[推荐]2020年苏教版高中数学必修一(全册)配套练习汇总
江苏省高一数学苏教版必修1课后训练:1.2子集、全集、补集 Word版含解析
子集、全集、补集练习1.已知集合M={(x,y)|x+y<0且xy>0},集合P={(x,y)|x<0且y<0},则集合M与P的关系是________.2.已知集合{2x,x2-x}有且只有4个子集,则实数x的取值范围是________.3.集合{x∈N|x=5-2n,n∈N}的真子集的个数是________.4.设M={x|x=a2+1,a∈N*},P={y|y=b2-4b+5,b∈N*},则M与P的关系是________.5.已知全集U=Z,A={x|x=2k,k∈Z},则U A=________.6.设A,B为两个集合,下列四种说法:①A B对任意x∈A,有x B;②A B A和B无公共元素;③A B A B;④A B存在x∈A,使得x B.其中正确的是__________.7.设集合A={x|-2<x<2},B={x|x≥a},且A B,则实数a的取值范围是________.8.设A是整数集的一个非空子集,对于k∈A,如果k-1A,且k+1A,那么称k 是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8},由S的3个元素构成的所有集合中,不含“孤立元”的集合有________个.9.设全集U={2,4,-(a-3)2},A={2,a2-a+2},若U A={-1},试求实数a的值.10.已知非空集合P满足:①P{1,2,3,4,5},②若a∈P,则(6-a)∈P,符合上述条件的非空集合P有多少个?写出这些集合来.11.集合P={x|x2-3x+b=0,x∈R},Q={x|(x+1)(x2+3x-4)=0,x∈R}.(1)若b=4,存在集合M使得P M Q,求出这样的集合M.(2)P能否成为Q的一个子集?若能,求b的值或取值范围;若不能,请说明理由.参考答案1.答案:M =P2.答案:{x |x ≠0,且x ≠3,x ∈R }3.答案:74.答案:M P5.答案:{x |x =2k +1,k ∈Z }6.答案:④7.答案:{a |a ≤-2}8.答案:69.解:由条件得-(a -3)2=-1,解之,得a =2或4.当a =2时,a 2-a +2=4∈U ,成立;当a =4时,a 2-a +2=14U ,不合题意.综上所述,a =2.10.分析:若1∈P ,则6-1=5∈P ,故1,5这两个元素必须同时属于P 或同时不属于P ;若2∈P ,则6-2=4∈P ,故2,4这两个元素必须同时属于P 或同时不属于P ;若3∈P ,则6-3=3∈P ,故3这个元素属于P 或不属于P .解:符合条件的非空集合P 有:{1,5},{2,4},{3},{1,3,5},{2,3,4},{1,2,4,5},{1,2,3,4,5},共7个.11.解:(1)当b =4时,方程x 2-3x +b =0的判别式Δ=(-3)2-4×1×4<0,故P =,且Q ={-4,-1,1},由已知M 应是一个非空集合,且是Q 的一个真子集,用列举法可得这样的集合M 共有6个,分别为{-4},{-1},{1},{-4,-1},{-4,1},{-1,1}.(2)①当P =时,P 显然是Q 的一个子集,此时Δ=9-4b <0,∴b >.94②当P ≠时,Q ={-4,-1,1},可以通过假设存在性成立,逐一验证来判断b 的取值.即,若当-1∈P 时,(-1)2-3×(-1)+b =0,b =-4,此时x 2-3x -4=0,得x 1=-1,x 2=4.∵4Q ,∴P 不是Q 的一个子集.若-4∈P 时,(-4)2-3×(-4)+b =0,得b =-28,此时由x 2-3x -28=0,得x 1=-4,x 2=7,∵7Q ,∴P 不是Q 的一个子集.若1∈P 时,12-3×1+b =0,b =2,此时由x 2-3x +2=0得x 1=1,x 2=2.∵2Q ,∴P 不是Q 的一个子集.综上,满足题意的b 的取值范围是.94b b ⎧⎫>⎨⎬⎭⎩。
新教材苏教版高中数学必修第一册第四章 指数与对数 课时分层练习题,精选最新配套习题,含解析
第四章指数与对数1指数 .............................................................................................................................. - 1 - 2对数的概念 .................................................................................................................. - 6 - 3对数的运算性质......................................................................................................... - 10 -1指数基础练习1.(2020·惠州高一检测)已知a>0,则= ( )A. B. C. D.【解析】选D.===.2.已知=4,则x等于( )A.±B.±8C. D.±2【解析】选A.由=4,得=4,即=,所以x2=,得x=±.3.计算:++(2 019)0= ( )A.6B.7C.8D.【解析】选B.++(2 019)0=2++1=2+22+1=7.4.用分数指数幂表示=________.【解析】===-.答案:-5.计算下列各式:(1)-(-9.6)0-+;(2)b-2(-3b-1)÷(4b-3.【解析】(1)原式=-1-+=-1=.(2)原式=-×3·b-3÷(2)=-.提升训练一、选择题(每小题5分,共20分)1.化简(其中a>0,b>0)的结果是( )A. B.-C. D.-【解析】选C.===.2.计算(-2)2 019·(+2)2 020= ( )A.+2B.-2C.--2D.-+2【解析】选C.原式=[(-2)(+2)]2 019·(+2)=(-1)2 019·(+2)=--2.3.化简·的结果是( )A. B.-C. D.-【解析】选B.由题意可知a≤0,则·=(-a·=-(-a·(-a=-(-a=-=-.【补偿训练】化简的结果是( )A.-B.C.-D.【解析】选A.由题意知,解得x<0,所以=====-.【误区警示】本题容易忽视x的范围,式子隐含x<0.4.(多选题)在下列根式与分数指数幂的互化中,正确的是( )A.(-x)0.5=-(x≠0)B.=C.=(xy>0)D.=-【解析】选BC.对于A,(-x)0.5和-必有一个无意义,错误;对于B,==,正确;对于C,因为xy>0,则==,正确;对于D,==,错误.二、填空题(每小题5分,共10分)5.计算:0.06-+1+0.2=________.【解析】原式=-1+8+=-1+8+=10.答案:106.(2020·海安高一检测)已知x+x-1=3,则+的值为__________.【解析】由题意得,=x+2+x-1=5,所以+=,所以+=(+)(x-1+x-1)=(3-1)=2.答案:2三、解答题7.(10分)化简y=+,并画出简图,写出最小值. 【解析】y=+=|2x+1|+|2x-3|=其图象如图所示.由图易知函数的最小值为4.【补偿训练】已知a<b<0,n>1,且n∈N*,化简+.【解析】因为a<b<0,所以a-b<0,a+b<0.当n是奇数时,原式=(a-b)+(a+b)=2a;当n是偶数时,原式=|a-b|+|a+b|=(b-a)+(-a-b)=-2a.所以+=2对数的概念基础练习1.已知log7[log3(log2x)]=0,那么等于( )A. B. C. D.【解析】选C.由条件知,log3(log2x)=1,所以log2x=3,所以x=8,所以=.【补偿训练】若对数式log(t-2)3有意义,则实数t的取值范围是( )A.[2,+∞)B.(2,3)∪(3,+∞)C.(-∞,2)D.(2,+∞)【解析】选B.要使对数式log(t-2)3有意义,需,解得t>2且t≠3,所以实数t的取值范围是(2,3)∪(3,+∞).2.16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成了当务之急,数学家纳皮尔在研究天文学的过程中,为简化计算发明了对数.直到18世纪,才由瑞士数学家欧拉发现了指数与对数的互逆关系,即a b=N⇔b=logaN.现在已知a=log23,则2a=________.【解析】由a=log23,化对数式为指数式可得2a=3.答案:33.e0++=________.【解析】原式=1+2+8=11.答案:114.已知log62=a,6b=12,则a2+b(1-a)的值为______.【解析】由log62=a,则6a=2,又6b=12,所以b=a+1,所以a2+b(1-a)=a2+(1+a)(1-a)=1.答案:15.(1)将log232=5化成指数式.(2)将3-3=化成对数式.(3)log4x=-,求x.(4)已知log2(log3x)=1,求x.【解析】(1)因为log232=5,所以25=32.(2)因为3-3=,所以log3=-3.(3)因为log4x=-,所以x===2-3=.(4)因为log2(log3x)=1,所以log3x=2,即x=32=9.提升训练一、选择题(每小题5分,共20分)1.设f(log2x)=2x(x>0),则f(2)的值是( )A.128B.16C.8D.256【解析】选B.由题意,令log2x=2,解得x=4,则f(log2x)=2x=24=16.2.(2020·西安高一检测)已知2×9x-28=,则x= ( )A.log37-log32 B.lo 4C.log34 D.log37【解析】选C.2×9x-28=,所以2×(3x)2-28-3x=0,即(3x-4)(2·3x+7)=0,解得3x=4,则x=log34.3.已知x2+y2-4x-2y+5=0,则logx(y x)的值是( )A.1B.0C.xD.y【解题指南】先对方程配方,求出x,y后再利用对数性质求值. 【解析】选B.由x2+y2-4x-2y+5=0,则(x-2)2+(y-1)2=0,所以x=2,y=1,所以logx (y x)=log2(12)=0.【补偿训练】若10α=2,β=lg 3,则= ( ) A. B. C.1 D.【解析】选D.因为β=lg 3,所以10β=3.所以====.4.(多选题)下列各式正确的有( )A.lg(lg 10)=0B.lg(ln e)=0C.若10=lg x,则x=10D.若log25x=,则x=±5.【解析】选AB.对于A,因为lg(lg 10)=lg 1=0,所以A对; 对于B,因为lg(ln e)=lg 1=0,所以B对;对于C,因为10=lg x,所以x=1010,C错;对于D,因为log25x=,所以x=2=5.所以只有AB正确.二、填空题(每小题5分,共10分)5.若loga 2=m,loga3=n,其中a>0,且a≠1,则a m+n=________.【解析】loga2=m,可得a m=2.loga3=n,a n=3.a m+n=a m a n=2×3=6.答案:66.(2020·绍兴高一检测)已知方程loga(5x-3x)=x(其中a>0,a≠1),若x=2是方程的解,则a=________;当a=2时,方程的解x=________.【解析】因为x=2是方程的解,所以loga(52-32)=2.所以a2=16,且a>0,所以a=4.当a=2时,log2(5x-3x)=x.所以5x-3x=2x,显然x=1是方程的解.答案:4 1【补偿训练】方程log3(9x-4)=x+1的解x=________.【解析】因为log3(9x-4)=x+1,所以9x-4=3x+1,所以(3x)2-3·3x-4=0,所以3x=4,x=log34,或3x=-1(舍).答案:log34三、解答题7.(10分)若lo x=m,lo y=m+2,求的值.【解析】因为lo x=m,所以=x,x2=.因为lo y=m+2,所以=y,y=,所以====16.【补偿训练】已知loga b=logba(a>0,a≠1;b>0,b≠1),求证:a=b或a=.【证明】令loga b=logba=t,则a t=b,b t=a,所以=a则=a,所以t2=1,t=±1,当t=1时,a=b;当t=-1时,a=.所以a=b或a=.3对数的运算性质基础练习1.化简2lg 5+lg 4-的结果为( )A.0B.2C.4D.6【解析】选A.原式=2lg 5+2lg 2-2=2(lg 5+lg 2)-2=0.2.+等于( )A.lg 3B.-lg 3C.D.-【解析】选C.原式=lo+lo=log94+log35=log32+log35=log310=.3.(2020·新乡高一检测)设a=lg 6,b=lg 20,则log23= ( )A. B.C. D.【解析】选D.因为a=lg 6=lg 2+lg 3,b=lg 20=1+lg 2,所以log23==.4.计算:2-1+lg 100-ln=________.【解析】原式=+2-=2.答案:25.已知3a=5b=c,且+=2,求c的值.【解析】因为3a=5b=c,所以a=log3c,b=log5c,c>0,所以=logc 3,=logc5,所以+=logc15.由logc15=2得c2=15,即c=(负值舍去).提升训练一、选择题(每小题5分,共20分)1.设函数f(x)=loga x(a>0,a≠1),若f(x1x2…x2 020)=4,则f()+f()+…+f()的值等于( )A.4B.8C.16D.2log48【解析】选B.因为函数f(x)=loga x(a>0,a≠1),f(x1x2…x2 020)=4,所以f(x1x2…x2 020)=loga(x1x2…x2 020)=4,所以f()+f()+…+f()=loga(××…×)=loga (x1x2…x2 020)2=2loga(x1x2…x2 020)=2×4=8.2.若lg a,lg b是方程2x2-4x+1=0的两个根,则的值等于( )A.2B.C.4D.【解析】选A.由根与系数的关系,得lg a+lg b=2,lg a·lg b=,所以= (lg a-lg b)2=(lg a+lg b)2-4lg a·lg b=22-4×=2.3.(2019·北京高考)在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2-m1=lg,其中星等为mk的星的亮度为Ek(k=1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( ) A.1010.1 B.10.1 C.lg 10.1 D.10-10.1【解析】选A.令m1=-26.7,m2=-1.45,则m2-m1=-1.45-(-26.7)=25.25=lg,所以lg=10.1,则=1010.1.4.(多选题)(2020·滨州高一检测)已知a,b均为正实数,若loga b+logba=,a b=b a,则可以取的值有( )A. B. C. D.2【解析】选AD.令t=logab,则t+=,所以2t2-5t+2=0,(2t-1)(t-2)=0,所以t=或t=2,所以loga b=或logab=2.所以a=b2或a2=b.又因为a b=b a,所以2b=a=b2或b=2a=a2.所以b=2,a=4或a=2,b=4.所以=2或=.二、填空题(每小题5分,共10分)5.(lg 5)2-(lg 2)2+lg 4=________.【解析】原式=(lg 5+lg 2)(lg 5-lg 2)+lg 4=lg 5-lg 2+2lg 2=lg 5+lg 2=1.答案:16.已知lg a+b=3,a b=100,则a lg 2·b=________.【解析】lg a+b=3,a=103-b,又因为a b=100,所以10(3-b)b=100,b(3-b)=2,所以b=1或2,a=100或10,所以a lg 2·b=102lg 2·1=4或a lg 2·b=10lg 2·2=2×2=4. 答案:4三、解答题7.(10分)(2020·漳州高一检测)计算下列各式:(1)(log32+log92)(log43+log83)+;(2)2lg 5+lg 8+lg 5·lg 20+lg22.【解析】(1)(log32+log92)(log43+log83)+=+5 =···+5=×+5=.(2)2lg 5+lg 8+lg 5·lg 20+lg22=2lg 5+lg 23+lg 5·lg(4×5)+lg22=2lg 5+2lg 2+2lg 5·lg 2+lg25+lg22 =2(lg 5+lg 2)+2lg 5·lg 2+lg25+lg22 =2+(lg 5+lg 2)2=2+1=3.【补偿训练】计算:(1)log535-2log5+log57-log51.8;(2)log2+log212-log242-1.【解析】(1)原式=log5(5×7)-2(log57-log53)+log57-log5=log55+log57-2log57+2log53+log57-2log53+log55=2.(2)原式=log2+log212-log2-log22=log2=log2=log2=-.。
苏教版高中数学必修第一册课后习题 第1章 集合 1.1 第2课时 集合的表示
第2课时集合的表示A级必备知识基础练1.用列举法表示大于2且小于5的自然数组成的集合应为( )A.{x|2<x<5,x∈N}B.{2,3,4,5}C.{2<x<5}D.{3,4}2.(武汉洪山校级月考)集合{x∈Z|(3x-1)(x-4)=0}可化简为( )A.{13} B.{4}C.{13,4} D.{-13,-4}3.集合{(x,y)|y=2x-1}表示( )A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合4.集合3,52,73,94,…用描述法可表示为( )A.x x=2n+12n,n∈N*B.x x=2n+3n,n∈N*C.x x=2n-1n,n∈N*D.x x=2n+1n,n∈N*5.(上海金山校级月考)集合{x|1≤x≤3,x∈N}用列举法可以表示为.6.已知集合A={x|x2+2x+a=0},若1∈A,则A= .7.用适当的方法表示下列集合:(1)方程x2+y2-4x+6y+13=0的解集;(2)1 000以内被3除余2的正整数组成的集合;(3)二次函数y=x2-10图象上的所有点组成的集合.B级关键能力提升练8.(菏泽期中)如果集合A={x|ax2+4x+1=0}中只有一个元素,则a的值是( )A.0B.4C.0或4D.不能确定9.(山东临沂高一期中)已知b 是正数,且集合{x|x 2-ax+16=0}={b},则a-b=( ) A.0B.2C.4D.810.已知集合A={a 2,0,-1},B={a,b,0},若A=B,则(ab)2 021的值为( ) A.0 B.-1C.1D.±111.(多选题)下列选项表示的集合P 与Q 相等的是( ) A.P={x|x 2+1=0,x ∈R},Q=⌀ B.P={2,5},Q={5,2} C.P={(2,5)},Q={(5,2)} D.P={x|∈Z},Q={x|∈Z}12.(多选题)下列选项能正确表示方程组{2x +y =0,x -y +3=0的解集的是( )A.(-1,2)B.{(x,y)|x=-1,y=2}C.{-1,2}D.{(-1,2)}13.(多选题)已知集合A={y|y=x2+1},集合B={(x,y)|y=x2+1},下列关系正确的是( )A.(1,2)∈BB.A=BC.0∉AD.(0,0)∉B14.已知集合A={x,y},B={2x,2x2},且A=B,则集合A= .15.用列举法表示集合A={(x,y)|x+y=5,x∈N*,y∈N*}是A= ;用描述法表示“所有被4除余1的整数组成的集合”是.16.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求实数c的值.C级学科素养创新练17.已知集合A={x|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的所有取值组成的集合;(2)若A中只有一个元素,求a的值,并把这个元素写出来;(3)若A中至多有一个元素,求a的所有取值组成的集合.第2课时集合的表示1.D 大于2且小于5的自然数为3和4,所以用列举法表示其组成的集合为{3,4}.2.B 解方程得x1=13,x2=4,因为x∈Z,所以x=4,故集合为{4},故选B. 3.D 集合{(x,y)|y=2x-1}的代表元素是(x,y),x,y满足的关系式为y=2x-1,因此集合表示的是满足关系式y=2x-1的点组成的集合,故选D.4.D 由3,52,73,94,即31,52,73,94从中发现规律,x=2n+1n,n∈N*,故可用描述法表示为x x=2n+1n,n∈N*.5.{1,2,3} 由于1≤x≤3,x∈N,∴x可取1,2,3.则集合{x|1≤x≤3,x∈N}用列举法可以表示为{1,2,3}.6.{-3,1} 把x=1代入方程x2+2x+a=0,可得a=-3,解方程x2+2x-3=0可得A={-3,1}.7.解(1)方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3, 所以方程的解集为{(x,y)|x=2,y=-3}.(2)集合的代表元素是数,用描述法可表示为{x|x=3k+2,k∈N,且x<1000}.(3)二次函数y=x2-10图象上的所有点组成的集合用描述法表示为{(x,y)|y=x2-10}.8.C 当a=0时,集合A={x|ax 2+4x+1=0}={-14},只有一个元素,满足题意;当a≠0时,由集合A={x|ax 2+4x+1=0}中只有一个元素,可得Δ=42-4a=0,解得a=4.则a 的值是0或4.故选C.9.C 由题意可知方程x 2-ax+16=0有两个相等的正实数根,故Δ=a 2-64=0.又方程两根之和为正数,即a>0,所以a=8.因此方程变为x 2-8x+16=0,且根为4,故b=4.所以a-b=8-4=4.故选C.10.B 根据集合中元素的互异性可知a≠0,b≠0.因为A=B,所以a=-1或b=-1.当a=-1时,b=a 2=1,此时(ab)=(-1)=-1;当b=-1时,a 2=a,因为a≠0,所以a=1,此时(ab)=(-1)=-1.故选B.11.ABD 对于A,集合P 中方程x 2+1=0无实数根,故P=Q=⌀;对于B,集合P 中有两个元素2,5,集合Q 中有两个元素2,5,故P=Q;对于C,集合P 中有一个元素是点(2,5),集合Q 中有一个元素是点(5,2),元素不同,P≠Q;对于D,集合P={x|∈Z}表示所有奇数构成的集合,集合Q={x|∈Z}也表示所有奇数构成的集合,P=Q.故选ABD.12.BD 由{2x +y =0,x -y +3=0,解得{x =-1,y =2,所以方程组的解集为{(x,y)|x=-1,y=2}或{(-1,2)}.故选BD.13.ACD 由已知集合A={y|y≥1},集合B 是由抛物线y=x 2+1上的点组成的集合,故A 正确,B 错误,C 正确,D 正确.故选ACD.14.12,1 由题意,集合A={x,y},B={2x,2x 2},且A=B,则x=2x 或x=2x 2.若x=2x,可得x=0,此时集合B 不满足集合中元素的互异性,舍去;若x=2x 2,可得x=12或x=0(舍去),当x=12时,可得2x=1,2x 2=12,即A=B=12,1.15.{(1,4),(2,3),(3,2),(4,1)} {x|x=4k+1,k ∈Z}由题意A={(1,4),(2,3),(3,2),(4,1)},所有被4除余1的整数组成的集合为{x|x=4k+1,k ∈Z}. 16.解分两种情况进行讨论.①若a+b=ac,a+2b=ac 2,消去b,得a+ac 2-2ac=0.当a=0时,集合B 中的三个元素均为0,与集合中元素的互异性矛盾,故a≠0,所以c 2-2c+1=0,即c=1,但当c=1时,B 中的三个元素相同,不符合题意. ②若a+b=ac 2,a+2b=ac,消去b,得2ac 2-ac-a=0. 由①知a≠0,所以2c 2-c-1=0,即(c-1)(2c+1)=0, 解得c=-12或c=1(舍去),当c=-12时,经验证,符合题意.综上所述,c=-12.17.解(1)当a=0时,-3x+2=0,此时x=23,所以A 不是空集,不符合题意;当a≠0时,若A 是空集,则Δ=9-8a<0,所以a>98.综上可知,a 的所有取值组成的集合为a a>98.(2)当a=0时,-3x+2=0,此时x=23,满足条件,此时A 中仅有一个元素23;当a≠0时,Δ=9-8a=0,所以a=98,此时方程为98x 2-3x+2=0,即(3x-4)2=0,解得x=43,此时A 中仅有一个元素43.综上可知,当a=0时,A 中只有一个元素为23;当a=98时,A 中只有一个元素为43.(3)A 中至多有一个元素,即方程ax 2-3x+2=0只有一个实数根或无实数根. 则a=0或Δ=9-8a<0,解得a=0或a>98.故a 的所有取值组成的集合为a a=0,或a>98.。
2020-2021学年苏教版高中数学必修一全册课时同步练习及解析
(新课标)最新苏教版高中数学必修一§1.1 集合的含义及其表示(1)课后训练【感受理解】1.给出下列命题(其中N 为自然数集) :①N 中最小的元素是1 ②若a ∈N 则-a ∉N ③ 若a ∈N,b ∈N ,则a+b 的最小值是2(4)x x 212=+的解可表示为}1,1{, 其中正确的命题个数为 . 2.用列举法表示下列集合.①小于12的质数构成的集合;②平方等于本身的数组成的集合;③由||||(,)a b a b R a b+∈所确定的实数的集合; ④抛物线221y x x =-+ (x 为小于5的自然数)上的点组成的集合.3. 若方程x 2-5x+6=0和方程x 2-x-2=0的解为元素的集合为M ,则M 中元素的个数为4.由2,2,4a a -组成一个集合A ,A 中含有3个元素,则a 的取值可以是【思考应用】5.由实数332,,,x x x x --所组成的集合里最多有 个元素.6. 由“,x xy ”组成的集合与由“0,||,x y ”组成的集合是同一个集合,则实数,x y 的值是否确定的?若确定,请求出来,若不确定,说明理由.7.定义集合运算:},),({B y A x y x xy z z B A ∈∈+==Θ,设集合}3,2{},1,0{==B A ,求集合B A Θ.8.关于x 的方程20(0)ax bx c a ++=≠,当,,a b c 分别满足什么条件时,解集为空集、含一个元素、含两个元素?9. 已知集合{,}A x x m m Z N Z ==+∈∈.(1)证明:任何整数都是A 的元素;(2)设12,,x x A ∈求证:12,x x A ⋅∈【拓展提高】9.设S 是满足下列两个条件的实数所构成的集合: ①1S ∉,②若a S ∈,则11S a ∈-, 请解答下列问题:(1)若2S ∈,则S 中必有另外两个数,求出这两个数;(2)求证:若a S ∈,则11S a-∈ (3)在集合S 中元素能否只有一个?请说明理由;(4)求证:集合S 中至少有三个不同的元素.§1.1集合的含义及其表示(2)课后训练1. 设a ,b ,c 均为非零实数,则x=||||||||a b c abc a b c abc+++的所有值为元素组成集合是________2. 集合}9,7,5,3,1{用描述法表示为 .3. 下列语句中,正确的是 .(填序号)(1)0与{0}表示同一个集合;(2)由1,2,3组成的集合可表示为{1,2,3}或{3,1,2};(3)方程0)2()1(22=--x x 的所有解的集合可表示为{1,1,2,2} (4)集合}54{<<x x 可以用列举法表示.4.所有被3整除的数用集合表示为 .5.下列集合中表示同一集合的是` (填序号)(1)M={3,2},N={2,3} (2)M={(3,2)},N={(2,3)}(3)M={(,)1},{(,)1}x y x y N y x x y +==+= (4) M={1,2},N={(1,2)}6.下列可以作为方程组⎩⎨⎧-=-=+13y x y x 的解集的是 (填序号) (1){1,2},x y ==(2){1,2}(3){(1,2)} (4){(,)12}(5){(,)12}x y x y x y x y ====且或(6)}0)2()1(),{(22=-+-y x y x7.用另一种方法表示下列集合.(1){绝对值不大于2的整数} (2){能被3整除,且小于10的正数}(3)}5,{Z x x x x x ∈<=且 (4)*},*,6),{(N y N x y x y x ∈∈=+(5){5,3,1,1,3--}8.已知{}{}0|,0|22=+-==++=q px x x B q px x x A .当{}2=A 时,求集合B9.用描述法表示图中阴影部分(含边界)的点的坐标集合.10.对于*,N b a ∈,现规定:⎩⎨⎧⨯+=)()(*的奇偶性不同与的奇偶性相同与b a b a b a b a b a ,集合{(,)*36,,*}M a b a b a b N ==∈ (1) 用列举法表示b a ,奇偶性不同时的集合M.(2) 当b a ,奇偶性相同时的集合M 中共有多少个元素?【拓展提高】11 设元素为正整数的集合A 满足“若x A ∈,则10x A -∈”.(1)试写出只有一个元素的集合A ;(2)试写出只有两个元素的集合A ;(3)这样的集合A 至多有多少个元素?(4)满足条件的集合A 共有多少个?§1.2 子集·全集·补集(1)课后训练【感受理解】1. 设M 满足{1,2,3}⊆M ≠⊂{1,2,3,4,5,6},则集合M 的个数为 2.下列各式中,正确的个数是 ①0={0};②0∈{0};③{1}∈{1,2,3};④{1,2}⊆{1,2,3};⑤{a ,b}⊆{a ,b}.3.设{|12}A x x =<< ,{|}B x x a =<,若A 是B 的真子集,则a 的取值范围是 .4.若集合A ={1,3,x},B ={x 2,1},且B ⊆A ,则满足条件的实数x 的个数为 . 5.设集合M ={(x,y)|x+y<0,xy>0}和N ={(x,y)|x<0,y<0},那么M 与N 的关系为______________.6.集合A ={x|x=a 2-4a+5,a ∈R},B ={y|y=4b 2+4b+3,b ∈R} 则集合A 与集合B 的关系是________.【思考应用】7.设x ,y ∈R ,B={(x,y)|y-3=x-2},A={(x,y)|32y x --=1},则集合A 与B 的关系是_______ ____. 8.已知集合{}{}|21,,|41,,A x x n n Z B x x n n Z ==+∈==±∈则,A B 的关系是 .9.设集合{}{}21,3,,1,,1,A a B a a a ==-+,A B =若则________=a .10.已知非空集合P 满足:(){}11,2,3,4;P ⊆()2,5a P a P ∈-∈若则,符合上述要求的集合P 有 个.11.已知A={2,4,x 2-5x+9},B={3,x 2+ax+a},C={x 2+(a+1)x-3,1}. 求(1)当A={2,3,4}时,求x 的值;(2)使2∈B ,BA ,求x a ,的值; (3)使B= C 的x a ,的值.【拓展提高】12.已知集合{}{},121|,52|-≤≤+=≤≤-=m x m x B x x A 满足,A B ⊆求实数m 的取值范围.(变式)已知集合{}{}|25,|121,A x x B x m x m =-<<=+<<-满足,A B ⊆求实数m 的取值范围.⊂ ≠§1.2 子集·全集·补集(2)课后训练【感受理解】1.设集合{}{},,3|,,4|22R b b y y B R a a x x A ∈+-==∈+-==则A ,B 间的关系为 . 2若U={x|x 是三角形},P={x|x 是直角三角形}则U C P = . 3已知全集+=R U ,集合{}|015,,A x x x R =<-≤∈则_______.U C A = 4.已知全集}{非零整数=U ,集合}},42{U x x x A ∈>+=,则=A C U .5.设},61{},,5{N x x x B N x x x A ∈<<=∈≤=,则=B C A .【思考应用】6.设全集U={1,2,3,4,5},M={1,4},则U C M 的所有子集的个数是 .7.已知全集},21{*N n x x U n ∈==,集合}*,21{2N n x x A n ∈==,则=A C U .8.已知A A y ax y x A Z a ∉-∈≤-=∈)4,1(,)1,2(}3),{(,且,则满足条件a 的值为 .9.设U=R ,}1{},31{+≤≤=≥≤=m x m x B x x x P 或,记所有满足P C B U ⊆的m 组成的集合为M ,求M C U .10.(1)设全集{}{},1|,1|,+>=≤==a x x B x x A R U 且U C A B ⊆,求a 的范围.(2)已知全集{}{}{}22,3,23,2,,5,U U a a A b C A =+-==求实数b a 和的值.【拓展提高】10.已知全集}5{的自然数不大于=U ,集合}1,0{=A ,}1{<∈=x A x x B 且,}1{U x A x x C ∈∉-=且.(1)求U B ð,U C ð.(2)若}{A x x D ∈=,说明D B A ,,的关系.§1.3 交集·并集(1)课后训练【感受理解】1.设全集{1,2,3,4,5},{1,3,5},{2,4,5}U A B ===,则()()U U C A C B =I .2.设集合{|5,},{|1,}A x x x N B x x x N =≤∈=>∈,那么A B =I .3.若集合22{|21,},{|21,}P y y x x x N Q y y x x x N ==+-∈==-+-∈,则下列各式中正确的是 .(1);(2){0};(3){1};(4)P Q P Q P Q P Q N =∅==-=I I I I4.已知集合A={x|-5<x<5},B={x|-7<x<a},C={x|b<x<2},且A ∩B=C ,则 a ,b 的值分别为 .【思考应用】5.设全集U={1,2,3,4},A 与B 是U 的子集,若A ∩B ={1,3 },则称(A,B)为一个“理想配集”.(若A =B ,规定(A,B)=(B, A);若A ≠B ,规定(A,B)与(B, A)是两个不同的“理想配集”).那么符合此条件的“理想配集”的个数是 .6.记{}{},361T ,的三角形,至少有一内角为至少有一边为等腰三角形。
新教材苏教版高中数学必修第一册阶段性综合测验汇总(含四套,附解析)
苏教版必修第一册各阶段综合测验第1~3章综合测验 ............................................................................................................... - 1 - 第4、5章综合测验 ............................................................................................................... - 9 - 第6章综合测验 ................................................................................................................... - 18 - 第7、8章综合测验 ............................................................................................................. - 28 -第1~3章综合测验(120分钟150分)一、单选题(每小题5分,共40分)1.集合A={x∈R|x(x-1)(x-2)=0},则集合A的非空子集的个数为( )A.4B.8C.7D.6【解析】选C.集合A={x∈R|x(x-1)(x-2)=0}={0,1,2},共有23=8个子集,其中非空子集有7个.2.命题“∀x∈R,x2+x+1>0”的否定为( )A.∃x∈R,x2+x+1≥0B.∃x∈R,x2+x+1≤0C.∀x∈R,x2+x+1≥0D.∀x∉R,x2+x+1≥0【解析】选B.由题意得原命题的否定为∃x∈R,x2+x+1≤0.3.若a,b,c∈R且a>b,则下列不等式成立的是( )A.a2>b2B.<C.a>bD.>【解析】选D.选项A: a=0,b=-1,符合a>b,但不等式a2>b2不成立,故本选项是错误的;选项B:当a=0,b=-1符合已知条件,但零没有倒数,故<不成立,故本选项是错误的;选项C:当c=0时a>b不成立,故本选项是错误的;选项D:因为c2+1>0,所以根据不等式的性质,由a>b能推出>.4.已知集合A=,B=,则A∪B= ( )A. B.C. D.【解析】选C.因为A=,B=,所以A∪B=.5.(2019·浙江高考)若a>0,b>0,则“a+b≤4”是“ab≤4”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选A.如图所示,由a>0,b>0,a+b≤4⇒ab≤4,反之不成立.所以“a+b≤4”是“ab≤4”的充分不必要条件.6.(-6≤a≤3)的最大值为( )A.9B.C.3D.【解析】选B.因为-6≤a≤3,所以3-a≥0,a+6≥0,所以≤=(当且仅当a=-时取等号).即(-6≤a≤3)的最大值为.7.不等式mx2-ax-1>0(m>0)的解集可能是( )A.B.RC.D.【解析】选A.因为Δ=a2+4m>0,所以函数y=mx2-ax-1的图象与x轴有两个交点,又m>0,所以原不等式的解集不可能是B、C、D选项.8.某市原来居民用电价为0.52元/(kW·h),换装分时电表后,峰时段(早上八点到晚上九点)的电价为0.55元/(kW·h),谷时段(晚上九点到次日早上八点)的电价为0.35元/(kW·h).对于一个平均每月用电量为200kW·h的家庭,换装分时电表后,每月节省的电费不少于原来电费的10%,则这个家庭每月在峰时段的平均用电量至多为( )A.110kW·hB.114kW·hC.118kW·hD.120kW·h【解析】选C.设每月峰时段的平均用电量为x kW·h,则谷时段的用电量为(200-x)kW·h;根据题意得(0.52-0.55)x+(0.52-0.35)(200-x)≥200×0.52×10%,解得x≤118.所以这个家庭每月峰时段的平均用电量至多为118kW·h.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.下列命题是真命题的是( )A.若x=1,则x2+x-2=0B.若x2=16,则x=4C.若A⊇B,m∈A,则m∈BD.全等三角形的面积相等【解析】选AD.x2=16时x=±4,B是假命题,若A⊇B,m∈A,m不一定属于B,C是假命题;AD是真命题.10.如果是的充分不必要条件,则a的值可以是( )A.-1B.0C.2D.3【解析】选CD.因为是的充分不必要条件,所以,故a的值可以是2,3.11.下列不等式不正确的是( )A.≥2B.≥2C.>xyD.≥【解析】选BCD.因为x与同号,所以=|x|+≥2,当且仅当x=±1时,等号成立,A正确;当x,y异号时,B不正确;当x=y时,=xy,C不正确;当x=1,y=-1时,D不正确.12.已知二次函数y=ax2+bx+c,且不等式y>-2x的解集为,则( )A.a<0B.方程ax2+bx+c=0的两个根是1,3C. b=-4a-2D. 若方程y+6a=0有两个相等的根,则实数a=-【解析】选ACD.由于不等式y>-2x的解集为,即关于x的二次不等式ax2+x+c>0的解集为,则a<0.由题意可知,1,3为关于x的二次方程ax2+x+c=0的两根,由根与系数的关系得-=1+3=4,=1×3=3,所以b=-4a-2,c=3a,所以y=ax2-x+3a.由题意知,关于x的方程y+6a=0有两相等的根,即关于x的二次方程ax2-x+9a=0有两相等的根,则Δ=-36a2==0,因为a<0,解得a=-.三、填空题(每小题5分,共20分)A=.13.已知集合U=,A=,则U【解析】因为U=,A=,所以A=U答案:14.若二次函数y=x2-mx+3有且只有一个零点,则m=.【解析】二次函数y=x2-mx+3有且只有一个零点,等价于方程x2-mx+3=0的判别式Δ=m2-12=0,所以m=±2.答案:±215.已知A={x|1<x<2},B={x|x2-2ax+a2-1<0},若A⊆B,则a的取值范围是.【解析】方程x2-2ax+a2-1=0的两根为a+1,a-1,且a+1>a-1,所以B={x|a-1<x<a+1}.因为A⊆B,所以解得1≤a≤2.答案:1≤a≤216.若0<x<,则函数y=x的最大值为.【解析】因为0<x<,所以1-4x2>0,所以x=×2x≤×=,当且仅当2x=,即x=时等号成立.答案:四、解答题(共70分)17.(10分)已知集合A={x|x2-4x+3≤0},B={x|x>2}.B)∪A;(1)分别求A∩B,(R(2)已知集合C={x|1<x<a},若C⊆A,求实数a的取值范围.【解析】(1)A={x|x2-4x+3≤0}={x|1≤x≤3},B={x|x>2},所以A∩B={x|2<x≤3},B)∪A={x|x≤2}∪{x|1≤x≤3}={x|x≤3},(R(2)①当a≤1时,C=∅,此时C⊆A;②当a>1时,C⊆A,则1<a≤3;综合①②,可得a的取值范围是(-∞,3].18.(12分)已知p:x2-8x-20≤0,q:x2-2x+1-m2≤0(m>0),若q是p的充分不必要条件,求实数m的取值范围.【解析】由x2-8x-20≤0,得-2≤x≤10.由x2-2x+1-m2≤0,得1-m≤x≤1+m(m>0),所以p:{x|-2≤x≤10},q:{x|1-m≤x≤1+m},因为q是p的充分不必要条件,所以解得0<m≤3,所以所求实数m的取值范围是{m|0<m≤3}.19.(12分)(1)若x<3,求y=2x+1+的最大值;(2)已知x>0,求y=的最大值.【解析】(1)因为x<3,所以3-x>0.又因为y=2(x-3)++7=-+7,由基本不等式可得2(3-x)+≥2=2,当且仅当2(3-x)=,即x=3-时,等号成立,于是-≤-2,-+7≤7-2,故y的最大值是7-2.(2)y==.因为x>0,所以x+≥2=2,所以0<y≤=1,当且仅当x=,即x=1时,等号成立.故y的最大值为1.20.(12分)设a,b,c为△ABC的三边,求证:方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是∠A=90°.,则【证明】(1)必要性:设方程x2+2ax+b2=0与x2+2cx-b2=0有公共根x+2ax0+b2=0,+2cx-b2=0,两式相减可得x=,将此式代入+2ax+b2=0,可得b2+c2=a2,故∠A=90°.(2)充分性:因为∠A=90°,所以b2+c2=a2,b2=a2-c2.①将①代入方程x2+2ax+b2=0,可得x2+2ax+a2-c2=0,即(x+a-c)(x+a+c)=0.将①代入方程x2+2cx-b2=0,可得x2+2cx+c2-a2=0,即(x+c-a)(x+c+a)=0.故两方程有公共根x=-(a+c).所以方程x2+2ax+b2=0与x2+2cx-b2=0有公共根的充要条件是∠A=90°.21.(12分) 2018年起,政府对环保不达标的养鸡场进行限期整改或勒令关闭.一段时间内,鸡蛋的价格起伏较大(不同周价格不同).假设第一周、第二周鸡蛋的价格分别为x、y(单位:元/kg);甲、乙两人的购买方式不同:甲每周购买3 kg鸡蛋,乙每周购买10元钱鸡蛋.(1)若x=8,y=10,求甲、乙两周购买鸡蛋的平均价格;(2)判断甲、乙两人谁的购买方式更实惠(平均价格低视为实惠),并说明理由. 【解析】(1)因为x=8,y=10,所以甲两周购买鸡蛋的平均价格为=9(元), 乙两周购买鸡蛋的平均价格为=(元).(2)甲两周购买鸡蛋的平均价格为=, 乙两周购买鸡蛋的平均价格为=,由(1)知x=8,y=10时乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,猜测乙的购买方式更实惠.依题意x,y>0,且x≠y,因为-==>0,所以>,所以乙两周购买鸡蛋的平均价格比甲两周购买鸡蛋的平均价格低,即乙的购买方式更实惠.22.(12分)志愿者团队要设计一个如图所示的矩形队徽ABCD,已知点E在边CD 上,AE=CE,AB>AD,矩形的周长为 8 cm.(1)设AB=x cm,试用x表示出图中DE的长度,并求出x的取值范围;(2)计划在△ADE区域涂上蓝色代表星空,如果要使△ADE的面积最大,那么应怎样设计队徽的长和宽.【解析】(1)由题意可得AD=4-x,且x>4-x>0,可得2<x<4,CE=AE=x-DE,在直角三角形ADE中,可得AE2=AD2+DE2,即(x-DE)2=(4-x)2+DE2,化简可得DE=4-(2<x<4).=AD·DE=(4-x)(2)S△ADE=2≤2=12-8,当且仅当x=2,4-x=4-2,即队徽的长和宽分别为2 cm,(4-2)cm时, △ADE的面积取得最大值.第4、5章综合测验(120分钟150分)一、单选题(每小题5分,共40分)1.化简的值是( )A.-B.-C.D.±【解析】选A.==-.2.(2020·临汾高一检测)已知函数f(x)=则f(f(-2))=( )A. B. C.1 D.2【解析】选A.根据题意函数f(x)=则f(-2)=2-2=,则f(f(-2))=f==.