束条件⎩⎨⎧x -y +2≥0,x -5y +10≤0,x +y -8≤0,则目标函数z =3x -4y 的最大值和最小值分别为________和________.7.在坐标平面上有两个区域M 和N ,其中区域M =⎩⎨⎧⎭⎬⎫(x ,y )|⎩⎪⎨⎪⎧y ≥0y ≤x y ≤2-x ,区域N ={(x ,y )|t ≤x ≤t +1,0≤t ≤1},区域M 和N 公共部分的面积用函数f (t )表示,则f (t )的表达式为________.8.设不等式组⎩⎪⎨⎪⎧x ≥1,x -2y +3≥0y ≥x,所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x -4y -9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,则AB 的最小值为________.二、解答题9.线性约束条件⎩⎪⎨⎪⎧x +3y ≥12x +y ≤103x +y ≥12下,求z =2x -y 的最大值和最小值.10.已知⎩⎪⎨⎪⎧2x +y -5≥03x -y -5≤0x -2y +5≥0,求x 2+y 2的最小值和最大值.能力提升11.已知实数x ,y 满足⎩⎪⎨⎪⎧(x -y +6)(x +y -6)≥01≤x ≤4,求x 2+y 2-2的取值范围.12.已知实数x 、y 满足⎩⎪⎨⎪⎧2x +y -2≥0x -2y +4≥03x -y -3≤0,试求z =y +1x +1的最大值和最小值.1.作不等式组表示的可行域时,注意标出相应的直线方程,还要给可行域的各顶点标上字母,平移直线时,要注意线性目标函数的斜率与可行域中边界直线的斜率进行比较,确定最优解.2.在解决与线性规划相关的问题时,首先考虑目标函数的几何意义,利用数形结合方法可迅速解决相关问题.3.3.3 简单的线性规划问题(一)答案知识梳理 线性约束 作业设计 1.9解析 画出可行域如图:当直线y =-x +z 过点A 时,z 最大.由⎩⎪⎨⎪⎧2x -y -3=0,x -y +1=0得A (4,5),∴z max =4+5=9. 2. 10解析 画出不等式组对应的可行域如下图所示:易得A (1,1),|OA |=2,B (2,2), |OB |=22,C (1,3),|OC |=10.∴(x 2+y 2)max =|OC |2=(10)2=10. 3.7解析 作出可行域如图所示.由图可知,z =2x +3y 经过点A (2,1)时,z 有最小值,z 的最小值为7. 4.(3,8)解析 由⎩⎪⎨⎪⎧-1<x +y <4,2<x -y <3得平面区域如图阴影部分所示.由⎩⎪⎨⎪⎧ x +y =-1,x -y =3得⎩⎪⎨⎪⎧ x =1,y =-2.由⎩⎪⎨⎪⎧ x +y =4,x -y =2得⎩⎪⎨⎪⎧x =3,y =1. ∴2×3-3×1<z =2x -3y <2×1-3×(-2),即3<z <8,故z =2x -3y 的取值范围是(3,8). 5.2解析 画出不等式组⎩⎪⎨⎪⎧x +2y -5≤0,x ≥1,y ≥0,x +2y -3≥0对应的平面区域Ω,y x =y -0x -0表示平面区域Ω上的点P (x ,y )与原点的连线的斜率.A (1,2),B (3,0),∴0≤yx≤2.6.3 -11解析 作出可行域如图阴影部分所示,由图可知z =3x -4y 经过点A 时z 有最小值,经过点B 时z 有最大值.易求A (3,5),B (5,3).∴z 最大=3×5-4×3=3,z 最小=3×3-4×5=-11.7.f (t )=-t 2+t +12解析作出不等式组⎩⎪⎨⎪⎧y ≥0y ≤xy ≤2-x所表示的平面区域.由t ≤x ≤t +1,0≤t ≤1,得f (t )=S △OEF -S △AOD -S △BFC =1-12t 2-12(1-t )2=-t 2+t +12.8.4解析 如图所示.由约束条件作出可行域,得D (1,1),E (1,2),C (3,3).要求(AB )min ,可通过求D 、E 、C 三点到直线3x -4y -9=0距离最小值的2倍来求. 经分析,D (1,1)到直线3x -4y -9=0的距离d =|3×1-4×1-9|5=2最小,∴(AB )min =4.9.