【补偿训练】已知函数f(x)=则f= ( )A.1B.eC.D.-1【解析】选A.根据题意,函数f(x)=则有f==e,则f=f(e)=ln e=1.3.函数f(x)=的定义域为( )A.{x|x≤2或x≥3}B.{x|x≤-3或x≥-2}C.{x|2≤x≤3}D.{x|-3≤x≤-2}【解析】选A.由x2-5x+6≥0,解得,所以函数f(x)=的定义域为{x|x≤2或x≥3}.4.已知f()=x2-2x,则函数f(x)的解析式为( )A.f(x)=x4-2x2(x≥0)B.f(x)=x4-2x2C.f(x)=x-2(x≥0)D.f(x)=x-2【解析】选A.f()=x2-2x=()4-2()2,所以f(x)=x4-2x2(x≥0).5.函数f(x)=[x]的函数值表示不超过x的最大整数,如[-3.5]=-4,[2.2]=2,当x∈(-2.5,-2)时,函数f(x)的解析式为f(x)= ( )A.-2xB.-3xC.-3D.-2【解析】选C.根据函数f(x)=[x]的定义可知:当-2.5<x<-2时,f(x)=-3.【补偿训练】设y=f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x-x+c,则f(1)=( )A.-B.C.0D.1【解析】选A.因为y=f(x)是定义在R上的奇函数,且当x≤0时,f(x)=2x-x+c,所以f(0)=1-0+c=0,所以c=-1,所以x≤0时,f(x)=2x-x-1,所以f(1)=-f(-1)=-=-.6.(2020·襄阳高一检测)设a<b,函数y=(x-b)2(x-a)的图象可能是( )【解析】选 D.当x>b时,(x-b)2>0,x-a>0,故y>0,故排除A,B;当a<x<b 时,(x-b)2>0,x-a>0,故y>0,故排除C.7.下列各组函数是同一函数的是( )①f(x)=与g(x)=x②f(x)=与g(x)=③f(x)=x0与g(x)=④f(x)=x2-2x-1与f(t)=t2-2t-1A.②④B.③④C.②③D.①④【解析】选B.对于①,函数f(x)==-x(x≤0),与g(x)=x(x≤0)的对应关系不同,不是同一函数;对于②,函数f(x)==x(x>0),与g(x)==|x|(x∈R)的定义域不同,对应关系也不同,不是同一函数;对于③,函数f(x)=x0=1(x≠0),与g(x)==1(x≠0)的定义域相同,对应关系也相同,是同一函数;对于④,函数f(x)=x2-2x-1(x∈R),与f(t)=t2-2t-1(t∈R)的定义域相同,对应关系也相同,是同一函数;综上知是同一函数的序号是③④.8.(2020·南昌高一检测)已知函数f(x)的定义域为R,f(x+2)是偶函数,f(4)=2, f(x)在(-∞,2)上是增函数,则不等式f(4x-1)>2的解集为( )A.B.∪C.(-∞,-1)∪(17,+∞)D.(-1,17)【解析】选A.依题意,函数f(x)的图象关于x=2对称,则f(4)=f(0)=2,故f(4x-1)>2⇔0<4x-1<4⇔<x<.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.设集合P={x|0≤x≤4},Q={y|0≤y≤4},能表示集合P到集合Q的函数关系的有( )【解析】选BC.由函数的定义知A中的定义域不是P,D中集合P中有的元素在集合Q中对应两个函数值不符合函数定义,故不对,只有BC成立.10.若函数y=x2-4x-4的定义域为[0,m],值域为[-8,-4],则实数m的值可能为( ) A.2 B.3 C.4 D.5【解析】选ABC.函数y=x2-4x-4的对称轴方程为x=2,当0≤m≤2时,函数在[0,m]上是减函数,x=0时取最大值-4,x=m时有最小值m2-4m-4=-8,解得m=2.则当m>2时,最小值为-8,而f(0)=-4,由对称性可知,m≤4.所以实数m的值可能为2,3,4.11.(2020·潍坊高一检测)若10a=4,10b=25,则( )A.a+b=2B.b-a=1C.ab>8lg22D.b-a<lg 6【解析】选AC.因为10a=4,10b=25,所以a=lg 4,b=lg 25,所以a+b=lg 4+lg 25=lg 100=2,b-a=lg 25-lg 4=lg >lg 6,ab=2lg 2×2lg 5=4lg 2·lg 5>8lg22=4lg 2·lg 4.12.已知函数f(x)=x3+2x,则满足不等式f(2x)+f(x-1)>0的x可以为( )A.0B.C.D.【解析】选CD.函数f(x)为奇函数,且函数f(x)为增函数,则不等式f(2x)+f(x-1)>0等价为f(2x)>-f(x-1)=f(1-x),则2x>1-x,得3x>1,得x>,所以x 可以取,.三、填空题(每小题5分,共20分)13.(2020·黄山高一检测)计算-(2 019)0+ln e+=.【解析】原式=-1+1+=2.答案:214.函数f(x)=为定义在R上的奇函数,则f=.【解析】根据题意,f(x)=为定义在R上的奇函数,则有f(0)=40+m=0,可得m=-1,则f(log23)=-1=-1=8,则f=f(-log23)=-f(log23)=-8.答案:-815.已知实数a,b满足a+b=5,log2a=log3b,则a=,b=.【解析】设log2a=log3b=k,则a=2k,b=3k,所以a+b=2k+3k=5,所以k=1,所以a=2,b=3.答案:2 316.已知f(x)=ln,则f+f(lg 2)等于. 【解析】根据题意,f(x)=ln(-3x),则f(-x)=ln(+3x),则有f(x)+f(-x)=ln(-3x)+ln(+3x)=ln 1=0,故f+f(lg 2)=f(-lg 2)+f(lg 2)=0.答案:0四、解答题(共70分)17.(10分)化简求值:(1)0.008 -+(ln 2)0;(2)lg 4+lg 25+log3-.【解析】(1)原式=0.-+1=-+1=3.(2)原式=lg 100+-2=.18.(12分)已知y=f(x)是定义在R上的奇函数,且x<0时,f(x)=x2+4x-1.(1)求函数f(x)的解析式;(2)画出函数f(x)的图象;(3)写出函数f(x)的单调区间.【解析】(1)设x>0,则-x<0,所以f(-x)=(-x)2+4(-x)-1=x2-4x-1,又y=f(x)是R上的奇函数,所以f(x)=-f(-x)=-x2+4x+1,又f(0)=0,所以f(x)=(2)先画出y=f(x)(x<0)的图象,利用奇函数的对称性可得到相应y=f(x)(x>0)的图象,且f(0)=0,其图象如图所示.(3)由图可知,f(x)的单调递增区间为(-2,0)和(0,2),单调递减区间为(-∞,-2]和[2,+∞).19.(12分)已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)=x+-4.(1)求函数f(x)在R上的解析式;(2)用单调性定义证明函数f(x)在区间(,+∞)上是增函数.【解析】(1)设x<0,则-x>0,由x>0时f(x)=x+-4可知,f(-x)=-x--4,又f(x)为奇函数,故f(x)=x++4(x<0),所以函数f(x)在R 上的解析式为f(x)=(2)设<x 1<x 2,则f(x 1)-f(x 2)=x 1+-x 2-=(x 1-x 2)+=(x 1-x 2),因为<x 1<x 2,所以x 1-x 2<0,1->0,所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2),所以函数f(x)在区间(,+∞)上是增函数.20.(12分)(2020·长春高一检测)已知函数的解析式为f(x)=(1)求f ;(2)画出这个函数的图象,并写出函数的值域;(3)若f(x)=k,有两个不相等的实数根,求k 的取值范围. 【解析】(1)f=-6,故f=-1.(2)图象如图,值域为.(3)原题转化为y=k与y=f有两个交点,由图象知k≤0.21.(12分)已知f(x)=x2+2ax,a∈R.(1)当a=-1时,求f(2x)的最小值及相应的x值;(2)若f(2x)在区间[0,1]上是增函数,求a的取值范围.【解析】(1)a=-1时,f(2x)=(2x)2-2×2x=(2x-1)2-1,所以当2x=1,x=0时,f(2x)取得最小值-1.(2)f(2x)=(2x)2+2a·2x=(2x+a)2-a2,当x∈[0,1]时,y=2x是增函数,且1≤2x≤2,令t=2x,t∈[1,2].又f(t)=(t+a)2-a2的单调增区间为[-a,+∞),所以-a≤1,所以a≥-1.22.(12分)已知函数f(x)=是奇函数.(1)求函数f(x)的解析式;(2)函数f(x)在(0,)上为增函数,试求p的最大值,并说明理由.【解析】(1)根据题意,函数f(x)=是奇函数,则有f(-x)=-f(x),即=-,变形可得a+3x=3x-a,则有a=0,即f(x)=-.(2)f(x)=-=-,设0<x1<x2,则f(x1)-f(x2)=-=-,当x1<x2≤时,有x1x2<2,且x1-x2<0,x1x2>0,则f(x1)-f(x2)<0,则f(x)在区间(0,]上为增函数,若函数f(x)在(0,]上为增函数,必有≤,则p≤2,即p的最大值为2.第6章综合测验(120分钟150分)一、单选题(每小题5分,共40分)1.(2019·荆州高一检测)若幂函数f(x)=x a的图像过点(4,2),则f(a2)=( )A.aB.-aC.±aD.|a|【解析】选D.由题意f(4)=4a=2,解得a=,所以f(x)=,所以f(a2)=(a2=|a|.2.设a∈,则使函数y=x a的定义域是R,且为奇函数的所有a的值是( ) A.1,3 B.-1,1C.-1,3D.-1,1,3【解析】选A.当a=-1时,y=x-1的定义域是,且为奇函数;当a=1时,函数y=x的定义域是R且为奇函数;当a=时,函数y=的定义域是{x|x≥0}且为非奇非偶函数.当a=3时,函数y=x3的定义域是R且为奇函数.3.函数y=的值域是( )A.[2,+∞)B.(2,+∞)C.(0,1]D.[1,+∞)【解析】选D.由于≥0,所以函数y=≥30=1,故函数的值域为[1,+∞).4.(2020·龙海高一检测)已知函数f(x)是定义在R上的奇函数,且当x≥0时,f(x)=log2(x+2)-1,则f(-6)= ( )A.2B.4C.-2D.-4【解析】选C.由题意可得f(6)=log2(6+2)-1=2,由于函数f(x)是定义在R上的奇函数,所以,f(-6)=-f(6)=-2.5.已知函数y=loga(x+c)(a,c为常数,其中a>0,a≠1)的图像如图所示,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1【解析】选D.因为函数单调递减,所以0<a<1,当x=1时loga (x+c)=loga(1+c)<0,即1+c>1,即c>0,当x=0时loga (x+c)=logac>0,即c<1,即0<c<1.6.已知函数f(x)=且f(a)=-3,则f(6-a)= ( )A.-B.-C.-D.-【解析】选A.由于f(a)=-3,①若a≤1,则2a-1-2=-3整理得2a-1=-1,由于2x>0,所以2a-1=-1无解,②若a>1,则-log2(a+1)=-3,解得a+1=8,a=7,所以f(6-a)=f(-1)=2-1-1-2=-.7.(2020·三明高一检测)已知函数f(x)=的值域为[-8,1],则实数a的取值范围是 ( )A.(-∞,-3]B.[-3,0)C.[-3,-1]D.{-3}【解析】选B.当0≤x≤4时f(x)=-x2+2x=-(x-1)2+1,所以-8≤f(x)≤1;当a≤x<0时,f(x)=-,所以-≤f(x)<1,因为f(x)的值域为[-8,1],所以故-3≤a<0.8.(2020·永清高一检测)函数f(x)的定义域为D,若满足①f(x)在D内是单调函数;②存在[m,n]⊆D使f(x)在[m,n]上的值域为,那么就称y=f(x)为“成功(a x+t)(a>0,a≠1)是“成功函数”,则t的取值范围是、函数”,若函数f(x)=loga( ) A. B.C. D.(a x+t)(a>0,a≠1)是“成功函数”,当a>1时,f(x)在【解析】选A.因为f(x)=loga其定义域内为增函数,当0<a<1时,f(x)在其定义域内为增函数,所以f(x)在其定义域内为增函数,(a x+t)=,由题意得f(x)=loga所以a x+t=,a x-+t=0,令m=>0,所以m2-m+t=0有两个不同的正数根,所以,解得t∈.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.下列说法正确的是( )A.若幂函数的图象经过点,则解析式为y=x-3B.若函数f(x)=,则f(x)在区间(-∞,0)上单调递减C.幂函数y=xα(α>0)始终经过点(0,0)和(1,1)D.若函数f(x)=,则对于任意的x1,x2∈[0,+∞)有≤f【解析】选CD.若幂函数的图象经过点,则解析式为y=,故A错误;函数f(x)=是偶函数且在上单调递减,故在上单调递增,B 错误;幂函数y=xα(α>0)始终经过点和,C正确;任意的x1,x2∈[0,+∞),要证≤f,即证≤,即证≤,即证(-)2≥0,易知成立,故D正确.10.对于0<a<1,下列四个不等式中成立的是 ( )A.loga (1+a)<logaB.loga (1+a)>logaC.a1+a<D.a1+a>【解析】选B、D.因为0<a<1, 所以a<,从而1+a<1+.所以loga (1+a)>loga.又因为0<a<1,所以a1+a>.11.设函数f(x)=2x,对于任意的x1,x2(x1≠x2),下列命题中正确的是( )A.f(x1+x2)=f(x1)·f(x2)B.f(x1·x2)=f(x1)+f(x2)C.>0D.f<【解析】选ACD.·=,所以A成立,×≠,所以B不成立,函数f(x)=2x,在R上是单调递增函数,若x1>x2则f(x1)>f(x2),则>0,若x1<x2则f(x1)<f(x2),则>0,故C正确;f<说明函数是凹函数,而函数f(x)=2x是凹函数,故D正确.12.(2020·滕州高一检测)已知函数f(x)=logax(a>0,a≠1)的图象经过点(4,2),则下列命题正确的有( )A.函数为增函数B.函数为偶函数C.若x>1,则f(x)>0D.若0<x1<x2,则<f【解析】选ACD.由题知2=loga4,a=2,故f(x)=log2x.对A,函数为增函数,正确.对B,f(x)=log2x不为偶函数.对C,当x>1时,f(x)=log2x>log21=0成立.对D,因为f(x)=log2x往上凸,故若0<x1<x2,则<f成立.三、填空题(每小题5分,共20分)13.(2020·沈阳高一检测)若幂函数f(x)的图象过点(2,),则函数y=f(x)+1-x 的最大值为.【解析】设f(x)=xα,因为f(x)的图象过点(2,),所以f(2)=2α=,所以α=,则f(x)=,y=+1-x=-+,故其最大值为.答案:14.(2020·石嘴山高一检测)不等式>1的解集是.【解析】>1⇔x2-2x-3<0⇔-1<x<3.答案:15.设f(x)=则f(f(2))= .【解析】因为f(2)=log(22-1)=1,3所以f(f(2))=f(1)=2e1-1=2.答案:216.已知函数f(x)=为定义在区间[-2a,3a-1]上的奇函数,则a= ,f= .【解析】因为f(x)是定义在[-2a,3a-1]上的奇函数,所以定义域关于原点对称,即-2a+3a-1=0,所以a=1,因为函数f(x)=为奇函数,所以f(-x)===-,即b·2x-1=-b+2x,所以b=1,所以f=,所以f===2-3.答案:1 2-3四、解答题(共70分)17.(10分)(2020·南昌高一检测)已知函数f(x)=2x-4x.(1)求y=f(x)在[-1,1]上的值域;(2)解不等式f(x)>16-9×2x;(3)若关于x的方程f(x)+m-1=0在[-1,1]上有解,求m的取值范围.【解析】(1)设t=2x,因为x∈[-1,1],所以t∈,y=t-t2=-+,所以t=时,f(x)=,t=2时,maxf(x)min=-2.所以f(x)的值域为.(2)设t=2x,由f(x)>16-9×2x,得t-t2>16-9t,即t2-10t+16<0,所以2<t<8,即2<2x<8,所以1<x<3,所以不等式的解集为{x|1<x<3}.(3)方程有解等价于m在1-f(x)的值域内,所以m的取值范围为.18.(12分)若函数y=f(x)=为奇函数.(1)求a的值;(2)求函数的定义域;(3)求函数的值域.【解析】因为函数y=f(x)==a-,(1)由奇函数的定义,可得f(-x)+f(x)=0,即2a--=0,所以a=-.(2)因为y=--,所以3x-1≠0,即x≠0.所以函数y=--的定义域为{x|x≠0}.(3)因为x≠0,所以3x-1>-1.因为3x-1≠0,所以-1<3x-1<0或3x-1>0.所以-->或--<-.即函数的值域为.19.(12分)已知a>2,函数f(x)=log4(x-2)-log4(a-x).(1)求f(x)的定义域;(2)当a=4时,求不等式f(2x-5)≤f(3)的解集.【解析】(1)由题意得:解得因为a>2,所以2<x<a,故f(x)的定义域为.(2)因为a=4,所以f(2x-5)=log4(2x-7)-log4(9-2x),f(3)=log41-log41=0,因为f(2x-5)≤f(3),所以log4(2x-7)-log4(9-2x)≤0,即log4(2x-7)≤log4(9-2x),从而解得<x≤4,故不等式f(2x-5)≤f(3)的解集为.20.(12分)对年利率为r的连续复利,要在x年后达到本利和A,则现在投资值为B=Ae-rx,e是自然对数的底数.如果项目P的投资年利率为r=6%的连续复利.(1)现在投资5万元,写出满n年的本利和,并求满10年的本利和.(精确到0.1万元)(2)一个家庭为刚出生的孩子设立创业基金,若每年初一次性给项目P投资2万元,那么,至少满多少年基金共有本利和超过一百万元?(精确到1年)【解析】(1)由题意可得5=A·e-0.06n,所以A=5·e0.06n;当n=10时,A=5·e0.6≈9.1万元.(2)n年后的本利和为A=2·e0.06n+2·e0.06(n-1)+2·e0.06(n-2)+…+2·e0.06=2·,令2·>100,可得n>22.7.所以至少满23年后基金共有本利和超过一百万元.21.(12分)已知函数f(x)=log2.(1)若函数f(x)是R上的奇函数,求a的值.(2)若函数f(x)的定义域是一切实数,求a的取值范围.(3)若函数f(x)在区间[0,1]上的最大值与最小值的差不小于2,求实数a的取值范围.【解析】(1)函数f(x)是R上的奇函数,则f(0)=0,求得a=0.又此时f(x)=-x是R上的奇函数.所以a=0为所求.(2)函数f(x)的定义域是一切实数,则+a>0恒成立.即a>-恒成立,由于-∈(-∞,0).故只要a≥0即可.(3)由已知函数f(x)是减函数,故f(x)在区间[0,1]上的最大值是f(0)=log2(1+a),最小值是f(1)=log2.由题设log2(1+a)-log2≥2⇒.故-<a≤-为所求.22.(12分)(2020·南京高一检测)函数f(x)=log2(4x-1).(1)求函数f(x)的定义域;(2)若x∈[1,2],函数g(x)=2f(x)-m·2x+1是否存在实数m使得g(x)的最小值;为,若存在,求m的值;若不存在,请说明理由.【解析】(1)由题意4x-1>0,所以4x>1,则x>0,所以函数f(x)的定义域为(0,+∞).(2)g(x)=2f(x)-m·2x+1=-m·2x+1=4x-1-m·2x+1=4x-m·2x.令t=2x,因为x∈[1,2],所以t∈[2,4],则h(t)=t2-mt,t∈[2,4],对称轴为t=,①若t=≤2,即m≤4时,h(t)在[2,4]上为增函数,此时当t=2时最小,即h(2)=4-2m=,解得m=成立;②若t=≥4,即m≥8时,h(t)在[2,4]上为减函数,此时当t=4时最小,即h(4)=16-4m=,解得m=(舍去);③若t=∈(2,4),即4<m<8 =h=-≠,即此时不满足条件.综上所述,存在实数m=使得g(x)时,h(t)min的最小值为.第7、8章综合测验(120分钟150分)一、单选题(每小题5分,共40分)1.下列各个角中与2 020°终边相同的是( )A.-150°B.680°C.220°D.320°【解析】选C.因为2 020°=5×360°+220°,所以与2 020°终边相同的是220°.2.若扇形的圆心角α=120°,弦长AB=12 cm,则弧长l=cm( )A. B. C. D.【解析】选B.因为扇形的圆心角α=120°,弦长AB=12 cm,所以半径r==4,所以弧长l=|α|r=×4=.3.(2020·濮阳高一检测)在某种新型材料的研制中,实验人员获得了下列一组实验数据:现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是 ( )x 3 4 5.15 6.126y 4.041 8 7.5 12 18.01A.y=(x2-1)B.y=2x-2x D.y=lo xC.y=log2【解析】选A.对于选项A:各组数据都很接近,故y=(x2-1)可以近似地表示这些数据的规律,对于选项B:当x=5.15时,y=8.3,与实际数据相差较大,当x=6.126时,y=10.252,与实际数据相差较大,故选项B不合适,对于选项C;当x=4时,y=2,与实际数据相差较大,故选项C不合适,对于选项D:y=lo x是减函数,显然不符合题意.4.已知θ∈,则2 sin θ+= ( )A.sin θ+cosθB.sin θ-cos θC.3sin θ-cos θD.3sin θ+cos θ【解析】选A.因为θ∈,则cos θ>sinθ,由三角函数的诱导公式和三角函数的基本关系得,2sin θ+=2sin θ+=2sin θ+cos θ-sin θ=sin θ+cos θ.5.已知tan α=2,则cos2α= ( )A. B. C. D.【解析】选D.因为cos2α==,且tan α=2,所以cos2α==.6.若x0=cos x,则( )A.x0∈ B.x∈C.x0∈ D.x∈【解析】选C.x0=cos x,方程的根就是函数f(x)=x-cos x的零点,函数是连续函数, 并且f=-cos=-<0,f=->0,所以f·f<0,所以函数的零点在之间,所以x∈.7.已知函数f(x)=2sin(πx+1),若对于任意的x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x1-x2|的最小值为( )A.2B.1C.4D.【解析】选B.由于函数f(x)=2sin(πx+1)的周期为=2,对于任意x∈R,都有f(x1)≤f(x)≤f(x2)成立,可知f(x1)是函数的最小值,f(x2)是函数的最大值,|x1-x2|的最小值就是函数的半周期=1.8.已知f(α)=, 则f的值为( )A.-B.C.-D.【解题指南】已知关系式右边利用诱导公式化简确定出f(α),即可求出所求式子的值.【解析】选B.f(α)==cos α,则f=cos=cos=cos=.二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.已知角α的终边与单位圆交于点,则= ( )A. B.- C. D.【解析】选AB.因为角α的终边与单位圆交于点,所以+=1, =±,所以tan α==±.所以y则当tan α=时,==;当tan α=-时,==-.10.有下列四种变换方式:①向右平移个单位长度,再将横坐标变为原来的2倍(纵坐标不变);②横坐标变为原来的2倍(纵坐标不变),再向右平移个单位长度;③横坐标变为原来的(纵坐标不变),再向右平移个单位长度;④向右平移个单位长度,再将横坐标变为原来的(纵坐标不变).其中能将正弦函数y=sin x的图象变为y=sin图象的是 ( )A.①B.②C.③D.④【解题指南】结合选项中的各种变换顺序,求出经过相应的变换后的函数解析式,进行比较即可判断.【解析】选CD.①y=sin x向右平移个单位长度,再将横坐标变为原来的2倍(纵坐标不变)可得y=sin;②y=sin x横坐标变为原来的2倍(纵坐标不变),再向右平移个单位长度可得y=sin;③y=sin x横坐标变为原来的(纵坐标不变),再向右平移个单位长度可得y=sin;④y=sin x向右平移个单位长度,再将横坐标变为原来的(纵坐标不变)可得y=sin.11.将函数y=3tan的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再把得到的图象向右平移个单位长度,得到函数y=g(x)的图象,下列结论正确的是 ( )A.函数y=g(x)的图象关于点对称B.函数y=g(x)的图象最小正周期为πC.函数y=g(x)的图象在上单调递增D.函数y=g(x)的图象关于直线x=对称【解析】选AC.函数y=3tan的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再把得到的图象向右平移个单位长度,得到函数y=g(x)=3tan的图象,当x=时,g=0,故选项A正确.函数的最小正周期为,故B错误.由于函数在一个周期为单调递增,故C正确.对于正切型函数不存在对称轴,故D错误.12.新能源汽车包括纯电动汽车、增程式电动汽车、混合动力汽车、燃料电池电动汽车、氢发动机汽车、其他新能源汽车等.它是未来汽车的发展方向.一个新能源汽车制造厂引进了一条新能源汽车整车装配流水线,这条流水线生产的新能源汽车数量x(辆)与创造的价值y(万元)之间满足二次函数关系.已知产量为0时,创造的价值也为0;当产量为40 000辆时,创造的价值达到最大6 000万元.若这家工厂希望利用这条流水线创收达到 5 625万元,则它可能生产的新能源汽车数量是辆. ( )A.30 000B.40 000C.50 000D.60 000【解析】选AC.设y=ax2+bx(a≠0),因为当产量为40 000辆时,创造的价值达到最大6 000万元,所以解得所以y=-x2+x,令y=5 625得-x2+x=5 625,解得:x=30 000或50 000.三、填空题(每小题5分,共20分)13.函数f(x)=cos在[0,π]的零点个数为.【解析】因为f(x)=cos=0,所以3x+=+kπ,k∈Z,所以x=+kπ,k∈Z,当k=0时,x=,当k=1时,x=π,当k=2时,x=π,当k=3时,x=π,因为x∈[0,π],所以x=,或x=π,或x=π,故零点的个数为3.答案:314.已知函数f(x)=sin(ω>0),若当x=时,函数f(x)取得最大值,则ω的最小值为.【解析】当x=时,f(x)取得最大值,即f=sin=1,即ω-=+2kπ,k∈Z,即ω=12k+5,k∈Z,由于ω>0,所以当k=0时,ω的最小值为5.答案:515.若函数f(x)=tan(ωx+φ)的一个单调区间为,且f(0)=,则f= .【解析】函数f(x)=tan(ωx+φ)的一个单调区间为,则T=,解得ω=2,由于f(0)=,则φ=,故f(x)=tan,则f=tan=.答案:16.(2020·朝阳高一检测)已知函数f(x)=其中k≥0.(1)若k=2,则f(x)的最小值为;(2)关于x的函数y=f(f(x))有两个不同零点,则实数k的取值范围是. 【解析】(1)若k=2,则f(x)=作函数f(x)的图象如图所示,显然,当x=0时,函数f(x)取得最小值,且最小值为f(0)=-1.(2)令m=f(x),显然f(m)=0有唯一解m=1,由题意,f(x)=1有两个不同的零点,由图观察可知,k<1,又k≥0,则实数k的取值范围为0≤k<1.答案:(1)-1 (2)[0,1)四、解答题(共70分)17.(10分)已知sin θ-2cos θ=0.(1)若θ∈,求sin θ,cosθ及tan θ的值;(2)求的值.【解析】(1)因为sin θ-2cos θ=0,所以tan θ=2,又因为sin2θ+cos2θ=1,所以5cos2θ=1,因为θ∈,所以cos θ=,sin θ=.(2)====1.18.(12分)已知函数f(x)=2sin,其中ω>0.(1)若f(x+θ)是最小正周期为2π的偶函数,求ω和θ的值;(2)若f(x)在上是增函数,求ω的最大值.【解析】(1)由f(x)=2sin,其中ω>0,所以f(x+θ)=2sin,因为f(x+θ)是最小正周期为2π的偶函数,所以=2π,所以ω=,因为3ωθ+=θ+=kπ+,k∈Z,即θ=kπ+,k∈Z.综上可得,ω=,θ=kπ+,k∈Z.(2)f(x)=2sin在上是增函数,在上,3ωx+∈,所以ωπ+≤,所以ω≤,即ω的最大值为.19.(12分)已知函数f(x)=asin+a+b,当x∈时,函数f(x)的值域是[-,2].(1)求常数a,b的值;(2)当a<0时,设g(x)=f,判断函数g(x)在上的单调性.【解析】(1)当x∈时,2x+∈,所以sin∈.①当a>0时,由题意可得即解得a=2,b=-2.②当a<0时,由题意可得即解得a=-2,b=4-.(2)当a<0时,f(x)=-2sin+2-, 所以g(x)=f=-2sin+2-=2sin+2-;由-+2kπ≤2x+≤+2kπ,k∈Z,解得-+kπ≤x≤+kπ,k∈Z.当k=0时,由∩=,所以函数g(x)在上单调递增.同理,函数g(x)在上单调递减.【补偿训练】已知函数f(x)=sin,(1)填表并在坐标系中用“五点法”画出函数f(x)在一个周期上的图象:2x+0 π2πxf(x)(2)求f(x)的对称轴与对称中心;(3)求f(x)在区间上的最大值和最小值以及对应x的值.【解析】(1)2x+0 π2πx -f(x) 0 1 0 -1 0(2)令2x+=+kπ,即对称轴为:x=+(k∈Z).令2x+=kπ,即对称中心为:(k∈Z).(3)当x∈时,2x+∈,由函数图象性质可有,当2x+=-,=f=1.即x=-时,f(x)max当2x+=-,=f=-.即x=-时,f(x)min20.(12分)(2020·赤峰高一检测)某工厂生产某种产品,每日的成本C(单位:万元)与日产量x(单位:吨)满足函数关系式C=3+x,每日的销售额S(单位:万元)与日产量x的函数关系式S=已知每日的利润L=S-C,且当x=2时,L=3.(1)求k的值;(2)当日产量为多少吨时,每日的利润可以达到最大?并求出最大值.【解析】(1)由题意得L=因为x=2时,L=3,所以3=2×2++2,所以k=18.(2)当0<x<6时,L=2x++2=2(x-8)++18=-+18≤-2+18=6,当且仅当2(8-x)=,即x=5时取等号.当x≥6时,L=11-x≤5,所以当x=5时,L取得最大值6,所以当日产量为5吨时,每日的利润可以达到最大值6万元.21.(12分)滨海市政府今年加大了招商引资的力度,吸引外资的数量明显增加.一外商计划在滨海市投资两个项目,总投资20亿元,其中甲项目的10年收益额X(单位:亿元)与投资额x(单位:亿元)满足X=8+x,乙项目的10年收益额Y(单位:亿元)与投资额y(单位:亿元)满足Y=y2-10,并且每个项目至少要投资2亿元.设两个项目的10年收益额之和为f(x).(1)求f(10);(2)如何安排甲、乙两个项目的投资额,才能使这两个项目的10年收益额之和f(x)最大?【解析】(1)由题意可知甲项目投资为10亿元,乙项目投资20-10=10(亿元),所以f(10)=8+×10+×102-10=28(亿元).(2)由题意可知乙项目的投资额为20-x,且解得2≤x≤18,所以f(x)=8+x+×(20-x)2-10=x2-x+98=(x-19)2+,x∈[2,18];所以当x=2时,f(x)的最大值为f(2)=80(亿元).即甲项目投资额为2亿元,乙项目投资额为18亿元时,这两个项目的10年收益额之和f(x)最大,为80亿元.22.(12分)某公司对营销人员有如下规定:(ⅰ)年销售额x(万元)不大于8时,没有年终奖金;(ⅱ)年销售额x(万元)大于8时,年销售额越大,年终奖金越多.此时,当年销售额x+b(a>0,且a≠1)发放;当x(万元)不大于64时,年终奖金y(万元)按关系式y=loga年销售额x(万元)不小于64时,年终奖金y(万元)为年销售额x(万元)的一次函数.经测算,当年销售额分别为16万元,64万元,80万元时,年终奖金依次为1万元,3万元,5万元.(1)求y关于x的函数解析式.(2)某营销人员年终奖金高于2万元但低于4万元,求该营销人员年销售额x(万元)的取值范围.【解析】(1)因为8<x≤64,年销售额越大,奖金越多,所以y=logx+b在(8,64]上是a增函数.所以,解得.x;所以8<x≤64时,y=-3+log2又因为x≥64时,y是x的一次函数,设y=kx+m(k≠0),。
新教材苏教版高中数学必修第一册第一章集合 课时分层练习题 精选最新配套习题,含解析
第一章集合1集合的概念 .................................................................................................................. - 1 -2集合的表示 .................................................................................................................. - 5 -3子集、真子集............................................................................................................... - 8 -4补集、全集 ................................................................................................................ - 14 -5交集、并集 ................................................................................................................ - 18 -1集合的概念基础练习1.若a是R中的元素,但不是Q中的元素,则a可以是( )A.3.14B.-5C.D.【解析】选D.由题意知a应为无理数,故a可以为.2.下列说法中正确的个数是( )(1)大于3小于5的自然数构成一个集合.(2)直角坐标平面内第一象限的一些点组成一个集合.(3)方程(x-1)2(x+2)=0的解组成的集合有3个元素.A.0B.1C.2D.3【解析】选B.(1)正确,(1)中的元素是确定的,只有一个,可以构成一个集合.(2)不正确,“一些点”标准不明确,不能构成一个集合.(3)不正确,方程的解只有1和-2,集合中有2个元素.3.若由a2,2 019a组成的集合M中有两个元素,则a的取值可以是( )A.0B.2 019C.1D.0或2 019【解析】选C.若集合M中有两个元素,则a2≠2 019a.即a≠0且a≠2 019.4.已知集合A是由偶数组成的,集合B是由奇数组成的,若a∈A,b∈B,则a+b____A, ab____A.(填“∈”或“∉”)【解析】因为a∈A,b∈B,所以a是偶数,b是奇数,所以a+b是奇数,ab是偶数,故a+b∉A,ab∈A.答案:∉∈5.已知集合A含有3个元素a-2,2a2+5a,12,且-3∈A,求a的值.【解题指南】由-3∈A,分两种情况进行讨论,注意根据集合中元素的互异性进行检验.【解析】因为-3∈A,所以a-2=-3或2a2+5a=-3,解得a=-1或a=-.当a=-1时,a-2=-3,2a2+5a=-3,集合A不满足元素的互异性,所以舍去a=-1.当a=-时,经检验,符合题意.故a=-.【补偿训练】设A是由满足不等式x<6的自然数组成的集合,若a∈A且3a∈A,求a的值. 【解析】因为a∈A且3a∈A,所以解得a<2.又a∈N,所以a=0或1.提升训练一、选择题(每小题5分,共20分)1.下列三个命题:①集合N中最小的数是1;②-a∉N,则a∈N;③a∈N,b∈N,则a+b 的最小值是2.其中正确命题的个数是( )A.0B.1C.2D.3【解析】选A.根据自然数的特点,显然①③不正确.②中若a=,则-a∉N且a∉N,显然②不正确.2.已知集合A中元素x满足-≤x≤,且x∈N*,则必有( )A.-1∈AB.0∈AC.∈AD.1∈A【解析】选D.因为x∈N*,且-≤x≤,所以x=1,2.所以1∈A.3.设集合A含有-2,1两个元素,B含有-1,2两个元素,定义集合A☉B,满足x1∈A,x2∈B,且x1x2∈A☉B,则A☉B中所有元素之积为( )A.-8B.-16C.8D.16【解析】选C.因为集合A含有-2,1两个元素,B含有-1,2两个元素,由题意得,集合A☉B中所有元素是2,-4,-1,它们的积为:2×(-4)×(-1)=8.4.(多选题)下列各组中集合P与Q,表示同一个集合的是( )A.P是由元素1,,π构成的集合,Q是由元素π,1,|-|构成的集合B.P是由π构成的集合,Q是由3.141 59构成的集合C.P是由2,3构成的集合,Q是由有序数对(2,3)构成的集合D.P是由满足不等式-1≤x≤1的整数构成的集合,Q是由方程x=0的解构成的集合【解析】选AD.由于A,D中P,Q的元素完全相同,所以P与Q表示同一个集合,而B,C中P,Q的元素不相同,所以P与Q不能表示同一个集合.二、填空题(每小题5分,共10分)5.不等式x-a≥0的解集为A,若3∉A,则实数a的取值范围是________.【解析】因为3∉A,所以3是不等式x-a<0的解,所以3-a<0,解得a>3.答案:a>36.由实数x,-x,|x|,,-所组成的集合,最多含________个元素.【解析】当x>0时,x=|x|=,-=-x<0,此时集合共有2个元素,当x=0时,x=|x|==-=-x=0,此时集合共有1个元素,当x<0时,=|x|=-=-x,此时集合共有2个元素,综上,此集合最多有2个元素.答案:2三、解答题7.(10分)设集合S中的元素x=m+n,m,n∈Z.(1)若a∈Z,则a是否是集合S中的元素?(2)对S中的任意两个元素x1,x2,则x1+x2,x1·x2是否属于S?【解析】(1)a是集合S中的元素, 因为a=a+0×∈S.(2)不妨设x1=m+n,x2=p+q,m,n,p,q∈Z.则x1+x2=(m+n)+(p+q)=(m+p)+(n+q),因为m,n,p,q∈Z. 所以n+q∈Z,m+p∈Z.所以x1+x2∈S,x1·x2=(m+n)·(p+q)=(mp+2nq)+(mq+np),m,n,p,q∈Z.故mp+2nq∈Z,mq+np∈Z.所以x1·x2∈S.综上,x1+x2,x1·x2都属于S.【补偿训练】定义满足“如果a∈A,b∈A,那么a±b∈A,且ab∈A,且∈A(b≠0)”,则集合A为“闭集”.试问数集N,Z,Q,R是否分别为“闭集”?若是,请说明理由;若不是,请举反例说明.【解析】①数集N,Z不是“闭集”,例如,3∈N,2∈N,而=1.5∉N;3∈Z,-2∈Z,而=-1.5∉Z,故N,Z不是闭集.②数集Q,R是“闭集”.由于两个有理数a与b的和,差,积,商,即a±b,ab,(b≠0)仍是有理数,所以Q是闭集,同理R也是闭集.2集合的表示基础练习1.下列集合中,不同于另外三个集合的是( )A.{0}B.{y|y2=0}C.{x|x=0}D.{x=0}【解析】选D.A是列举法;C是描述法;对于B要注意集合的代表元素是y,但实质上表示的都是0,故与A,C相同;而D表示该集合含有一个元素,即方程“x=0”.2.(2020·镇江高一检测)下列集合表示同一集合的是( )A.M={(3,2)},N={(2,3)}B.M={(x,y)|x+y=1},N={y|x+y=1}C.M={4,5},N={5,4}D.M={1,2},N={(1,2)}【解析】选C.对于A,两个集合中的元素不同;对于B,一个集合中元素是点,一个集合中元素是实数,故不同;对于C,列举法表示集合时,与元素顺序无关,故是相同的集合;对于D,两个集合中,一个元素是数,一个元素是点,故不同.3.(2020·哈尔滨高一检测)设集合B={x|x2-4x+m=0},若1∈B,则B= ( )A. B.C. D.【解析】选A.因为集合B={x|x2-4x+m=0},1∈B,所以1-4+m=0,解得m=3.所以B={x|x2-4x+3=0}={1,3}.4.(2020·承德高一检测)若A={-2,2,3,4},B={x|x=t2,t∈A},用列举法表示集合B 为________.【解析】由题意可知集合B是由A中元素的平方构成的,故B={4,9,16}.答案:{4,9,16}【补偿训练】用列举法表示集合{(x,y)|(x+1)2+|y-1|=0,x,y∈R}为________.【解析】因为(x+1)2≥0,|y-1|≥0,所以(x+1)2=0且|y-1|=0,故有x=-1且y=1,因此答案为{(-1,1)}.答案:{(-1,1)}5.用适当的方法表示下列集合:(1)大于2且小于5的有理数组成的集合.(2)24的正因数组成的集合.(3)自然数的平方组成的集合.(4)由0,1,2这三个数字抽出一部分或全部数字(没有重复)所组成的自然数组成的集合.【解析】(1)用描述法表示为{x|2<x<5且x∈Q}.(2)用列举法表示为{1,2,3,4,6,8,12,24}.(3)用描述法表示为{x|x=n2,n∈N}.(4)用列举法表示为{0,1,2,10,12,20,21,102,120,210,201}.提升训练一、选择题(每小题5分,共20分)1.下面对集合{1,5,9,13,17}用描述法表示,其中正确的一个是( )A.{x|x是小于18的正奇数}B.{x|x=4k+1,k∈Z,k<5}C.{x|x=4t-3,t∈N,t<5}D.{x|x=4s-3,s∈N*,s<6}【解析】选 D.集合中的元素除以4余1,故元素可以用4k+1(0≤k≤4,k∈Z)或4k-3(1≤k≤5,k∈Z)来表示.2.(2020·济宁高一检测)设集合A={x|x2-x-2=0},B={x||x|=y+2,y∈A},则集合B 是( )A.{-4,4}B.{-4,-1,1,4}C.{0,1}D.{-1,1}【解析】选B.解集合A中方程x2-x-2=0,得到x=2或x=-1,因为y∈A,即y=2或y=-1,得|x|=y+2=4或|x|=y+2=1,故x=±4或x=±1,所以集合B={-4,-1,1,4}.3.(2020·鹤壁高一检测)定义集合A,B的一种运算:A*B={x|x=x1+x2,x1∈A,x2∈B},若A={1,2,3},B={1,2},则A*B中的所有元素之和为 ( ) A.21 B.18 C.14 D.9【解析】选C.因为A*B={x|x=x1+x2,x1∈A,x2∈B},A={1,2,3},B={1,2},所以A*B={2,3,4,5},所以A*B中的所有元素之和为:2+3+4+5=14.【补偿训练】若A={1,2,3},B={3,5},用列举法表示A⊗B={2a-b|a∈A,b∈B}= ________.【解析】因为A={1,2,3},B={3,5},又A⊗B={2a-b|a∈A,b∈B},所以A⊗B={-3,-1,1,3}.答案:{-3,-1,1,3}4.(多选题)下列各组中的M,P表示同一集合的是( )A.M={3,-1},P={(3,-1)}B.M={(3,1)},P={(1,3)}C.M={y|y=-1},P={t|t=-1}D.集合M={m|m+1≥5},P={y|y=x2+2x+5,x∈R}【解析】选CD.在A中,M={3,-1}是数集,P={(3,-1)}是点集,二者不是同一集合;在B中,M={(3,1)},P={(1,3)}表示的不是同一个点的集合,二者不是同一集合;在C中,M={y|y=-1}={y|y≥-1},P={t|t=-1}={t|t≥-1},二者表示同一集合;在D中,M={m|m≥4,m∈R},即M中元素为大于或等于4的所有实数, P={y|y=(x+1)2+4},y=(x+1)2+4≥4,所以P中元素也为大于或等于4的所有实数,故M,P表示同一集合.二、填空题(每小题5分,共10分)5.(2020·无锡高一检测)已知集合{a,b,c}={0,1,2}且下列三个关系:①a≠2;②b=2;③c≠0有且只有一个正确,则100a+10b+c=________.【解析】若只有①正确,则c=0,a=1,b=2与②不正确矛盾;若只有②正确,则b=2,a=2,c=0与a≠b矛盾;若只有③正确,则a=2,c=1,b=0符合题意.所以100a+10b+c=100×2+10×0+1=201.答案:201【补偿训练】已知集合A={x|x2+px+q=0}={2},则p=________,q=________.【解析】由得答案:-4 46.(2020·济南高一检测)设a,b,c为非零实数,m=+++,则m的所有值组成的集合为________.【解题指南】根据a,b,c三个数中负数的个数分类讨论.【解析】当a,b,c均为负数时,,,,均为-1,故m=-4;当a,b,c只有一个为正数时,,,,中必有两个为1,两个为-1,故m=0;当a,b,c有两个为正数时,,,,中必有两个为1,两个为-1,故m=0; 当a,b,c均为正数时,,,,均为1,故m=4,所以由m=+++的所有值组成的集合的元素有0,-4,4,则所求集合为{-4,0,4}.答案:{-4,0,4}三、解答题7.(10分)设A表示集合{2,3,a2+2a-3},B表示集合{|a+3|,2},若5∈A,且5∉B,求实数a的值.【解析】因为5∈A,且5∉B,所以解得故a=-4.3子集、真子集基础练习1.以下四个关系:∅∈{0},0∈∅,{∅}⊆{0},∅{0},其中正确的个数是( )A.1B.2C.3D.4【解析】选A.集合与集合间的关系是⊆,因此∅∈{0}错误;{ ∅}表示只含有一个元素(此元素是∅)的集合,所以{∅}⊆{0}错误;空集不含有任何元素,因此0∈∅错误; ∅{0}正确.因此正确的只有1个.2.(2020·宿迁高一检测)已知集合A={x|x=x2},B={1,m,2},若A⊆B,则实数m的值为( )A.2B.0C.0或2D.1【解析】选B.由题意,集合A={x|x=x2}={0,1},因为A⊆B,所以m=0.【补偿训练】已知集合A={1+x2,x},B={1,2,3},且A⊆B,则实数x的值是( )A.-1B.1C.3D.4【解析】选B.集合A={1+x2,x},B={1,2,3},且A⊆B,则集合B包含集合A的所有元素,x=1时,代入A检验,A={2,1},符合题意,x=2时,代入A检验,A={5,2},不符合题意,x=3时,代入A检验,A={10,3}不符合题意,综上,实数x的值是1.3.(2020·南通高一检测)满足{1}⊆A⫋{1,2,3}的集合A的个数为( )A.2B.3C.8D.4【解析】选B.满足条件的集合A有3个,即A={1,2}或{1,3}或{1}.4.已知集合U,S,T,F的关系如图所示,则下列关系正确的是( )①S∈U;②F⊆T;③S⊆T;④S⊆F;⑤S∈F;⑥F⊆U.A.①③B.②③C.③④D.③⑥【解析】选D.元素与集合之间的关系才用∈,故①⑤错;子集的区域要被全部包含,故②④错.5.(2020·邢台高一检测)已知集合A=,B={b,b a,-1},若A=B,则a+b=________.【解析】若=-1,即a=-1时,b=2,经验证符合题意;若-=-1,即a=b,则无解.所以a+b=1.答案:16.判断下列每组中集合之间的关系:(1)A={x|-3≤x<5},B={x|-1<x<2}.(2)A={x|x=2n-1,n∈N*},B={x|x=2n+1,n∈N*}.(3)A={x|x是平行四边形},B={x|x是菱形},C={x|x是四边形},D={x|x是正方形}.(4)A={x|-1≤x<3,x∈Z},B={x|x=,y∈A}.【解析】(1)将两个集合在数轴上表示出来,如图所示,显然有B A.(2)当n∈N*时,由x=2n-1知x=1,3,5,7,9,….由x=2n+1知x=3,5,7,9,….故A={1,3,5,7,9,…},B={3,5,7,9,…},因此B A.(3)由图形的特点可画出Venn图,如图所示,从而可得D B A C.(4)依题意可得:A={-1,0,1,2},B={0,1,2},所以B A.提升训练一、单选题(每小题5分,共20分)1.(2020·赣州高一检测)已知集合M={x|-<x<,x∈Z},则下列集合是集合M的子集的为( )A.P={-3,0,1}B.Q={-1,0,1,2}C.R={y|-π<y<-1,y∈Z}D.S={x||x|≤,x∈N}【解析】选D.因为集合M={x|-<x<,x∈Z}={-2,-1,0,1},所以在A中:P={-3,0,1}不是集合M的子集,故A错误;在B中:Q={-1,0,1,2}不是集合M的子集,故B错误;在C中:R={y|-π<y<-1,y∈Z}={-3,-2}不是集合M的子集,故C错误;在D中:S={x||x|≤,x∈N}={0,1}是集合M的子集,故D正确. 2.若x,y∈R,A={(x,y)|y=x},B=,则集合A,B间的关系为( )A.A BB.A BC.A=BD.A⊆B【解析】选B.B=={(x,y)|y=x,且x≠0},所以B A.3.(2020·泰州高一检测)已知集合A={x|x<a},B={x|0<x<2}.若B⊆A,则实数a的取值范围为( )A.[2,+∞)B.(2,+∞)C.(-∞,2)D.(-∞,2]【解析】选A.因为集合A={x|x<a},B={x|0<x<2}.因为B⊆A,所以a≥2.4.(2020·南昌高一检测)已知集合A=,B=,且A是B的真子集.若实数y在集合中,则不同的集合共有( )A.4个B.5个C.6个D.7个【解析】选A.因为A是B的真子集,y在集合{0,1,2,3,4}中,由集合元素的互异性知y=0或y=3,当y=3时,B={1,2,3,4},x可能的取值为:2,3,4;当y=0时,B={0,1,2,4},x可能的取值为:0,2,4;由互异性可知集合{x,y}共有2+2=4个.二、多选题(每小题5分,共10分,全部选对得5分,选对但不全的得3分,有选错的得0分)5.设集合A={-1,1},集合B={x|x2-2ax+b=0},若B≠ ,B⊆A,则(a,b)可能是( ) A.(-1,1) B.(-1,0)C.(0,-1)D.(1,1)【解析】选ACD.当a=-1,b=1时,B={x|x2+2x+1=0}={-1},符合;当a=-1,b=0时,B={x|x2+2x=0}={0,-2},不符合;当a=0,b=-1时,B={x|x2-1=0}={-1,1},符合;当a=b=1时,B={x|x2-2x+1=0}={1},符合.6.已知集合M={x|x2-9=0},则下列式子表示正确的有( )A.3∈MB.{-3}∈MC.∅⊆MD.{3,-3}⊆M【解析】选ACD.根据题意,集合M={x|x2-9=0}={-3,3},依次分析4个选项: 对于A,3∈M,3是集合M的元素,正确;对于B,{-3}是集合,有{-3}⊆M,故B选项错误;对于C,∅⊆M,空集是任何集合的子集,正确;对于D,{3,-3}⊆M,任何集合都是其本身的子集,正确.三、填空题(每小题5分,共10分)7.已知集合A={x|ax2-5x+6=0},若2∈A,则集合A的子集的个数为________.【解析】依题意得:4a-10+6=0,解得a=1.则x2-5x+6=0,解得x1=2,x2=3,所以A={2,3},所以集合A的子集个数为4.答案:4【补偿训练】集合A={x|(a-1)x2+3x-2=0}有且仅有两个子集,则a的取值为________. 【解析】由集合有两个子集可知,该集合是单元素集合,当a=1时,满足题意.当a≠1时,由Δ=9+8(a-1)=0可得a=-.答案:1或-8.图中反映的是“文学作品”“散文”“小说”“叙事散文”这四个文学概念之间的关系,请作适当的选择填入下面的空格:A为________;B为________;C为________;D为________.【解析】由Venn图可得A B,C D B,A与D之间无包含关系,A与C之间无包含关系.由“文学作品”“散文”“小说”“叙事散文”四个文学概念之间的关系,可得A为小说,B为文学作品,C为叙事散文,D为散文.答案:小说文学作品叙事散文散文四、解答题(每小题10分,共20分)9.已知集合M⊆{1,2,3,4,5},且当a∈M时,有6-a∈M,试求M所有可能的结果. 【解析】若M只含1个元素,则M={3};若M只含2个元素,则M={1,5},{2,4};若M只含3个元素,则M={1,3,5},{2,3,4};若M只含4个元素,则M={1,2,4,5};若M含5个元素,则M={1,2,3,4,5}.所以M可能的结果为:{3},{1,5},{2,4},{1,3,5},{2,3,4},{1,2,4,5},{1,2,3,4,5},共7个.10.已知集合A={x|x2-9x+14=0},集合B={x|ax+2=0},若B A,求实数a的取值集合.【解析】A={x|x2-9x+14=0}={2,7},因为B A,所以若a=0,即B= 时,满足条件.若a≠0,则B=,若B A,则-=2或7,解得a=-1或-.则实数a的取值的集合为.创新练习1.(2020·南昌高一检测)若x∈A,则∈A,就称A是伙伴关系集合,集合M={-1,0, ,,1,2,3,4}的所有非空子集中,具有伙伴关系的集合的个数为 ( )A.15B.16C.32D.256【解析】选A.因为若x∈A,则∈A,所以0∉A,当-1∈A时,=-1∈A,当1∈A时,=1∈A,当2∈A时,∉A,当3∈A时,∈A,当4∈A时,∈A,所以集合M的所有非空子集中,具有伙伴关系的集合中有-1,1,和3成对出现,和4成对出现,所以从上述4个元素(元素对)中选取,组成的非空集合共有15个. 2.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围. 【解析】(1)当a=0时,A= ,满足A⊆B.(2)当a>0时,A=.又因为B={x|-1<x<1},A⊆B,所以所以a≥2.(3)当a<0时,A=.因为A⊆B,所以所以a≤-2.综上所述,a的取值范围为{a|a≥2或a≤-2或a=0}.【误区警示】解答本题,研究集合中元素满足的性质时,容易忽视分a=0,a>0,a<0三种情况讨论.4补集、全集基础练习A= ( )1.已知全集U={x|x≥-3},集合A={x|-2<x≤4},则UA. {x|-2≤x<4}B. {x| x<-2或x>4}C. {x|-3≤x≤-2}D. {x|-3≤x≤-2或x>4}【解析】选D.将全集U,集合A表示在数轴上,如图所示.所以UA={x|-3≤x≤-2或x>4}.2.设全集U和集合A,B,P,满足A=U B,B=UP,则A与P的关系是( )A.A=PB.A⊆PC.P⊆AD.A≠P【解析】选A.由A=U B,得UA=B.又因为B=U P,所以UP=UA,即A=P.3.已知A={0,2,4,6},U A={-1,-3,1,3},UB={-1,0,2},集合B=__________.【解析】因为A={0,2,4,6},UA={-1,-3,1,3}, 所以U={-3,-1,0,1,2,3,4,6}.而UB={-1,0,2},所以B=U (UB)={-3,1,3,4,6}.答案:{-3,1,3,4,6}4.已知全集U={-1,0,1},集合A={0,|x|},则UA=________.【解析】根据题意知,|x|=1,所以A={0,1},U={-1,0,1},所以UA={-1}.答案:{-1}5.(1)已知U={n|n是小于10的正整数},A={n|n是3的倍数,n∈U},求UA.(2)已知U={x|x是三角形},A={x|x是等腰三角形},B={x|x是等边三角形},求UB和AB;(3)已知全集U=R,A={x|3≤x<10},B={x|2<x≤7},求U A,UB.【解析】(1)因为U={1,2,3,4,5,6,7,8,9}, A={3,6,9},所以UA={1,2,4,5,7,8}.(2)UB={x|x是三边不都相等的三角形};AB={x|x是有且仅有两边相等的三角形}. (3)因为A={x|3≤x<10},B={x|2<x≤7},所以借助于数轴知U A={x|x<3,或x≥10},UB={x|x≤2,或x>7}.提升训练一、选择题(每小题5分,共20分)1.(2020·南通高一检测)若全集U=且UA=,则集合A的真子集共有( ) A.7个 B.5个C. 3个D. 8个【解析】选A.由题意知,集合A有三个元素,所以A的真子集个数为7个.【补偿训练】设全集U={x||x|<4,且x∈Z},S={-2,1,3},若UP⊆S,则这样的集合P共有( ) A.5个 B.6个 C.7个 D.8个【解析】选D.U={-3,-2,-1,0,1,2,3},因为U (UP)=P,所以存在一个UP,即有一个相应的P(如当U P={-2,1,3}时,P={-3,-1,0,2},当UP={-2,1}时,P={-3,-1,0,2,3}等),由于S的子集共有8个,所以P也有8个.2.已知集合I,M,N的关系如图所示,则I,M,N的关系为( )A.(I M)⊇(IN) B.M⊆(IN)C.(I M)⊆(IN) D.M⊇(IN)【解析】选C.由题图知M⊇N,所以(I M)⊆(IN).3.(多选题)已知集合A={x|x<-1或x>5},C={x|x>a},若RA⊆C,则a的值可以是( ) A.-2 B.- C. -1 D.0【解析】选AB.R A={x|-1≤x≤5},要使RA⊆C,则a<-1.故a的值可以是-2和-.4.设集合U={-1,1,2,3},M={x|x2+px+q=0},若UM={-1,1},则实数p和q的值分别为( )A.0,-1B.-1,0C.-5,6D.5,-6【解析】选 C.因为UM={-1,1},所以M={2,3},即2,3是x2+px+q=0的根,所以-p=2+3,q=2×3.所以p=-5,q=6.二、填空题(每小题5分,共10分)5.已知集合U={x∈N|x≤10},A={小于10的正奇数},B={小于11的质数},则U A=________,UB=________.【解析】U={0,1,2,3,4,5,6,7,8,9,10}, 因为A={小于10的正奇数}={1,3,5,7,9}, 所以UA={0,2,4,6,8,10}.因为B={小于11的质数}={2,3,5,7},所以UB={0,1,4,6,8,9,10}.答案:{0,2,4,6,8,10} {0,1,4,6,8,9,10} 【补偿训练】设U={x|-5≤x<-2,或2<x ≤5,x ∈Z},A={x|x 2-2x-15=0},B={-3,3,4},则UA=________,U B=________.【解析】方法一:在集合U 中,因为x ∈Z,则x 的值为-5,-4,-3,3,4,5, 所以U={-5,-4,-3,3,4,5}. 又A={x|x 2-2x-15=0}={-3,5}, 所以U A={-5,-4,3,4},U B={-5,-4,5}. 方法二:可用Venn 图表示则U A={-5,-4,3,4},U B={-5,-4,5}. 答案:{-5,-4,3,4} {-5,-4,5}6.已知全集U={x|-1≤x ≤1},A={x|0<x<a},若U A ≠U,则实数a 的取值范围是 ________.【解析】由全集定义知A ⊆U,从而a ≤1. 又U A ≠U,所以A ≠∅,故a>0. 综上可知0<a ≤1. 答案:0<a ≤1 三、解答题7.(10分)已知全集U={2,3,a 2-2a-3},A={b,2},U A={5},(1)求实数a,b 的值; (2)写出集合A 的所有子集.【解析】(1)因为全集U={2,3,a 2-2a-3},A={b,2},U A={5}, 所以a 2-2a-3=5,b=3,所以a=4或-2,b=3;(2)由(1)知A={3,2},故集合A 的所有子集为∅,{2},{3},{2,3}. 【补偿训练】已知集合A={x|x 2-4x+3=0},B={x|ax-6=0}且R A ⊆R B,求实数a 的取值集合. 【解析】因为A={x|x 2-4x+3=0}, 所以A={1,3}.又R A ⊆R B,所以B ⊆A,所以有B=∅,B={1},B={3}三种情形.当B={3}时,有3a-6=0,所以a=2; 当B={1}时,有a-6=0,所以a=6; 当B=∅时,有a=0,所以实数a 的取值集合为{0,2,6}.5交集、并集基础练习1.(2020·宿迁高一检测)设集合A={x|-1≤x≤2,x∈N},集合B={2,3},则A∪B等于( )A.{-1,0,1,2,3}B.{0,1,2,3}C.{1,2,3}D.【解析】选B.由题意,集合A={x|-1≤x≤2,x∈N}={0,1,2},又由集合B={2,3},所以A∪B={0,1,2,3}.【补偿训练】设集合A={a,b},B={a+1,5},若A∩B={2},则A∪B等于( )A.{1,2,5}B.{1,2}C.{1,5}D.{2,5}【解析】选A.因为A∩B={2},所以2∈A,且2∈B,所以a+1=2, 所以a=1,所以b=2. 所以A={1,2},B={2,5},所以A∪B={1,2,5}.2.(2019·全国卷Ⅲ)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B= ( )A.{-1,0,1}B.{0,1}C.{-1,1}D.{0,1,2}【解析】选A.因为集合A={-1,0,1,2},B={x|x2≤1}={x|-1≤x≤1},所以A∩B={-1,0,1}.3.设全集U是实数集R,M={x|x<-2或x>2},N={x|1≤x≤3},如图,则阴影部分所表示的集合为( )A.{x|-2≤x<1}B.{x|-2≤x<3}C.{x|x≤2或x>3}D.{x|-2≤x≤2}(M 【解析】选A.由题意,知M∪N={x|x<-2或x≥1},所以阴影部分所表示的集合为U∪N)={x|-2≤x<1}.4.(2020·徐州高一检测)已知集合A={-2,0,1,3},B={x|-<x<},则A∩B的子集个数为________.【解析】因为A={-2,0,1,3},B={x|-<x<},所以A∩B={-2,0,1},所以A∩B的子集个数为23=8个.答案:8【补偿训练】已知集合A={1,2,3},集合B={-1,1,3} ,集合S=A∩B,则集合S的真子集有________个.【解析】由题意可得 S=A∩B={1,3} ,所以集合 S 的真子集的个数为 3 个.答案:35.已知集合A={x|2<x<4},B={x|a<x<3a}.若A∩B={x|3<x<4},则a的值为________.【解析】由A={x|2<x<4},A∩B={x|3<x<4},如图可知a=3,此时B={x|3<x<9},即a=3为所求.答案:36.(2020·镇江高一检测)设U=R,A=,B=或,求(1)A∩B;(2)∩.【解析】由题意得B=或.(1)A∩B=.A=或,(2)因为UB=,U所以∩=.提升训练一、单选题(每小题5分,共20分)1.已知集合M={x|x<0},N={x|x≤0},则( )A.M∩N=∅B.M∪N=RC.M ND.N M【解析】选C.集合M={x|x<0},N={x|x≤0},集合N包含M中所有的元素,且集合N 比集合M多一个元素0,由集合真子集的定义可知:集合M是集合N的子集,且是真子集,所以M={x|x<0}N={x|x≤0}.2.设A,B是非空集合,定义A*B={x|x∈A∪B且x∉A∩B},已知A={x|0≤x≤3}, B={y|y≥1},则A*B等于( )A.{x|1≤x<3}B.{x|1≤x≤3}C.{x|0≤x<1或x>3}D.{x|0≤x≤1或x≥3}【解析】选C.由题意知,A∪B={x|x≥0},A∩B={x|1≤x≤3},则A*B={x|0≤x<1或x>3}.3.(2020·无锡高一检测)已知全集U=N,设集合A={x|x=,k∈,集合B等于 ( )B={x|x>6,x∈N},则A∩NA.{1,4}B.{1,6}C.{1,4,6}D.{4,6}【解析】选C.因为A={x|x=,k∈N}={1,,,,,…},B={x|x>6,x∈N},B={x|x≤6,x∈N}={0,1,2,3,4,5,6},所以NB={1,4,6}.所以A∩N4.(2020·盐城高一检测)设集合M=,N=,若M∩N=∅,则实数a的取值范围是( )A.a≤2B. a≤-1C. a<-1D. a>2【解析】选B.因为M=,N=,若M ∩N=∅,用数轴表示如图,由图可知实数a 的取值范围是a ≤-1. 【补偿训练】 已知集合A=,B=,且A ∩B=∅,求实数a 的取值范围.【解析】当a-1≥2a+1,即a ≤-2时,A=∅, 满足A ∩B=∅;当a-1<2a+1,即a>-2时,A ≠∅, 若A ∩B=∅,则需2a+1≤0或a-1≥1, 解得-2<a ≤-或a ≥2,综上所述,a ∈∪.二、多选题(每小题5分,共10分,全部选对得5分,选对但不全的得3分,有选错的得0分)5.已知集合M,N,P 为全集U 的子集,且满足M ⊆P ⊆N,则下列结论正确的是( ) A.U N ⊆U PB.N P ⊆N MC.(U P)∩M=∅D.(U M)∩N=∅【解析】选ABC.因为集合M,N,P 为全集U 的子集,且满足M ⊆P ⊆N, 所以作出Venn 图,如图所示.由Venn 图,得U N ⊆U P,故A 正确;N P ⊆N M, 故B 正确;(U P)∩M=∅,故C 正确; (U M)∩N ≠∅,故D 错误. 6.U 为全集时,下列说法正确的是 ( )A.若A ∩B=∅,则(U A)∪(U B)=UB.若A ∩B=∅,则A=∅或B=∅C.若A∪B=U,则(U A)∩(UB)= ∅D.若A∪B=∅,则A=B=∅【解析】选ACD.A对,因为(U A)∪(UB)=U(A∩B),而A∩B=∅,所以(U A)∪(UB)=U(A∩B)=U.B错,A∩B=∅,集合A,B不一定要为空集,只需两个集合无公共元素即可.C对,因为(U A)∩(UB)=U(A∪B),而A∪B=U,所以(UA)∩(UB)=U(A∪B)=∅.D对,A∪B=∅,即集合A,B均无元素.综上ACD对.三、填空题(每小题5分,共10分)7.(2020·无锡高一检测)设集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},则B=______.【解析】因为A∩B={1},所以x=1为方程x2-4x+m=0的解,则1-4+m=0,解得m=3, 所以x2-4x+3=0,解得x=1或x=3,所以集合B=.答案:【补偿训练】(2020·南充高一检测)设集合A={-4,t2},集合B={t-5,9,1-t},若9∈A∩B,则实数t=______.【解析】因为A={-4,t2},B={t-5,9,1-t},且9∈A∩B,所以t2=9,解得:t=3或-3,当t=3时,根据集合元素的互异性可知不合题意,舍去;则实数t=-3.答案:-38.如图所示,图中的阴影部分可用集合U,A,B,C表示为________.【解析】图中的阴影部分的元素既属于A,又属于B,但不属于C,故可用集合U,A,B,C表示为(A∩B)∩(UC).答案:(A∩B)∩(UC)【补偿训练】如图,I是全集,A,B,C是它的子集,则阴影部分所表示的集合是( )A.(I A ∩B)∩CB.(I B ∪A)∩CC.(A ∩B)∩(I C)D.(A ∩I B)∩C【解析】选D.由图可知阴影部分中的元素属于A,不属于B,属于C,则阴影部分表示的集合是(A ∩I B)∩C.四、解答题(每小题10分,共20分) 9.已知集合U={x ∈Z|-2<x<10},A={0,1,3,4,,B={-1,1,4,6,.求A ∩B,U (A ∪B),A ∩(U B),B ∪(U A).【解析】集合U={x ∈Z|-2<x<10}={-1,0,1,2,3,4,5,6,7,8,,A={0,1,3,4,,B={-1,1,4,6,;所以A ∩B={1,4,,A ∪B={-1,0,1,3,4,6,,所以U (A ∪B)={2,5,7,,又U B={0,2,3,5,7,,U A={-1,2,5,6,7,,所以A ∩(U B)={0,,B ∪(U A)={-1,1,2,4,5,6,7,8,.10.(2020·连云港高一检测)集合A={x|-2<x<4},集合B={x|m-1<x<2m+1}. (1)当m=2时,求A ∪B;(2)若A ∩B=B,求实数m 的取值范围. 【解析】(1)当m=2时,集合 B={x|m-1<x<2m+1}={x|1<x<5}, 又A={x|-2<x<4}, 所以A ∪B={x|-2<x<5}.(2)由A ∩B=B,则B ⊆A,当B= 时, 有m-1≥2m+1,解得m ≤-2,满足题意;当B≠∅时,应满足解得-1≤m≤;综上所述,m的取值范围是m∈(-∞,-2]∪.创新练习1.(2020·泰安高一检测)用card(A)来表示有限集合A中元素的个数,已知全集U=A∪B,D=(U A)∪(UB),card(U)=m,card(D)=n,若A∩B非空,则card(A∩B)=( )A.mnB.m+nC.n-mD.m-n【解析】选D.由题意画出Venn图空白部分表示集合D,整体表示全集U,阴影部分表示A∩B, 则card(A∩B)=card(U)-card(D)=m-n.2.设全集U={x|x≤5,且x∈N+},其子集A={x|x2-5x+q=0},B={x|x2+px+12=0},且(UA)∪B={1,3,4,5},求实数p,q的值. 【解析】由已知得U={1,2,3,4,5}.(1)若A=∅,则(U A)∪B=U,不合题意;(2)若A={x0},则x∈U,且2x=5,不合题意;(3)设A={x1,x2},则x1,x2∈U,且x1+x2=5,所以A={1,4}或{2,3}.若A={1,4},则UA={2,3,5},与(U A)∪B={1,3,4,5}矛盾,舍去;若A={2,3},则UA={1,4,5},由(UA)∪B={1,3,4,5}知3∈B,同时可知B中还有一个不等于3的元素x,由3x=12得x=4,即B={3,4}.综上可知A={2,3},B={3,4},所以q=2×3=6,p=-(3+4)=-7.。
(苏教版)高中数学必修一(全册)课时同步练习全汇总
(苏教版)高中数学必修一(全册)课时同步练习汇总第1章集合1.1 集合的含义及其表示A级基础巩固1.下列关系正确的是()①0∈N;②2∈Q;③12∉R;④-2∉Z.A.③④B.①③C.②④D.①解析:①正确,因为0是自然数,所以0∈N;②不正确,因为2是无理数,所以2∉Q;③不正确,因为12是实数,所以12∈R;④不正确,因为-2是整数,所以-2∈Z.答案:D2.若一个集合中的三个元素a,b,c是△ABC的三边长,则此三角形一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析:根据集合中元素的互异性可知,一定不是等腰三角形.答案:D3.集合M={(x,y)|xy<0,x∈R,y∈R}是()A .第一象限内的点集B .第三象限内的点集C .第四象限内的点集D .第二、第四象限内的点集解析:集合M 为点集,且横、纵坐标异号,故是第二、第四象限内的点集.答案:D4.已知集合A 含有三个元素2,4,6,且当a ∈A ,有6-a ∈A ,则a 为( )A .2B .2或4C .4D .0解析:若a =2∈A ,则6-a =4∈A ;或a =4∈A ,则6-a =2∈A ;若a =6∈A ,则6-a =0∉A .答案:B5.方程组⎩⎪⎨⎪⎧x +y =2,x -2y =-1的解集是( ) A .{x =1,y =1}B .{1}C .{(1,1)}D .(1,1)解析:方程组的解集中元素应是有序数对形式,排除A 、B ,而D 不是集合的形式,排除D.答案:C6.下列集合中为空集的是( )A .{x ∈N|x 2≤0}B .{x ∈R|x 2-1=0}C .{x ∈R|x 2+x +1=0}D .{0}答案:C7.设集合A ={2,1-a ,a 2-a +2},若4∈A ,则a 的值是( )A .-3或-1或2B .-3或-1C .-3或2D .-1或2解析:当1-a =4时,a =-3,A ={2,4,14}.当a 2-a +2=4时,得a=-1或a=2.当a=-1时,A={2,2,4},不满足互异性;当a=2时,A={2,4,-1}.所以a=-3或a=2.答案:C8.下列各组集合中,表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={3,2},N={2,3}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={(3,2)},N={3,2}解析:A中集合M,N表示的都是点集,由于横、纵坐标不同,所以表示不同的集合;B中根据集合元素的互异性知表示同一集合;C中集合M表示直线x+y=1上的点,而集合N表示直线x+y=1上点的纵坐标,所以是不同集合;D中的集合M表示点集,N表示数集,所以是不同集合.答案:B9.集合P={x|x=2k,k∈Z},Q={x|x=2k+1,k∈Z},M={x|x =4k+1,k∈Z},若a∈P,b∈Q,则有()A.a+b∈PB.a+b∈QC.a+b∈MD.a+b不属于P,Q,M中任意一个解析:因为a∈P,b∈Q,所以a=2k1,k1∈Z,b=2k2+1,k2∈Z.所以a+b=2(k1+k2)+1,k1,k2∈Z.所以a+b∈Q.答案:B10.方程x2-2x-3=0的解集与集合A相等,若集合A中的元素是a,b,则a+b=________.解析:方程x2-2x-3=0的两根分别是-1和3.由题意可知,a+b=2.答案:211.已知集合A中含有两个元素1和a2,则a的取值范围是________________.解析:由集合元素的互异性,可知a2≠1,所以a≠±1.答案:a∈R且a≠±112.点(2,11)与集合{(x,y)|y=x+9}之间的关系为__________________.解析:因为11=2+9,所以(2,11)∈{(x,y)|y=x+9}.答案:(2,11)∈{(x,y)|y=x+9}13.已知集合A={(x,y)|y=2x+1},B={(x,y)|y=x+3},a∈A,且a∈B,则a为________.解析:集合A,B都表示直线上点的集合,a∈A表示a是直线y =2x+1上的点,a∈B表示a是直线y=x+3上的点,所以a是直线y=2x+1与y=x+3的交点,即a为(2,5).答案:(2,5)14.下列命题中正确的是________(填序号).①0与{0}表示同一集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|2<x<5}可以用列举法表示.解析:对于①,0表示元素与{0}不同;对于③,不满足集合中元素的互异性,故不正确;对于④,无法用列举法表示,只有②满足集合中元素的无序性,是正确的.答案:②B 级 能力提升15.下面三个集合:A ={x |y =x 2+1};B ={y |y =x 2+1};C ={(x ,y )|y =x 2+1}.问:(1)它们是不是相同的集合?(2)它们各自的含义是什么?解:(1)在A ,B ,C 三个集合中,虽然代表元素满足的表达式一致,但代表元素互不相同,所以它们是互不相同的集合.(2)集合A 的代表元素是x ,满足y =x 2+1,故A ={x |y =x 2+1}=R.集合B 的代表元素是y ,满足y =x 2+1的y ≥1,故B ={y |y =x 2+1}={y |y ≥1}.集合C 的代表元素是(x ,y ),满足条y =x 2+1,表示满足y =x 2+1的实数对(x ,y );即满足条件y =x 2+1的坐标平面上的点.因此,C ={(x ,y )|y =x 2+1}={(x ,y )|点(x ,y )是抛物线y =x 2+1上的点}.16.若集合A =⎩⎨⎧⎭⎬⎫a ,b a ,1又可表示为{a 2,a +b ,0},求a 2 016+b 2 017的值.解:由题知a ≠0,故b a=0,所以b =0.所以a 2=1, 所以a =±1.又a ≠1,故a =-1.所以a 2 016+b 2 017=(-1)2 016+02 017=1.17.设A为实数集,且满足条件:若a∈A,则11-a∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.证明:(1)若a∈A,则11-a∈A.又因为2∈A,所以11-2=-1∈A.因为-1∈A,所以11-(-1)=12∈A.因为12∈A,所以11-12=2∈A.所以A中另外两个元素为-1,12.(2)若A为单元素集,则a=11-a,即a2-a+1=0,方程无解.所以集合A不可能是单元素集合.第1章集合1.2 子集、全集、补集A级基础巩固1.下列集合中,不是集合{0,1}的真子集的是()A.∅B.{0} C.{1} D.{0,1}解析:任何一个集合是它本身的子集,但不是它本身的真子集.答案:D2.(2014·浙江卷)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2} C.{5} D.{2,5}解析:因为A={x∈N|x≤-5或x≥5},所以∁U A={x∈N|2≤x<5},故∁U A={2}.答案:B3.若集合A={a,b,c},则满足B⊆A的集合B的个数是() A.1 B.2 C.7 D.8解析:把集合A的子集依次列出,可知共有8个.答案:D4.(2014·湖北卷)已知全集U={1,2,3,4,5,6,7},集合A ={1,3,5,6},则∁U A=()A.{1,3,5,6} B.{2,3,7}C.{2,4,7} D.{2,5,7}解析:因为U={1,2,3,4,5,6,7},A={1,3,5,6},所以∁U A={2,4,7}.答案:C5.已知M={-1,0,1},N={x|x2+x=0},则能表示M,N 之间关系的Venn图是()解析:M={-1,0,1},N={0,-1},所以N M.答案:C6.已知集合A={x|-1<x<4},B={x|x<a},若A B,则实数a满足()A.a<4 B.a≤4 C.a>4 D.a≥4解析:由A B,结合数轴,得a≥4.答案:D7.已知集合A={x|0≤x≤5},B={x|2≤x<5},则∁A B=________________.解析:集合A和B的数轴表示如图所示.由数轴可知:∁A B={x|0≤x<2或x=5}.答案:{x|0≤x<2或x=5}8.设集合A={1,3,a},B={1,a2-a+1},且A⊇B,则实数a的值为________.解析:由A⊇B,得a2-a+1=3或a2-a+1=a,解得a=2或a=-1或a=1,结合集合元素的互异性,可确定a=-1或a=2.答案:-1或29.设全集U=R,集合A={x|x≥0},B={y|y≥1},则∁U A与∁U B 的包含关系是________.解析:因为∁U A={x|x<0},∁U B={y|y<1}={x|x<1},所以∁U A∁U B.答案:∁U A∁U B10.集合A={x|-3<x≤5},B={x|a+1≤x<4a+1},若B A,则实数a的取值范围是________.解析:分B=∅和B≠∅两种情况.答案:{a|a≤1}11.已知∅{x|x2-x+a=0},则实数a的取值范围是________.解析:因为∅{x|x2-x+a=0},所以方程x2-x+a=0有实根.则Δ=1-4a ≥0,所以a ≤14. 答案:a ≤1412.已知集合A ={-2},B ={x |ax +1=0,a ∈R},B ⊆A ,求a 的值.解:因为B ⊆A ,A ≠∅,所以B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,B =⎩⎨⎧⎭⎬⎫-1a , 所以-1a ∈A ,即有-1a =-2,得a =12. 综上所述,a =0或a =12. B 级 能力提升13.已知集合A ={x |x 2-3x +2=0},B ={x |0<x <5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 有( )A .1个B .2个C .3个D .4个解析:因为A ={1,2},B ={1,2,3,4},所以C 中必须含有1,2,即求{3,4}的子集的个数,为22=4.答案:D14.已知:A ={1,2,3},B ={1,2},定义某种运算:A *B ={x |x =x 1+x 2,x 1∈A ,x 2∈B },则A *B 中最大的元素是________,集合A *B 的所有子集的个数为________.解析:A *B ={2,3,4,5},故最大元素为5,其子集个数为24=16.答案:5 1615.已知集合A ={x |-4≤x ≤-2},集合B ={x |x -a ≥0}.若全集U =R ,且A ⊆(∁U B ),则a 的取值范围是________.解析:因为A ={x |-4≤x ≤-2},B ={x |x ≥a },U =R , 所以∁U B ={x |x <a }.要使A ⊆∁U B ,只需a >-2(如图所示).答案:{a |a >-2}16.已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1},若B ⊆A ,求实数m 的取值范围.解:①若B =∅,则应有m +1>2m -1,即m <2.②若B ≠∅,则⎩⎪⎨⎪⎧m +1≤2m -1,m +1≥-2,2m -1≤5,⇒2≤m ≤3.综上即得m 的取值范围是{m |m ≤3}.17.已知集合A ={x |x 2-2x -3=0},B ={x |ax -1=0},若B A ,求a 的值.解:A ={x |x 2-2x -3=0}={-1,3},若a =0,则B =∅,满足B A .若a ≠0,则B =⎩⎨⎧⎭⎬⎫1a . 由B A ,可知1a =-1或1a=3, 即a =-1或a =13. 综上可知a 的值为0,-1,13. 18.已知全集U =R ,集合A ={x |x <-1},B ={x |2a <x <a +3},且B⊆∁R A,求a的取值范围.解:由题意得∁R A={x|x≥-1}.(1)若B=∅,则a+3≤2a,即a≥3,满足B⊆∁R A.(2)若B≠∅,则由B⊆∁R A,得2a≥-1且2a<a+3,即-12≤a<3.综上可得a≥-12.第1章集合1.3 交集、并集A级基础巩固1.(2014·课标全国Ⅱ卷)已知集合A={-2,0,2},B={x|x2-x -2=0},则A∩B=()A.∅B.{2}C.{0} D.{-2}解析:B={x|x2-x-2=0}={-1,2},又A={-2,0,2},所以A∩B={2}.答案:B2.设S={x||x|<3},T={x|3x-5<1},则S∩T=()A.∅B.{x|-3<x<3}C.{x|-3<x<2} D.{x|2<x<3}答案:C3.已知A,B均为集合U={1,3,5,7,9}的子集,且A∩B={3}, A∩∁U B={9},则A=()A.{1,3} B.{3,7,9}C.{3,5,9} D.{3,9}答案:D4.设A={(x,y)|4x+y=6},B={(x,y)|3x+2y=7},则A∩B 为()A.{x=1或y=2} B.{1,2}C.{(1,2)} D.(1,2)(x,y)|4x+y=6,3x+2y=7={(1,2)}.解析:A∩B={}答案:C5.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5 B.4 C.3 D.2解析:因为A={x|x=3n+2,n∈N}={2,5,8,11,14,…}又B={6,8,10,12,14},所以A∩B={8,14}.故A∩B中有2个元素.答案:D6.(2014·辽宁卷)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}解析:易知A∪B={x|x≤0或x≥1}.所以∁U(A∪B)={x|0<x<1}.答案:D7.已知集合A={3,2a},B={a,b},若A∩B={2},则A∪B=________.解析:因为A∩B={2},所以2a=2,所以a=1,b=2,故A∪B={1,2,3}.答案:{1,2,3}8.已知全集S=R,A={x|x≤1},B={x|0≤x≤5},则(∁S A)∩B =________.解析:∁S A={x|x>1}.答案:{x|1<x≤5}9.设集合A={x|-1<x<a},B={x|1<x<3}且A∪B={x|-1<x<3},则a的取值范围为________.解析:如下图所示,由A∪B={x|-1<x<3}知,1<a≤3.答案:{a|1<a≤3}10.已知方程x2-px+15=0与x2-5x+q=0的解分别为M和S,且M∩S={3},则pq=________.解析:因为M∩S={3},所以3既是方程x2-px+15=0的根,又是x2-5x+q=0的根,从而求出p=8,q=6.则pq=4 3.答案:4 311.满足条件{1,3}∪A={1,3,5}的所有集合A的个数是________.解析:A可以是集合{5},{1,5},{3,5}或{1,3,5}.答案:412.已知集合A ={x |-1≤x <3},B ={x |2x -4≥x -2}.(1)求A ∩B ;(2)若集合C ={}x |2x +a >0,满足B ∪C =C ,求实数a 的取值范围.解:(1)因为B ={x |x ≥2},所以A ∩B ={x |2≤x <3}.(2)因为C =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x >-a 2,B ∪C =C ⇔B ⊆C , 所以-a 2<2.所以a >-4. B 级 能力提升13.集合A ={x ||x |≤1,x ∈R},B ={y |y =x 2,x ∈R},则A ∩B 为( )A .{x |-1≤x ≤1}B .{x |x ≥0}C .{x |0≤x ≤1}D .∅解析:因为A ={x |-1≤x ≤1},B ={y |y ≥0},所以A ∩B ={x |0≤x ≤1}.答案:C14.图中的阴影部分表示的集合是( )A .A ∩(∁UB )B .B ∩(∁U A )C .∁U (A ∩B )D .∁U (A ∪B )解析:阴影部分的元素属于集合B 而不属于集合A ,故阴影部分可表示为B ∩(∁U A ).答案:B15.设全集U =R ,集合A ={x |x ≤1或x ≥3},集合B ={x |k <x<k +1,k <2},且B ∩(∁U A )≠∅,则实数k 的取值范围是________.解析:由题意得∁U A ={x |1<x <3},又B ∩∁U A ≠∅,故B ≠∅,结合图形可知⎩⎪⎨⎪⎧k <k +1,1<k +1<3,解得0<k <2. 答案:0<k <216.已知集合A ={1,3,-x 3},B ={1,x +2},是否存在实数x ,使得B ∪(∁A B )=A ?实数x 若存在,求出集合A 和B ;若不存在,说明理由.解:假设存在x ,使B ∪(∁U B )=A .所以B A .(1)若x +2=3,则x =1符合题意.(2)若x +2=-x 3,则x =-1不符合题意.所以存在x =1,使B ∪(∁U B )=A ,此时A ={1,3,-1},B ={1,3}.17.已知集合A ={x |-2≤x ≤5},B ={x |2a ≤x ≤a +3},若A ∪B =A ,求实数a 的取值范围.解:因为A ∪B =A ,所以B ⊆A .若B =∅时,2a >a +3,则a >3;若B ≠∅时,⎩⎪⎨⎪⎧2a ≥-2,a +3≤5,2a ≤a +3,解得-1≤a ≤2. 综上所述,a 的取值范围是{a |-1≤a ≤2或a >3}.18.设集合A ={x |x +1≤0或x -4≥0},B ={x |2a ≤x ≤a +2}.(1)若A ∩B ≠∅,求实数a 的取值范围;(2)若A ∩B =B ,求实数a 的取值范围.解:(1)A ={x |x ≤-1或x ≥4}.因为A ∩B ≠∅,所以⎩⎪⎨⎪⎧2a ≤a +2,a +2≥4或⎩⎪⎨⎪⎧2a ≤a +2,2a ≤-1. 所以a =2或a ≤-12. 所以实数a 的取值范围为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a ≤-12或a =2. (2)因为A ∩B =B ,所以B ⊆A .①B =∅时,满足B ⊆A ,则2a >a +2⇒a >2.②B ≠∅时,则⎩⎪⎨⎪⎧2a ≤a +2,a +2≤-1或⎩⎪⎨⎪⎧2a ≤a +2,2a ≥4. 解之得a ≤-3或 a =2.综上所述,实数a 的取值范围为{a |a ≤-3或a ≥2}.章末知识整合一、元素与集合的关系[例1] 设集合B =⎩⎨⎧⎭⎬⎫x ∈N ⎪⎪⎪62+x ∈N . (1)试判断1和2与集合B 的关系;(2)用列举法表示集合B .解:(1)当x =1时,62+1=2∈N ,所以1∈B . 当x =2时,62+2=32∉N ,2∉B . (2)令x =0,1,2,3,4,代入62+x ,检验62+x∈N 是否成立,可得B ={0,1,4}.规律方法1.判断所给元素a 是否属于给定集合时,若a 在集合内,用符号“∈”;若a 不在集合内,用符号“∉”.2.当所给的集合是常见数集时,要注意符号的书写规范.[即时演练] 1.已知集合A ={x |ax 2-3x +2=0}.(1)若A =∅,求实数a 的取值范围;(2)若A 中只有一个元素,求实数a 的值,并把这个元素写出来. 解:(1)A =∅,则方程ax 2-3x +2=0无实根,即Δ=9-8a <0,所以a >98. 所以a 的取值范围是⎩⎨⎧⎭⎬⎫a ⎪⎪⎪a >98. (2)因为A 中只有一个元素,所以①a =0时,A =⎩⎨⎧⎭⎬⎫23满足要求. ②a ≠0时,则方程ax 2-3x +2=0有两个相等的实根.故Δ=9-8a =0,所以a =98,此时A =⎩⎨⎧⎭⎬⎫43满足要求. 综上可知:a =0或a =98. 二、集合与集合的关系[例2] A ={x |x <-1或x >2},B ={x |4x +p <0},当B ⊆A 时,求实数p 的取值范围.分析:首先求出含字母的不等式,其次利用数轴解决.解:由已知解得,B =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <-p 4.又因为因为A={x|x<-1或x>2},且B⊆A,利用数轴所以-p4≤-1.所以p≥4,故实数p的取值范围为{p|p≥4}.规律方法1.在解决两个数集的包含关系问题时,避免出错的一个有效手段是合理运用数轴帮助分析与求解.2.注意端点值的取舍,这是同学易忽视失误的地方.[即时演练] 2.设集合P={(x,y)|x+y<4,x,y∈N*},则集合P 的非空子集的个数是()A.2 B.3 C.7 D.8解析:当x=1时,y<3,又y∈N*,因此y=1或y=2;当x=2时,y<2,又y∈N*,因此y=1;当x=3时,y<1,又y∈N*,因此这样的y不存在;当x≥4时,y<0,也不满足y∈N*.综上所述,集合P中的元素有(1,1),(1,2),(2,1),所以P 的非空子集的个数是23-1=7.故选C.答案:C三、集合的运算[例3]已知集合A={x|x-2>3},B={x|2x-3>3x-a},求A∪B,分析:先确定集合A,B,然后讨论a的范围对结果的影响.解:A={x|x-2>3}={x|x>5},B={x|2x-3>3x-a}={x|x<a-3}.借助数轴表示如图所示.(1)当a -3≤5,即a ≤8时,A ∪B ={x |x <a -3或x >5}.(2)当a -3>5,即a >8时,A ∪B ={x |x >5}∪{x |x <a -3}={x |x ∈R}=R.综上可知,当a ≤8时,A ∪B ={x |x <a -3或x >5};当a >8时,A ∪B =R.