解 如图作出线性约束条件⎩⎪⎨⎪⎧x +3y ≥12x +y ≤103x +y ≥12下的可行域,包含边界:其中三条直线中x +3y =12与3x +y =12交于点A (3,3),x +y =10与x +3y =12交于点B (9,1), x +y =10与3x +y =12交于点C (1,9),作一组与直线2x -y =0平行的直线l :2x -y =z ,即y =2x -z ,然后平行移动直线l ,直线l 在y 轴上的截距为-z ,当l 经过点B 时, -z 取最小值,此时z 最大,即z max =2×9-1=17;当l 经过点C 时,-z 取最大值,此时z 最小,即z min =2×1-9=-7. ∴z max =17,z min =-7. 10.解 作出不等式组 ⎩⎪⎨⎪⎧2x +y -5≥03x -y -5≤0x -2y +5≥0的可行域如图所示,由⎩⎪⎨⎪⎧ x -2y +5=02x +y -5=0,得A (1,3), 由⎩⎪⎨⎪⎧ x -2y +5=03x -y -5=0,得B (3,4), 由⎩⎪⎨⎪⎧3x -y -5=02x +y -5=0,得C (2,1), 设z =x 2+y 2,则它表示可行域内的点到原点的距离的平方,结合图形知,原点到点B 的距离最大,注意到OC ⊥AC ,∴原点到点C 的距离最小.故z max =|OB |2=25, z min =|OC |2=5.11.解 作出可行域如图,由x 2+y 2=(x -0)2+(y -0)2,可以看作区域内的点与原点的距离的平方,最小值为原点到直线x +y -6=0的距离的平方, 即OP 2,最大值为OA 2,其中A (4,10),OP =|0+0-6|12+12=62=32,OA =42+102=116,∴(x 2+y 2-2)min =(32)2-2=18-2=16, (x 2+y 2-2)max =(116)2-2=116-2=114, ∴16≤x 2+y 2-2≤114.即x 2+y 2-2的取值范围为16≤x 2+y 2-2≤114. 12.解 由于z =y +1x +1=y -(-1)x -(-1),所以z 的几何意义是点(x ,y )与点M (-1,-1)连线的斜率, 因此y +1x +1的最值就是点(x ,y )与点M (-1,-1)连线的斜率的最值,结合图可知,直线MB 的斜率最大,直线MC 的斜率最小,即 z max =k MB =3,此时x =0,y =2;z min =k MC =12,此时x =1,y =0.∴z 的最大值为3,最小值为12.。
高一数学简单的线性规划问题 苏教版
![高一数学简单的线性规划问题 苏教版](https://img.taocdn.com/s3/m/419be908192e45361066f5e2.png)
作出二元一次不等式组所表示的平面区域,即可行域
把目标函数z=28x+21y 变形为
随z变化的一组平行直 y 6/7 线系
4 它表示斜率为 3
4 z y x 3 28
的截距,当截距最 小时,z的值最小。
z 28 是直线在y轴上
5/7
M
3/7
如图可见,当直线 z=28x+21y 经过可 行域上的点M时,截距 最小,即z最小。
o
3/7
5/7
6/7 x
7 x 7 y 5 14x 7 y 6 x 得M点的坐标为: y
所以zmin=28x+21y=16
M点是两条直线的交点,解方程组
1 7 4 7
由此可知,每天食用食物A143g,食物B约 571g,能够满足日常饮食要求,又使花费最低, 最低成本为16元。
30
20
o
20
30
40
x
设收取的学费总额为Z万元,则目标函数
Z=0.16×45x+0.27×40y=7.2x+10.8y。
2 5z Z=7.2x+10.8y变形为 y x 3 54 2 它表示斜率为 的直线系,Z与这条直线的截距有关。 3 y
由图可以看出,当直 线Z=7.2x+10.8y经过 可行域上的点M时,截 距最大,即Z最大。
例3、某人准备投资1200万元兴办一所完全中学。 对教育市场进行调查后,他得到了下面的数据表格 (以班级为单位)
学段 初中 高中
硬件建设 班4/班
教师年薪 万元
2/人 2/人
分别用数学关系式和图形表示上述限制条件。若 根据有关部门的规定,初中每人每年可收学费1600 元,高中每人每年可收学费2700元。那么开设初中 班和高中班多少个?每年收费的学费总额最多?