规律方法解集合问题关键是读懂集合语言,明确意义,用相关的代数或几何知识进行解决.[即时演练] 3.设集合A ={x ||x |<4},B ={x |x 2-4x +3>0},则集合∁A (A ∩B )=________.解析:因为A ={x |-4<x <4},B ={x |x <1或x >3},所以A ∩B ={x |-4<x <1或3<x <4}.所以∁A (A ∩B )={x |1≤x ≤3}.答案:{x |1≤x ≤3}四、利用集合的运算求参数[例4] 设集合M ={x |-2<x <5},N ={x |2-t <x <2t +1,t ∈R},若M ∪N =M ,求实数t 的取值范围.分析:由M ∪N =M ,知N ⊆M .根据子集的意义,建立关于t 的不等式关系来求解.解:由M ∪N =M 得N ⊆M ,故当N =∅,即2t +1≤2-t ,t ≤13时,M ∪N =M 成立. 当N ≠∅时,由数轴图可得⎩⎪⎨⎪⎧2-t <2t +1,2t +1≤5,2-t ≥-2,解得13<t ≤2.综上可知,所求实数t 的取值范围是{t |t ≤2}.规律方法1.用数轴表示法辅助理解,若右端点小于等于左端点,则不等式无解, N =∅.2.列不等式组的依据是左端点小于右端点,即2t +1在5的左侧(相等时也符合题意),2-t 在-2的右侧(相等时也符合题意).[即时演练] 4.集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}.(1)若A ∩B =B ,求实数m 的取值范围;(2)若A ∩B =∅,求实数m 的取值范围.解:(1)A ∩B =B ⇔B ⊆A ,当m +1>2m -1,即m <2时,B =∅,满足B ⊆A ;当m +1≤2m -1时,要使B ⊆A .则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤5,m +1≤2m -1⇒2≤m ≤3. 综上,m 的取值范围为{m |m ≤3}.(2)当m +1>2m -1,即m <2时,B =∅,满足A ∩B =∅; 当B ≠∅时,要使A ∩B =∅,则必须⎩⎪⎨⎪⎧m +1≤2m -1,m +1>5或⎩⎪⎨⎪⎧m +1≤2m -1,2m -1<-2⇒m >4. 综上,m 的取值范围是{m |m <2或m >4}.五、集合的实际应用[例5] 某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有________人.分析:每名同学至多参加两个小组―→画出相应的Venn图―→根据全班有36名同学列等式―→得答案解析:设参加数学、物理、化学小组的人数构成的集合分别为A,B,C,同时参加数学和化学小组的有x人,由题意可得如图所示的Venn图.由全班共36名同学可得(26-6-x)+6+(15-10)+4+(13-4-x)+x=36,解得x=8,故同时参加数学和化学小组的有8人.答案:8规律方法解决有关集合的实际应用题时,首先要将文字语言转化为集合语言,然后结合集合的交、并、补运算来处理.此外,由于Venn图简明、直观,因此很多集合问题往往借助Venn图来分析.[即时演练] 5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜欢,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.解析:设A,B分别表示喜爱篮球运动、乒乓球运动的人数构成的集合,集合U表示全班人数构成的集合.设同时喜爱乒乓球和篮球运动的有x人.依题意,画出如图所示的Venn图.根据Venn图,得8+x+(15-x)+(10-x)=30.解得x=3.故喜爱篮球运动但不喜爱乒乓球运动的人数为15-3=12.答案:12章末过关检测卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设P={x|x<4},Q={x|x2<4},则()A.P⊆Q B.Q⊆PC.P⊆∁R Q D.Q⊆∁R P解析:因为Q={x|-2<x<2},所以Q⊆P.答案:B2.已知集合A={1,2},B={(x,y)|x-y=1},则A∩B=()解析:由于A是数集,B是点集,故A∩B=∅.答案:D3.已知集合A={x|x(x-1)=0},那么下列结论正确的是() A.0∈A B.1∉AC.-1∈A D.0∉A解析:由x(x-1)=0得x=0或x=1,则集合A中有两个元素0和1,所以0∈A,1∈A.答案:A4.已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=() A.{0} B.{0,1}C.{0,2} D.{0,1,2}解析:因为A={x|x2-2x=0}={0,2},B={0,1,2},所以A∩B ={0,2}.答案:C5.若集合A={x|kx2+4x+4=0,x∈R}中只有一个元素,则实数k的值为()A.1 B.0C.0或1 D.以上答案都不对解析:当k=0时,A={-1};当k≠0时,Δ=16-16k=0,k =1.故k=0或k=1.答案:C6.下列四句话中:①∅={0};②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有()解析:空集是任何集合的子集,故④正确,②错误;③不正确,如∅只有一个子集,即它本身;结合空集的定义可知①不正确;故只有1个命题正确.答案:B7.(2015·山东卷)已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0}.则A ∩B =( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)解析:易知B ={x |1<x <3},又A ={x |2<x <4},所以A ∩B ={x |2<x <3}=(2,3).答案:C8.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是( )A .{a |3<a ≤4}B .{a |3≤a ≤4}C .{a |3<a <4}D .∅解析:⎩⎪⎨⎪⎧a -1≤3,5≤a +2⇒3≤a ≤4. 答案:B9.已知全集U =R ,集合A ={x |x >1或x <-2},B ={x |-1≤x ≤0},则A ∪∁U B 等于( )A .{x |x <-1或x >0}B .{x |x <-1或x >1}C .{x |x <-2或x >1}D .{x |x <-2或x ≥0}解析:∁U B ={x |x <-1或x >0},所以A ∪∁U B ={x |x <-1或x >0}.答案:A10.已知集合A ,B 均为全集U ={1,2,3,4}的子集,且∁U (A ∪B )={4},B ={1,2},则A ∩∁U B =( )A .{3}B .{4}C .{3,4}D .∅解析:由题意A ∪B ={1,2,3},又B ={1,2}.所以∁U B ={3,4},故A ∩∁U B ={3}.答案:A11.已知全集U =R ,集合A ={x |y =1-x },集合B ={x |0<x <2},则(∁U A )∪B 等于( )A .[1,+∞)B .(1,+∞)C .[0,+∞)D .(0,+∞)解析:因为A ={x |x ≤1},所以∁U A ={x |x >1}.所以(∁U A )∪B ={x |x >0}.答案:D12.设全集U ={(x ,y )|x ∈R ,y ∈R},集合A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y -n ≤0},若点P (2,3)∈A ∩(∁U B ),则下列选项正确的是( )A .m >-1,n <5B .m <-1,n <5C .m >-1,n >5D .m <-1,n >5解析:由P (2,3)∈A ∩(∁U B )得P ∈A 且P ∉B ,故⎩⎪⎨⎪⎧2×2-3+m >0,2+3-n >0,解得⎩⎪⎨⎪⎧m >-1,n <5. 答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.设全集U =M ∪N ={1,2,3,4,5},M ∩∁U N ={2,4},则N =________.答案:{1,3,5}14.已知集合A ={(x ,y )|ax -y 2+b =0},B ={(x ,y )|x 2-ay +b =0},且(1,2)∈A ∩B ,则a +b =________.解析:因为(1,2)∈A ∩B ,所以⎩⎪⎨⎪⎧a -4+b =0,1-2a +b =0⇒a =53,b =73. 故a +b =4.答案:415.设集合A ={x ||x |<4},B ={x |x 2-4x +3>0},则集合{x |x ∈A ,且x ∉A ∩B }=________.解析:A ={x |-4<x <4},B ={x |x >3或x <1},A ∩B ={x |3<x <4或-4<x <1},所以{x |x ∈A 且x ∉A ∩B }={x |1≤x ≤3}.答案:{x |1≤x ≤3}16.设集合M ={x |2x 2-5x -3=0},N ={x |mx =1},若N ⊆M ,则实数m 的取值集合为________.解析:集合M =⎩⎨⎧⎭⎬⎫3,-12.若N ⊆M ,则N ={3}或⎝ ⎛⎭⎬⎫-12或∅.于是当N ={3}时,m =13;当N =⎩⎨⎧⎭⎬⎫-12时,m =-2;当N =∅时,m =0.所以m 的取值集合为⎩⎨⎧⎭⎬⎫-2,0,13. 答案:⎩⎨⎧⎭⎬⎫-2.0,13 三、解答题(本大题共6小题,共70分.解答时写出必要文字说明、计算或证明推理过程)17.(本小题满分10分)A ={x |x 2-3x +2=0},B ={x |ax -2=0},且A ∪B =A ,求实数a 组成的集合C .解:因为A ∪B =A ,所以B ⊆A .当B =∅时,即a =0时,显然满足条件.当B ≠∅时,则B =⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x =2a ,A ={1,2}, 所以2a =1或2a=2,从而a =1或a =2. 故集合C ={0,1,2}.18.(本小题满分12分)已知集合A ={x |1≤x <7},B ={x |2<x <10},C ={x |x <a },全集为实数集R.(1)求A ∪B ,(∁R A )∩B ;(2)如果A ∩C ≠∅,求a 的取值范围.解:(1)A ∪B ={x |1≤x <10},(∁R A )∩B ={x |x <1或x ≥7}∩{x |2<x <10}={x |7≤x <10}.(2)当a >1时,满足A ∩C ≠∅.因此a 的取值范围是{a |a >1}.19.(本小题满分12分)已知A ={x |x 2+4x =0},B ={x |x 2+2(a +1)x +a 2-1=0},若B ⊆A ,求a 的取值范围.解:集合A ={0,-4},由于B ⊆A ,则:(1)当B =A 时,即0,-4是方程x 2+2(a +1)x +a 2-1=0的两根,代入解得a =1.(2)当B ≠A 时:①当B =∅时,则Δ=4(a +1)2-4(a 2-1)<0,解得a <-1;②当B ={0}或B ={-4}时,方程x 2+2(a +1)x +a 2-1=0应有两个相等的实数根0或-4,则Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0}满足条件.综上可知a =1或a ≤-1.20.(本小题满分12分)已知A ={x |a -4<x <a +4},B ={x |x <-1或x >5}.(1)若a =1,求A ∩B ;(2)若A ∪B =R ,求实数a 的取值范围.解:(1)当a =1时,A ={x |-3<x <5},B ={x |x <-1或x >5}. 所以A ∩B ={x |-3<x <-1}.(2)因为A ={x |a -4<x <a +4},B ={x |x <-1或x >5},又A ∪B =R ,所以⎩⎪⎨⎪⎧a -4<-1,a +4>5⇒1<a <3. 所以所求实数a 的取值范围是{a |1<a <3}.21.(本小题满分12分)已知集合A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0},求a 取何值时,A ∩B ≠∅与A ∩C =∅同时成立.解:因为B ={2,3},C ={2,-4},由A ∩B ≠∅且A ∩C =∅知,3是方程x 2-ax +a 2-19=0的解, 所以a 2-3a -10=0.解得a =-2或a =5.当a =-2时,A ={3,-5},适合A ∩B ≠∅与A ∩C =∅同时成立;当a =5时,A ={2,3},A ∩C ={2}≠∅,故舍去.所求a 的值为-2.22.(本小题满分12分)已知集合P ={x |a +1≤x ≤2a +1},Q ={x |1≤2x +5≤15}.(1)已知a =3,求(∁R P )∩Q ;(2)若P ∪Q =Q ,求实数a 的取值范围.解:(1)因为a =3,所以集合P ={x |4≤x ≤7}.所以∁R P ={x |x <4或x >7},Q ={x |1≤2x +5≤15}={x |-2≤x ≤5},所以(∁R P )∩Q ={x |-2≤x <4}.(2)因为P ∪Q =Q ,所以P ⊆Q .①当a +1>2a +1,即a <0时,P =∅,所以P ⊆Q ;②当a ≥0时,因为P ⊆Q ,所以⎩⎪⎨⎪⎧a ≥0,a +1≥-2,2a +1≤5.所以0≤a ≤2. 综上所述,实数a 的取值范围为(-∞,2].第2章 函数2.1 函数的概念2.1.1 函数的概念和图象A 级 基础巩固1.下列各图中,不可能表示函数y =f (x )的图象的是( )答案:B2.函数y =1-x +x 的定义域是( )A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1,或x ≤0}D .{x |0≤x ≤1}解析:由⎩⎪⎨⎪⎧1-x ≥0,x ≥0,得0≤x ≤1. 答案:D3.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,且f (a )+f (1)=0,则a =( ) A .-3 B .-1 C .1 D .3解析:当a >0时,f (a )+f (1)=2a +2=0⇒a =-1,与a >0矛盾;当a ≤0时,f (a )+f (1)=a +1+2=0⇒a =-3,适合题意.答案:A4.定义域在R 上的函数y =f (x )的值域为[a ,b ],则函数y =f (x +a )的值域为( )A .[2a ,a +b ]B .[0,b -a ]C .[a ,b ]D .[-a ,a +b ] 答案:C5.下列函数完全相同的是( )A .f (x )=|x |,g (x )=(x )2B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2xD .f (x )=x 2-9x -3,g (x )=x +3解析:A 、C 、D 的定义域均不同. 答案:B6.二次函数y =x 2-4x +3在区间(1,4]上的值域是( ) A .[-1,+∞) B .(0,3] C .[-1,3] D .(-1,3)解析:y =x 2-4x +3=(x -2)2-1≥-1,再结合二次函数的图象(如右图所示)可知,-1≤y ≤3.答案:C7.已知函数f (x )的定义域为(-3,0),则函数y =f (2x -1)的定义域是( )A .(-1,1) B.⎝ ⎛⎭⎪⎫-1,12 C .(-1,0)D.⎝ ⎛⎭⎪⎫12,1 解析:由于f (x )的定义域为(-3,0) 所以-3<2x -1<0,解得-1<x <12.故y =f (2x -1)的定义域为⎝ ⎛⎭⎪⎫-1,12.答案:B8.函数f (x )=⎝ ⎛⎭⎪⎫x -120+x 2-1x +2的定义域是__________________.解析:要使f (x )有意义,必有⎩⎨⎧x -12≠0,x +2>0,解得x >-2且x ≠12. 答案:⎝ ⎛⎭⎪⎫-2,12∪⎝ ⎛⎭⎪⎫12,+∞9.已知函数f (x )的定义域为[0,1],值域为[1,2],则f (x +2)的定义域是________,值域是________.解析:因为f (x )的定义域为[0,1],所以0≤x +2≤1.所以-2≤x ≤-1,即f (x +2)的定义域为[-2,-1],值域仍然为[1,2].答案:[-2,-1] [1,2]10.(2015·课标全国Ⅱ卷)已知函数f (x )=ax 3-2x 的图象过点(-1,4),则a =________.解析:因为点(-1,4)在y =f (x )的图象上, 所以4=-a +2.所以a =-2. 答案:-211.若f (x )=ax 2-2,a 为正常数,且f [f (2)]=-2,则a =________.解析:因为f (2)=a ·(2)2-2=2a -2, 所以f ()f (2)=a ·(2a -2)2-2=- 2. 所以a ·(2a -2)2=0.又因为a 为正常数,所以2a -2=0.所以a =22.答案:2212.已知函数f (x )=x +1x .(1)求f (x )的定义域; (2)求f (-1),f (2)的值;(3)当a ≠-1时,求f (a +1)的值.解:(1)要使函数f (x )有意义,必须使x ≠0, 所以f (x )的定义域是(-∞,0)∪(0,+∞). (2)f (-1)=-1+1-1=-2,f (2)=2+12=52.(3)当a ≠-1时,a +1≠0. 所以f (a +1)=a +1+1a +1. B 级 能力提升13.若函数y =f (x )的定义域为[0,2],则函数g (x )=f (2x )x -1的定义域为( )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)解析:因为f (x )的定义域为[0,2],所以g (x )=f (2x )x -1需满足⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解得0≤x <1.所以g (x )的定义域为[0,1). 答案:B14.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( )解析:因为汽车先启动,再加速、匀速,最后减速,s 随t 的变化是先慢,再快、匀速,最后慢,故A 图比较适合题意.答案:A15.已知函数f (x )=x 21+x 2,那么f (1)+f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+f (4)+f ⎝ ⎛⎭⎪⎫14=______. 解析:因为f (x )=x 21+x 2,f ⎝ ⎛⎭⎪⎫1x =1x 2+1,所以f (x )+f ⎝ ⎛⎭⎪⎫1x =1.所以f (1)+f (2)+f ⎝ ⎛⎭⎪⎫12+f (3)+f ⎝ ⎛⎭⎪⎫13+f (4)+f ⎝ ⎛⎭⎪⎫14=12+1+1+1=72.答案:7216.已知函数f (x )=2x -1-7x .(1)求f (0),f ⎝ ⎛⎭⎪⎫17,f ⎝ ⎛⎭⎪⎫111; (2)求函数的定义域.解:(1)f (0)=-1,f ⎝ ⎛⎭⎪⎫17=217=277, f ⎝ ⎛⎭⎪⎫111=2111-1-711=411-411=0. (2)要使函数有意义,则⎩⎪⎨⎪⎧x ≥0,1-7x ≥0,解得⎩⎨⎧x ≥0,x ≤17,所以0≤x ≤17. 所以函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪0≤x ≤17.17.已知函数y =1ax +1(a <0且a 为常数)在区间(-∞,1]上有意义,求实数a 的值.解:已知函数y =1ax +1(a <0且a 为常数), 因为1ax +1≥0,a <0,所以x ≤-a ,即函数的定义域为(-∞,-a ]. 因为函数在区间(-∞,1]上有意义, 所以(-∞,1]⊆(-∞,-a ]. 所以-a ≥1,即a ≤-1.所以a 的取值范围是(-∞,-1].18.试画出函数f (x )=(x -2)2+1的图象,并回答下列问题: (1)求函数f (x )在x ∈[1,4]上的值域; (2)若x 1<x 2<2,试比较f (x 1)与f (x 2)的大小. 解:由描点法作出函数的图象如图所示.(1)由图象知,f (x )在x =2时有最小值为f (2)=1, 又f (1)=2,f (4)=5.所以函数f (x )在[1,4]上的值域为[1,5]. (2)根据图象易知,当x 1<x 2<2时,f (x 1)>f (x 2).第2章 函数 2.1 函数的概念 2.1.2 函数的表示方法A 级 基础巩固1.已知f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,则f (f (-7))的值为( )A .100B .10C .-10D .-100解析:因为f (x )=⎩⎪⎨⎪⎧10,x <0,10x ,x ≥0,所以f (-7)=10.f (f (-7))=f (10)=10×10=100. 答案:A2.函数f (x )=cx 2x +3⎝ ⎛⎭⎪⎫x ≠-32满足f (f (x ))=x ,则常数c 等于( ) A .3 B .-3 C .3或-3D .5或-3解析:f (f (x ))=c ⎝ ⎛⎭⎪⎫cx 2x +32⎝ ⎛⎭⎪⎫cx 2x +3+3=c 2x 2cx +6x +9=x ,即x [(2c +6)x +9-c 2]=0,所以⎩⎪⎨⎪⎧2c +6=0,9-c 2=0,解得c =-3. 答案:B3.如果二次函数的图象开口向上且关于直线x =1对称,且过点(0,0),则此二次函数的解析式可以是( )A .f (x )=x 2-1B .f (x )=-(x -1)2+1C .f (x )=(x -1)2+1D .f (x )=(x -1)2-1解析:由题意设f (x )=a (x -1)2+b (a >0),由于点(0,0)在图象上,所以a +b =0,a =-b ,故符合条件的是D.答案:D4.某同学从家里赶往学校,一开始乘公共汽车匀速前进,在离学校还有少许路程时,改为步行匀速前进到校.下列图形纵轴表示该同学与学校的距离s ,横轴表示该同学出发后的时间t ,则比较符合该同学行进实际的是( )解析:依题意:s 表示该同学与学校的距离,t 表示该同学出发后的时间,当t =0时,s 最远,排除A 、B ,由于汽车速度比步行快,因此前段迅速靠近学校,后段较慢.故选D.答案:D5.g (x )=1-2x ,f (g (x ))=1-x 2x 2(x ≠0),则f ⎝ ⎛⎭⎪⎫12=( )A .1B .3C .15D .30解析:由g (x )=12得:1-2x =12⇒x =14,代入1-x 2x 2得:1-⎝ ⎛⎭⎪⎫142⎝ ⎛⎭⎪⎫142=15. 答案:C6.(2015·陕西卷)设f (x )=⎩⎪⎨⎪⎧1-x ,x ≥0,x 2,x <0,则f (f (-2))=( )A .-1 B.14 C.12 D.32解析:f (-2)=(-2)2=4. 所以f (f (-2))=f (4)=1-4=-1. 答案:A7.已知函数f (x )=⎩⎪⎨⎪⎧x 2+3x ,x ≤0,2,x >0,则方程f (x )=x 的解的个数为________.解析:x >0时,x =f (x )=2;x ≤0时,x 2+3x =x ⇒x =0或-2. 答案:38.如图所示,函数f (x )的图象是折线段ABC ,其中点A ,B ,C 的坐标分别为(0,4),(2,0),(4,2),则f (f (f (2))=________.解析:由图象及已知条件知f (2)=0,即f (f (f (2)))=f (f (0)), 又f (0)=4,所以f (f (0))=f (4)=2. 答案:29.若某汽车以52 km/h 的速度从A 地驶向260 km 远处的B 地,在B 地停留32h 后,再以65 km/h 的速度返回A 地.则汽车离开A 地后行走的路程s 关于时间t 的函数解析式为________________.解析:因为260÷52=5(h),260÷65=4(h),所以s =⎩⎪⎨⎪⎧52t ,0≤t <5,260,5≤t ≤132,260+65⎝ ⎛⎭⎪⎫t -132,132<t ≤212. 答案:s =⎩⎪⎨⎪⎧52t ,0≤t <5,260,5≤t ≤132,260+65⎝⎛⎭⎪⎫t -132,132<t ≤212 10.设f (x )=⎩⎨⎧x +1,x ≥0,1x ,x <0.若f (a )>a ,则实数a 的取值范围是________.解析:当a ≥0时,f (a )=a +1>a 恒成立. 当a <0时,f (a )=1a >a ,所以a <-1.综上a 的取值范围是a ≥0或a <-1. 答案:{a |a ≥0或a <-1}11.已知二次函数满足f (3x +1)=9x 2-6x +5,求f (x ). 解:设f (x )=ax 2+bx +c (a ≠0),则f (3x +1)=a (3x +1)2+b (3x +1)+c =9ax 2+(6a +3b )x +a +b +c .因为f (3x +1)=9x 2-6x +5,所以9ax 2+(6a +3b )x +a +b +c =9x 2-6x +5. 比较两端系数,得⎩⎪⎨⎪⎧9a =9,6a +3b =-6,a +b +c =5⇒⎩⎪⎨⎪⎧a =1,b =-4,c =8.所以f (x )=x 2-4x +8.12.已知f (x )=⎩⎪⎨⎪⎧x 2(-1≤x ≤1),1(x >1或x <-1).(1)画出f (x )的图象; (2)求f (x )的定义域和值域.解:(1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R.由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1], 当x >1或x <-1时,f (x )=1, 所以f (x )的值域为[0,1].B 级 能力提升13.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1.若f (f (0))=4a ,则实数a 的值为( )A .2B .1C .3D .4解析:易知f (0)=2,所以f (f (0))=f (2)=4+2a =4a ,所以a =2. 答案:A14.任取x 1,x 2∈[a ,b ]且x 1≠x 2,若f ⎝⎛⎭⎪⎫x 1+x 22>12[f (x 1)+f (x 2)],则f (x )在[a ,b ]上是凸函数,在以下图象中,是凸函数的图象是( )解析:只需在图形中任取自变量x 1,x 2,分别标出它们对应的函数值及x 1+x 22对应的函数值,并观察它们的大小关系即可. 答案:D15.根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧C x ,x <A ,C A ,x ≥A ,A ,C 为常数.已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是( ) A .75,25B .75.16C .60,25D .60,16解析:由条件可知,x ≥A 时所用时间为常数,所以组装第4件产品用时必须满足第一段分段函数,即f (4)=C 4=30⇒C =60, f (A )=60A=15⇒A =16. 答案:D16.已知函数f (x )=⎩⎪⎨⎪⎧x 2-4,0≤x ≤2,2x ,x >2.(1)求f (2),f (f (2))的值;(2)若f (x 0)=8,求x 0的值.解:(1)因为0≤x ≤2时,f (x )=x 2-4,所以f (2)=22-4=0,f (f (2))=f (0)=02-4=-4.(2)当0≤x 0≤2时,由x 20-4=8,得x 0=±23∉[0,2],故无解. 当x 0>2时,由2x 0=8,得x 0=4.因此f (x 0)=8时,x 0的值为4.17.某市出租车的计价标准是:4 km 以内10元,超过4 km 且不超过18 km 的部分1.2 元/km ,超过18 km 的部分1.8 元/km.(1)如果不计等待时间的费用,建立车费与行车里程的函数关系式;(2)如果某人乘车行驶了20 km ,他要付多少车费?解:(1)设车费为y 元,出租车行驶里程为x km.由题意知,当0<x ≤4时,y =10;当4<x ≤18时,y =10+1.2(x -4)=1.2x +5.2;当x >18时,y =10+1.2×14+1.8(x -18)=1.8x -5.6.所以,所求函数关系式为y =⎩⎪⎨⎪⎧10,0<x ≤4,1.2x +5.2,4<x ≤18,1.8x -5.6,x >18.(2)当x =20时,y =1.8×20-5.6=30.4.所以乘车行驶了20 km 要付30.4元的车费.18.某种商品在30天内每件的销售价格P (元)与时间t (天)的函数关系用图①表示,该商品在30天内日销售量Q (件)与时间t (天)之间的关系如下表所示:t /天 5 15 20 30Q /件 35 25 20 10(1)根据提供的图象(图①),写出该商品每件的销售价格P 与时间t 的函数解析式;(2)在所给平面直角坐标系(图②)中,根据表中提供的数据描出实数对(t ,Q )的对应点,并确定一个日销售量Q 与时间t 的函数解析式;(3)求该商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天(日销售金额=每件的销售价格×日销售量).解:(1)根据图象,每件的销售价格P 与时间t 的函数解析式为:P =⎩⎪⎨⎪⎧t +20,0<t <25,t ∈N ,-t +100,25≤t ≤30,t ∈N.(2)描出实数对(t ,Q )的对应点,如下图所示.从图象发现:点(5,35),(15,25),(20,20),(30,10)似乎在同一条直线上,为此假设它们共线于直线l :Q =kt +b .由点(5,35),(30,10)确定出l 的解析式为Q =-t +40,通过检验可知,点(15,25),(20,20)也在直线l 上.所以日销售量Q 与时间t 的一个函数解析式为Q =-t +40(0<t ≤30,t ∈N).(3)设日销售金额为y (元),则y =⎩⎪⎨⎪⎧-t 2+20t +800,0<t <25,t ∈N ,t 2-140t +4 000,25≤t ≤30,t ∈N. 因此y =⎩⎪⎨⎪⎧-(t -10)2+900,0<t <25,t ∈N ,(t -70)2-900,25≤t ≤30,t ∈N. 若0<t <25(t ∈N),则当t =10时,y max =900;若25≤t ≤30(t ∈N),则当t =25时,y max =1 125.因此第25天时销售金额最大,最大值为1 125元.第2章 函数2.2 函数的简单性质2.2.1 函数的单调性A 级 基础巩固1.函数f (x )的图象如图所示,则( )A .函数f (x )在[-1,2]上是增函数B .函数f (x )在[-1,2]上是减函数C .函数f (x )在[-1,4]上是减函数D .函数f (x )在[2,4]上是增函数解析:增函数具有“上升”趋势;减函数具有“下降”趋势,故A正确.答案:A2.已知函数f(x)是(-∞,+∞)上的增函数,若a∈R,则() A.f(a)>f(2a) B.f(a2)<f(a)C.f(a+3)>f(a-2) D.f(6)>f(a)解析:因为a+3>a-2,且f(x)在(-∞,+∞)上是增函数,所以f(a+3)>f(a-2).答案:C3.y=2x在区间[2,4]上的最大值、最小值分别是()A.1,12 B.12,1 C.12,14 D.14,12解析:因为函数y=2x在[2,4]上是单调递减函数,所以y max=22=1,y min=24=12.答案:A4.函数y=x2-6x的减区间是() A.(-∞.2] B.[2,+∞) C.[3,+∞) D.(-∞,3] 解析:y=x2-6x=(x-3)2-9,故函数的单调减区间是(-∞,3].答案:D5.下列说法中,正确的有()①若任意x1,x2∈I,当x1<x2时,f(x1)-f(x2)x1-x2>0,则y=f(x)在I上是增函数;②函数y =x 2在R 上是增函数; ③函数y =-1x在定义域上是增函数; ④函数y =1x的单调区间是(-∞,0)∪(0,+∞). A .0个 B .1个 C .2个 D .3个解析:当x 1<x 2时,x 1-x 2<0,由f (x 1)-f (x 2)x 1-x 2>0知f (x 1)-f (x 2)<0,所以f (x 1)<f (x 2),①正确;②③④均不正确.答案:B6.已知函数f (x )=4x -3+x ,则它的最小值是( )A .0B .1 C.34 D .无最小值解析:因为函数f (x )=4x -3+x 的定义域是⎣⎢⎡⎭⎪⎫34,+∞,且是增函数,所以f (x )min =f ⎝ ⎛⎭⎪⎫34=34. 答案:C7.函数y =f (x )的图象如图所示,则函数f (x )的单调递增区间是________________.解析:由图象可知函数f (x )的单调递增区间是(-∞,1]和(1,+∞).答案:(-∞,1]和(1,+∞)8.已知f (x )是R 上的减函数,则满足f (2x -1)>f (1)的实数x 的取值范围是________.解析:因为f (x )在R 上是减函数,且f (2x -1)>f (1),所以2x -1<1,即x <1.答案:(-∞,1)9.已知函数f (x )=x 2-2x +3在闭区间[0,m ]上的最大值为3,最小值为2,则m 的取值范围是________.解析:因为f (x )=(x -1)2+2,其对称轴为直线x =1,所以当x =1时,f (x )min =2,故m ≥1.又因为f (0)=3,所以f (2)=3.所以m ≤2.故1≤m ≤2.答案:[1,2]10.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x (其中销售量单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为________万元.解析:设公司在甲地销售x 台,则在乙地销售(15-x )台,公司获利为L =-x 2+21x +2(15-x )=-x 2+19x +30=-⎝ ⎛⎭⎪⎫x -1922+30+1924, 所以当x =9或10时,L 最大为120万元.答案:12011.讨论函数y =x 2-2(2a +1)x +3在[-2,2]上的单调性.解:因为函数图象的对称轴x =2a +1,所以当2a +1≤-2,即a ≤-32时,函数在[-2.2]上为增函数.当-2<2a +1<2,即-32<a <12时, 函数在[-2,2a +1]上是减函数,在[2a +1,2]上是增函数.当2a +1≥2,即a ≥12时,函数在[-2,2]上是减函数. 12.已知f (x )=x +12-x,x ∈[3,5]. (1)利用定义证明函数f (x )在[3,5]上是增函数;(2)求函数f (x )的最大值和最小值.解:(1)f (x )在区间[3,5]上是增函数,证明如下:设x 1,x 2是区间[3,5]上的两个任意实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1+12-x 1-x 2+12-x 2=3(x 1-x 2)(2-x 1)(2-x 2). 因为3≤x 1<x 2≤5,所以x 1-x 2<0,2-x 1<0,2-x 2<0.所以f (x 1)<f (x 2).所以f (x )在区间[3,5]上是增函数.(2)因为f (x )在区间[3,5]上是增函数,所以当x =3时,f (x )取得最小值为-4,当x =5时,f (x )取得最大值为-2.B 级 能力提升13.若函数f (x )=4x 2-kx -8在[5,8]上是单调函数,则k 的取值范围是( )A .(-∞,40)B .[40,64]C .(-∞,40]∪[64,+∞)D .[64,+∞)。
苏教版高中数学必修一集合配套作业(含单元检测)答案
高中数学学习材料(灿若寒星精心整理制作)第1课时集合(1)1.C 2.D 3.A 4.C 5.C 6.P∈L(A,B)7.①④⑤8.{}4,2,0,4-9.解:① 2,3,5,7,11② 0,1③ -2,0,2④(0,1),(1,0),(2,1),(3,4),(4,9)10.解:△=b2-4ac当△<0,即b2<4ac时,解集为空集;当△=0,即b2=4ac时,解集含一个元素;当△>0,即b2>4ac时,解集含两个元素。
11.解:若x=0,则xy=0,这与集合的互异性矛盾,∴ x≠0若x≠0,xy=0,则y=0,则第二个集合出现两个0元素,这与集合的互异性也矛盾,∴xy≠0-=0,则x=y,由两个集合是同一个集合可知xy=|x|,即x2=|x|,得到x=1若x y或-1,但x=1时,y=1,也与集合的互异性也矛盾,所以x=y=-1 ∴实数x,y的值是确定。
第2课集合(2)1.D 2.C 3.A 4.B 5.B6.{1,2,3,4}7.解:①{x|x=2k+1,k∈N}②{(x,y)|x<0,y<0}③{周长为10cm的三角形}④∅8.解:分两种情况讨论:①22a d aq a d aq+=⎧⎨+=⎩⇒ a+aq 2-2aq=0, ∵ a ≠0, ∴ q 2-2q+1=0,即q=1,但q=1时,N 中的三个元素均相等,此时无解. ②2220,2a d aq aq aq a a d aq⎧+=⇒--=⎨+=⎩∵ a ≠0, ∴ 2q 2-q-1=0 又q ≠1,∴ 12q =-, ∴ 当M=N 时,12q =- 9.解: ∵ 5∈A ∴ a 2+2a-3=5即a=2或a=-4当a=2时,A={2,3,5},B={2,5},与题意矛盾;当a=-4时,A={2,3,5},B={2,1},满足题意, ∴ a=-410.证明:∵ x 1∈A ,x 2∈A∴设x 1=a 1+b 12,x 2=a 2+b 22∴x 1x 2=( a 1+b 12)( a 2+b 22)=(a 1a 2++2b 1b 2)+(a 1b 2+a 2b 1)2∈A∴ x 1x 2∈A11.答:(1)是互不相同的集合.(2)①{x|y=x 2+3x-2}=R ,②{y| y=x 2+3x-2}={y|y ≥1}③{(x,y)| y=x 2++3x-2}={点P 是抛物线y=x 2+3x-2上的点}第3课 集合(3)1.A 2.D 3.D 4.A 5.C 6.M = P7.B A8.A B9.解:(1)由题意知:x 2-5x+9=3,解得x=2或x=3.(2)∵2∈B ,B A ,⊂ ≠ ⊂ ≠ ⊂ ≠∴222359x a x ax x⎧=++⎪⎨=-+⎪⎩即x=2,a=23-或73,4x a==-(3)∵ B = C,∴22(1)331x a xx a x a⎧++-=⎪⎨++=⎪⎩即x=-1,a=-6或x=3,a=-2.10.略解x=211.解:P={x|x2+x-6=0}={-3,2}①当m=0时,M=∅②当m≠0时,M={x|x=1 m }∵M是P的真子集∴1m=-3或1m=2即m=13-或m=12综上所述,m=0或m=13-或m=1212.D ,C第4课集合(4)1.A 2.B 3.C 4.C 5.D 6.C 7.③8.a=1或2 9.解:由A∩B={2},得2∈A,2∈B.又由()UC A B={4,6,8},知{2,4,6,8}⊆B,且4∉∈A,6∉A,8∉A.再由()()U UC A C B={1,9},得1∉A,9∉A,1∉B,9∉B.这样对于U在1到9这9个数字中,就剩3,5,7这3个数字,由反证法可得出3,5,7都不是集合B的元素,且都为A的元素.所以A={2,3,5,7},B={2,4,6,8}.10.解:①∵A∩B=A∴A⊆B∴a≥3②∵A∩B=B∴B⊆A ∴a≤3③ R C A ={x|x ≥3}R C B ={x|x ≥a}∵R C A 是R C B 的真子集∴ a<311.解:∵B ∩C ⊆A ⇔B A C A ⊆⎧⎨⊆⎩当B ⊆A 时,x 2-ax+a-1=0,(x-1)(x-a+1)=0,要么有两个相等的根为1,要么一根为1,另一根为2∴a=2或a=3当C ⊆A 时,由于x 2-mx+2=0没有x=0的根,故C={x| x 2-mx+2=0}.①C=∅,⊿=m 2-8<0, 即2222m -<<;②C={1},或C={2}时,m ∈∅;③C={1,2}时,m=3.这样,a=2或a=3;m=3,或2222m -<<第5课 集合(5)1.C 2.D 3.A ,C 4.D 5.A 6.C 7.D8.a ≥3,a <3,a ≤-49.解:∵A={-3,2},B=(-3,3),C={1}∴A ∩B={2}∴(A ∩B)∪C={1,2}10.解: A={-2,1}∵A ∪B=A ,∴B ⊆A={-2,1}.若 m=0,则方程 mx+1=0无解,∴B=∅满足B ⊆A ,∴m=0符合要求;若 m ≠0,则方程 mx+1=0的解为1x m =-, ∴B={1m -}.由题意知: 1m-∈{-2,1}.∴m=0符合要求;∴1m-=-2或1m-=1,∴m=12或m=-1,故所求m的集合为{-1,0,12 }.11.解:分别化简集合A、B得A={1,2},B={1,a-1},∵B⊄A∴a-1≠1且a-1≠2所以a-1≠2,3.第1章集合单元检测1.D 2.A 3.C 4.B 5.∉,∈6.A B 7.B 8.2,49.∵P=B,即{1,ab,b}={0,a+b,b2}注意到b≠0,∴a=0 ,从而b和b2中有一个为1,由集合中的元素的互异性知b≠1,∴b2=-1,从而b=-1,∴P={-1,0,1}.10.略解a=-1或a=0.11.解:∵A∩B={-1,7}∴7∈A,即有x2-x+1=7,解得:x=-2或x=3当x=-2时,x+4=2∈B,与2∈A∩B矛盾;当x=3时,x+4=7,这时2y=-1即y=1 2 -∴x=3,y=1 2 -12.解:A={0,-4}(1)∵A∩B=B ∴B A⊆B=∅或{0}或{-4}或{0,-4}以下对B的四种情况分别讨论综合得如下结论:a≤-1,或a=1(2) ∵A∪B=B ∴A B⊆∵A={0,-4},而B中最多有两个元素,∴ A =B即a=113.C 14.A 15.D 16.C 17.0或1 18.M N 19.20 20.x≤-2⊂≠21.解:∵UC A={5},∴5∈U,5A∉∴a2+2a-3=5,解得a=2或a=-4当a=2 时,|2a-1|=3≠5当a=-4是时,|2a-1|=9 ≠5,但9U∉,∴a=222.解:由A={a},故A中的方程有一个根a,∴⊿=(b+2)2-4(b+1)=0即b=0∴a=-1∴B={x|x2-x=0}={0,1}从而B的真子集为{0},{1},∅23.略解(1)-1≤a≤2(2)a<-1或a>224.解:由a1<a2<a3<a4,A∩B={a1,a4},可知a1=21a,∴a1=1∵a1+a4=10,∴a4=9 ,若229a=,a2=3,则有(1+3+ a3 +9)+(23a+81)=124 解得a3 =5,(a3 =-6舍去)∴A={1,3,5,9},B={1,9,25,81}.若239a=,a3=3,此时只能有a2=2,则A∪B中所有元素和为:1+2+3+4+9+81≠124,∴不合题意.于是,A={1,3,5,9},B={1,9,25,81}.。
(苏教版)高一数学必修一配套练习:1.2子集、全集、补集(1)
§1.2 子集·全集·补集(1)课后训练【感受理解】1. 设M 满足{1,2,3}⊆M ≠⊂{1,2,3,4,5,6},则集合M 的个数为 2.下列各式中,正确的个数是①0={0};②0∈{0};③{1}∈{1,2,3};④{1,2}⊆{1,2,3};⑤{a,b}⊆{a ,b}.3.设{|12}A x x =<< ,{|}B x x a =<,若A 是B 的真子集,则a 的取值范围是 .4.若集合A ={1,3,x},B ={x 2,1},且B ⊆A ,则满足条件的实数x 的个数为 .5.设集合M ={(x,y)|x+y<0,xy>0}和N ={(x,y)|x<0,y<0},那么M 与N 的关系为______________.6.集合A ={x|x=a 2-4a+5,a∈R},B ={y|y=4b 2+4b+3,b∈R} 则集合A 与集合B 的关系是________.【思考应用】7.设x ,y∈R,B={(x,y)|y-3=x-2},A={(x,y)|32y x --=1},则集合A 与B 的关系是_______ ____. 8.已知集合{}{}|21,,|41,,A x x n n Z B x x n n Z ==+∈==±∈则,A B 的关系是 .9.设集合{}{}21,3,,1,,1,A a B a a a ==-+,A B =若则________=a . 10.已知非空集合P 满足:(){}11,2,3,4;P ⊆()2,5a P a P ∈-∈若则,符合上述要求的集合P 有 个.11.已知A={2,4,x 2-5x+9},B={3,x 2+ax+a},C={x 2+(a+1)x-3,1}. 求(1)当A={2,3,4}时,求x 的值;(2)使2∈B,B A ,求x a ,的值;(3)使B= C 的x a ,的值.【拓展提高】 12.已知集合{}{},121|,52|-≤≤+=≤≤-=m x m x B x x A 满足,A B ⊆求实数m 的取值范围.(变式)已知集合{}{}|25,|121,A x x B x m x m =-<<=+<<-满足,A B ⊆求实数m 的取值范围.。
新教材苏教版高中数学必修第一册全册书学案讲义(知识点考点汇总及配套习题)
苏教版必修第一册学案第一章集合 (2)1.1 集合的概念与表示 (2)1.2 子集、全集、补集 (16)1.3 交集、并集 (28)章末复习 (37)第二章 常用逻辑用语 (41)2.1 命题、定理、定义 (41)2.2 充分条件、必要条件、充要条件 (49)2.3 全称量词命题与存在量词命题 (56)章末复习 (63)第三章 不等式 (67)3.1 不等式的基本性质 (67)3.2 ≤a +b 2(a ,b ≥0) (77)3.3 从函数观点看一元二次方程和一元二次不等式 ................................................ 96 章末复习 .. (123)第四章 指数与对数 (128)4.1 指数 (128)4.2 对数 ...................................................................................................................... 136 章末复习 .. (150)第五章函数概念与性质 (155)5.1 函数的概念和图象 (155)5.2 函数的表示方法 (172)5.3 函数的单调性 (184)5.4 函数的奇偶性 ...................................................................................................... 199 章末复习 .. (209)第六章 幂函数、指数函数和对数函数 (216)6.1 幂函数 (216)6.2 指数函数 (225)6.3 对数函数 .............................................................................................................. 243 章末复习 .. (260)第七章 三角函数 (266)7.1 角与弧度 (266)7.2 三角函数概念 (285)7.3 三角函数的图象和性质 (320)7.4 三角函数应用 ...................................................................................................... 367 章末复习 .. (376)第八章 函数应用 (385)8.1 二分法与求方程近似解 (385)8.2 函数与数学模型 .................................................................................................. 401 章末复习 .. (418)第一章集合1.1集合的概念与表示第1课时集合的概念学习任务核心素养1.通过实例了解集合的含义.(难点)2.掌握集合中元素的三个特性.(重点)3.体会元素与集合的“属于”关系,记住常用数集的表示符号并会应用.(重点、易混点)1.通过集合概念的学习,逐步养成数学抽象素养.2.借助集合中元素的互异性的应用,培养逻辑推理素养.在生活与学习中,为了方便,我们经常要对事物进行分类.例如,图书馆中的书是按照所属学科等分类摆放的,如图所示,作文学习可按照文体如记叙文、议论文等进行,整数可以分成正整数、负整数和零这三类……你能说出数学中其他分类实例吗?试着分析为什么要进行分类.知识点1元素与集合的概念(1)一般地,一定范围内某些确定的、不同的对象的全体组成一个集合.集合中的每一个对象称为该集合的元素,简称元.(2)集合中元素的特征:确定性、互异性、无序性.假如在军训时教官喊“全体高个子同学集合”,你会去集合吗?[提示]不去,不清楚自己是不是高个子.集合中的元素必须同时具备确定性、互异性、无序性.反过来一组对象若不具备这三个特性中任何一个,则这组对象不能构成集合.集合中元素的三个特性是判断一组对象能否构成集合的重要依据.1.思考辨析(正确的画√,错误的画×)(1)接近于-1的数可以组成集合.()(2)一个集合中可以找到两个相同的元素.()(3)组成集合的元素一定是数.()[答案](1)×(2)×(3)×知识点2元素与集合1.元素与集合的表示(1)元素的表示:通常用小写拉丁字母a,b,c,…表示集合中的元素.(2)集合的表示:通常用大写拉丁字母A,B,C,…表示集合.2.元素与集合的关系(1)属于(符号:∈),a是集合A中的元素,记作a∈A,读作“a属于A”.(2)不属于(符号:∉或∈),a不是集合A中的元素,记作a∉A或a∈A,读作“a不属于A”.2.已知集合A中有两个元素2和a-1且3∈A,则实数a=________.4[由题意知a-1=3,即a=4.]知识点3常用数集及表示符号名称非负整数集(自然数集)正整数集整数集有理数集实数集符号N N*或N+Z Q R3.用“∈”或“∉”填空.3.5________N;-4________Z;0.5________R;2________N*;13________Q.∉∈∈∉∈[因为3.5不是自然数,故3.5∉N;因为-4是整数,故-4∈Z;因为0.5是实数,故0.5∈R;因为2不是正整数,故2∉N*;因为13是有理数,故13∈Q.]类型1集合的概念【例1】(1)考察下列每组对象,能构成集合的是()①中国各地的美丽乡村;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④截止到2021年10月1日,参加一带一路的国家.A.③④B.②③④C.②③D.②④(2)下列说法中,正确的有________.(填序号)①单词book的所有字母组成的集合的元素共有4个;②集合M中有3个元素a,b,c,其中a,b,c是△ABC的三边长,则△ABC不可能是等腰三角形;③将小于10的自然数按从小到大的顺序排列和按从大到小的顺序排列分别得到不同的两个集合.(1)B(2)②[(1)①中“美丽”标准不明确,不符合确定性,②③④中的元素标准明确,均可构成集合,故选B.(2)①不正确.book的字母o有重复,共有3个不同字母,元素个数是3.②正确.集合M中有3个元素a,b,c,所以a,b,c都不相等,它们构成的三角形三边不相等,故不可能是等腰三角形.③不正确.小于10的自然数不管按哪种顺序排列,里面的元素都是0,1,2,3,4,5,6,7,8,9这10个数,集合是相同的,和元素的排列顺序无关.]一组对象能组成集合的标准是什么?[提示]判断一组对象是否为集合的三依据:(1)确定性:负责判断这组元素是否构成集合.(2)互异性:负责判断构成集合的元素的个数.(3)无序性:表示只要一个集合的元素确定,则这个集合也随之确定,与元素之间的排列顺序无关.[跟进训练]1.判断下列每组对象能否构成一个集合.(1)不超过20的非负数;(2)方程x2-9=0在实数范围内的解;(3)某校2020年在校的所有高个子同学;(4) 3的近似值的全体.[解](1)对任意一个实数能判断出是不是“不超过20的非负数”,所以能构成集合.(2)能构成集合.(3)“高个子”无明确的标准,对于某个人算不算高个子无法客观地判断,因此不能构成一个集合.(4)“3的近似值”不明确精确到什么程度,因此很难判断一个数(如“2”)是不是它的近似值,所以不能构成集合.类型2元素与集合的关系【例2】(1)下列所给关系正确的个数是()①π∈R②3∈R③6∉Q④0∈N*⑤|-2|∈ZA.2 B.3C.4 D.5(2)已知集合A含有三个元素2,4,6,当a∈A,有6-a∈A.则a的值为________.(1)C(2)2或4[(1)①π是无理数∴π∈R故①正确,3是无理数∴3∈R,②正确.6是无理数∴6∉Q,④0是自然数是非负整数,0∈N,故④错误.|-2|=2∈Z正确.(2)集合A含有三个元素2,4,6且当a∈A,有6-a∈A.a=2∈A,6-a=4∈A,所以a=2或者a=4∈A,6-a=2∈A,所以a=4.综上所述,a=2或4.]判断元素与集合关系的2种方法(1)直接法:如果集合中的元素是直接给出,只要判断该元素在已知集合中是否出现即可.(2)推理法:对于一些没有直接表示的集合,只要判断该元素是否满足集合中元素所具有的特征即可,此时应首先明确已知集合中的元素具有什么特征.[跟进训练]2.集合A中的元素x满足63-x∈N,x∈N,则集合A中的元素个数为________.3[∵63-x∈N,∴3-x=1或3-x=2或3-x=3或3-x=6.即x=2或1或0或-3.又x∈N.故x=0或1或2.即集合A中的元素个数为3.]类型3集合中元素的特性及应用【例3】已知集合A中含有两个元素1和a2,若a∈A,求实数a的值.若集合A中含有两个元素a,b,则a,b满足什么关系?若1∈A,则元素1与集合A中元素a,b存在怎样的关系?[提示]a≠b,a=1或b=1.[解]由题意可知,a=1或a2=a.(1)若a=1,则a2=1,这与a2≠1相矛盾,故a≠1.(2)若a2=a,则a=0或a=1(舍去).又当a=0时,A中含有元素1和0满足集合中元素的互异性,符合题意.综上可知,实数a的值为0.1.(变条件)本例若去掉条件“a∈A”,其他条件不变,求实数a的取值范围.[解]由集合中元素的互异性可知a2≠1,即a≠±1.2.(变条件)已知集合A含有两个元素a和a2,若1∈A,求a的值.[解]若1∈A,则a=1或a2=1,即a=±1.当a=1时,集合A有重复元素,所以a≠1.当a=-1时,集合A含有两个元素1,-1,符合集合中元素的互异性.所以a=-1.由集合中元素的特性求解字母取值(范围)的步骤[跟进训练]3.已知集合A含有两个元素a-3和2a-1,若-3∈A,试求实数a的值.[解]因为-3∈A,所以-3=a-3或-3=2a-1.若-3=a-3,则a=0.此时集合A含有两个元素-3和-1.符合要求.若-3=2a-1,则a=-1,此时集合A含有两个元素-4,-3.符合要求.综上所述,a的值为0或-1.课堂达标练习1.下列给出的对象中,能组成集合的是()A.一切很大的数B.好心人C.漂亮的小女孩D.方程x2-1=0的实数根[答案]D2.下列结论不正确的是()A.0∈N B.2∉QC.0∉Q D.8∈ZC[0是有理数,故0∈Q,所以C错误.]3.若以集合A的四个元素a,b,c,d为边长构成一个四边形,则这个四边形可能是()A.梯形B.平行四边形C.菱形D.矩形A[由于a,b,c,d四个元素互不相同,故它们组成的四边形的四条边都不相等.]4.若集合A中的元素是由方程x2-2x-3=0的解构成的,若集合A中的元素是a,b,则a+b=________.2[因为方程x2-2x-3=0的解为3和-1,所以a+b=2.]5.已知集合A中有0,m,m2-3m+2三个元素,且2∈A,求m的值.[解]由2∈A可知,若m=2,则m2-3m+2=0.这与m2-3m+2≠0相矛盾.若m2-3m+2=2,则m=0或m=3,当m=0时与m≠0相矛盾.当m=3时,集合中含有3个元素0,2,3.故m的值为3.回顾本节知识,自我完成以下问题.1.元素与集合是怎样定义的?它们之间是什么关系.[提示]一般地,一定范围内某些确定的、不同的对象的全体组成一个集合.集合中的每一个对象称为该集合的元素.元素与集合之间为属于(或不属于)关系.2.利用集合中元素的特性解题时应注意什么?[提示]不要忽视集合中元素的互异性.第2课时集合的表示学习任务核心素养1.掌握集合的两种常用表示方法(列举法和描述法).(重点、难点)2.通过实例选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.1.通过学习描述法表示集合的方法,培养数学抽象的素养.2.借助描述法转化为列举时的运算,培养数学运算的素养.3.了解集合相等的概念,并能用于解决问题.(重点)4.了解集合的不同的分类方法.集合是数学中最基本的语言,在今后的数学中,我们都要用到它,要研究集合要在集合的基础上研究其他问题,首先要表示集合,为此我们来学习集合的表示方法.当集合中元素较少时,如何直观地表示集合?当集合中的元素具有一定的规律性,又该如何直观地表示集合?当集合中的元素具有一定的规律性,又该如何表示这类集合?知识点1集合的表示方法表示方法定义一般形式列举法将集合的元素一一列举出来,并置于花括号“{}”内{a1,a2,…,a n,…}描述法将集合的所有元素都具有的性质(满足的条件)表示出来{x|p(x)}Venn 图法用一个封闭曲线围成的平面区域的内部表示一个集合(1)中国的五岳组成的集合中的元素是什么?怎样列举出来?(2)不等式x-2<1的解集中的元素有什么共同特征?[提示](1)中的元素为泰山、华山、衡山、恒山、嵩山.(2)元素的共同特征为x∈R,且x<3.列举法通常适用于元素个数有限的集合.若集合中的元素有无限个,但有一定的规律性也可用列举法.描述法通常适用于元素个数较多而元素的排列又不呈现明显规律的集合或者根本就不能一一列举的集合.1.思考辨析(正确的画√,错误的画×)(1)0与{0}表示的是同一个集合.()(2)方程(x-1)2·(x-2)=0的所有解的集合可表示为{1,2}.()(3)集合A={x∈N|x>5}是用描述法表示的一个集合.()[答案](1)×(2)√(3)√知识点2集合的分类(1)集合的分类有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合,记作∅(2)集合相等如果两个集合所含的元素完全相同(即A中的元素都是B的元素,B中的元素也都是A的元素),那么称这两个集合相等.2.(1)集合{1,2,3}与{3,2,1}________相等集合.(填“是”或“不是”)(2)若集合{1,a}与集合{2,b}相等,则a+b=________.(1)是(2)3[(1)集合{1,2,3}与{3,2,1}元素完全相同,故两集合是相等集合.(2)由于{1,a}={2,b},故a=2,b=1,∴a+b=3.]类型1用列举法表示集合【例1】用列举法表示下列集合:(1)不大于10的非负偶数组成的集合A.(2)小于8的质数组成的集合B.(3)方程x2-x-2=0的实根组成的集合C.[解](1)不大于10的非负偶数有0,2,4,6,8,10.所以A={0,2,4,6,8,10}.(2)小于8的质数有2,3,5,7,所以B={2,3,5,7}.(3)方程x2-x-2=0的实根为2,-1,所以C={2,-1}.用列举法表示集合的3个步骤(1)求出集合的元素;(2)把元素一一列举出来,且相同元素只能列举一次;(3)用花括号括起来.提醒:二元方程组的解集,函数图象上的点构成的集合都是点的集合,一定要写成实数对的形式,元素与元素之间用“,”隔开.如{(2,3),(5,-1)}. [跟进训练]1.用列举法表示下列给定的集合:(1)大于1且小于6的整数组成的集合A ;(2)方程x 2-9=0的实数根组成的集合B ;(3)一次函数y =x +2与y =-2x +5的图象的交点组成的集合D .[解] (1)因为大于1且小于6的整数包括2,3,4,5,所以A ={2,3,4,5}.(2)方程x 2-9=0的实数根为-3,3,所以B ={-3,3}.(3)由⎩⎨⎧ y =x +2,y =-2x +5,得⎩⎨⎧x =1,y =3,所以一次函数y =x +2与y =-2x +5的交点为(1,3),所以D ={(1,3)}. 类型2 用描述法表示集合【例2】 用描述法表示下列集合:(1)正偶数集;(2)被3除余2的正整数集合;(3)平面直角坐标系中坐标轴上的点组成的集合.[解] (1)偶数可用式子x =2n ,n ∈Z 表示,但此题要求为正偶数,故限定n ∈N *,所以正偶数集可表示为{x |x =2n ,n ∈N *}.(2)设被3除余2的数为x ,则x =3n +2,n ∈Z ,但元素为正整数,故n ∈N ,所以被3除余2的正整数集合可表示为{x |x =3n +2,n ∈N }.(3)坐标轴上的点(x ,y )的特点是横、纵坐标中至少有一个为0,即xy =0,故平面直角坐标系中坐标轴上的点的集合可表示为{(x ,y )|xy =0}.利用描述法表示集合应关注4点(1)写清楚该集合代表元素的符号.例如,集合{x ∈R |x <1}不能写成{x <1}.(2)所有描述的内容都要写在花括号内.例如,{x ∈Z |x =2k },k ∈Z ,这种表达方式就不符合要求,需将k ∈Z 也写进花括号内,即{x ∈Z |x =2k ,k ∈Z }.(3)不能出现未被说明的字母.(4)在通常情况下,集合中竖线左侧元素的所属范围为实数集时可以省略不写.例如,方程x 2-2x +1=0的实数解集可表示为{x ∈R |x 2-2x +1=0},也可写成{x |x 2-2x +1=0}. [跟进训练]2.用描述法表示下列集合:(1)函数y =-2x 2+x 图象上的所有点组成的集合;(2)不等式2x -3<5的解组成的集合;(3)如图中阴影部分的点(含边界)的集合;(4)3和4的所有正的公倍数构成的集合.[解] (1)函数y =-2x 2+x 的图象上的所有点组成的集合可表示为{(x ,y )|y =-2x 2+x }.(2)不等式2x -3<5的解组成的集合可表示为{x |2x -3<5},即{x |x <4}.(3)图中阴影部分的点(含边界)的集合可表示为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ 0≤x ≤32,0≤y ≤1. (4)3和4的最小公倍数是12,因此3和4的所有正的公倍数构成的集合是{x |x =12n ,n ∈N *}.类型3 集合表示法的综合应用【例3】 集合A ={x |kx 2-8x +16=0},若集合A 中只有一个元素,求实数k 的值组成的集合.[解] (1)当k =0时,方程kx 2-8x +16=0变为-8x +16=0,解得x =2,满足题意;(2)当k ≠0时,要使集合A ={x |kx 2-8x +16=0}中只有一个元素,则方程kx 2-8x +16=0有两个相等的实数根,所以Δ=64-64k =0,解得k =1,此时集合A ={4},满足题意.综上所述,k =0或k =1,故实数k 的值组成的集合为{0,1}.1.本例若将条件“只有一个元素”改为“有两个元素”,其他条件不变,求实数k 的值组成的集合.[解] 由题意可知,方程kx 2-8x +16=0有两个不等实根,故k ≠0,且Δ=64-64k >0,即k <1,且k ≠0.所以实数k 组成的集合为{k |k <1,且k ≠0}.2.本例若将条件“只有一个元素”改为“至少有一个元素”,其他条件不变,求实数k 的取值范围.[解] 由题意可知,方程kx 2-8x +16=0至少有一个实数根.①当k =0时,由-8x +16=0得x =2,符合题意;②当k ≠0时,要使方程kx 2-8x +16=0至少有一个实数根,则Δ=64-64k ≥0,即k ≤1,且k ≠0.综合①②可知,实数k 的取值范围为{k |k ≤1}.(1)若已知集合是用描述法给出的,读懂集合的代表元素及其属性是解题的关键,如例3集合A 中的元素就是所给方程的根,由此便把集合的元素个数问题转化为方程的根的个数问题.(2)在学习过程中要注意数学素养的培养,如本例中用到了等价转化思想和分类讨论的思想. [跟进训练]3.已知集合A ={x |ax 2-3x +1=0,a ∈R }.若集合A 中有两个元素,求实数a 的取值范围.[解] 集合A 中有两个元素,即关于x 的方程ax 2-3x +1=0有两个不相等的实数根.∴a ≠0,且Δ=(-3)2-4a >0,解得a <94且a ≠0.类型4 集合相等【例4】 (1)集合A ={x |x 3-x =0,x ∈N }与B ={0,1}________相等集合.(填“是”或“不是”)(2)若集合A ={1,a +b ,a },集合B =⎩⎨⎧⎭⎬⎫0,b a ,b 且A =B ,则a =________,b =________.[思路点拨] (1)解出集合A ,并判断与B 是否相等;(2)找到相等的对应情况,解方程组即可.(1)是 (2)-1 1 [(1)x 3-x =x (x 2-1)=0,∴x =±1或x =0.又x ∈N ,∴A ={0,1}=B .(2)由题意知,a ≠0,故a +b =0,∴b =-a . ∴b a =-1,∴a =-1,b =1.]已知集合相等求参数,关键是根据集合相等的定义,建立关于参数的方程(组),求解时还要注意集合中元素的互异性.[跟进训练]4.已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}.若A =B ,求实数x 的值.[解] 若⎩⎨⎧ a +b =ax ,a +2b =ax 2,消去b ,则a +ax 2-2ax =0, ∴a (x -1)2=0,即a =0或x =1.当a =0时,集合B 中的元素均为0,故舍去;当x =1时,集合B 中的元素均为a ,故舍去.若⎩⎨⎧a +b =ax 2,a +2b =ax ,消去b ,则2ax 2-ax -a =0. 又∵a ≠0,∴2x 2-x -1=0,即(x -1)(2x +1)=0.又∵x ≠1,∴x =-12.经检验,当x =-12时,A =B 成立.综上所述,x =-12.课堂达标练习1.用列举法表示集合{x |x 2-2x -3=0}为( )A .{-1,3}B .{(-1,3)}C .{x =1}D .{x 2-2x -3=0}A [解方程x 2-2x -3=0,得x 1=-1,x 2=3.∴集合{x |x 2-2x -3=0}中有两个元素,用列举法得{x |x 2-2x -3=0}={-1,3},故选A.]2.(多选题)方程组⎩⎨⎧ x +y =3,x -y =-1的解集可表示为( ) A .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪ ⎩⎨⎧ x +y =3,x -y =-1 B .⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎪ ⎩⎨⎧ x =1,y =2 C .{1,2} D .{(1,2)} ABD [方程组的解应为有序数对,故A 、B 、D 正确.]3.用描述法表示不等式3x +2>5的解集为________.{x |x >1} [由不等式3x +2>5得x >1,用描述法可表示为{x |x >1}.]4.已知M ={2,a ,b },N ={2a,2,b 2},且M =N ,则a +b =________.1或34 [∵M =N ,则有⎩⎨⎧ a =2a ,b =b 2或⎩⎨⎧ a =b 2,b =2a ,解得⎩⎨⎧ a =0,b =1或⎩⎪⎨⎪⎧a =14,b =12,∴a +b =1或34.]5.已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合相等吗?试说明理由.[解] 三个集合不相等,这三个集合都是描述法给出的,但各自的意义不一样.集合A 表示y =x 2+3中x 的范围,x ∈R ,∴A =R ,集合B 表示y =x 2+3中y 的范围,B ={y |y ≥3},集合C 表示y =x 2+3上的点组成的集合.回顾本节知识,自我完成以下问题.1.集合常用的表示方法有哪些?各有什么特点?[提示] 列举法、描述法.列举法通常适用于元素个数较少或元素有规律的集合.描述法通常适用于元素个数较多或无规律的集合.2.对集合的表示有什么要求?[提示] 要根据集合元素的特点,选择适当的方法表示集合.一般要符合最简原则.3.通过本节课培养了哪些核心素养和思想方法?[提示]培养数学运算素养和逻辑推理素养.思想方法有等价转化和分类讨论的思想.1.2子集、全集、补集第1课时子集、真子集学习任务核心素养1.理解集合间包含与相等的含义,能识别给定集合间是否有包含关系.(重点) 2.能通过分析元素的特点判断集合间的关系.(难点)3.能根据集合间的关系确定一些参数的取值.(难点、易错点)1.通过对集合之间包含与相等的含义以及子集、真子集概念的理解,培养数学抽象素养.2.借助子集和真子集的求解,培养数学运算素养.如果一个班级中,所有同学组成的集合记为S,而所有女同学组成的集合记为F,你觉得集合S和F之间有怎样的关系?你能从集合元素的角度分析它们的关系吗?知识点1子集的概念及其性质(1)子集定义如果集合A的任意一个元素都是集合B的元素(若a∈A,则a∈B),那么集合A称为集合B的子集符号表示A⊆B(或B⊇A)读法集合A包含于集合B(或集合B包含集合A) 图示①A⊆A,即任何一个集合是它本身的子集.②∅⊆A,即空集是任何集合的子集.③若A⊆B,B⊆C,则A⊆C,即子集具备传递性.(3)集合相等若A⊆B且B⊆A,则A=B.1.(1)任何两个集合之间是否一定有包含关系?(2)符号“∈”与“⊆”有何不同?[提示](1)不一定,如集合A={1,2}与B={3,4}这两个集合之间没有包含关系.(2)符号“∈”表示元素与集合间的关系;而“⊆”表示集合与集合之间的关系.不能把“A⊆B”理解为“A是B中部分元素组成的集合”因为集合A 可能是空集,也可能是集合B.1.思考辨析(正确的画√,错误的画×)(1)空集中只有元素0,而无其余元素.()(2)任何一个集合都有子集.()(3)若A=B,则A⊆B且B⊆A.()(4)若a∈A,则{a}⊆A.()[答案](1)×(2)√(3)√(4)√知识点2真子集的概念与性质(1)真子集的概念如果A⊆B,并且A≠B,那么集合A称为集合B的真子集,记为A B或B A,读作“A真包含于B”或“B真包含A”.(2)性质①∅是任一非空集合的真子集.②若A B,B C,则A C.2.{0}与∅相等吗?[提示]不相等.{0}表示一个集合,且集合中有且仅有一个元素0;而∅表示空集,其不含有任何元素,故{0}≠∅.2.集合A={x|0≤x<2,x∈N}的真子集的个数为________.3[集合A={0,1},其真子集分别为∅,{0},{1}共3个.]类型1确定集合的子集、真子集【例1】设A={x|(x2-16)(x2+5x+4)=0},写出集合A的子集与真子集.[解]由(x2-16)(x2+5x+4)=0,得(x-4)(x+1)(x+4)2=0,解方程得x=-4,或x=-1或x=4,故集合A={-4,-1,4}.由0个元素构成的子集为:∅;由1个元素构成的子集为:{-4},{-1},{4};由2个元素构成的子集为:{-4,-1},{-4,4},{-1,4};由3个元素构成的子集为:{-4,-1,4};故集合A的子集为:∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4},{-4,-1,4}共8个子集.真子集为:∅,{-4},{-1},{4},{-4,-1},{-4,4},{-1,4}共7个.确定子集、真子集的关键点是什么?有什么规律?[提示] 1.有限集的子集的确定问题,求解关键有三点:(1)确定所求集合;(2)合理分类,按照子集所含元素的个数依次写出,一般按元素从少到多的顺序逐个写出满足条件的集合;(3)注意两个特殊的集合,即空集和集合本身.2.与子集、真子集个数有关的三个结论假设集合A中含有n个元素,则有:(1)A的子集的个数为2n个;(2)A的真子集的个数为2n-1个;(3)A的非空真子集的个数为2n-2个.[跟进训练]1.已知集合M满足{1,2}M⊆{1,2,3,4,5},写出集合M所有的可能情况.[解]由题意可以确定集合M必含有元素1,2,且至少含有元素3,4,5中的一个,因此依据集合M的元素个数分类如下:含有3个元素:{1,2,3},{1,2,4},{1,2,5};含有4个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5};含有5个元素:{1,2,3,4,5}.故满足条件的集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.类型2集合关系的判断【例2】指出下列各对集合之间的关系:(1)A={-1,1},B={x∈N|x2=1};(2)A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};(3)P={x|x=3n-1,n∈Z},Q={x|x=3n+2,n∈Z};(4)A={x|x是等边三角形},B={x|x是三角形};(5)A={x|-1<x<4},B={x|x-5<0}.[解](1)用列举法表示集合B={1},故B A.(2)集合A的代表元素是数,集合B的代表元素是实数对,故A与B之间无包含关系.(3)∵P表示3的整数倍少1的数构成的数集,Q表示3的整数倍多2的数构成的数集,∴P=Q.(4)等边三角形是三边相等的三角形,故A B.(5)集合B={x|x<5},用数轴表示集合A,B,如图所示,由图可发现A B.判断集合关系的方法(1)观察法:一一列举观察.(2)元素特征法:首先确定集合的元素是什么,弄清集合元素的特征,再利用集合元素的特征判断关系.(3)数形结合法:利用数轴或Venn图.提醒:若A ⊆B 和A B 同时成立,则A B 更能准确表达集合A ,B 之间的关系. [跟进训练]2.判断下列各组中集合之间的关系:(1)A ={x |x 是12的约数},B ={x |x 是36的约数};(2)A ={x |x 是平行四边形},B ={x |x 是菱形},C ={x |x 是四边形},D ={x |x 是正方形}. [解] (1)因为若x 是12的约数,则必定是36的约数,反之不成立,所以A B .(2)由图形的特点可画出Venn 图如图所示,从而D B A C .类型3 集合之间的包含关系【例3】 已知集合A ={x |-2≤x ≤5},B ={x |m +1≤x ≤2m -1}. 若B A ,求实数m 的取值范围?集合B 中的元素有何特点?可能为空集吗?m 满足什么条件时B =∅.[提示] 集合B 中的元素不确定,随m 的变化而变化.B 可能为空集. 当m +1>2m -1时B =∅.[解] (1)当B =∅时,由m +1>2m -1,得m <2.(2)当B ≠∅时,如图所示.∴⎩⎨⎧ m +1≥-2,2m -1<5,2m -1≥m +1或⎩⎨⎧ m +1>-2,2m -1≤5,2m -1≥m +1,解这两个不等式组,得2≤m ≤3.综上可得,m 的取值范围是{m |m ≤3}.1.若本例条件“A ={x |-2≤x ≤5}”改为“A ={x |-2<x <5}”,其他条件不变,求m 的取值范围.[解] (1)当B =∅时,由m +1>2m -1,得m <2. (2)当B ≠∅时,如图所示,∴⎩⎨⎧m +1>-2,2m -1<5,m +1≤2m -1,解得⎩⎨⎧m >-3,m <3,m ≥2,即2≤m <3,综上可得,m 的取值范围是{m |m <3}.2.若本例条件“B A ”改为“A ⊆B ”,其他条件不变,求m 的取值范围. [解] 当A ⊆B 时,如图所示,此时B ≠∅.∴⎩⎨⎧2m -1>m +1,m +1≤-2,2m -1≥5,即⎩⎨⎧m >2,m ≤-3,m ≥3,∴m 不存在.即不存在实数m 使A ⊆B .1.对于用不等式给出的集合,已知集合的包含关系求相关参数的范围(值)时,常采用数形结合的思想,借助数轴解答.2.两个易错点(1)当B ⊆A 时,应分B =∅和B ≠∅两种情况讨论; (2)列不等关系式时,应注意等号是否成立.[跟进训练]3.已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1}且B ⊆A .求实数m 的取值范围.[解] ∵B ⊆A ,∴可以分B =∅或B ≠∅讨论.(1)当B =∅时,m +1≤2m -1,解得m ≥2.(2)当B ≠∅时,有⎩⎨⎧-3≤2m -1,m +1≤4,2m -1<m +1,解得-1≤m <2.综上可得m ≥-1.课堂达标练习1.设集合M ={1,2,3},N ={1},则下列关系正确的是( ) A .N ∈M B .N ∉M C .N ⊇MD .N ⊆MD [∵1∈{1,2,3},∴1∈M ,又2∉N ,∴N ⊆M .] 2.(多选题)下列四个集合中,不是空集的为( ) A .{0}B .{x |x >8,且x <5}C .{x ∈N |x 2-1=0}D .{x |x >4}ACD [满足x >8且x <5的实数不存在,故{x |x >8,且x <5}=∅.] 3.集合A ={x |x (x -2)=0},则集合A 的子集的个数为________. 4 [由x (x -2)=0得x =0,或x =2,所以A ={0,2}. A 的子集有∅,{0},{2},{0,2}.] 4.设x ,y ∈R ,A ={(x ,y )|y =x },B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪yx =1,则A ,B 的关系是________.B A[∵B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪yx =1={(x ,y )|y =x ,且x ≠0},故B A .]5.已知集合A ={x |x ≥1},B ={x |x ≥a }.若B ⊆A ,则实数a 的取值范围为________.a ≥1 [结合数轴知a ≥1.]回顾本节知识,自我完成以下问题.1.两个集合间的基本关系有哪些?如何判断两个集合间的关系?[提示] A ⊆B 或A B .从集合中元素入手,根据集合间关系的定义得出结论.2.本节课中有哪些易错地方?[提示](1)忽略对集合是否为空集的讨论.(2)忽视是否能够取到端点值.3.本节课主要学习了哪些数学思想方法.[提示]分类讨论、数形结合.第2课时全集、补集学习任务核心素养1.了解全集的意义,理解补集的含义.(重点)2.能在给定全集的基础上求已知集合的补集.(难点)1.通过补集的运算培养数学运算素养.2.借助集合思想对实际生活中的对象进行判断归类,培养数学抽象素养.某学习小组学生的集合为S={甲,乙,丙,丁},其中在学校应用文写作比赛与数学建模大赛中获得过金奖的学生集合为A={甲,乙},那么没有获奖的学生有哪些?若用集合B表示没有获奖的同学,则集合B与S,集合A、B和S之间有怎样的关系?知识点1补集(1)定义:设A⊆S,由S中不属于A的所有元素组成的集合称为S的子集A 的补集,记为∁S A(读作“A在S中的补集”).(2)符号表示∁S A={x|x∈S,且x∉A}.(3)图形表示:(4)补集的性质①∁S∅=S,②∁S S=∅,③∁S(∁S A)=A.知识点2全集如果一个集合包含我们所研究问题中涉及的所有元素,那么就称这个集合为全集,全集通常记作U.两个不同的集合A、B在同一个全集U中的补集可能相等吗?[提示]不可能相等.因为集合A、B是两个不同的集合.所以必定存在元素在集合A的补集中,但不在集合B的补集中.补集符号∁S A有三层含义:(1)A是S的一个子集,即A⊆S;(2)∁S A表示一个集合,且∁S A⊆S;(3)∁S A是S中所有不属于A的元素构成的集合.1.思考辨析(正确的画√,错误的画×)(1)全集一定含有任何元素.()(2)集合∁R A=∁Q A.()(3)一个集合的补集一定含有元素.()(4)研究A在S中的补集时,A可以不是S的子集.()[答案](1)×(2)×(3)×(4)×2.已知全集U={-1,0,1},且∁U A={0},则A=()A.{-1,1} B.{-1,0,1}C.{0,1} D.{-1,0}A[∵U={-1,0,1},∁U A={0},∴A={-1,1}.]3.若集合A={x|x>1},则∁R A=________.{x|x≤1}[∵A={x|x>1},∴∁R A={x|x≤1}.]类型1全集与补集【例1】(1)已知全集U,集合A={1,3,5,7},∁U A={2,4,6},∁U B={1,4,6},则集合B=________.(2)已知全集U={x|x≤5},集合A={x|-3≤x<5},则∁U A=________.(1){2,3,5,7}(2){x|x<-3或x=5}[(1)A={1,3,5,7},∁U A={2,4,6},。
新教材苏教版高中数学必修第一册第一章集合 课时练习题及章末测验含答案解析
第一章集合1.1集合的概念与表示................................................................................................. - 1 -第1课时集合的概念.......................................................................................... - 1 -第2课时集合的表示.......................................................................................... - 5 -1.2子集、全集、补集................................................................................................. - 9 -1.3交集、并集 .......................................................................................................... - 14 -第1章测评 ................................................................................................................... - 19 - 1.1集合的概念与表示第1课时集合的概念1.(2020江苏南京高一检测)下列判断正确的个数为()①所有的等腰三角形构成一个集合;②倒数等于它自身的实数构成一个集合;③质数的全体构成一个集合;④由2,3,4,3,6,2构成含有6个元素的集合.A.1B.2C.3D.4,故①正确;若=a,则a2=1,解得a=±1,构成的集合中的元素为1,-1,故②正确;质数的全体构成一个集合,任何一个质数都在此集合中,不是质数的都不在,故③正确;集合中的元素具有互异性,由2,3,4,3,6,2构成的集合含有4个元素,分别为2,3,4,6,故④错误.故选C.2.下列说法:①集合N与集合N+是同一个集合;②集合N中的元素都是集合Z中的元素;③集合Q中的元素都是集合Z中的元素;④集合Q中的元素都是集合R中的元素.其中正确的是()A.②④B.②③C.①②D.①④N+表示正整数集,N表示自然数集,Z表示整数集,Q表示有理数集,R 表示实数集,所以①③中的说法不正确,②④中的说法正确.3.用符号∈或∉填空:(1)-2N+;(2)(-4)2N+;(3)Z;(4)π+3Q.∉(2)∈(3)∉(4)∉4.已知集合P中元素x满足:x∈N,且2<x<a,又集合P中恰有三个元素,则整数a=.x∈N,2<x<a,且集合P中恰有三个元素,∴集合P中的三个元素为3,4,5,∴a=6.5.设A是由满足不等式x<6的自然数组成的集合,若a∈A且3a∈A,求a的值.a∈A且3a∈A,∴解得a<2.又a∈N,∴a=0或1.6.(2020河北师范大学附属中学高一期中)设由“我和我的祖国”中的所有汉字组成集合A,则A中的元素个数为()A.4B.5C.6D.7,集合A中的元素分别为我、和、的、祖、国,共5个元素.故选B.7.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为()A.2B.3C.0或3D.0,2,3均可2∈A可知,m=2或m2-3m+2=2.若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A 的元素为0,3,2,符合题意.8.(2020上海高一月考)如果集合中的三个元素对应着三角形的三条边长,那么这个三角形一定不可能是()A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形,该三角形一定不可能是等腰三角形.故选D.9.(多选)(2020北京高一检测)下列各组对象能构成集合的是()A.拥有手机的人B.2020年高考数学难题C.所有有理数D.小于π的正整数A,C,D中的元素都是确定的,能构成集合,选项B中“难题”的标准不明确,不符合确定性,不能构成集合.故选ACD.10.(多选)(2020广东深圳第二高级中学高一月考)由a2,2-a,4组成一个集合A,且集合A中含有3个元素,则实数a的取值可以是()A.-1B.-2C.6D.2a2,2-a,4组成一个集合A,且集合A中含有3个元素,所以a2≠2-a,a2≠4,2-a≠4,解得a≠±2,且a≠1.故选AC.11.(多选)(2020山东济南高一检测)已知x,y,z为非零实数,代数式的值所组成的集合是M,则下列判断正确的是()A.0∉MB.2∈MC.-4∈MD.4∈M,分4种情况讨论:①当x,y,z全部为负数时,则xyz也为负数,则=-4;②当x,y,z中只有一个负数时,则xyz为负数,则=0;③当x,y,z中有两个负数时,则xyz为正数,则=0;④当x,y,z全部为正数时,则xyz也为正数,则=4.则M中含有三个元素-4,0,4.分析选项可得C,D正确.故选CD.12.(2020山东潍坊高一检测)如果有一集合含有三个元素1,x,x2-x,则实数x满足的条件是.≠0,且x≠1,且x≠2,且x≠x≠1,x2-x≠1,x2-x≠x,解得x≠0,且x≠1,且x≠2,且x≠.13.若方程ax2+x+1=0的解构成的集合只有一个元素,则a的值为.或a=0时,原方程为一元一次方程x+1=0,满足题意,所求元素即为方程的根x=-1;当a≠0时,由题意知方程ax2+x+1=0只有一个实数根,所以Δ=1-4a=0,解得a=.所以a的值为0或.14.集合A是由形如m+n(m∈Z,n∈Z)的数构成的,试分别判断a=-,b=,c=(1-2)2与集合A的关系.a=-=0+(-1)×,而0∈Z,-1∈Z,∴a∈A.∵b=,而∉Z,∉Z,∴b∉A.∵c=(1-2)2=13+(-4)×,而13∈Z,-4∈Z,∴c∈A.15.设A为实数集,且满足条件:若a∈A,则∈A(a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.若a∈A,则∈A.又2∈A,∴=-1∈A.∵-1∈A,∴∈A.∵∈A,∴=2∈A.∴A中必还有另外两个元素,且为-1,.(2)若A为单元素集,则a=,即a2-a+1=0,方程无实数解.∴a≠,∴集合A不可能是单元素集.第2课时集合的表示1.用列举法表示大于2且小于5的自然数组成的集合应为()A.{x|2<x<5,x∈N}B.{2,3,4,5}C.{2<x<5}D.{3,4}2且小于5的自然数为3和4,所以用列举法表示其组成的集合为{3,4}.2.设集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},则集合B中的元素个数为()A.4B.5C.6D.7,B={2,3,4,5,6,8},共有6个元素,故选C.3.集合{(x,y)|y=2x-1}表示()A.方程y=2x-1B.点(x,y)C.平面直角坐标系中的所有点组成的集合D.函数y=2x-1图象上的所有点组成的集合{(x,y)|y=2x-1}的代表元素是(x,y),x,y满足的关系式为y=2x-1,因此集合表示的是满足关系式y=2x-1的点组成的集合,故选D.4.集合3,,…用描述法可表示为()A.x x=,n∈N*B.x x=,n∈N*C.x x=,n∈N*D.x x=,n∈N*解析由3,,即从中发现规律,x=,n∈N*,故可用描述法表示为x x=,n∈N*.5.(2020山东济宁高一检测)已知集合A={-1,-2,0,1,2},B={x|x=y2,y∈A},则用列举法表示B应为B=.-1)2=12=1,(-2)2=22=4,02=0,所以B={0,1,4}.6.已知集合A={x|x2+2x+a=0},若1∈A,则A=.-3,1}x=1代入方程x2+2x+a=0,可得a=-3,解方程x2+2x-3=0可得A={-3,1}.7.用适当的方法表示下列集合:(1)方程x2+y2-4x+6y+13=0的解集;(2)1 000以内被3除余2的正整数组成的集合;(3)二次函数y=x2-10图象上的所有点组成的集合.方程x2+y2-4x+6y+13=0可化为(x-2)2+(y+3)2=0,解得x=2,y=-3,所以方程的解集为{(x,y)|x=2,y=-3}.(2)集合的代表元素是数,用描述法可表示为{x|x=3k+2,k∈N,且x<1 000}.(3)二次函数y=x2-10图象上的所有点组成的集合用描述法表示为{(x,y)|y=x2-10}.8.(2020福建厦门翔安一中高一期中)已知集合M={x|x(x+2)(x-2)=0},则M=()A.{0,-2}B.{0,2}C.{0,-2,2}D.{-2,2}M={x|x(x+2)(x-2)=0}={-2,0,2}.9.(2020河北沧州高一期中)已知集合M={a,2a-1,2a2-1},若1∈M,则M中所有元素之和为()A.3B.1C.-3D.-1a=1,则2a-1=1,矛盾;若2a-1=1,则a=1,矛盾,故2a2-1=1,解得a=1(舍)或a=-1,故M={-1,-3,1},元素之和为-3.故选C.10.(2020上海嘉定第一中学高一月考)已知集合A={a2,0,-1},B={a,b,0},若A=B,则(ab)2 021的值为()A.0B.-1C.1D.±1a≠0,b≠0.因为A=B,所以a=-1或b=-1.当a=-1时,b=a2=1,此时(ab)2 021=(-1)2 021=-1;当b=-1时,a2=a,因为a≠0,所以a=1,此时(ab)2 021=(-1)2 021=-1.故选B.11.(多选)(2020山东潍坊高一检测)下列选项表示的集合P与Q相等的是()A.P={x|x2+1=0,x∈R},Q=⌀B.P={2,5},Q={5,2}C.P={(2,5)},Q={(5,2)}D.P={x|x=2m+1,m∈Z},Q={x|x=2m-1,m∈Z}A,集合P中方程x2+1=0无实数根,故P=Q=⌀;对于B,集合P中有两个元素2,5,集合Q中有两个元素2,5,故P=Q;对于C,集合P中有一个元素是点(2,5),集合Q中有一个元素是点(5,2),元素不同,P≠Q;对于D,集合P={x|x=2m+1,m∈Z}表示所有奇数构成的集合,集合Q={x|x=2m-1,m∈Z}也表示所有奇数构成的集合,P=Q.