苏教版必修5高中数学简单的线性规划问题1
![苏教版必修5高中数学简单的线性规划问题1](https://img.taocdn.com/s3/m/fa2aa921bed5b9f3f90f1c54.png)
简单的线性规划问题教学目标(1)巩固图解法求线性目标函数的最大、最小值的方法; (2)会用画网格的方法求解整数线性规划问题.教学重点、难点用画网格的方法求解整数线性规划问题.教学过程 一.数学运用例1.设,,x y z 满足约束条件组1320101x y z y z x y ++=⎧⎪+≥⎪⎨≤≤⎪⎪≤≤⎩,求264u x y z =++的最大值和最小值。
解:由1x y z ++=知1z x y =--+,代入不等式组消去z 得210101y x x y -≥⎧⎪≤≤⎨⎪≤≤⎩,代入目标函数得224u x y =-++, 作直线0l :0x y -+=,作一组平行线l :x y u -+=平行于0l ,由图象知,当l 往0l 左上方移动时,u 随之增大, 当l 往0l 右下方移动时,u 随之减小,所以,当l 经过(0,1)B 时,max 202146u =-⨯+⨯+=, 当l 经过(1,1)A 时,min 212144u =-⨯+⨯+=, 所以,max 6u =,min 4u =.A xyOB1 1例2.已知,x y 满足不等式组230236035150x y x y x y -->⎧⎪+-<⎨⎪--<⎩,求使x y +取最大值的整数,x y .解:不等式组的解集为三直线1l :230x y --=,2l :2360x y +-=,3l :35150x y --=所围成的三角形内部(不含边界),设1l 与2l ,1l 与3l ,2l 与3l 交点分别为,,A B C ,则,,A B C 坐标分别为153(,)84A ,(0,3)B -,7512(,)1919C -,作一组平行线l :x y t +=平行于0l :0x y +=, 当l 往0l 右上方移动时,t 随之增大,∴当l 过C 点时x y +最大为6319,但不是整数解,又由75019x <<知x 可取1,2,3,当1x =时,代入原不等式组得2y =-, ∴1x y +=-; 当2x =时,得0y =或1-, ∴2x y +=或1; 当3x =时,1y =-, ∴2x y +=,故x y +的最大整数解为20x y =⎧⎨=⎩或31x y =⎧⎨=-⎩.说明:最优整数解常有两种处理方法,一种是通过打出网格求整点,关键是作图要准确;另一种是本题采用的方法,先确定区域内点的横坐标范围,确定x 的所有整ACx yO1l3l2l数值,再代回原不等式组,得出y 的一元一次不等式组,再确定y 的所有相应整数值,即先固定x ,再用x 制约y .例3.(1)已知1224a b a b ≤-≤⎧⎨≤+≤⎩,求42t a b =-的取值范围;(2)设2()f x ax bx =+,且1(1)2f ≤-≤,2(1)4f ≤≤,求(2)f -的取值范围。
高中数学 27 简单的线性规划问题1试题必修5 试题
![高中数学 27 简单的线性规划问题1试题必修5 试题](https://img.taocdn.com/s3/m/6edd33d732d4b14e852458fb770bf78a65293a0a.png)
27. 简单的线性规划问题〔1〕【教学•建构】探究1 在线性约束条件⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+0,0,2034,104y x y x y x 下,探究目的函数y x P +=2的最大值.探究2 〔1〕实数x ,y 满足⎩⎪⎨⎪⎧ x -y +2≥0,x +y ≥0,x ≤1,那么z =2x +y 的最小值是________.〔2〕假设x ,y 满足约束条件⎩⎪⎨⎪⎧ 0≤x ≤1,0≤y ≤2,x -2y +1≤0,那么z =2x -y 的最大值是________.探究3 〔1〕设1>m ,在约束条件⎪⎩⎪⎨⎧≤+≤≥1,,y x mx y x y 下,目的函数y x z 5+=的最大值为4,那么实数m 的值是__________.〔2〕实数x ,y 满足约束条件⎩⎪⎨⎪⎧ x ≥0,y ≥2x +1,x +y +k ≤0(k 为常数),假设目的函数z =2x +y 的最大值是113,那么实数k =________.〔3〕等差数列{}n a 中,158≥a ,139≤a ,那么12a 的取值范围是_______.【复习•考虑】整理笔记,稳固记忆课堂教学内容.励志赠言经典语录精选句;挥动**,放飞梦想。
厚积薄发,一鸣惊人。
关于努力学习的语录。
自古以来就有许多文人留下如头悬梁锥刺股的经典的,而近代又有哪些经典的高中励志赠言出现呢?小编筛选了高中励志赠言句经典语录,看看是否有些帮助吧。
好男儿踌躇满志,你将如愿;真巾帼灿烂扬眉,我要成功。
含泪播种的人一定能含笑收获。
贵在坚持、难在坚持、成在坚持。
功崇惟志,业广为勤。
耕耘今天,收获明天。
成功,要靠辛勤与汗水,也要靠技巧与方法。
常说口里顺,常做手不笨。
不要自卑,你不比别人笨。
不要自满,别人不比你笨。
高三某班,青春无限,超越梦想,勇于争先。
敢闯敢拼,**协力,争创佳绩。
丰富学校体育内涵,共建时代校园文化。
奋勇冲击,永争第一。
奋斗冲刺,誓要蟾宫折桂;全心拼搏,定能金榜题名。