故选ABD.12.(多选)(2020山东济宁曲阜一中高一月考)下列选项能正确表示方程组的解集的是()A.(-1,2)B.{(x,y)|x=-1,y=2}C.{-1,2}D.{(-1,2)}{(x,y)|x=-1,y=2}或{(-1,2)}.故选BD.13.(多选)(2020江苏连云港高一期中)已知集合A={y|y=x2+1},集合B={(x,y)|y=x2+1},下列关系正确的是()A.(1,2)∈BB.A=BC.0∉AD.(0,0)∉BA={y|y≥1},集合B是由抛物线y=x2+1上的点组成的集合,故A正确,B错误,C正确,D正确.故选ACD.14.(2020上海南洋模范中学高一期中)已知集合A={x,y},B={2x,2x2},且A=B,则集合A=.答案,1解析由题意,集合A={x,y},B={2x,2x2},且A=B,则x=2x或x=2x2.若x=2x,可得x=0,此时集合B不满足集合中元素的互异性,舍去;若x=2x2,可得x=或x=0(舍去),当x=时,可得2x=1,2x2=,即A=B=,1.15.用列举法表示集合A={(x,y)|x+y=5,x∈N*,y∈N*}是A=;用描述法表示“所有被4除余1的整数组成的集合”是.{x|x=4k+1,k∈Z}A={(1,4),(2,3),(3,2),(4,1)},所有被4除余1的整数组成的集合为{x|x=4k+1,k∈Z}.16.已知集合A={a,a+b,a+2b},B={a,ac,ac2},若A=B,求实数c的值..①若a+b=ac,a+2b=ac2,消去b,得a+ac2-2ac=0.当a=0时,集合B中的三个元素均为0,与集合中元素的互异性矛盾,故a≠0, 所以c2-2c+1=0,即c=1,但当c=1时,B中的三个元素相同,不符合题意.②若a+b=ac2,a+2b=ac,消去b,得2ac2-ac-a=0.由①知a≠0,所以2c2-c-1=0,即(c-1)(2c+1)=0,解得c=-或c=1(舍去),当c=-时,经验证,符合题意.综上所述,c=-.17.(2020天津南开翔宇学校高一月考)已知集合A={x|ax2-3x+2=0,a∈R}.(1)若A是空集,求a的所有取值组成的集合;(2)若A中只有一个元素,求a的值,并把这个元素写出来;(3)若A中至多有一个元素,求a的所有取值组成的集合.当a=0时,-3x+2=0,此时x=,所以A不是空集,不符合题意;当a≠0时,若A是空集,则Δ=9-8a<0,所以a>.综上可知,a的所有取值组成的集合为a a>.(2)当a=0时,-3x+2=0,此时x=,满足条件,此时A中仅有一个元素;当a≠0时,Δ=9-8a=0,所以a=,此时方程为x2-3x+2=0,即(3x-4)2=0,解得x=,此时A 中仅有一个元素.综上可知,当a=0时,A中只有一个元素为;当a=时,A中只有一个元素为.(3)A中至多有一个元素,即方程ax2-3x+2=0只有一个实数根或无实数根.则a=0或Δ=9-8a<0,解得a=0或a>.故a的所有取值组成的集合为a a=0,或a>.1.2子集、全集、补集1.(2020山东青岛高一检测)已知集合M={x|x2-2x=0},U={2,1,0},则∁U M=()A.{0}B.{1,2}C.{1}D.{0,1,2}M={x|x2-2x=0}={0,2},U={2,1,0},则∁U M={1}.故选C.2.集合A={x|-1<x<2},B={x|0<x<1},则()A.B∈AB.A⊆BC.B⊆AD.A=BA={x|-1<x<2},B={x|0<x<1},∴B⊆A.故选C.3.下列关系:①0∈{0};②⌀⫋{0};③{0,1}⊆{(0,1)};④{(a,b)}={(b,a)}.其中正确的个数为()A.1B.2C.3D.4正确,0是集合{0}的元素;②正确,⌀是任何非空集合的真子集;③错误,集合{0,1}含两个元素0,1,而{(0,1)}含一个元素点(0,1),所以这两个集合没关系;④错误,集合{(a,b)}含一个元素点(a,b),集合{(b,a)}含一个元素点(b,a),这两个元素不同,所以集合不相等.故选B.4.已知集合B={-1,1,4},满足条件⌀⫋M⊆B的集合M的个数为()A.3B.6C.7D.8M是集合B的非空子集,集合B中有3个元素,因此非空子集有7个,故选C.5.若集合M=x x=,k∈Z,集合N=x x=,k∈Z,则()A.M=NB.N⊆MC.M⫋ND.以上均不对解析M=x x=,k∈Z=x x=,k∈Z,N=x x=,k∈Z=x x=,k∈Z.又2k+1,k∈Z 为奇数,k+2,k∈Z为整数,所以M⫋N.6.设A={x|1<x<2},B={x|x<a},若A⫋B,则实数a的取值范围是.a|a≥2},因为A⫋B,所以a≥2,即a的取值范围是{a|a≥2}.7.设全集U=R,A={x|x<1},B={x|x>m},若∁U A⊆B,则实数m的取值范围是.m|m<1}∁U A={x|x≥1},B={x|x>m},∴由∁U A⊆B可知m<1,即m的取值范围是{m|m<1}.8.已知集合A={x|x<-1,或x>4},B={x|2a≤x≤a+3},若B⊆A,求实数a的取值范围.B=⌀时,2a>a+3,即a>3,显然满足题意.当B≠⌀时,根据题意作出如图所示的数轴,可得解得a<-4或2<a≤3.综上可得,实数a的取值范围为{a|a<-4,或a>2}.9.(2020山东济宁高一月考)如果集合P={x|x>-1},那么()A.0⊆PB.{0}∈PC.⌀∈PD.{0}⊆PP={x|x>-1},∴0∈P,{0}⊆P,⌀⊆P,故A,B,C错误,D正确.故选D.10.已知M={x|x>1},N={x|x>a},且M⫋N,则()A.a≤1B.a<1C.a≥1D.a>1M={x|x>1},N={x|x>a},且M⫋N,∴a<1.故选B.11.集合M={x|x=4k+2,k∈Z},N={x|x=2k,k∈Z},P={x|x=4k-2,k∈Z},则M,N,P的关系为()A.M=P⊆NB.N=P⊆MC.M=N⊆PD.M=P=NM=P={±2,±6…},N={0,±2,±4,±6…},所以M=P⊆N.12.(2020山东济南高一检测)已知A={x|x2-3x+2=0},B={x|ax=1},若B⊆A,则实数a 取值的集合为()A.0,1,B.1,C.0,2,D.-2,解析因为A={x|x2-3x+2=0}={x|(x-1)(x-2)=0}={1,2},又B={x|ax=1},当B=⌀时,方程ax=1无解,则a=0,此时满足B⊆A;当B≠⌀时,a≠0,此时B={x|ax=1}=,为使B⊆A,只需=1或=2,解得a=1或a=.综上,实数a取值的集合为0,1,.故选A.13.已知全集U={1,2,a2-2a+3},A={1,a},∁U A={3},则实数a等于()A.0或2B.0C.1或2D.2,知则a=2.14.(多选)(2020山东五莲教学研究室高一期中)已知集合M={x|-3<x<3,x∈Z},则下列符号语言表述正确的是()A.2∈MB.0⊆MC.{0}∈MD.{0}⊆MM={x|-3<x<3,x∈Z}={-2,-1,0,1,2},∴2∈M,0∈M,{0}⊆M.∴A,D正确,B,C错误.故选AD.15.(多选)(2020福建宁德高一期中)已知集合A={y|y=x2+1},集合B={x|x>2},下列关系正确的是()A.B⊆AB.A⊆BC.0∉AD.1∈AA={y|y=x2+1}={y|y≥1},B={x|x>2},所以B⊆A,0∉A,1∈A.故选ACD.16.(多选)(2020北京高一检测)集合A={-1,1},B={x|ax+1=0},若B⊆A,则实数a的可能取值为()A.-1B.0C.1D.2解析由题意,B⊆A,当a=0时,B=⌀符合题意;当a≠0时,B=-⊆A,则-=1或-=-1,解得a=-1或a=1,所以实数a的取值为-1,0或1.故选ABC.17.(2020山东东营高一月考)设U=R,A={x|a≤x≤b},∁U A={x|x<3或x>4},则a=,b=.4U=R,A={x|a≤x≤b},∴∁U A={x|x<a,或x>b}.∵∁U A={x|x<3,或x>4},∴a=3,b=4.18.集合A={x|(a-1)x2+3x-2=0}有且仅有两个子集,则a的取值为.或-A有两个子集可知,该集合中只有一个元素,当a=1时,满足题意;当a≠1时,由Δ=9+8(a-1)=0,可得a=-.19.设A={x|x2-8x+15=0},B={x|ax-1=0}.(1)若a=,试判定集合A与B的关系;(2)若B⊆A,求实数a组成的集合C.a=,则B={5},元素5是集合A={5,3}中的元素,集合A={5,3}中除元素5外,还有元素3,3在集合B中没有,所以B⫋A.(2)当a=0时,由题意B=⌀,又A={3,5},故B⊆A;当a≠0时,B=,又A={3,5},B⊆A,此时=3或=5,则有a=或a=.所以C=0,.20.设集合A={x|-1≤x+1≤6},m为实数,B={x|m-1<x<2m+1}.(1)当x∈Z时,求A的非空真子集的个数;(2)若B⊆A,求m的取值范围.A得A={x|-2≤x≤5}.(1)∵x∈Z,∴A={-2,-1,0,1,2,3,4,5},即A中含有8个元素,∴A的非空真子集个数为28-2=254.(2)当m-1≥2m+1,即m≤-2时,B=⌀⊆A;当m>-2时,B≠⌀,因此,要使B⊆A,则只要解得-1≤m≤2.综上所述,m的取值范围是{m|m≤-2,或-1≤m≤2}.21.(2020山西平遥综合职业技术学校高一月考)已知全集U=R,集合A={x|-2≤x≤3},B={x|2a<x<a+3},且B⊆∁U A,求实数a的取值集合.A={x|-2≤x≤3},所以∁U A={x|x<-2,或x>3}.因为B⊆∁U A,当B=⌀时,2a≥a+3,解得a≥3;当B≠⌀时,由B⊆∁U A,得解得≤a<3或a≤-5.所以实数a的取值集合为a a≤-5,或a≥.1.3交集、并集1.(2020北京八中期末)已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A.{1,3,4}B.{3,4}C.{3}D.{4},全集U={1,2,3,4},A={1,2},B={2,3},可得A∪B={1,2,3},所以∁U(A∪B)={4}.故选D.2.已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3D.4A={1,2,3,4},B={2,4,6,8},∴A∩B={2,4}.∴A∩B中元素的个数为2.故选B.3.(2021全国甲,理1)设集合M={x|0<x<4},N=,则M∩N=()A. B.C.{x|4≤x<5}D.{x|0<x≤5}解析由交集的定义及图知M∩N=x≤x<4.4.设集合A={(x,y)|y=ax+1},B={(x,y)|y=x+b},且A∩B={(2,5)},则()A.a=3,b=2B.a=2,b=3C.a=-3,b=-2D.a=-2,b=-3A∩B={(2,5)},∴解得故选B.5.若集合A={0,1,2,x},B={1,x2},A∪B=A,则满足条件的实数x有()A.1个B.2个C.3个D.4个A∪B=A,∴B⊆A.∵A={0,1,2,x},B={1,x2},∴x2=0或x2=2或x2=x,解得x=0或x=±或x=1.经检验,当x=或-时满足题意.故选B.6.已知集合A={1,2,3},B={y|y=2x-1,x∈A},则A∩B=.∩B={1,2,3}∩{y|y=2x-1,x∈A}={1,2,3}∩{1,3,5}={1,3}.7.(2020山东泰兴第三高级中学高一月考)设M={a2,a+1,-3},N={a-3,2a-1,a2+1},若M∩N={-3},则a的值为,此时M∪N=.1{-4,-3,0,1,2}M∩N={-3},∴a-3=-3或2a-1=-3,解得a=0或a=-1.当a=0时,M={0,1,-3},N={-3,-1,1},得M∩N={1,-3},不符合题意,舍去.当a=-1时,M={0,1,-3},N={-4,-3,2},得M∩N={-3},符合题意.此时M∪N={-4,-3,0,1,2}.8.(2020上海浦东华师大二附中高一月考)调查班级40名学生对A,B两事件的态度,有如下结果:赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成,另外,对A,B都不赞成的学生数比对A,B都赞成的学生数的三分之一多1,则对A,B都赞成的学生有人.A的人数为40×=24,赞成B的人数为24+3=27.设对A,B都赞成的学生数为x,则对A,B都不赞成的学生数为x+1,如图可得x+1+27-x+x+24-x=40,解得x=18.9.已知集合A={x|-2<x<4},B={x|x-m<0,m∈R}.(1)若A∩B=⌀,求实数m的取值范围;(2)若A∩B=A,求实数m的取值范围.∵A={x|-2<x<4},B={x|x<m,m∈R},又A∩B=⌀,∴m≤-2.故实数m的取值范围为{m|m≤-2}.(2)由A∩B=A,得A⊆B.∵A={x|-2<x<4},B={x|x<m,m∈R},∴m≥4.故实数m的取值范围为{m|m≥4}.10.已知集合M={0,1},则满足M∪N={0,1,2}的集合N的个数是()A.2B.3C.4D.8,可知满足M∪N={0,1,2}的集合N有{2},{0,2},{1,2},{0,1,2},共4个.故选C.11.(2020江苏无锡期末)下图中的阴影部分,可用集合符号表示为()A.(∁U A)∩(∁U B)B.(∁U A)∪(∁U B)C.(∁U B)∩AD.(∁U A)∩BA与集合B的补集的交集,所以图中阴影部分可以用(∁U B)∩A表示.12.(2020江苏镇江月考)集合论是德国数学家康托尔于19世纪末创立的.在他的集合理论中,用card(A)表示有限集合中元素的个数,例如:A={a,b,c},则card(A)=3.若对于任意两个有限集合A,B,有card(A∪B)=card(A)+card(B)-card(A∩B).某校举办运动会,高一某班参加田赛的学生有14人,参加径赛的学生有9人,两项都参加的有5人,那么该班参加本次运动会的人数为()A.28B.23C.18D.16A,则card(A)=14,参加径赛的学生组成集合B,则card(B)=9,由题意得card(A∩B)=5,所以card(A∪B)=card(A)+card(B)-card(A∩B)=14+9-5=18,所以该班参加本次运动会的人数为18.故选C.13.(2020天津南开中学高一开学考试)已知集合A={x|x≥-1},B=x a≤x≤2a-1,若A∩B≠⌀,则实数a的取值范围是()A.{a|a≥1}B.a a≥C.{a|a≥0}D.a0≤a≤解析因为A={x|x≥-1},B=x a≤x≤2a-1,若A∩B≠⌀,则B≠⌀且B与A有公共元素,则需解得a≥.故选B.14.(多选)(2020江苏江浦高级中学期中)已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B 中的元素有()A.-2B.-1C.0D.1A={x|x>-1},所以∁R A={x|x≤-1},则(∁R A)∩B={x|x≤-1}∩{-2,-1,0,1}={-2,-1}.故选AB.15.(多选)(2020河北曲阳第一高级中学月考)已知集合A={x|x<2},B={x|3-2x>0},则()A.A∩B=x x<B.A∩B≠⌀C.A∪B=x x<D.A∪(∁R B)=R解析∵A={x|x<2},B={x|3-2x>0}=x x<,∁R B=x x≥,∴A∩B=x x<,A∩B≠⌀,A∪B={x|x<2},A∪(∁R B)=R.故选ABD.16.(多选)(2020山东菏泽高一月考)已知集合M={2,-5},N={x|mx=1},且M∪N=M,则实数m的值可以为()A. B.-5C.-D.0解析因为M∪N=M,所以N⊆M,当m=0时,N=⌀,满足N⊆M.当m≠0时,N=,若N⊆M,则=2或=-5,解得m=或m=-.综上所述,m=0或m=或m=-,故选ACD.17.已知M={x|y=x2-1},N={y|y=x2-1},则M∩N=.y|y≥-1}{x|y=x2-1}=R,N={y|y=x2-1}={y|y≥-1},故M∩N={y|y≥-1}.18.(2020山西太原第五十三中学月考)已知A={x|x2+px+1=0},M={x|x>0},若A∩M=⌀,则实数p的取值范围为.p|p>-2}A=⌀时,Δ=p2-4<0,解得-2<p<2;当A≠⌀,即p≤-2或p≥2时,此时方程x2+px+1=0的两个根需满足小于等于0,则x1x2=1>0,x1+x2=-p<0,得p>0,则p≥2.综上,实数p的取值范围为{p|p>-2}.19.设集合A={x|x2-3x+2=0},B={x|x2-4x+a=0},若A∪B=A,求实数a的取值范围.{1,2},因为A∪B=A,所以B⊆A.若B=⌀,则方程x2-4x+a=0无实数根,所以Δ=16-4a<0,所以a>4.若B≠⌀,则a≤4,当a=4时,B={2}⊆A满足条件;当a<4时,1,2是方程x2-4x+a=0的根,此时a无解.所以a=4.综上可得,a的取值范围是{a|a≥4}.20.(2020天津宝坻大钟庄高中月考)已知集合A={x|-3≤x≤6},B={x|x<4},C={x|m-5<x<2m+3,m∈R}.(1)求(∁R A)∩B;(2)若A⊆C,求实数m的取值范围.因为A={x|-3≤x≤6},所以∁R A={x|x<-3,或x>6},故(∁R A)∩B={x|x<-3,或x>6}∩{x|x<4}={x|x<-3}.(2)因为C={x|m-5<x<2m+3},且A⊆C,所以<m<2,所以m的取值范围为m<m<2.21.(2020山东滕州第一中学新校高一月考)已知全集U=R,集合A={x|x>2},B={x|-4<x<4}.(1)求∁U(A∪B);(2)定义A-B={x|x∈A,且x∉B},求A-B,A-(A-B).因为A={x|x>2},B={x|-4<x<4},所以A∪B={x|x>-4},则∁U(A∪B)={x|x≤-4}.(2)因为A-B={x|x∈A,且x∉B},所以A-B={x|x≥4},因此A-(A-B)={x|2<x<4}.第1章测评(时间:120分钟满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列所给对象能构成集合的是()A.2020年全国Ⅰ卷数学试题中的所有难题B.比较接近2的全体正数C.未来世界的高科技产品D.所有整数A,B,C的标准不明确,所以不能构成集合;而选项D的元素具有确定性,能构成集合.故选D.2.(2021新高考Ⅰ,1)设集合A={x|-2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}A={x|-2<x<4},B={2,3,4,5},∴A∩B={2,3}.故选B.3.(2020山东,1)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=()A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}数形结合)由数轴可知所以A∪B={x|1≤x<4},故选C.4.(2020江苏梅村高级中学月考)已知A={x,x+1,1},B={x,x2+x,x2},且A=B,则()A.x=1或x=-1B.x=1C.x=0或x=1或x=-1D.x=-1x=1时,集合A={1,2,1},B={1,2,1}不满足集合中元素的互异性,排除A,B,C;当x=-1时,A={-1,0,1},B={-1,0,1},A=B,满足题意.故选D.5.(2020江苏吴江中学月考)满足{2}⫋A⊆{1,2,3,4,5},且A中元素之和为偶数的集合A 的个数是()A.5B.6C.7D.8{2}⫋A⊆{1,2,3,4,5},所以2∈A.又A中元素之和为偶数,所以满足条件的集合A有{2,4},{1,2,3},{1,2,5},{2,3,5},{1,2,3,4},{1,2,4,5},{2,3,4,5},共7个,故选C.6.(2020安徽安庆白泽湖中学月考)已知集合A={x|x<1,或x>3},B={x|x-a<0},若B⊆A,则实数a的取值范围为()A.{a|a>3}B.{a|a≥3}C.{a|a<1}D.{a|a≤1}B={x|x<a},因为B⊆A,所以a≤1.故选D.7.(2020山东潍坊月考)设全集U=R,M={x|x<-2,或x>2},N={x|1≤x≤3}.如图所示,则阴影部分所表示的集合为()A.{x|-2≤x<1}B.{x|-2≤x≤3}C.{x|x≤2,或x>3}D.{x|-2≤x≤2}∁R(M∪N).又M={x|x<-2,或x>2},N={x|1≤x≤3},所以M∪N={x|x<-2,或x≥1},则图中阴影部分表示的集合为∁R(M∪N)={x|-2≤x<1}.故选A.8.(2020山西高一月考)某学校组织强基计划选拔赛,某班共有30名同学参加了学校组织的数学、物理两科选拔,其中两科都取得优秀的有6人,数学取得优秀但物理未取得优秀的有12人,物理取得优秀而数学未取得优秀的有4人,则两科均未取得优秀的人数是()A.8B.6C.5D.4,两科都取得优秀的有6人,数学取得优秀物理未取得优秀的有12人,物理取得优秀而数学未取得优秀的有4人,这样共有22人至少取得一科优秀.某班共有30名同学,则两科均未取得优秀的人数是30-22=8.故选A.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9.已知集合M={1,m+2,m2+4},且5∈M,则m的可能取值有()A.1B.-1C.3D.25∈M,所以m+2=5或m2+4=5,解得m=3,或m=±1.当m=3时,M={1,5,13},符合题意,当m=1时,M={1,3,5},符合题意,当m=-1时,M={1,1,5},不满足元素的互异性,不成立.所以m=3或m=1.故选AC.10.(2020山东邹城第一中学高一月考)已知全集U=R,A={x|x<2,或x>4},B={x|x≥a},且∁U A⊆B,则实数a的取值可以是()A.1B.3C.2D.4A={x|x<2,或x>4},得∁U A={x|2≤x≤4}.因为∁U A⊆B,B={x|x≥a},所以a≤2,所以实数a的取值可以是1,2.故选AC.11.设全集U={0,1,2,3,4},集合A={0,1,4},B={0,1,3},则()A.A∩B={0,1}B.∁U B={4}C.A∪B={0,1,3,4}D.集合A的真子集个数为8A={0,1,4},B={0,1,3},所以A∩B={0,1},A∪B={0,1,3,4},选项A,C都正确;又全集U={0,1,2,3,4},所以∁U B={2,4},选项B错误;集合A={0,1,4}的真子集有7个,所以选项D错误.12.(2020重庆万州第二高级中学月考)给定数集M,若对于任意a,b∈M,有a+b∈M,且a-b∈M,则称集合M为闭集合,则下列说法错误的是()A.集合M={-4,-2,0,2,4}为闭集合B.正整数集是闭集合C.集合M={n|n=5k,k∈Z}为闭集合D.若集合A1,A2为闭集合,则A1∪A2为闭集合A,4∈M,2∈M,但4+2=6∉M,故A错误;对于B,1∈N*,2∈N*,但1-2=-1∉N*,故B错误;对于C,对于任意a,b∈M,设a=5k1,b=5k2,k1∈Z,k2∈Z,a+b=5(k1+k2),a-b=5(k1-k2),k1+k2∈Z,k1-k2∈Z,所以a+b∈M,a-b∈M,故C正确;对于D,A1={n|n=5k,k∈Z},A2={n|n=3k,k∈Z}都是闭集合,但A1∪A2不是闭集合,如5∈(A1∪A2),3∈(A1∪A2),但5+3=8∉(A1∪A2),故D错误.故选ABD.三、填空题:本题共4小题,每小题5分,共20分.13.设集合A={0,1},B={1,2},C={x|x=a+b,a∈A,b∈B},则集合C的真子集个数为.A={0,1},B={1,2},∴C={x|x=a+b,a∈A,b∈B}={1,2,3}有3个元素,∴集合C的真子集个数为23-1=7.14.(2020湖南雨花雅礼中学高一月考)设A={x|-1<x≤3},B={x|x>a},若A⊆B,则实数a的取值范围是.a|a≤-1},如图所示,∵A⊆B,∴a≤-1.15.(2020江苏玄武南京田家炳高级中学月考)集合A={x|x<1,或x≥2},B={x|a<x<2a+1},若A∪B=R,则实数a的取值范围是.答案a≤a<1集合A={x|x<1,或x≥2},B={x|a<x<2a+1},A∪B=R,∴解得≤a<1,∴实数a的取值范围是a≤a<1.16.(2020山西高一月考)设全集U={1,2,3,4,5,6},用U的子集可表示由0,1组成的6位字符串.如:(2,5)表示的是从左往右第2个字符为1,第5个字符为1,其余均为0的6位字符串010010,并规定空集表示的字符串为000000.若M={1,3,4},则∁U M表示6位字符串为;若A={2,3},集合A∪B表示的字符串为011011,则满足条件的集合B的个数为.4U={1,2,3,4,5,6},M={1,3,4},所以∁U M={2,5,6},则∁U M表示6位字符串为010011.因为集合A∪B表示的字符串为011011,所以A∪B={2,3,5,6}.又A={2,3},所以集合B可能为{5,6},{2,5,6},{3,5,6},{2,3,5,6},即满足条件的集合B的个数为4.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2020江苏镇江月考)已知全集U={0,1,2,3,4,5,6,7},集合A={1,2,3},B={1,3,4}.(2)集合C满足(A∩B)⊆C⊆(A∪B),请写出所有满足条件的集合C.由A={1,2,3},B={1,3,4},得A∩B={1,3},A∪B={1,2,3,4}.由U={0,1,2,3,4,5,6,7},得(∁U A)∩(∁U B)={0,5,6,7}.(2)由(A∩B)⊆C⊆(A∪B),A∩B={1,3},A∪B={1,2,3,4},得C可以为{1,3},{1,2,3},{1,3,4},{1,2,3,4}.18.(12分)已知集合A有三个元素:a-3,2a-1,a2+1,集合B也有三个元素:0,1,x(a∈R,x ∈R).(1)若x2∈B,求实数x的值.(2)是否存在实数a,x,使A=B?若存在,求出a,x;若不存在,请说明理由.集合B中有三个元素:0,1,x.x2∈B,当x取0,1,-1时,都有x2∈B,∵集合中的元素都有互异性,∴x≠0,x≠1,∴x=-1.∴实数x的值为-1.(2)不存在.理由如下:a2+1≠0,若a-3=0,则a=3,A={0,5,10}≠B;若2a-1=0,则a=,A=0,-≠B,∴不存在实数a,x,使A=B.19.(12分)已知集合A={x||x-a|=4},集合B={1,2,b}.(1)是否存在实数a,使得对于任意实数b都有A⊆B?若存在,求出相应的a值;若不存在,试说明理由.(2)若A⊆B成立,求出相应的实数对(a,b).不存在.理由如下:若对任意的实数b都有A⊆B,则当且仅当1和2是A中的元素时才有可能.因为A={a-4,a+4},所以这都不可能,所以这样的实数a不存在.(2)由(1)易知,当且仅当时,A⊆B.解得所以所求的实数对为(5,9),(6,10),(-3,-7),(-2,-6).20.(12分)(2020山东枣庄第三中学高一月考)已知集合A={x|a-1<x<2a+1,a∈R},B={x|0<x<1},U=R.(2)若A∩B=⌀,求实数a的取值范围.解(1)当a=时,A=x-<x<2.因为B={x|0<x<1},所以∁U B={x|x≤0,或x≥1}.因此A∩B={x|0<x<1},A∩(∁U B)=x-<x≤0,或1≤x<2.(2)当A=⌀时,显然符合题意,因此有a-1≥2a+1,解得a≤-2;当A≠⌀时,因此有a-1<2a+1,解得a>-2,要想A∩B=⌀,则有2a+1≤0或a-1≥1,解得a≤-或a≥2,而a>-2,所以-2<a≤-或a≥2.综上所述,实数a的取值范围为a a≤-,或a≥2.21.(12分)(2020安徽芜湖一中月考)已知集合A={x|-1≤x≤3},B={x|x<0,或x>2},C={x|m-2≤x≤m+2},m为实数.(1)求A∩B,∁R(A∩B);(2)若A⊆∁R C,求实数m的取值范围.因为A={x|-1≤x≤3},B={x|x<0,或x>2},所以A∩B={x|-1≤x<0,或2<x≤3},∁R(A∩B)={x|x<-1,或0≤x≤2,或x>3}.(2)因为C={x|m-2≤x≤m+2},所以∁R C={x|x<m-2,或x>m+2}.因为A⊆∁R C,所以m-2>3或m+2<-1,解得m>5或m<-3,所以m的取值范围为{m|m<-3,或m>5}.22.(12分)(2020北京八中月考)设a为实数,集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.(1)若A∩B=A∪B,求a的值;(2)若A∩B≠⌀,A∩C=⌀,求a的值.,B={2,3},C={-4,2}.(1)因为A∩B=A∪B,所以A=B.又B={2,3},则解得a=5.(2)由于A∩B≠⌀,而A∩C=⌀,则3∈A,即9-3a+a2-19=0,解得a=5或a=-2.由(1)知,当a=5时,A=B={2,3}.此时A∩C≠⌀,矛盾,舍去.当a=-2时,经检验,满足题意.因此a=-2.。
2020年苏教版高一数学必修1课后练习题:1.3交集、并集(含答案)
交集、并集练习1.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于________.2.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N等于________.3.设集合A={y|y=x2+1,x∈R},B={y|y=x+1,x∈R},则A∩B等于________.4.第二十九届夏季奥林匹克运动会于2008年8月8日在北京举行.若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则B∪C__________A.5.设M={1,2,4,5},P={1,2,3},则有________(M∩P).6.如图所示,U是全集,M,P,S是U的三个子集,则阴影部分表示的集合是__________.7.满足条件{1,2,3}∪B={1,2,3,4,5}的集合B的个数是__________.8.已知集合A={x|x2+2(a+1)x+a2-1=0},B={x|x2+4x=0},若A∪B=B,则实数a的取值范围是________.9.某市政府对水、电提价,召开听证会,如记对水提价为事件A,对电提价为事件B.现向100名市民调查其对A、B两事件的看法,有如下结果:赞成A的人数是全体的35,其余的不赞成;赞成B的比赞成A的多3人,其余不赞成;另外,对A、B都不赞成的市民人数比对A、B都赞成的市民人数的13多1人,问对A、B都赞成的市民和都不赞成的市民各有多少人?10.已知集合A={x|0≤x≤5},集合B={x|m≤x≤2m-1},且A∪B=A,试用区间符号表示实数m的取值范围.参考答案 1.答案:{x |x <-5或x >-3}2.答案:{(3,-1)}3.答案:{y |y ≥1} 4.答案:=5.答案:6.答案:S ∩M ∩P7.答案:88.答案:{a |a ≤-1或a =1}9.解:赞成A 的人数为100×35=60,赞成B 的人数为60+3=63. 如图所示,记100名市民组成的集合为U ,赞成事件A 的市民为集合A ,赞成事件B 的市民为集合B .设对事件A 、B 都赞成的市民人数为x ,则对A 、B 都不赞成的市民人数为3x +1.依题意可得,(60-x )+(63-x )+x +3x +1=100,解得x =36, 即对A 、B 两事件都赞成的市民有36人,对A 、B 两事件都不赞成的市民有13人.10.解:∵A ∪B =A ,∴BA . 又∵A ={x |0≤x ≤5}≠, ∴B =,或B ≠. 当B =时,有m >2m -1,∴m <1.当B ≠时,如图,由图可得210215m m m m ≤-⎧⎪≤⎨⎪-≤⎩,,,解得1≤m ≤3.综上所述,实数m 的取值范围为(-∞,3].。
苏教版高中数学必修1全册课时作业及答案
苏教版高中数学必修1 全册课时作业目录1.1第1课时集合的含义1.1第2课时集合的表示1.2子集、全集、补集1.3交集、并集2.1.1函数的概念和图象2.1.2习题课2.1.2函数的表示方法2.1.3习题课2.1.3第1课时函数的单调性2.1.3第2课时函数的最大(小)值2.1.3第3课时奇偶性的概念2.1.3第4课时奇偶性的应用2.1.4映射的概念2.2.1函数的单调性(一)2.2.1函数的单调性(二)2.2.1分数指数幂2.2.2 习题课2.2.2习题课2.2.2函数的奇偶性2.2.2指数函数(一)2.2.2指数函数(二)2.2习题课2.3.1第1课时对数的概念2.3.1第2课时对数运算2.3.2习题课2.3.2对数函数(一)2.3.2对数函数(二)2.3映射的概念2.4幂函数2.5.1函数的零点2.5.2用二分法求方程的近似解2.5习题课2.6习题课2.6函数模型及其应用3.1.1分数指数幂3.1.2指数函数(一)3.1.2指数函数(二)3.1习题课3.2.1第1课时对数(一)3.2.1第2课时对数(二)3.2.2对数函数(一)3.2.2对数函数(二)3.2习题课3.3幂函数3.4.1习题课3.4.1第1课时函数的零点3.4.1第2课时用二分法求方程的近似解3.4.2习题课3.4.2函数模型及其应用第1章集合§1.1集合的含义及其表示第1课时集合的含义课时目标 1.通过实例了解集合的含义,并掌握集合中元素的三个特性.2.体会元素与集合间的“从属关系”.3.记住常用数集的表示符号并会应用.1.一般地,一定范围内某些确定的、不同的对象的全体构成一个________.集合中的每一个对象称为该集合的________,简称______.2.集合通常用________________表示,用____________________表示集合中的元素.3.如果a是集合A的元素,就说a________集合A,记作a____A,读作“a______A”,如果a不是集合A的元素,就说a__________A,记作a____A,读作“a________A”.4.集合中的元素具有________、________、________三种性质.5.实数集、有理数集、整数集、自然数集、正整数集分别用字母____、____、____、____、____或______来表示.一、填空题1.下列语句能确定是一个集合的是________.(填序号)①著名的科学家;②留长发的女生;③2010年广州亚运会比赛项目;④视力差的男生.2.集合A只含有元素a,则下列各式正确的是________.(填序号)①0∈A;②a∉A;③a∈A;④a=A.3.已知M中有三个元素可以作为某一个三角形的边长,则此三角形一定不是________.(填序号)①直角三角形;②锐角三角形;③钝角三角形;④等腰三角形.4.由a2,2-a,4组成一个集合A,A中含有3个元素,则实数a的取值可以是________.(填序号)①1;②-2;③6;④2.5.已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m的值为________.6.由实数x、-x、|x|、x2及-3x3所组成的集合,最多含有________个元素.7.由下列对象组成的集体属于集合的是________.(填序号)①不超过π的正整数;②本班中成绩好的同学;③高一数学课本中所有的简单题;④平方后等于自身的数.8.集合A中含有三个元素0,1,x,且x2∈A,则实数x的值为________.9.用符号“∈”或“∉”填空-2______R,-3______Q,-1_______N,π______Z.二、解答题10.判断下列说法是否正确?并说明理由.(1)参加2010年广州亚运会的所有国家构成一个集合; (2)未来世界的高科技产品构成一个集合;(3)1,0.5,32,12组成的集合含有四个元素;(4)高一(三)班个子高的同学构成一个集合.11.已知集合A 是由a -2,2a 2+5a,12三个元素组成的,且-3∈A ,求a .能力提升 12.设P 、Q 为两个非空实数集合,P 中含有0,2,5三个元素,Q 中含有1,2,6三个元素,定义集合P +Q 中的元素是a +b ,其中a ∈P ,b ∈Q ,则P +Q 中元素的个数是多少?13.设A为实数集,且满足条件:若a∈A,则11-a∈A (a≠1).求证:(1)若2∈A,则A中必还有另外两个元素;(2)集合A不可能是单元素集.1.考查对象能否构成一个集合,就是要看是否有一个确定的特征(或标准),能确定一个个体是否属于这个总体,如果有,能构成集合,如果没有,就不能构成集合.2.集合中元素的三个性质(1)确定性:指的是作为一个集合中的元素,必须是确定的,即一个集合一旦确定,某一个元素属于不属于这个集合是确定的.要么是该集合中的元素要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否构成集合.(2)互异性:集合中的元素必须是互异的,就是说,对于一个给定的集合,它的任何两个元素都是不同的.(3)无序性:集合与其中元素的排列顺序无关,如由元素a,b,c与由元素b,a,c组成的集合是相等的集合.这个性质通常用来判断两个集合的关系.第1章集合§1.1集合的含义及其表示第1课时集合的含义知识梳理1.集合元素元 2.大写拉丁字母A,B,C…小写拉丁字母a,b,c,… 3.属于∈属于不属于∉不属于4.确定性互异性无序性 5.R Q Z N N*N+作业设计1.③解析①、②、④都因无法确定其构成集合的标准而不能构成集合.2.③解析由题意知A中只有一个元素a,∴0∉A,a∈A,元素a与集合A的关系不应用“=”.3.④解析集合M的三个元素是互不相同的,所以作为某一个三角形的边长,三边是互不相等的.4.③解析因A中含有3个元素,即a2,2-a,4互不相等,将各项中的数值代入验证知填③. 5.3解析由2∈A可知:若m=2,则m2-3m+2=0,这与m2-3m+2≠0相矛盾;若m2-3m+2=2,则m=0或m=3,当m=0时,与m≠0相矛盾,当m=3时,此时集合A={0,3,2},符合题意.6.2解析 因为|x |=±x ,x 2=|x |,-3x 3=-x ,所以不论x 取何值,最多只能写成两种形式:x 、-x ,故集合中最多含有2个元素. 7.①④解析 ①④中的标准明确,②③中的标准不明确.故答案为①④. 8.-1解析 当x =0,1,-1时,都有x 2∈A ,但考虑到集合元素的互异性,x ≠0,x ≠1,故答案为-1.9.∈ ∈ ∉ ∉10.解 (1)正确.因为参加2010年广州亚运会的国家是确定的,明确的. (2)不正确.因为高科技产品的标准不确定.(3)不正确.对一个集合,它的元素必须是互异的,由于0.5=12,在这个集合中只能作为一元素,故这个集合含有三个元素. (4)不正确,因为个子高没有明确的标准. 11.解 由-3∈A ,可得-3=a -2或-3=2a 2+5a ,∴a =-1或a =-32.则当a =-1时,a -2=-3,2a 2+5a =-3,不符合集合中元素的互异性,故a =-1应舍去.当a =-32时,a -2=-72,2a 2+5a =-3,∴a =-32.12.解 ∵当a =0时,b 依次取1,2,6,得a +b 的值分别为1,2,6; 当a =2时,b 依次取1,2,6,得a +b 的值分别为3,4,8; 当a =5时,b 依次取1,2,6,得a +b 的值分别为6,7,11.由集合元素的互异性知P +Q 中元素为1,2,3,4,6,7,8,11共8个.13.证明 (1)若a ∈A ,则11-a∈A .又∵2∈A ,∴11-2=-1∈A .∵-1∈A ,∴11--1=12∈A .∵12∈A ,∴11-12=2∈A . ∴A 中另外两个元素为-1,12.(2)若A 为单元素集,则a =11-a,即a 2-a +1=0,方程无解.∴a ≠11-a,∴A 不可能为单元素集.第2课时 集合的表示课时目标 1.掌握集合的两种表示方法(列举法、描述法).2.能够运用集合的两种表示方法表示一些简单集合.1.列举法将集合的元素____________出来,并用花括号“{ }”括起来表示集合的方法叫做列举法.2.两个集合相等如果两个集合所含的元素____________,那么称这两个集合相等. 3.描述法将集合的所有元素都具有的______(满足的______)表示出来,写成{x |p (x )}的形式. 4.集合的分类(1)有限集:含有________元素的集合称为有限集. (2)无限集:含有________元素的集合称为无限集. (3)空集:不含任何元素的集合称为空集,记作____.一、填空题1.集合{x ∈N +|x -3<2}用列举法可表示为___________________________________. 2.集合{(x ,y )|y =2x -1}表示________.(填序号) ①方程y =2x -1; ②点(x ,y );③平面直角坐标系中的所有点组成的集合; ④函数y =2x -1图象上的所有点组成的集合.3.将集合⎩⎪⎨⎪⎧x ,y |⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x +y =52x -y =1表示成列举法为______________.4.用列举法表示集合{x |x 2-2x +1=0}为________.5.已知集合A ={x ∈N |-3≤x ≤3},则有________.(填序号) ①-1∈A ;②0∈A ;③3∈A ;④2∈A .6.方程组⎩⎪⎨⎪⎧x +y =3x -y =-1的解集不可表示为________.①{(x ,y )|⎩⎪⎨⎪⎧x +y =3x -y =-1};②{(x ,y )|⎩⎪⎨⎪⎧x =1y =2};③{1,2};④{(1,2)}.7.用列举法表示集合A ={x |x ∈Z ,86-x∈N }=______________________________.8.下列各组集合中,满足P =Q 的为________.(填序号) ①P ={(1,2)},Q ={(2,1)}; ②P ={1,2,3},Q ={3,1,2};③P ={(x ,y )|y =x -1,x ∈R },Q ={y |y =x -1,x ∈R }.9.下列各组中的两个集合M 和N ,表示同一集合的是________.(填序号) ①M ={π},N ={3.141 59}; ②M ={2,3},N ={(2,3)};③M ={x |-1<x ≤1,x ∈N },N ={1};④M ={1,3,π},N ={π,1,|-3|}. 二、解答题10.用适当的方法表示下列集合①方程x (x 2+2x +1)=0的解集;②在自然数集内,小于1 000的奇数构成的集合; ③不等式x -2>6的解的集合;④大于0.5且不大于6的自然数的全体构成的集合.11.已知集合A ={x |y =x 2+3},B ={y |y =x 2+3},C ={(x ,y )|y =x 2+3},它们三个集合相等吗?试说明理由.能力提升12.下列集合中,不同于另外三个集合的是________.①{x |x =1};②{y |(y -1)2=0};③{x =1};④{1}.13.已知集合M ={x |x =k 2+14,k ∈Z },N ={x |x =k 4+12,k ∈Z },若x 0∈M ,则x 0与N 的关系是____________________________________________________.1.在用列举法表示集合时应注意:①元素间用分隔号“,”;②元素不重复;③元素无顺序;④列举法可表示有限集,也可以表示无限集,若元素个数比较少用列举法比较简单;若集合中的元素较多或无限,但出现一定的规律性,在不发生误解的情况下,也可以用列举法表示. 2.在用描述法表示集合时应注意:(1)弄清元素所具有的形式(即代表元素是什么),是数、还是有序实数对(点)、还是集合、还是其他形式?(2)元素具有怎样的属性?当题目中用了其他字母来描述元素所具有的属性时,要去伪存真,而不能被表面的字母形式所迷惑.第2课时 集合的表示知识梳理1.一一列举 2.完全相同 3.性质 条件 4.(1)有限个 (2)无限个 (3)∅ 作业设计 1.{1,2,3,4}解析 {x ∈N +|x -3<2}={x ∈N +|x <5}={1,2,3,4}. 2.④解析 集合{(x ,y )|y =2x -1}的代表元素是(x ,y ),x ,y 满足的关系式为y =2x -1,因此集合表示的是满足关系式y =2x -1的点组成的集合. 3.{(2,3)}解析 解方程组⎩⎪⎨⎪⎧x +y =5,2x -y =1.得⎩⎪⎨⎪⎧x =2,y =3.所以答案为{(2,3)}.4.{1}解析 方程x 2-2x +1=0可化简为(x -1)2=0, ∴x 1=x 2=1,故方程x 2-2x +1=0的解集为{1}. 5.② 6.③解析 方程组的集合中最多含有一个元素,且元素是一对有序实数对,故③不符合. 7.{5,4,2,-2}解析 ∵x ∈Z ,86-x∈N ,∴6-x =1,2,4,8.此时x =5,4,2,-2,即A ={5,4,2,-2}. 8.②解析 ①中P 、Q 表示的是不同的两点坐标;②中P =Q ;③中P 表示的是点集,Q 表示的是数集. 9.④解析 只有④中M 和N 的元素相等,故答案为④.10.解 ①∵方程x (x 2+2x +1)=0的解为0和-1, ∴解集为{0,-1};②{x |x =2n +1,且x <1 000,n ∈N }; ③{x |x >8};④{1,2,3,4,5,6}.11.解 因为三个集合中代表的元素性质互不相同,所以它们是互不相同的集合.理由如下:集合A 中代表的元素是x ,满足条件y =x 2+3中的x ∈R ,所以A =R ; 集合B 中代表的元素是y ,满足条件y =x 2+3中y 的取值范围是y ≥3, 所以B ={y |y ≥3}.集合C 中代表的元素是(x ,y ),这是个点集,这些点在抛物线y =x 2+3上,所以C ={P |P是抛物线y =x 2+3上的点}. 12.③解析 由集合的含义知{x |x =1}={y |(y -1)2=0} ={1},而集合{x =1}表示由方程x =1组成的集合. 13.x 0∈N解析 M ={x |x =2k +14,k ∈Z },N ={x |x =k +24,k ∈Z },∵2k +1(k ∈Z )是一个奇数,k +2(k ∈Z )是一个整数, ∴x 0∈M 时,一定有x 0∈N .§1.2子集、全集、补集课时目标 1.理解子集、真子集的意义,会判断两集合的关系.2.理解全集与补集的意义,能正确运用补集的符号.3.会求集合的补集,并能运用Venn图及补集知识解决有关问题.1.子集如果集合A的__________元素都是集合B的元素(若a∈A则a∈B),那么集合A称为集合B的________,记作______或______.任何一个集合是它本身的______,即A⊆A. 2.如果A⊆B,并且A≠B,那么集合A称为集合B的________,记为______或(______).3.______是任何集合的子集,______是任何非空集合的真子集.4.补集设A⊆S,由S中不属于A的所有元素组成的集合称为S的子集A的______,记为______(读作“A在S中的补集”),即∁S A={x|x∈S,且x∉A}.5.全集如果集合S包含我们所要研究的各个集合,这时S可以看做一个______,全集通常记作U.集合A相对于全集U的补集用Venn图可表示为一、填空题1.集合P={x|y=x+1},集合Q={y|y=x-1},则P与Q的关系是________.2.满足条件{1,2}M⊆{1,2,3,4,5}的集合M的个数是________.3.已知集合U={1,3,5,7,9},A={1,5,7},则∁U A=________.4.已知全集U=R,集合M={x|x2-4≤0},则∁U M=________.5.下列正确表示集合M={-1,0,1}和N={x|x2+x=0}关系的Venn图是_____________________________.6.集合M={x|x=3k-2,k∈Z},P={y|y=3n+1,n∈Z},S={z|z=6m+1,m∈Z}之间的关系是________.7.设U={0,1,2,3},A={x∈U|x2+mx=0},若∁U A={1,2},则实数m=________. 8.设全集U={x|x<9且x∈N},A={2,4,6},B={0,1,2,3,4,5,6},则∁U A=________,∁U B=______,∁B A=________.9.已知全集U,A B,则∁U A与∁U B的关系是____________________.二、解答题10.设全集U={x∈N*|x<8},A={1,3,5,7},B={2,4,5}.(1)求∁U(A∪B),∁U(A∩B);(2)求(∁U A)∪(∁U B),(∁U A)∩(∁U B);(3)由上面的练习,你能得出什么结论?请结事Venn图进行分析.11.已知集合A={1,3,x},B={1,x2},设集合U=A,求∁U B.能力提升12.设全集是数集U={2,3,a2+2a-3},已知A={b,2},∁U A={5},求实数a,b的值.13.已知集合A={x|1<ax<2},B={x|-1<x<1},求满足A⊆B的实数a的取值范围.1.子集概念的多角度理解(1)“A是B的子集”的含义是:集合A中的任何一个元素都是集合B的元素,即由任意x∈A能推出x∈B.(2)不能把“A⊆B”理解成“A是B中部分元素组成的集合”,因为当A=∅时,A⊆B,但A中不含任何元素;又当A=B时,也有A⊆B,但A中含有B中的所有元素,这两种情况都有A⊆B.2.∁U A的数学意义包括两个方面:首先必须具备A⊆U;其次是定义∁U A={x|x∈U,且x∉A},补集是集合间的运算关系.3.补集思想做题时“正难则反”策略运用的是补集思想,即已知全集U,求子集A,若直接求A困难,可先求∁U A,再由∁U(∁U A)=A求A.§1.2子集、全集、补集知识梳理1.任意一个子集A⊆B B⊇A子集 2.真子集A B B A3.空集空集 4.补集∁S A 5.全集作业设计1.P Q解析∵P={x|y=x+1}={x|x≥-1},Q={y|y≥0},∴P Q.2.7解析M中含三个元素的个数为3,M中含四个元素的个数也是3,M中含5个元素的个数只有1个,因此符合题意的共7个.3.{3,9}解析在集合U中,去掉1,5,7,剩下的元素构成∁U A.4.{x|x<-2或x>2}解析∵M={x|-2≤x≤2},∴∁U M={x|x<-2或x>2}.5.②解析由N={-1,0},知N M.6.S P=M解析运用整数的性质方便求解.集合M、P表示成被3整除余1的整数集,集合S表示成被6整除余1的整数集.7.-3解析∵∁U A={1,2},∴A={0,3},故m=-3.8.{0,1,3,5,7,8} {7,8} {0,1,3,5}解析由题意得U={0,1,2,3,4,5,6,7,8},用Venn图表示出U,A,B,易得∁U A={0,1,3,5,7,8},∁U B={7,8},∁B A={0,1,3,5}.9.∁U B∁U A解析画Venn图,观察可知∁U B∁U A.10.解 (1)∵U ={x ∈N *|x <8}={1,2,3,4,5,6,7},A ∪B ={1,2,3,4,5,7},A ∩B ={5},∴∁U (A ∪B )={6},∁U (A ∩B )={1,2,3,4,67}.(2)∵∁U A ={2,4,6},∁U B ={1,3,6,7},∴(∁U A )∪(∁U B )={1,2,3,4,6,7},(∁U A )∩(∁U B )={6}.(3)∁U (A ∪B )=(∁U A )∩(∁U B )(如左下图);∁U (A ∩B )=(∁U A )∪(∁U B )(如右下图).11.解 因为B ⊆A ,因而x 2=3或x 2=x .①若x 2=3,则x =± 3.当x =3时,A ={1,3,3},B ={1,3},此时∁U B ={3};当x =-3时,A ={1,3,-3},B ={1,3},U =A ={1,3,-3},此时∁U B ={-3}.②若x 2=x ,则x =0或x =1. 当x =1时,A 中元素x 与1相同,B 中元素x 2与1也相同,不符合元素的互异性,故x ≠1; 当x =0时,A ={1,3,0},B ={1,0},U =A ={1,3,0},从而∁U B ={3}. 综上所述,∁U B ={3}或{-3}或{3}. 12.解 ∵∁U A ={5},∴5∈U 且5∉A .又b ∈A ,∴b ∈U ,由此得⎩⎪⎨⎪⎧a 2+2a -3=5,b =3.解得⎩⎪⎨⎪⎧a =2,b =3或⎩⎪⎨⎪⎧a =-4,b =3经检验都符合题意.13.解 (1)当a =0时,A =∅,满足A ⊆B .(2)当a >0时,A ={x |1a <x <2a}.又∵B ={x |-1<x <1},A ⊆B ,∴⎩⎪⎨⎪⎧1a ≥-1,2a ≤1,∴a ≥2.(3)当a <0时,A ={x |2a <x <1a}.∵A ⊆B ,∴⎩⎪⎨⎪⎧2a ≥-1,1a ≤1,∴a ≤-2.综上所述,a =0或a ≥2或a ≤-2.§1.3交集、并集课时目标 1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.1.交集(1)定义:一般地,由____________________元素构成的集合,称为集合A与B的交集,记作________.(2)交集的符号语言表示为A∩B=__________.(3)交集的图形语言表示为下图中的阴影部分:(4)性质:A∩B=______,A∩A=____,A∩∅=____,A∩B=A⇔______.2.并集(1)定义:一般地,________________________的元素构成的集合,称为集合A与B的并集,记作______.(2)并集的符号语言表示为A∪B=______________.(3)并集的图形语言(即Venn图)表示为图中的阴影部分:(4)性质:A∪B=______,A∪A=____,A∪∅=____,A∪B=A⇔______,A____A∪B,A∩B____A∪B.一、填空题1.若集合A={0,1,2,3},B={1,2,4},则集合A∪B=________.2.集合A={x|-1≤x≤2},B={x|x<1},则A∩B=________.3.若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是________.①A⊆B;②B⊆C;③A∩B=C;④B∪C=A.4.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N=________. 5.设集合A={5,2a},集合B={a,b},若A∩B={2},则a+b等于________.6.集合M={1,2,3,4,5},集合N={1,3,5},则下列关系正确的是________.①N∈M;②M∪N=M;③M∩N=M;④M>N.7.设集合A={-3,0,1},B={t2-t+1}.若A∪B=A,则t=________.8.设集合A={-1,1,3},B={a+2,a2+4},A∩B={3},则实数a=________. 9.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a=______,b=______.二、解答题10.已知方程x2+px+q=0的两个不相等实根分别为α,β,集合A={α,β},B={2,4,5,6},C={1,2,3,4},A∩C=A,A∩B=∅.求p,q的值.11.设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.能力提升12.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为________.13.设U={1,2,3},M,N是U的子集,若M∩N={1,3},则称(M,N)为一个“理想配集”,求符合此条件的“理想配集”的个数(规定(M,N)与(N,M)不同).1.对并集、交集概念全方面的感悟(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x∈A,或x∈B”这一条件,包括下列三种情况:x∈A但x∉B;x∈B但x∉A;x∈A且x∈B.因此,A∪B是由所有至少属于A、B两者之一的元素组成的集合.(2)A∩B中的元素是“所有”属于集合A且属于集合B的元素,而不是部分,特别地,当集合A和集合B没有公共元素时,不能说A与B没有交集,而是A∩B=∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”、“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值取到与否.拓展交集与并集的运算性质,除了教材中介绍的以外,还有A⊆B⇔A∪B=B,A⊆B⇔A ∩B =A .这种转化在做题时体现了化归与转化的思想方法,十分有效.§1.3 交集、并集知识梳理 1.(1)所有属于集合A 且属于集合B 的 A ∩B (2){x |x ∈A ,且x ∈B } (4)B ∩A A ∅ A ⊆B 2.(1)由所有属于集合A 或属于集合B A ∪B (2){x |x ∈A ,或x ∈B } (4)B ∪A A A B ⊆A ⊆ ⊆ 作业设计1.{0,1,2,3,4} 2.{x |-1≤x <1}解析 由交集定义得{x |-1≤x ≤2}∩{x |x <1}={x |-1≤x <1}. 3.④解析 参加北京奥运会比赛的男运动员与参加北京奥运会比赛的女运动员构成了参加北京奥运会比赛的所有运动员,因此A =B ∪C . 4.{(3,-1)}解析 M 、N 中的元素是平面上的点,M ∩N 是集合,并且其中元素也是点,解⎩⎪⎨⎪⎧x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1.5.3解析 依题意,由A ∩B ={2}知2a =2, 所以,a =1,b =2,a +b =3. 6.②解析 ∵N M ,∴M ∪N =M . 7.0或1解析 由A ∪B =A 知B ⊆A , ∴t 2-t +1=-3①或t 2-t +1=0②或t 2-t +1=1③①无解;②无解;③t =0或t =1. 8.1解析 ∵3∈B ,由于a 2+4≥4,∴a +2=3,即a =1. 9.-1 2解析 ∵B ∪C ={x |-3<x ≤4},∴A (B ∪C ), ∴A ∩(B ∪C )=A ,由题意{x |a ≤x ≤b }={x |-1≤x ≤2}, ∴a =-1,b =2.10.解 由A ∩C =A ,A ∩B =∅,可得:A ={1,3},即方程x 2+px +q =0的两个实根为1,3.∴⎩⎪⎨⎪⎧1+3=-p 1×3=q ,∴⎩⎪⎨⎪⎧p =-4q =3.11.解 ∵A ∩B =B ,∴B ⊆A .∵A ={-2}≠∅,∴B =∅或B ≠∅.当B =∅时,方程ax +1=0无解,此时a =0.当B ≠∅时,此时a ≠0,则B ={-1a},∴-1a ∈A ,即有-1a =-2,得a =12.综上,得a =0或a =12.12.6解析 x 的取值为1,2,y 的取值为0,2,∵z =xy ,∴z 的取值为0,2,4,所以2+4=6. 13.解 符合条件的理想配集有 ①M ={1,3},N ={1,3}. ②M ={1,3},N ={1,2,3}. ③M ={1,2,3},N ={1,3}. 共3个.第2章 函数 §2.1 函数的概念 2.1.1 函数的概念和图象课时目标 1.理解函数的概念,明确函数的三要素.2.能正确使用区间表示数集,表示简单函数的定义域、值域.3.会求一些简单函数的定义域、值域.1.一般地,设A ,B 是两个非空的数集,如果按某种对应法则f ,对集合A 中的每一个元素x ,在集合B 中都有惟一的元素y 和它对应,那么这样的对应叫做从A 到B 的一个________,通常记为y =f(x),x ∈A.其中,所有的输入值x 组成的集合A 叫做函数y =f(x)的________. 2.若A 是函数y =f(x)的定义域,则对于A 中的每一个x ,都有一个输出值y 与之对应.我们将所有输出值y 组成的集合称为函数的________. 3.函数的三要素是指函数的定义域、值域、对应法则.一、填空题1.对于函数y =f(x),以下说法正确的有________个. ①y 是x 的函数;②对于不同的x ,y 的值也不同;③f(a)表示当x =a 时函数f(x)的值,是一个常量; ④f(x)一定可以用一个具体的式子表示出来.2.设集合M ={x|0≤x≤2},N ={y|0≤y≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有________.3.下列各组函数中,表示同一个函数的是________.①y =x -1和y =x 2-1x +1;②y =x 0和y =1;③f(x)=x 2和g(x)=(x +1)2;④f(x)=x 2x 和g(x)=xx2. 4.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2-1,值域为{1,7}的“孪生函数”共有________个. 5.函数y =1-x +x 的定义域为________. 6.函数y =x +1的值域为________.7.已知两个函数f(x)和g(x)的定义域和值域都是{1,2,3},其定义如下表:x 1 2 3 f(x) 2 3 1x 1 2 3 g(x) 1 3 2x 1 2 3 g[f(x)]填写后面表格,其三个数依次为:________.8.如果函数f(x)满足:对任意实数a ,b 都有f(a +b)=f(a)f(b),且f(1)=1,则f 2f 1+f 3f 2+f 4f 3+f 5f 4+…+f 2 011f 2 010=________. 9.已知函数f(x)=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为________.10.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________.二、解答题11.已知函数f (1-x1+x)=x ,求f (2)的值.能力提升12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远? (2)何时开始第一次休息?休息多长时间? (3)第一次休息时,离家多远?(4)11:00到12:00他骑了多少千米?(5)他在9:00~10:00和10:00~10:30的平均速度分别是多少? (6)他在哪段时间里停止前进并休息用午餐?13.如图,某灌溉渠的横断面是等腰梯形,底宽为2 m,渠深为1.8 m,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;(2)确定函数的定义域和值域;(3)画出函数的图象.1.函数的判定判定一个对应法则是否为函数,关键是看对于数集A中的任一个值,按照对应法则所对应数集B中的值是否唯一确定,如果唯一确定,就是一个函数,否则就不是一个函数.2.由函数式求函数值,及由函数值求x,只要认清楚对应法则,然后对号入座就可以解决问题.3.求函数定义域的原则:①当f(x)以表格形式给出时,其定义域指表格中的x的集合;②当f(x)以图象形式给出时,由图象范围决定;③当f(x)以解析式给出时,其定义域由使解析式有意义的x的集合构成;④在实际问题中,函数的定义域由实际问题的意义确定.第2章函数概念与基本初等函数Ⅰ§2.1函数的概念和图象2.1.1 函数的概念和图象知识梳理1.函数定义域 2.值域作业设计1.2解析①、③正确;②不对,如f(x)=x2,当x=±1时y=1;④不对,f(x)不一定可以用一个具体的式子表示出来,如南极上空臭氧空洞的面积随时间的变化情况就不能用一个具体的式子来表示. 2.②③解析 ①的定义域不是集合M ;②能;③能;④与函数的定义矛盾. 3.④解析 ①中的函数定义域不同;②中y =x 0的x 不能取0;③中两函数的对应法则不同. 4.9解析 由2x 2-1=1,2x 2-1=7得x 的值为1,-1,2,-2,定义域为两个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”. 5.{x|0≤x≤1}解析 由题意可知⎩⎪⎨⎪⎧1-x≥0,x≥0,解得0≤x≤1.6.[0,+∞) 7.3 2 1解析 g[f(1)]=g(2)=3,g[f(2)]=g(3)=2,g[f(3)]=g(1)=1. 8.2 010解析 由f(a +b)=f(a)f(b),令b =1,∵f(1)=1,∴f(a+1)=f(a),即f a +1f a=1,由a 是任意实数,所以当a 取1,2,3,…,2 010时,得f 2f 1=f 3f 2=…=f 2 011f 2 010=1.故答案为2 010.9.{-1,1,3,5,7}解析 ∵x=1,2,3,4,5,∴f(x)=2x -3=-1,1,3,5,7.10.[0,13]解析 由⎩⎪⎨⎪⎧0≤2x≤1,0≤x+23≤1,得⎩⎪⎨⎪⎧0≤x≤12,-23≤x≤13,即x∈[0,13].11.解 由1-x 1+x =2,解得x =-13,所以f(2)=-13.12.解 (1)最初到达离家最远的地方的时间是12时,离家30千米. (2)10:30开始第一次休息,休息了半小时. (3)第一次休息时,离家17千米. (4)11:00至12:00他骑了13千米.(5)9:00~10:00的平均速度是10千米/时;10:00~10:30的平均速度是14千米/时.(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.13.解 (1)由已知,横断面为等腰梯形,下底为2 m ,上底为(2+2h)m ,高为h m ,∴水的面积A =[2+2+2h ]h 2=h 2+2h(m 2).(2)定义域为{h|0<h<1.8}.值域由二次函数A=h2+2h(0<h<1.8)求得.由函数A=h2+2h=(h+1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大,∴0<A<6.84.故值域为{A|0<A<6.84}.(3)函数图象如下确定.由于A=(h+1)2-1,对称轴为直线h=-1,顶点坐标为(-1,-1),且图象过(0,0)和(-2,0)两点,又考虑到0<h<1.8,∴A=h2+2h的图象仅是抛物线的一部分,如下图所示.2.1.2 函数的表示方法课时目标 1.掌握函数的三种表示方法——解析法、图象法、列表法.2.在实际情境中,会根据不同的需要选择恰当方法表示函数.1.函数的三种表示法(1)列表法:用列表来表示两个变量之间函数关系的方法. (2)解析法:用等式来表示两个变量之间函数关系的方法. (3)图象法:用图象表示两个变量之间函数关系的方法. 2.分段函数在定义域内不同部分上,有不同的解析表达式,像这样的函数通常叫做分段函数.一、填空题1.一个面积为100 cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为________.2.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是________.3.如果f (1x )=x1-x,则当x ≠0时,f (x )=________.4.已知f (x )=2x +3,g (x +2)=f (x ),则g (x )=__________________________________. 5.已知f (x )=⎩⎪⎨⎪⎧ x -5 x ≥6f x +2x <6,则f (3)=_________________________________. 6.已知f (x )=⎩⎪⎨⎪⎧x -3 x ≥9f [f x +4] x <9,则f (7)=________________________________.7.一个弹簧不挂物体时长12 cm ,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3 kg 物体后弹簧总长是13.5 cm ,则弹簧总长y (cm)与所挂物体质量x (kg)之间的函数关系式为________________________________.8.已知函数y =f (x )满足f (x )=2f (1x)+x ,则f (x )的解析式为____________.9.已知f (x )是一次函数,若f (f (x ))=4x +8,则f (x )的解析式为________. 二、解答题 10.已知二次函数f (x )满足f (0)=f (4),且f (x )=0的两根平方和为10,图象过(0,3)点,求f (x )的解析式.11.画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0)、f (1)、f (3)的大小;(2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域.能力提升12.在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内,车距d 是车速v (公里/小时)的平方与车身长S (米)的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50公里/小时,车距恰好等于车身长,试写出d 关于v 的函数关系式(其中S 为常数).13.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.1.如何作函数的图象一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式(可能有的要表示为分段函数),再列表描出图象,并在画图象的同时注意一些关键点,如与坐标轴的交点、分段函数的区间端点等. 2.如何求函数的解析式求函数的解析式的关键是理解对应法则f 的本质与特点(对应法则就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方程组法(消元法). 3.分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集. 分段函数的图象应分段来作,特别注意各段的自变量取区间端点处时函数的取值情况,以决定这些点的实虚情况.2.1.2 函数的表示方法作业设计1.y =50x(x>0)解析 由x +3x2·y=100,得2xy =100.∴y =50x (x>0).2.1解析 由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错.3.1x -1解析 令1x =t ,则x =1t ,代入f(1x )=x1-x,则有f(t)=1t 1-1t=1t -1.4.2x -1解析 由已知得:g(x +2)=2x +3, 令t =x +2,则x =t -2, 代入g(x +2)=2x +3,则有g(t)=2(t -2)+3=2t -1. 5.2解析 ∵3<6,∴f(3)=f(3+2)=f(5)=f(5+2)=f(7)=7-5=2. 6.6解析 ∵7<9,∴f(7)=f[f(7+4)]=f[f(11)]=f(11-3)=f(8). 又∵8<9,∴f(8)=f[f(12)]=f(9)=9-3=6. 即f(7)=6.7.y =12x +12解析 设所求函数解析式为y =kx +12,把x =3,y =13.5代入,得13.5=3k +12,k =12. 所以所求的函数解析式为y =12x +12.8.f(x)=-x 2+23x(x≠0)解析 ∵f(x)=2f(1x)+x ,①∴将x 换成1x ,得f(1x )=2f(x)+1x .②由①②消去f(1x ),得f(x)=-23x -x3,即f(x)=-x 2+23x (x≠0).9.f(x)=2x +83或f(x)=-2x -8解析 设f(x)=ax +b(a≠0),则f(f(x))=f(ax +b)=a 2x +ab +b.∴⎩⎪⎨⎪⎧a 2=4ab +b =8,解得⎩⎪⎨⎪⎧a =2b =83或⎩⎪⎨⎪⎧a =-2b =-8.10.解 设f(x)=ax 2+bx +c(a≠0). 由f(0)=f(4)知⎩⎪⎨⎪⎧f 0=c ,f 4=16a +4b +c ,f 0=f 4,得4a +b =0.①又图象过(0,3)点, 所以c =3.②设f(x)=0的两实根为x 1,x 2,则x 1+x 2=-b a ,x 1·x 2=ca.所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(-b a )2-2·c a=10.即b 2-2ac =10a 2.③由①②③得a =1,b =-4,c =3.所以f(x)=x 2-4x +3.11.解 因为函数f(x)=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 …y … -5 0 3 4 3 0 -5…连线,描点,得函数图象如图:(1)根据图象,容易发现f (0)=3, f (1)=4,f (3)=0, 所以f (3)<f (0)<f (1).(2)根据图象,容易发现当x 1<x 2<1时,有f (x 1)<f (x 2).(3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].12.解 根据题意可得d =kv 2S .∵v =50时,d =S ,代入d =kv 2S 中,解得k =12 500.∴d =12 500v 2S .当d =S2时,可解得v =25 2.∴d =⎩⎪⎨⎪⎧S 2 0≤v <25212 500v 2S v ≥252.13.解 因为对任意实数x ,y ,有 f (x -y )=f (x )-y (2x -y +1), 所以令y =x ,有f (0)=f (x )-x (2x -x +1),即f (0)=f (x )-x (x +1).又f (0)=1,∴f (x )=x (x +1)+1=x 2+x +1.。
(苏教版 提高版)高中数学 必修第一册答案
{组 狓2狓-+狔狔+=30=,0的解集为{(狓,狔)|狓=-1且狔=2} 10.AB 提示 因为“狓∈犕,狓>3”为假命题,所
以“狓∈犕,狓≤3”为真命题,可得 犕(-∞,3].又“狓∈犕,|狓|>狓”为真命题,所以 犕 (-∞,0). 故 犕(-∞,0) 11.BD 提示 易知 BD正确.电路图 A 中,开关故为充分不必要条件;电路图C中,开关S闭合,灯泡L不一定亮,灯泡L亮,开关S一定闭 合,故为必要不充分条件 12.ABD 提示 若犪∈犉,则犪-犪=0∈犉,故A正确;若犪∈犉 且犪≠0,则1= 犪犪 ∈犉,由此2=1+1∈犉,3=1+2∈犉,依次类推2021∈犉,故 B正确;犘={狓|狓=3犽,犽∈犣},3∈犘, 6∈犘,但36犘,所以犘 不是数域,故C错误;若犪,犫是两个有理数,则犪+犫,犪-犫,犪犫,犫犪 (犫≠0)都是 有理数,所以有理数集是数域,故D正确 13.{1,2} {,{1},{2},{1,2}} 14.1或3 提示 犃= {犪,犪-1},犅={2,犫}.因为犃=犅,若犪=2,则犫=犪-1=1;若犪-1=2,则犫=犪=3 15.(-∞,-1) 提示 由题意知“狓∈犚,狓2-2狓-犪≠0”为真命题.而狓2-2狓=(狓-1)2-1≥-1,故犪<-1 16.8 提示 当犽=0时,犕 为{0};当犽=1时,犕 为{1},{0,2},{0,1,2};当犽=2时,犕 为{2},{1,3}, {1,2,3};当犽=3时,犕 为{3}.所以满足条件的集合犕 有8个 17.因为犃∩犅={3},所以3∈犅,即9+ 3犮+15=0,解得犮=-8.当犮=-8时,犅={3,5}.因为犃∪犅={3,5},犃∩犅={3},所以犃={3},从而
2020年苏教版高一数学必修1课后练习题:1.2子集、全集、补集2(含答案)
课后训练千里之行 始于足下1.给出下列关系①{3}∈{3,4};②{}{}a a ⊆;③{3,5}={3,1,5};④∅{2};⑤{1}{x |x <2};⑥{}250x x +=⊆∅.其中正确的序号是________.2.设集合A ={x |x 2-1=0},B ={x ||x |=1},C ={-1,0,1},则集合A ,B ,C 之间的关系是________.3.集合{x ∈N |x =5-2n ,n ∈N }的真子集的个数是______________.4.已知全集U =R ,集合M ={x |x 2-4≤0},则M =________.5.若集合M ={x |x =2n +1,n ∈Z },N ={x |x =4m ±1,m ∈Z },则集合M 与N 的关系是________.6.设全集为R ,A ={x |x <0,或x ≥1},B ={x |x ≥a },若A B ,则a 的取值范围是________.7.已知全集U ={2,0,3-a 2},P ={2,a 2-a -2},且P ={-1},求实数a 的值.8.已知集合A ={x |x <-1,或x >6},B ={x |m -1≤x ≤2m +1},全集U =R .(1)当x ∈N *时,求集合A 的子集个数.(2)若U B A ⊆ð,求实数m 的取值范围.百尺竿头 更进一步已知集合U ={x |-1≤x ≤2,x ∈P },A ={x |0≤x <2,x ∈P },B ={x |-a <x ≤1,x ∈P }(-1<a <1).(1)若P =R ,求A 中最大元素m 与B 中最小元素n 的差m -n ;(2)若P =Z ,求B 和A 中所有元素之和及(B ).参考答案与解析千里之行1.②④⑥2.A =B C3.7 解析:当n =0,1,2时,得到x 的值分别为5,3,1.∴集合{x ∈N |x =5-2n ,n ∈N }={1,3,5}.其真子集有23-1=7个,分别是,{1},{3},{5},{1,3},{1,5},{3,5}.4.{x |x <-2,或x >2} 解析:因为集合M ={x |x 2-4≤0}={x |-2≤x ≤2},全集U =R ,∴{2,2}U M x x x =<->或ð.5.M =N 解析:方法一:∵M ={…,-5,-3,-1,1,3,5,…},N ={…,-5,-3,-1,1,3,5…},∴M =N .方法二:∵n ∈Z ,∴当n 为偶数时,令n =2m ,m ∈Z .则M ={x |x =4m +1,m ∈Z },当n 为奇数时,令n =2m -1,m ∈Z ,则M ={x |x =2(2m -1)+1,m ∈Z }={x |x =4m -1,m ∈Z }.∴M =N .方法三:M 为奇数集合,而N 中元素均为奇数,∴有N M ⊆,任取x ∈M ,则x =2n +1,当n 为偶数2m 时,有x =4m +1∈N ,当n 为奇数2m -1时,仍有x =4m -1∈N ,∴M N ⊆.∴M N ⊆且N M ⊆,故M =N .6.a ≥1 解析:∵A ={x |x <0,或x ≥1},∴A ={x |0≤x <1},∵B ={x |x ≥a },∴B ={x |x <a },将集合A ,B 在数轴上表示出来,如图所示.∵A B ,∴a ≥1.7.解:∵P ={-1},∴-1∈U ,且1P -∉.∴2231,20,a a a ⎧-=-⎪⎨--=⎪⎩解得a =2.经检验,a =2符合题意. 故实数a 的值为2.8.解:(1)∵A ={x |-1≤x ≤6}.∴当x ∈N *时,A ={1,2,3,4,5,6}.∴集合A 的子集个数为26=64(个).(2)∵B ⊆A ,∴分B =∅与B ≠∅讨论.①当B =∅时,m -1>2m +1,即m <-2.②当B ≠∅时,由B ⊆A ,借助数轴(如图所示).得121,11,21 6.m m m m -≤+⎧⎪-≥-⎨⎪+≤⎩解得502m ≤≤.综上所述,m的取值范围是m<-2或5 02m≤≤.百尺竿头解:(1)由已知得A={x|-1≤x<0,或x=2},B={x|-1≤x≤-a,或1<x≤2},∴m =2,n=-1;∴m-n=2-(-1)=3.(2)∵P=Z,∴U={x|-1≤x≤2,x∈Z}={-1,0,1,2},A={x|0≤x<2,x∈Z}={0,1},B={1}或{0,1}.∴B={0}或B=∅.即B中元素之和为0,又A={-1,2}.其元素之和为-1+2=1.故所求元素之和为0+1=1.∵B={0},或B=∅,∴(B)={-1,1,2}或(B)=∅=U={-1,0,1,2}.。
【2020年】2020年苏教版高中数学必修一(全册)精品教案汇总
【推荐】2020年苏教版高中数学必修一(全册)精品教案汇总1.1 集合的含义及其表示教学目标:1.使学生理解集合的含义, 知道常用集合及其记法;2.使学生初步了解“属于”关系和集合相等的意义, 初步了解有限集、无限集、空集的意义;3.使学生初步掌握集合的表示方法, 并能正确地表示一些简单的集合.教学重点:集合的含义及表示方法.教学过程:一、问题情境 1.情境.新生自我介绍:介绍家庭、原毕业学校、班级. 2.问题.在介绍的过程中, 常常涉及像“家庭”、“学校”、“班级”、“男生”、“女生”等概念, 这些概念与“学生×××”相比, 它们有什么共同的特征?二、学生活动 1.介绍自己;2.列举生活中的集合实例;3.分析、概括各集合实例的共同特征. 三、数学建构1.集合的含义:一般地, 一定范围内不同的...、确定的...对象的全体组成一个集合.构成集合的每一个个体都叫做集合的一个元素.个体与群体群体是由个体组成2.元素与集合的关系及符号表示:属于∈, 不属于∉.3.集合的表示方法: 另集合一般可用大写的拉丁字母简记为“集合A 、集合B ”.4.常用数集的记法:自然数集N, 正整数集N*, 整数集Z, 有理数集Q, 实数集R . 5.有限集, 无限集与空集. 6.有关集合知识的历史简介. 四、数学运用 1.例题.例1 表示出下列集合:(1)中国的直辖市;(2)中国国旗上的颜色. 小结:集合的确定性和无序性 例2 准确表示出下列集合: (1)方程x 2―2x -3=0的解集; (2)不等式2-x <0的解集; (3)不等式组2+3511x x >⎧⎨->⎩-的解集;(4)不等式组⎩⎨⎧2x -1≤-33x +1≥0的解集.解:略.小结:(1)集合的表示方法——列举法与描述法;(2)集合的分类——有限集⑴, 无限集⑵与⑶, 空集⑷ 例3 将下列用描述法表示的集合改为列举法表示: (1){(x , y )| x +y = 3, x ∈N , y ∈N } (2){(x , y )| y = x 2-1, |x |≤2, x ∈Z } (3){y | x +y = 3, x ∈N , y ∈N } (4){ x ∈R | x 3-2x 2+x =0} 小结:常用数集的记法与作用.列举法描述法图示法自然语言描述 如{15的正整数约数}数学语言描述 规范格式为{x |p (x )}例4 完成下列各题:(1)若集合A={ x|ax+1=0}=∅, 求实数a的值;(2)若-3∈{ a-3, 2a-1, a2-4}, 求实数a.小结:集合与元素之间的关系.2.练习:(1)用列举法表示下列集合:①{ x|x+1=0};②{ x|x为15的正约数};③{ x|x为不大于10的正偶数};④{(x, y)|x+y=2且x-2y=4};⑤{(x, y)|x∈{1, 2}, y∈{1, 3}};⑥{(x, y)|3x+2y=16, x∈N, y∈N}.(2)用描述法表示下列集合:①奇数的集合;②正偶数的集合;③{1, 4, 7, 10, 13}五、回顾小结(1)集合的概念——集合、元素、属于、不属于、有限集、无限集、空集;(2)集合的表示——列举法、描述法以及Venn图;(3)集合的元素与元素的个数;(4)常用数集的记法.六、作业课本第7页练习3, 4两题.1.2 子集、全集、补集(1)教学目标:1.使学生进一步理解集合的含义, 了解集合之间的包含关系, 理解掌握子集的概念;2.理解子集、真子集的概念和意义;3.了解两个集合之间的相等关系, 能准确地判定两个集合之间的包含关系.教学重点:子集含义及表示方法;教学难点:子集关系的判定.教学过程:一、问题情境 1.情境.将下列用描述法表示的集合改为用列举法表示:A ={x |x 2≤0},B ={ x |x =(-1)n +(-1)n +1, n ∈Z};C ={ x |x 2-x -2=0},D ={ x |-1≤x ≤2, x ∈Z}2.问题.集合A 与B 有什么关系? 集合C 与D 有什么关系? 二、学生活动1.列举出与C 与D 之间具有相类似关系的两个集合; 2.总结出子集的定义;3.分析、概括两集合相等和真包含的关系的判定. 三、数学建构1.子集的含义:一般地, 如果集合A 的任一个元素都是集合B 的元素, (即 若a ∈A 则a ∈B ), 则称集合A 为集合B 的子集, 记为A ⊆B 或B ⊇A .读作集合A 包含于集合B 或集合B 包含集合A .用数学符号表示为:若a ∈A 都有a ∈B , 则有A ⊆B 或B ⊇A . (1)注意子集的符号与元素与集合之间的关系符号的区别: 元素与集合的关系及符号表示:属于∈, 不属于∉; 集合与集合的关系及符号表示:包含于⊆.(2)注意关于子集的一个规定:规定空集∅是任何集合的子集.理解规定 的合理性.(3)思考:A ⊆B 和B ⊆A 能否同时成立? (4)集合A 与A 之间是否有子集关系? 2.真子集的定义:(1)A ⊆B 包含两层含义:即A =B 或A 是B 的真子集.元素与集合是个体与群体的关系, 群体是由个体组成;子集是小集体与大集体的关系.(2)真子集的wenn图表示(3)A=B的判定(4)A是B的真子集的判定四、数学运用例1 (1)写出集合{a, b}的所有子集;(2)写出集合{1, 2, 3}的所有子集;{1, 3}⊂≠{1, 2, 3}, {3}⊂≠{1, 2, 3},小结:对于一个有限集而言, 写出它的子集时, 每一个元素都有且只有两种可能:取到或没取到.故当集合的元素为n个时, 子集的个数为2n.例2 写出N, Z, Q, R的包含关系, 并用Venn图表示.例3 设集合A={-1, 1}, 集合B={x|x2-2ax+b=0}, 若B≠∅, B⊆A, 求a, b的值.小结:集合中的分类讨论.练习:1.用适当的符号填空.(1)a_{a};(2)d_{a, b, c};(3){a}_{a, b, c};(4){a, b}_{b, a};(5){3, 5}_{1, 3, 5, 7};(6){2, 4, 6, 8}_{2, 8};(7)∅_{1, 2, 3}, (8){x|-1<x<4}__{x|x-5<0} 2.写出满足条件{a}⊆M{a, b, c, d}的集合M.3.已知集合P = {x | x2+x-6=0}, 集合Q = {x | ax+1=0}, 满足Q P, 求a所取的一切值.4.已知集合A={x|x=k+12, k∈Z}, 集合B={x|x=2k+1, k∈Z}, 集合C={x|x=12k+, k∈Z}, 试判断集合A、B、C的关系.五、回顾小结1.子集、真子集及对概念的理解;2.会用Venn图示及数轴来解决集合问题.六、作业教材P10习题1, 2, 5.1.2 子集、全集、补集(2)教学目标:1.使学生进一步理解集合及子集的意义, 了解全集、补集的概念;2.能在给定的全集及其一个子集的基础上, 求该子集的补集;3.培养学生利用数学知识将日常问题数学化, 培养学生观察、分析、归纳等能力.教学重点:补集的含义及求法.教学重点:补集性质的理解.教学过程:一、问题情境1.情境.(1)复习子集的概念;(2)说出集合{1, 2, 3}的所有子集.2.问题.相对于集合{1, 2, 3}而言, 集合{1}与集合{2, 3}有何关系呢?二、学生活动1.分析、归纳出全集与补集的概念;2.列举生活中全集与补集的实例.三、数学建构1.补集的概念:设A⊆S, 由S中不属于A的所有元素组成的集合称为S的子集A的补集, 记为S A(读作“A在S中的补集”), 即SA={ x|x∈S, 且x∉A },SA可用右图表示.2.全集的含义:如果集合S包含我们研究的各个集合, 这时S可以看作一个全集, 全集通常记作U.3.常用数集的记法:自然数集N, 正整数集N*, 整数集Z, 有理数集Q, 实数集R .则无理数集可表示为RQ .四、数学运用 1.例题.例1 已知全集S =Z, 集合A ={x |x =2k , k ∈Z}, B ={ x |x =2k +1, k ∈Z}, 分别写出集合A , B 的补集∁S A 和∁S B .例2 不等式组⎩⎨⎧2x -1>13x -6≤0的解集为A , S =R, 试求A 及SA , 并把它们表示在数轴上.例3 已知全集S ={1, 2, 3, 4, 5}, A ={ x ∈S |x 2-5qx +4=0}. (1)若SA =S , 求q 的取值范围; (2)若SA 中有四个元素, 求SA 和q 的值; (3)若A 中仅有两个元素, 求SA 和q 的值.2.练习: (1)SA 在S 中的补集等于什么?即S(SA )= .(2)若S =Z, A ={ x |x =2k , k ∈Z}, B ={ x |x =2k +1, k ∈Z}, 则SA= ,SB = .(3)S∅= , S S = .五、回顾小结1.全集与补集的概念;2.任一集合对于全集而言, 其任意子集与其补集一一对应. 六、作业教材第10页习题3, 4.1.3 交集、并集教学目标:1.理解交集、并集的概念, 掌握交集、并集的性质;2.理解掌握区间与集合的关系, 并能应用它们解决一些简单的问题.A ∪BABA ∪B教学重点:理解交集、并集的概念. 教学难点:灵活运用它们解决一些简单的问题.教学过程:一、情景设置1.复习巩固:子集、全集、补集的概念及其性质. 2.用列举法表示下列集合:(1)A ={ x |x 3-x 2-2x =0};(2)B ={ x |(x +2)(x +1)(x -2)=0}. 思考:集合A 与B 之间有包含关系么?用图示如何反映集合A 与B 之间的关系呢? 二、学生活动 1.观察与思考; 2.完成下列各题.(1)用wenn 图表示集合A ={-1, 0, 2}, B ={-2, -1, 2}, C ={-1, 2}之间的关系.(2)用数轴表示集合A ={x |x ≤3}, B ={ x |x >0 }, C ={x |0<x ≤3}之间的关系. 三、数学建构 1.交集的概念.一般地, 由所有属于集合A 且属于集合B 的元素构成的集合, 称为A 与B 的交集, 记为A ∩B (读作“A 交B ”), 即A ∩B ={ x |x ∈A 且x ∈B }2.并集的概念.一般地, 由所有属于集合A 或属于集合B 的元素构成的集合, 称为A 与B 的并集, 记为A ∪B (读作“A 并B ”), 即A ∪B ={ x |x ∈A 或x ∈B }3.交、并集的性质.ABA ∩BA∩B=B∩A, A∩∅=∅, A∩A=A, A∩B⊆A, A∩B⊆B,若A∩B=A, 则A⊆B, 反之, 若A⊆B, 则A∩B=A.即A⊆B⇔A∩B=A.A∪B=B∪A, A∪∅=A, A∪A=A, A⊆A∪B, B⊆A∪B,若A∪B=B, 则A⊆B, 反之, 若A⊆B, 则A∩B=B.即A⊆B⇔A∩B=B.思考:集合A={x |-1<x≤3}, B={y |1≤y<5}, 集合A与集合B能进行交、并的计算呢?4.区间的概念.一般地, 由所有属于实数a到实数b(a<b)之间的所有实数构成的集合, 可表示成一个区间, a、b叫做区间的端点.考虑到端点, 区间被分为开区间、闭区间或半开半闭区间.5.区间与集合的对应关系.[a, b]={x | a≤x≤b}, (a, b)={x | a<x<b},[a, b)={x | a≤x<b}, (a, b]={x | a<x≤b},(a, +∞)={x | x>a }, (-∞, b)={x | x<b},(-∞, +∞)=R.四、数学运用1.例题.例1 (1)设A={-1, 0, 1}, B={0, 1, 2, 3}, 求A∩B和A∪B.(2)已知A∪B={-1, 0, 1, 2, 3}, A∩B={-1, 1}, 其中A={-1, 0, 1}, 求集合B.(3)已知A={( x, y)| x+y=2}, B={( x, y)| x-y=4}, 求集合A∩B.(4)已知元素(1, 2)∈A∩B, A={( x, y)| y2=ax+b}, B={( x, y)| x2-ay-b=0}, 求a, b的值并求A∩B.例2 学校举办了排球赛, 某班45名学生中有12名同学参赛.后来又举办了田径赛, 这个班有20名同学参赛.已知两项都参赛的有6名同学.两项比赛中, 这个班共有多少名同学没有参加过比赛?例3 (1)设A=(0, +∞), B=(-∞, 1], 求A∩B和A∪B.(2)设A=(0, 1], B={0}, 求A∪B.2.练习:(1)若A={x |2x2+3ax+2=0}, B={x |2x2+x+b=0}, A∩ B={0, 5}, 求a与A∪B.(2)交集与并集的运算性质.五、回顾小结交集和并集的概念和性质;区间的表示及其与集合的关系.六、作业教材第13页习题2, 3, 5, 7.2.1.1 函数的概念和图象(1)教学目标:1.通过现实生活中丰富的实例, 让学生了解函数概念产生的背景, 进一步体会函数是描述变量之间的依赖关系的重要数学模型, 在此基础上学习用集合与对应的语言来刻画函数的概念, 掌握函数是特殊的数集之间的对应;2.了解构成函数的要素, 理解函数的定义域、值域的定义, 会求一些简单函数的定义域和值域;3.通过教学, 逐步培养学生由具体逐步过渡到符号化, 代数式化, 并能对以往学习过的知识进行理性化思考, 对事物间的联系的一种数学化的思考.教学重点:两集合间用对应来描述函数的概念;求基本函数的定义域和值域.教学过程:一、问题情境1.情境.正方形的边长为a, 则正方形的周长为 , 面积为.2.问题.在初中, 我们曾认识利用函数来描述两个变量之间的关系, 如何定义函数?常见的函数模型有哪些?如图, A (-2, 0), B (2, 0), 点C 在直线y =2上移动.则△ABC 的面积S 与点C 的横坐标x 之间的变化关系如何表达?面积S 是C 的横坐标x 的函数么?二、学生活动1.复述初中所学函数的概念;2.阅读课本23页的问题(1)、(2)、(3), 并分别说出对其理解; 3.举出生活中的实例, 进一步说明函数的对应本质. 三、数学建构1.用集合的语言分别阐述23页的问题(1)、(2)、(3); 问题1 某城市在某一天24小时内的气温变化情况如下图所示, 试根据函数图象回答下列问题:(1)这一变化过程中, 有哪几个变量?(2)这几个变量的范围分别是多少? 问题2 略.问题3 略(详见23页).2.函数:一般地, 设A 、B 是两个非空的数集, 如果按某种对应法则f , 对于集合A 中的每一个元素x , 在集合B 中都有惟一的元素y 和它对应, 这样的对应叫做从A 到B 的一个函数, 通常记为y =f (x ), x ∈A .其中, 所有输入值x 组成的集合A 叫做函数y =f (x )的定义域.(1)函数作为一种数学模型, 主要用于刻画两个变量之间的关系; (2)函数的本质是一种对应;(3)对应法则f 可以是一个数学表达式, 也可是一个图形或是一个表格(4)对应是建立在A 、B 两个非空的数集之间.可以是有限集, 当然也就可以是单元集, 如f (x )=2x , (x =0).3.函数y =f (x )的定义域:(1)每一个函数都有它的定义域, 定义域是函数的生命线;(2)给定函数时要指明函数的定义域, 对于用解析式表示的集合, 如果没 有指明定义域, 那么就认为定义域为一切实数.四、数学运用例1.判断下列对应是否为集合A 到 B 的函数:(1)A ={1, 2, 3, 4, 5}, B ={2, 4, 6, 8, 10}, f :x →2x ; (2)A ={1, 2, 3, 4, 5}, B ={0, 2, 4, 6, 8}, f :x →2x ; (3)A ={1, 2, 3, 4, 5}, B =N , f :x →2x . 练习:判断下列对应是否为函数: (1)x →2x, x ≠0, x ∈R ;(2)x →y , 这里y 2=x , x ∈N , y ∈R . 例2 求下列函数的定义域:(1)f (x )=x -1;(2)g(x )=x +1+1x.例3 下列各组函数中, 是否表示同一函数?为什么? A .y =x 与y =(x )2; B .y =x 2与y =3x 3;C .y =2x -1(x ∈R)与y =2t -1(t ∈R);D .y =x +2·x -2与y =x 2-4 练习:课本26页练习1~4, 6. 五、回顾小结1.生活中两个相关变量的刻画→函数→对应(A →B ) 2.函数的对应本质; 3.函数的对应法则和定义域. 六、作业:课堂作业:课本31页习题2.1(1)第1, 2两题.2.1.1 函数的概念和图象(2)教学目标:1.进一步理解用集合与对应的语言来刻画的函数的概念, 进一步理解函数的本质是数集之间的对应;2.进一步熟悉与理解函数的定义域、值域的定义, 会利用函数的定义域与对应法则判定有关函数是否为同一函数;函数的本质是对应, 但并非所有的对应都是函数,一个必须是建立在两个非空数集间的对应,二是对应只能是单值对应.判断两个函数是否为同一函数, 一看对应法则,二看定义域.3.通过教学, 进一步培养学生由具体逐步过渡到符号化, 代数式化, 并能对以往学习过的知识进行理性化思考, 对事物间的联系的一种数学化的思考.教学重点:用对应来进一步刻画函数;求基本函数的定义域和值域.教学过程:一、问题情境1.情境.复述函数及函数的定义域的概念.2.问题.概念中集合A为函数的定义域, 集合B的作用是什么呢?二、学生活动1.理解函数的值域的概念;2.能利用观察法求简单函数的值域;3.探求简单的复合函数f(f(x))的定义域与值域.三、数学建构1.函数的值域:(1)按照对应法则f, 对于A中所有x的值的对应输出值组成的集合称之为函数的值域;(2)值域是集合B的子集.2.x→ g(x)⇒ f(x) → f(g(x)), 其中g(x)的值域即为f(g(x))的定义域;四、数学运用(一)例题.例1 已知函数f (x)=x2+2x, 求f (-2), f (-1), f (0), f (1).例2 根据不同条件, 分别求函数f(x)=(x-1)2+1的值域.(1)x∈{-1, 0, 1, 2, 3};(2)x∈R;(3)x∈[-1, 3];(4)x∈(-1, 2];(5)x∈(-1, 1).例3 求下列函数的值域:①y;②y.例4 已知函数f(x)与g(x)分别由下表给出:分别求f (f (1)), f (g (2)), g(f (3)), g (g (4))的值.(二)练习.(1)求下列函数的值域:①y=2-x2;②y=3-|x|.(2)已知函数f(x)=3x2-5x+2, 求f(3)、f(-2)、f(a)、f(a+1).(3)已知函数f(x)=2x+1, g(x)=x2-2x+2, 试分别求出g(f(x))和f(g(x))的值域, 比较一下, 看有什么发现.(4)已知函数y=f(x)的定义域为[-1, 2], 求f(x)+f(-x)的定义域.(5)已知f(x)的定义域为[-2, 2], 求f(2x), f(x2+1)的定义域.五、回顾小结函数的对应本质, 函数的定义域与值域;利用分解的思想研究复合函数.六、作业课本P31-5, 8, 9.2.1.2 函数的表示方法(1)教学目标:1.进一步理解函数的概念, 了解函数表示的多样性, 能熟练掌握函数的三种不同的表示方法;2.在理解掌握函数的三种表示方法基础上, 了解函数不同表示法的优缺点, 针对具体问题能合理地选择表示方法;3.通过教学, 培养学生重要的数学思想方法——分类思想方法.教学重点:函数的表示. 教学难点:针对具体问题合理选择表示方法.教学过程:一、问题情境 1. 情境.下表的对应关系能否表示一个函数:2.问题.如何表示一个函数呢? 二、学生活动1.阅读课本掌握函数的三种常用表示方法; 2.比较三种表示法之间的优缺点. 3.完成练习 三、数学建构 1.函数的表示方法: 2.三种不同方法的优缺点:3.三种不同方法的相互转化:能用解析式表示的, 一般都能列出符合条件的表、画出符合条件的图, 反之亦然;列表法也能通过图形来表示.四、数学运用 (一)例题例1 购买某种饮料x 听, 所需钱数为y 元.若每听2元, 试分别用解析法、列表法、图象法将y 表示成x (x ∈{1, 2, 3, 4})的函数, 并指出该函数的值域.列表法—用列表来表示两个变量之间函数关系的方法 解析法—用等式来表示两个变量之间函数关系的方法 图象法—用图象来表示两个变量之间函数关系的方法跟踪练习:某公司将进货单价为8元一个的商品按10元一个销售, 每天可卖出100个, 若这种商品的销售价每个上涨1元, 则销售量就减少10个.(1)列表:(2)图象: (3)解析式:将条件变换成:“某公司将进货单价为8元一个 的商品按10元一个销售, 每天可卖出110个”例2 如图, 是一个二次函数的图象的一部分, 试根据图象 中的有关数据, 求出函数f (x )的解析式及其定义域.(二)练习:1.1 nmile(海里)约为1854m, 根据这一关系, 写出米数y 关于海里数x 的函数解析式. 2.用长为30cm 的铁丝围成矩形, 试将矩形的面积S (cm 2)表示为矩形一边长x (cm)的函数, 并画出函数的图象.3.已知f(x )是一次函数, 且图象经过(1, 0)和(-2, 3)两点, 求f (x )的解析式. 4.已知f (x )是一次函数, 且f (f (x ))=9x -4, 求f (x )的解析式. 五、回顾小结1.函数表示的多样性;2.函数不同表示方法之间的联系性; 3.待定系数法求函数的解析式. 六、作业课堂作业:课本35页习题1, 4, 5.2.1.2 函数的表示方法(2)教学目标:1.进一步理解函数的表示方法的多样性, 理解分段函数的表示, 能根据实际问题列出符合题意的分段函数;2.能较为准确地作出分段函数的图象;3.通过教学, 进一步培养学生由具体逐步过渡到符号化, 代数式化, 并能对以往学习过的知识进行理性化思考, 对事物间的联系的一种数学化的思考.教学重点:分段函数的图象、定义域和值域.教学过程:一、问题情境1.情境.复习函数的表示方法;已知A={1, 2, 3, 4}, B={1, 3, 5}, 试写出从集合A到集合B的两个函数.2.问题.函数f(x)=|x|与f(x)=x是同一函数么?区别在什么地方?二、学生活动1.画出函数f(x)=|x|的图象;2.根据实际情况, 能准确地写出分段函数的表达式.三、数学建构1.分段函数:在定义域内不同的部分上, 有不同的解析表达式的函数通常叫做分段函数.(1)分段函数是一个函数, 而不是几个函数;(2)分段函数的定义域是几部分的并;(3)定义域的不同部分不能有相交部分;(4)分段函数的图象可能是一条连续但不平滑的曲线, 也可能是由几条曲线共同组成;(5)分段函数的图象未必是不连续, 不连续的图象表示的函数也不一定是分段函数, 如反比例函数的图象;(6)分段函数是生活中最常见的函数.四、数学运用1.例题.例1 某市出租汽车收费标准如下:在3km 以内(含3km)路程按起步价7元收费, 超过3km 以外的路程按2.4元/km 收费.试写出收费额关于路程的函数解析式.例2 如图, 梯形OABC 各顶点的坐标分别为O (0, 0), A (6, 0), B (4, 2), C (2, 2).一条与y 轴平行的动直线l 从O 点开始作平行移动, 到A 点为止.设直线l 与x 轴的交点为M , OM =x , 记梯形被直线l 截得的在l 左侧的图形的面积为y .求函数y =f(x )的解析式、定义域、值域.例3 将函数f (x )= | x +1|+| x -2|表示成分段函数的形式, 并画出其图象, 根据图象指出函数f (x )的值域.2.练习:练习1:课本35页第7题, 36页第9题. 练习2:(1)画出函数f (x )= 的图象.(2)若f (x )= 求f (-1), f (0), f(2), f (f (-1)), f (f (0)), f (f (12))的值.(3)试比较函数f (x )=|x +1|+|x |与g (x )=|2x +1|是否为同一函数.(4)定义[x ]表示不大于x 的最大整数, 试作出函数f (x )=[x ] (x ∈[-1, 3))的图象.并将其表示成分段函数.练习3:如图, 点P 在边长为2的正方形边上按A →B →C →D →A 的方向移动, 试将AP 表示成移动的距离x 的函数.五、回顾小结分段函数的表示→分段函数的定义域→分段函数的图象; 含绝对值的函数常与分段函数有关; 利用对称变换构造函数的图象. 六、作业课堂作业:课本35页习题第3题, 36页第10, 12题;课后探究:已知函数f (x )=2x -1(x ∈R ), 试作出函数f (|x |), |f (x )|的图象.x 2-1,x ≥0, 2x +1,x <0. x -1 (x ≥0)1-x (x <0)BC P2.2 函数的简单性质(1)教学目标:1.在初中学习一次函数、二次函数的性质的基础上, 进一步感知函数的单调性, 并能结合图形, 认识函数的单调性;2.通过函数的单调性的教学, 渗透数形结合的数学思想, 并对学生进行初步的辩证唯物论的教育;3.通过函数的单调性的教学, 让学生学会理性地认识与描述生活中的增长、递减等现象.教学重点:用图象直观地认识函数的单调性, 并利用函数的单调性求函数的值域.教学过程:一、问题情境如图(课本37页图2-2-1), 是气温θ关于时间t 的函数, 记为θ=f (t ), 观察这个函数的图象, 说出气温在哪些时间段内是逐渐升高的或是下降的?问题:怎样用数学语言刻画上述时间段内“随时间的增大气温逐渐升高”这一特征? 二、学生活动1.结合图2―2―1, 说出该市一天气温的变化情况;2.回忆初中所学的有关函数的性质, 并画图予以说明;3.结合右侧四幅图, 解释函数的单调性. 三、数学建构 1.增函数与减函数:一般地, 设函数y =f (x )的定义域为A , 区间I ⊆A .)))如果对于区间I 内的任意两个值x 1, x 2, 当x 1<x 2时, 都有f (x 1)<f (x 2), 那么就说y =f (x )在区间I 是单调增函数, 区间I 称为y =f (x )的单调增区间.如果对于区间I 内的任意两个值x 1, x 2, 当x 1<x 2时, 都有f (x 1)>f (x 2), 那么就说y =f (x )在区间I 是单调减函数, 区间I 称为y =f (x )的单调减区间.2.函数的单调性与单调区间:如果函数y =f (x )在区间I 是单调增函数或单调减函数, 那么就说函数y =f (x )在区间I 上具有单调性.单调增区间与单调减区间统称为单调区间.注:一般所说的函数的单调性, 就是要指出函数的单调区间, 并说明在区间上是单调增函数还是单调减函数.四、数学运用例1 画出下列函数的图象, 结合图象说出函数的单调性.1.y =x 2+2x -12.y =2x例2 求证:函数f (x )=-1x-1在区间(-∞, 0)上是单调增函数.练习:说出下列函数的单调性并证明. 1.y =-x 2+2 2.y =2x+1五、回顾小结利用图形, 感知函数的单调性→给出单调性的严格意义上的定义→证明一个函数的单调性.六、作业课堂作业:课本44页1, 3两题.2.2 函数的简单性质(2)教学目标:1.进一步理解函数的单调性, 能利用函数的单调性结合函数的图象, 求出有关函数的最小值与最大值, 并能准确地表示有关函数的值域;2.通过函数的单调性的教学, 让学生在感性认知的基础上学会理性地认识与描述生活中的增长、递减等现象.教学重点:利用函数的单调性求函数的值域.教学过程:一、问题情境1.情境.(1)复述函数的单调性定义;(2)表述常见函数的单调性.2.问题.结合函数的图象说出该天的气温变化范围.二、学生活动1.研究函数的最值;2.利用函数的单调性的改变, 找出函数取最值的情况;三、数学建构1.函数的值域与函数的最大值、最小值:一般地, 设y=f(x)的定义域为A.若存在x0∈A, 使得对任意x∈A, f(x)≤f(x0)恒成立, 则称f(x0)为y=f(x)的最大值, 记为y max=f(x0).若存在定值x0∈A, 使得对任意x∈A, f(x)≥f(x0)恒成立, 则称f(x0)为y=f(x)的最小值, 记为y min=f(x0).注:(1)函数的最大值、最小值分别对应函数图象上的最高点和最低点, 典型的例子就是二次函数y=ax2+bx-c(a≠0), 当a>0时, 函数有最小值;当a<0时, 函数有最大值.(2)利用函数的单调性, 并结合函数的图象求函数的值域或函数的最值是求函数的值域或函数的最值的常用方法.2.函数的最值与单调性之间的关系:已知函数y=f(x)的定义域是[a, b], a<c<b.当x∈[a, c]时, f(x)是单调增函数;当x ∈[c , b ] 时, f (x )是单调减函数.则f (x )在x =c 时取得最大值.反之, 当x ∈[a , c ]时, f (x )是单调减函数;当x ∈[c , b ] 时, f (x )是单调增函数.则f (x )在x =c 时取得最小值.四、数学运用例1 求出下列函数的最小值:(1)y =x 2-2x ;(2)y =1x, x ∈[1, 3].变式:(1)将y =x 2-2x 的定义域变为(0, 3]或[1, 3]或[-2, 3], 再求最值. (2)将y =1x的定义域变为(-2, -1], (0, 3]结果如何?跟踪练习:求f (x )=-x 2+2x 在[0, 10]上的最大值和最小值.例2 已知函数y =f (x )的定义域为[a , b ], a <c <b .当x ∈[a , c ]时, f (x )是单调增函数;当x ∈[c , b ]时, f (x )是单调减函数.试证明f (x )在x =c 时取得最大值.变式:已知函数y =f (x )的定义域为[a , b ], a <c <b .当x ∈[a , c ]时, f (x )是单调减函数;当x ∈[c , b ]时, f (x )是单调增函数.试证明f (x )在x =c 时取得最小值.例3 求函数f (x )=x 2-2ax 在[0, 4]上的最小值.练习:如图, 已知函数y =f (x )的定义域为[-4, 7], 根据图象, 说出它的最大值与最小值.求下列函数的值域: (1)yx ∈[0, 3];(2) y =11x -, x ∈[2, 6];(3)y(4)y =11(1)x x --.五、回顾小结利用图形, 感知函数的单调性→证明一个函数的单调性→确定一个函数的最值→确定一个函数的值域.六、作业课堂作业:课本40页第3题, 44页第3题.2.2 函数的简单性质(3)教学目标:1.进一步认识函数的性质, 从形与数两个方面引导学生理解掌握函数奇偶性的概念, 能准确地判断所给函数的奇偶性;2.通过函数的奇偶性概念的教学, 揭示函数奇偶性概念的形成过程, 培养学生观察、归纳、抽象的能力, 培养学生从特殊到一般的概括能力, 并渗透数形结合的数学思想方法;3.引导学生从生活中的对称联想到数学中的对称, 师生共同探讨、研究, 从代数的角度给予严密的代数形式表达、推理, 培养学生严谨、认真、科学的探究精神.教学重点:函数奇偶性的概念及函数奇偶性的判断. 教学难点:函数奇偶性的概念的理解与证明.教学过程:一、问题情境 1.情境.复习函数的单调性的概念及运用.教师小结:函数的单调性从代数的角度严谨地刻画了函数的图象在某范围内的变化情况, 便于我们正确地画出相关函数的图象, 以便我们进一步地从整体的角度, 直观而又形象地反映出函数的性质.在画函数的图象的时候, 我们有时还要注意一个问题, 就是对称(见P41).2.问题.观察函数y =x 2和y =1x(x ≠0)的图象, 从对称的角度你发现了什么?二、学生活动1.画出函数y =x 2和y =1x(x ≠0)的图象2.利用折纸的方法验证函数y =x 2图象的对称性。
2020-2021学年高中数学苏教版必修第一册同步刷题课件:第1.1~1.3节综合训练
解析
如图,要使A∩B=∅,应有a≤-1,所以满足题意的选项是{a|a≤-1}的子集即可,故选BCD.
特别注意
求解此类问题一定要看是否包括端点(临界)值.集合问题大都比较抽象,解题时要尽 可能借助Venn图、数轴等工具,利用数形结合思想将抽象问题直观化、形象化,从 而使问题获解.
第1.1~1.3节综合训练
(2)∵A∩B=B,∴B⊆A. ①若B=∅,则2a>a+2,∴a>2; ②若B≠∅,则 aa≤ +22, ≤-1或a2≤ a≥2, 5,∴a≤-3. 综上,实数a的取值范围为{a|a>2或a≤-3}
第1.1~1.3节综合训练
刷能力
13.已知集合A={x|(a-1)x2+3x-2=0},B={x|x2-3x+2=0}. (1)若A≠∅,求实数a的取值范围; (2)若A∩B=A,求实数a的取值范围.
x
2
3
2
3
23
2,3},{
1 2
,
1 3
,1,2,3},共7个.故选B.
第1.1~1.3节综合训练
刷能力
4.已知集合A={x| a-1≤x≤a+2},B={x|3<x<5},则能使A⊇B成立的实数a的取值范围是( C )
A.{a|a≤4} C.{a|3≤a≤4}
B.{a|3<a<4} D.∅
解析
a-1≤3, 因为A⊇B,所以
第1.1~1.3节综合训练
刷能力
12.已知集合A={x|x≤-1或x≥5},集合B={x|2a≤x≤a+2}. (1)若a=-1,求A∩B和A∪B; (2)若A∩B=B,求实数a的取值范围.
解
(1)若a=-1,则B={x|-2≤x≤1},
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[推荐]2020年苏教版高中数学必修一(全册)配套练习汇总课后训练千里之行 始于足下1.下列对象能构成集合的序号是________.①NBA 联盟中所有优秀的篮球运动员;②2011年诺贝尔奖获得者R ;③美韩联合军演时发射的所有导弹;④校园花坛里所有鲜艳的花朵.2.给出下列6个关系:12∈R , Q ,0∈{0}, tan45°∈Z , 0∈N *, π∈Q , 其中, 正确的个数为________.3.(1)“被3除余1的数”组成的集合用描述法可表示为________.(2)设集合6{}3A x x=∈∈-NN , 用列举法表示为____________. 4.已知集合A ={1,2,3}, B ={3, x 2,2}, 若A =B , 则x 的值是________. 5.下列结论中, 正确的个数是________. ①cos30°∈Q ;②若a -∈N , 则a ∈N ;③方程x 2+4=4x 的解集中含有2个元素;④若a ∈N *, b ∈N , 则a +b 的最小值为2;⑤|-3|∈N *.6.下列结论中, 正确的序号是________.①若以集合S ={a , b , c }中三个元素为边可构成一个三角形, 则该三角形一定不是等腰三角形;②满足1+x >x 的实数x 组成一个集合;20y +=的解集为{2, -2};④方程(x -1)2(x +5)(x -3)=0的解集中含有3个元素;⑤今天正午12时生活在地球上的所有人构成的集合为无限集.7.已知二元素集A ={a -3,2a -1}, 若-3∈A , 求实数a 的值.8.已知集合A ={x |ax 2+2x +1=0, a ∈R }. (1)若A 中只有一个元素, 求a 的值;(2)若A 中最多有一个元素, 求a 的取值范围; (3)若A 中至少有一个元素, 求a 的取值范围.百尺竿头 更进一步设S 是由满足下列条件的实数所构成的集合:①1S ∉;②若a ∈S , 则11S a∈-, 请解答下列问题:(1)若2∈S , 则S 中必有另外两个数, 求出这两个数;(2)求证:若a ∈S , 则11S a-∈;(3)在集合S 中元素能否只有一个?请说明理由. 参考答案与解析千里之行1.②③ 解析:①中的“优秀”、④中的“鲜艳”标准不明确, 不能构成集合. 2.3 解析:12R ∈,0∈{0}, tan45°=1∈Z 正确;3Q ∈, 0∈N *, π∈Q 不正确. 3.(1){x |x =3n +1, n ∈Z } (2){0,1,2} 4.±1 解析:由A =B 得x 2=1, ∴x =±1. 5.1 解析:只有⑤正确.∵ 3cos302=oQ , ∴①不正确.取a =0.1, 则-0.1N,0.1N , ∴②不正确;∵方程x 2+4=4x 的解集中只含有一个元素2, ∴③不正确;∵a ∈N *, ∴a 的最小值为1, ∵b ∈N , ∴b 的最小值为0, ∴a +b 的最小值为1, 故④不正确.6.①②④ 解析:由集合中元素的互异性知①正确;由1+x >x , 得x 为全体实数.故x 构成实数集R , 220x y -+=的解为x =2且y =-2, 所以方程的解集表示不正确, 应为含22x y =⎧⎨=-⎩的单元素集, ③错误;④中方程有一个重根x =1, 在集合中只算一个元素, 故④正确;⑤中构成的集合为有限集, 故不正确.7.解:∵-3∈A , ∴-3=a -3或-3=2a -1.若-3=a -3, 则a =0.此时A ={-3, -1}, 符合题意. 若-3=2a -1, 则a =-1, 此时A ={-4, -3}, 符合题意. 综上所述, 满足题意的实数a 的值为0或-1.8.解:(1)当a =0时, 原方程变为2x +1=0.此时12x =-, 符合题意; 当a ≠0时, 方程ax 2+2x +1=0为一元二次方程, Δ=4-4a =0时, 即a =1时, 原方程的解为x =-1, 符合题意.故当a =0或a =1时, 原方程只有一个解, 此时A 中只有一个元素.(2)A 中最多含有一个元素, 即A 中有一个元素或A 中没有元素. 当Δ=4-4a <0, 即a >1时, 原方程无实数解, 结合(1)知, 当a =0或a ≥1时, A 中最多有一个元素.(3)A 中至少有一个元素, 即A 中有一个或两个元素.由Δ>0得a <1, 结合(1)可知, a ≤1.百尺竿头解:(1)∵2∈S,2≠1, ∴1112S =-∈-.∵-1∈S , -1≠1, ∴111(1)2S =∈--.∵12S ∈, 112≠, ∴12112S =∈-, ∴-1, 12S ∈, 即集合S 中另外两个数分别为-1和12.(2)证明:∵a ∈S , ∴11S a ∈-, ∴111111S a a=-∈--(a ≠0, 若a =0, 则111S a=∈-, 不合题意). (3)集合S 中的元素, 不能只有一个, 理由:假设集合S 中只有一个元素, 则根据题意知11a a =-, 即a 2-a +1=0.此方程无实数解.∴11a a≠-.因此集合S 不能只有一个元素.集合的含义及其表示练习1.给出下列关系:①2∈R ;②5Q ;③4.5∈Q ;④0∈N *, 其中正确的个数为________.2.已知集合S ={a , b , c }中三个元素是△ABC 的三边长, 那么△ABC 一定不是__________三角形.3.由实数a , -a , |a |所组成的集合最多..含有________个元素. 4.下列四个集合中, 表示空集的是__________. ①{0};②{(x , y )|y 2=-x 2, x ∈R , y ∈R };③{x ||x |=5, x ∈Z , x N };④{x |2x 2+3x -2=0, x ∈N }.5.用适当的符号填空:已知A ={x |x =3k +2, k ∈Z }, 则有17__________A , -5__________A .6.下列给出的5种说法中, 正确说法的序号是________(填上所有正确说法的序号). ①任意一个集合的正确表示方法都是惟一的;②集合{0, -1,2, -2}与集合{-2, -1,0,2}相等;③若集合P 是满足不等式0≤2x ≤1(x ∈R )的x 的集合, 则这个集合是无限集; ④已知a ∈R , 则a Q ;⑤集合{x |x =2k -1, x ∈Z }与集合{y |y =2s +1, s ∈Z }相等.7.设-5∈{x |x 2-ax -5=0}, 试用列举法表示集合A ={x |x 2-4x -a =0}为__________.8.定义集合A *B ={x |x ∈A 且x B }.已知A ={1,3,5,7}, B ={2,3,5}, 则A *B =__________.9.已知集合A ={2, a , b }与集合B ={2a,2, b 2}恰好相等, 试求a , b 的值, 并写出这个集合.10.已知集合A ={x ∈R |mx 2-2x +3=0, m ∈R }, 若A 中元素至多只有一个, 求m 的取值范围.11.用集合的形式表示不等式组2(1)(1)(2),3123x x xx x⎧+->-⎪⎨-<+⎪⎩的解集.12.已知集合A={x∈R|m2x2-n=0}, 当m, n满足什么条件时, 集合A是有限集、无限集、空集?参考答案1.答案:3 2.答案:等腰 3.答案:2 4.答案:④ 5.答案:∈ 6.答案:②③⑤ 7.答案:A ={2} 8.答案:{1,7}9.解:由条件可得22,a a b b =⎧⎨=⎩或2,2.a b b a ⎧=⎨=⎩ 解得0,1a b =⎧⎨=⎩或0,0a b =⎧⎨=⎩或1,41.2a b ⎧=⎪⎪⎨⎪=⎪⎩其中00a b =⎧⎨=⎩,舍去.从而这个集合为A =B ={2,0,1}或A =B =11224⎧⎫⎨⎬⎩⎭,,.10.解:当m =0时, 原方程为-2x +3=0, 32x =, 符合题意;当m ≠0时, 方程mx 2-2x +3=0为一元二次方程, 由Δ=4-12m ≤0, 得13m ≥, 即当13m ≥时, 方程mx 2-2x +3=0无实根或有两个相等的实根, 符合题意; 综上可知, m =0或13m ≥.11.解:由不等式(x +1)(x -1)>(x -2)2, 得54x >,由不等式2x -3<3x+1, 得x <24,从而原不等式组的解集为5244x x ⎧⎫<<⎨⎬⎭⎩.12.解:∵m 2x 2-n =0, ∴m 2x 2=n .当m =0, n =0时, x ∈R , A 就是实数集, 集合A 是无限集. 当m ≠0, n =0时, x =0, A ={0}, 集合A 是有限集.当m ≠0, n <0时, 方程m 2x 2-n =0无实根, 集合A 是空集.当m ≠0, n >0时, 方程m 2x 2-n =0有两个不等的实根, 2=n x m , 22=n n A m m ⎧⎪⎨⎪⎩,, 集合A 是有限集.当m =0, n ≠0时, 方程无实根, 集合A 为空集. 综上所述, 当m =0, n =0时, 集合A 是无限集; 当m ≠0, n <0或m =0, n ≠0时, 集合A 是空集; 当m ≠0, n ≥0时, 集合A 是有限集.课后训练千里之行 始于足下 1.给出下列关系①{3}∈{3,4};②{}{}a a ⊆;③{3,5}={3,1,5};④∅{2};⑤{1}{x |x <2};⑥{}250x x+=⊆∅.其中正确的序号是________.2.设集合A ={x |x 2-1=0}, B ={x ||x |=1}, C ={-1,0,1}, 则集合A , B , C 之间的关系是________.3.集合{x ∈N |x =5-2n , n ∈N }的真子集的个数是______________. 4.已知全集U =R , 集合M ={x |x 2-4≤0}, 则M =________.5.若集合M ={x |x =2n +1, n ∈Z }, N ={x |x =4m ±1, m ∈Z }, 则集合M 与N 的关系是________.6.设全集为R , A ={x |x <0, 或x ≥1}, B ={x |x ≥a }, 若AB, 则a的取值范围是________.7.已知全集U={2,0,3-a2}, P={2, a2-a-2}, 且P={-1}, 求实数a的值.8.已知集合A ={x |x <-1, 或x >6}, B ={x |m -1≤x ≤2m +1}, 全集U =R .(1)当x ∈N *时, 求集合A 的子集个数.(2)若U B A ð, 求实数m 的取值范围.百尺竿头 更进一步已知集合U ={x |-1≤x ≤2, x ∈P }, A ={x |0≤x <2, x ∈P }, B ={x |-a <x ≤1, x ∈P }(-1<a <1).(1)若P=R, 求A中最大元素m与B中最小元素n的差m-n;(2)若P=Z, 求B和A中所有元素之和及(B).参考答案与解析千里之行 1.②④⑥ 2.A =BC3.7 解析:当n =0,1,2时, 得到x 的值分别为5,3,1.∴集合{x ∈N |x =5-2n , n ∈N }={1,3,5}.其真子集有23-1=7个, 分别是, {1}, {3}, {5}, {1,3}, {1,5}, {3,5}.4.{x |x <-2, 或x >2} 解析:因为集合M ={x |x 2-4≤0}={x |-2≤x ≤2}, 全集U =R , ∴{2,2}U M x x x =<->或ð.5.M =N 解析:方法一:∵M ={…, -5, -3, -1,1,3,5, …}, N ={…, -5, -3, -1,1,3,5…}, ∴M =N .方法二:∵n ∈Z , ∴当n 为偶数时, 令n =2m , m ∈Z .则M ={x |x =4m +1, m ∈Z }, 当n 为奇数时, 令n =2m -1, m ∈Z , 则M ={x |x =2(2m -1)+1, m ∈Z }={x |x =4m -1, m ∈Z }.∴M =N .方法三:M 为奇数集合, 而N 中元素均为奇数, ∴有N M ⊆, 任取x ∈M , 则x =2n +1, 当n 为偶数2m 时, 有x =4m +1∈N , 当n 为奇数2m -1时, 仍有x =4m -1∈N , ∴M N ⊆.∴M N ⊆且N M ⊆, 故M =N .6.a ≥1解析:∵A={x |x<0,或x ≥1},∴A ={x |0≤x <1}, ∵B ={x |x ≥a }, ∴B={x|x<a}, 将集合A, B在数轴上表示出来, 如图所示.A B, ∴a≥1.7.解:∵P={-1}, ∴-1∈U, 且1P-∉.∴2231,20,aa a⎧-=-⎪⎨--=⎪⎩解得a=2.经检验, a=2符合题意.故实数a的值为2.8.解:(1)∵A={x|-1≤x≤6}.∴当x∈N*时, A={1,2,3,4,5,6}.∴集合A的子集个数为26=64(个).(2)∵B⊆A, ∴分B=∅与B≠∅讨论.①当B=∅时, m-1>2m+1, 即m<-2.②当B≠∅时, 由B⊆A, 借助数轴(如图所示).得121,11,21 6.m mmm-≤+⎧⎪-≥-⎨⎪+≤⎩解得5 02m≤≤.综上所述, m的取值范围是m<-2或5 02m≤≤.百尺竿头解:(1)由已知得A={x|-1≤x<0, 或x=2}, B={x|-1≤x≤-a, 或1<x≤2}, ∴m=2, n=-1;∴m-n=2-(-1)=3.(2)∵P=Z, ∴U={x|-1≤x≤2, x∈Z}={-1,0,1,2}, A={x|0≤x<2, x∈Z}={0,1}, B={1}或{0,1}.∴B={0}或B=∅.即B中元素之和为0, 又A={-1,2}.其元素之和为-1+2=1.故所求元素之和为0+1=1.∵B={0}, 或B=∅, ∴(B)={-1,1,2}或(B)==U={-1,0,1,2}.子集、全集、补集练习1.已知集合M={(x, y)|x+y<0且xy>0}, 集合P={(x, y)|x<0且y<0}, 则集合M与P的关系是________.2.已知集合{2x, x2-x}有且只有4个子集, 则实数x的取值范围是________.3.集合{x∈N|x=5-2n, n∈N}的真子集的个数是________.4.设M={x|x=a2+1, a∈N*}, P={y|y=b2-4b+5, b∈N*}, 则M与P的关系是________.5.已知全集U=Z, A={x|x=2k, k∈Z}, 则U A=________.6.设A, B为两个集合, 下列四种说法:①A B对任意x∈A, 有x B;②A B A和B无公共元素;③A B A B;④A B存在x∈A, 使得x B.其中正确的是__________.7.设集合A={x|-2<x<2}, B={x|x≥a}, 且A B, 则实数a的取值范围是________.8.设A是整数集的一个非空子集, 对于k∈A, 如果k-1A, 且k+1A, 那么称k 是A的一个“孤立元”.给定S={1,2,3,4,5,6,7,8}, 由S的3个元素构成的所有集合中, 不含“孤立元”的集合有________个.9.设全集U={2,4, -(a-3)2}, A={2, a2-a+2}, 若U A={-1}, 试求实数a的值.10.已知非空集合P满足:①P{1,2,3,4,5}, ②若a∈P, 则(6-a)∈P, 符合上述条件的非空集合P有多少个?写出这些集合来.11.集合P={x|x2-3x+b=0, x∈R}, Q={x|(x+1)(x2+3x-4)=0, x∈R}.(1)若b=4, 存在集合M使得P M Q, 求出这样的集合M.(2)P能否成为Q的一个子集?若能, 求b的值或取值范围;若不能, 请说明理由.参考答案1.答案:M=P2.答案:{x|x≠0, 且x≠3, x∈R}3.答案:74.答案:M P5.答案:{x|x=2k+1, k∈Z}6.答案:④7.答案:{a|a≤-2}8.答案:69.解:由条件得-(a-3)2=-1,解之, 得a=2或4.当a=2时, a2-a+2=4∈U, 成立;当a=4时, a2-a+2=14U, 不合题意.综上所述, a=2.10.分析:若1∈P, 则6-1=5∈P, 故1,5这两个元素必须同时属于P或同时不属于P;若2∈P, 则6-2=4∈P, 故2,4这两个元素必须同时属于P或同时不属于P;若3∈P, 则6-3=3∈P, 故3这个元素属于P或不属于P.解:符合条件的非空集合P有:{1,5}, {2,4}, {3}, {1,3,5}, {2,3,4}, {1,2,4,5}, {1,2,3,4,5}, 共7个.11.解:(1)当b=4时, 方程x2-3x+b=0的判别式Δ=(-3)2-4×1×4<0, 故P =, 且Q={-4, -1,1},由已知M应是一个非空集合, 且是Q的一个真子集, 用列举法可得这样的集合M共有6个, 分别为{-4}, {-1}, {1}, {-4, -1}, {-4,1}, {-1,1}.(2)①当P=时, P显然是Q的一个子集,此时Δ=9-4b<0, ∴b>94.②当P≠时, Q={-4, -1,1}, 可以通过假设存在性成立, 逐一验证来判断b的取值.即, 若当-1∈P时, (-1)2-3×(-1)+b=0, b=-4, 此时x2-3x-4=0, 得x1=-1, x2=4.∵4Q, ∴P不是Q的一个子集.若-4∈P时, (-4)2-3×(-4)+b=0, 得b=-28, 此时由x2-3x-28=0, 得x1=-4, x2=7,∵7Q, ∴P不是Q的一个子集.若1∈P时, 12-3×1+b=0, b=2, 此时由x2-3x+2=0得x1=1, x2=2.∵2Q, ∴P不是Q的一个子集.综上, 满足题意的b的取值范围是94b b⎧⎫>⎨⎬⎭⎩.课后训练千里之行始于足下1.设A={x|x+1>0}, B={x|x<0}, 则A∩B=________.2.设全集U={x∈N*|x<6}, 集合A={1,3}, B={3,5}, 则(A∪B)=________.3.设集合A={(x, y)|4x+y=6}, B={(x, y)|3x+2y=7}, 则满足C(A∩B)的集合C的个数为________.4.已知集合A={x|-2≤x≤7}, B={x|m+1<x<2m-1}, 且B≠, 若A∪B=A, 则实数m的取值范围是________.5.已知S={x|x2-px+6=0}, M={x|x2-2x+q=0}, 且S∩M={3}, 则p+q=________, S∪M=________.6.若集合A={1,3, x}, B={1, x2}, A∪B={1,3, x}, 则满足条件的实数x的值为________.7.已知全集U=R, A={x|-4≤x<2}, B={x|-1<x≤3},5{0,}2P x x x=≤≥或, 求A∩B, A∪B, (B)∪P, (A∩B)∩(P), 并用区间表示.8.设集合A={-4,2a-1, a2}, B={9, a-5,1-a}, 已知A∩B={9}, 求实数a的值及A ∪B.百尺竿头更进一步已知三个集合A={x|x2-3x+2=0}, B={x|x2-ax+a-1=0}, C={x|x2-bx+2=0}, 问同时满足B A, A∪C=A的实数a, b是否存在?若存在, 求出a, b的取值;若不存在, 说明理由.参考答案与解析千里之行1.(-1,0) 解析:A ∩B ={x |x >-1}∩{x |x <0}={x |-1<x <0}.2.{2,4} 解析:∵U ={1,2,3,4,5}, A ∪B ={1,3,5},∴(A ∪B )={2,4}.3.2 解析:{}461(,)(,)(1,2)3272x y x A B x y x y x y y ⎧⎫⎧⎫+==⎧⎧⎪⎪⎪⎪===⎨⎨⎬⎨⎨⎬+==⎩⎩⎪⎪⎪⎪⎩⎭⎩⎭I .∵C A ∩B , ∴集合C 的个数有2个, 分别为, {(1,2)}.4.(2,4] 解析:∵A ∪B =A , ∴B A , 又B ≠, ∴12,217,12 1.m m m m +≥-⎛-≤ +<-⎝解得2<m ≤4.∴实数m 的取值范围是(2,4].5.2 {-1,2,3} 解析:∵3∈S , ∴32-3p +6=0, 解得p =5, 由3∈M , 得32-2×3+q =0, ∴q =-3. ∴p +q =2, 将p =5, q =-3. 代入原方程, 得S ={2,3}, M ={-1,3}, ∴S ∪M ={-1,2,3}. 6.0或3± 解析:∵A ={1,3, x }, B ={1, x 2}, A ∪B ={1,3, x }. ∴A ∪B =A , 即B A ∴x 2=3, 或x 2=x . ①当x 3=3时, 3x =3x =则{}3A =, B ={1,3}, 符合题意;若3x =则{}1,3,3A =-, B ={1,3}, 符合题意.②当x 2=x 时, x =0, 或x =1, 若x =0;则A ={1,3,0}, B ={1,0}, 符合题意;若x =1, 则A ={1,3,1}, B ={1,1}, 与集合中元素的互异性矛盾, 舍去.综上可知, x 的值为0或3.7.解:A ∩B ={x |-1<x <2}, 用区间表示为A ∩B =(-1,2); A ∪B ={x |-4≤x ≤3}, 用区间表示为A ∪B =[-4,3];∵B ={x |x ≤-1, 或x >3},502U P x x ⎧⎫=<<⎨⎬⎩⎭ð,∴()50,2U B P x x x ⎧⎫=≤≥⎨⎬⎩⎭U 或ð, 用区间表示为()5(,0][,]2UB P =-∞+∞U U ð; (A ∩B )∩(P )={x |0<x <2}, 用区间表示为(A ∩B )∩(P )=(0,2).8.解:∵A ∩B ={9}.∴9∈A ∴2a -1=9, 或a 2=9.(1)若2a -1=9, 则a =5.此时A ={-4,9,25}, B ={9,0, -4}. ∴A ∩B ={-4,9}, 与已知矛盾, 舍去. (2)若a 2=9, 则a =±3.当a =3时, A ={-4,5,9}, B ={9, -2, -2}. B 中有两个元素均为-2, 与集合中元素的互异性矛盾, 舍去. 当a =-3时, A ={-4, -7,9}, B ={9, -8,4}, 符合题意. 综上可知, a =-3, A ∪B ={-8, -7, -4,4,9}. 百尺竿头解:存在.∵A ={x |x 2-3x +2=0}={1,2}, B ={x |x 2-ax +a -1=0}={x |(x -1)[x -(a -1)=0]},又∵B A , ∴a -1=1, ∴a =2.∵A ∪C =A , ∴C A .∴有以下三种情况: ①当C =时, 方程x 2-bx +2=0无实根,∴Δ=b 2-8<0, ∴2222b -<<②当C ={1}或C ={2}时, 方程x 2-bx +2=0有两个相等的实数根, ∴Δ=b 2-8=0, ∴22b =±此时{}2C =, 或{}2C =-, 不符合题意, 舍去.③当C ={1,2}时, 方程x 2-bx +2=0有两个不相等的实数根, 由根与系数的关系知, b =1+2=3.两根之积为2.综上所述, 存在a =2, b =3, 或2222b -<<交集、并集练习1.已知集合M ={x |-3<x ≤5}, N ={x |x <-5或x >5}, 则M ∪N 等于________. 2.已知集合M ={(x , y )|x +y =2}, N ={(x , y )|x -y =4}, 那么集合M ∩N 等于________.3.设集合A ={y |y =x 2+1, x ∈R }, B ={y |y =x +1, x ∈R }, 则A ∩B 等于________. 4.第二十九届夏季奥林匹克运动会于2008年8月8日在北京举行.若集合A ={参加北京奥运会比赛的运动员}, 集合B={参加北京奥运会比赛的男运动员}, 集合C={参加北京奥运会比赛的女运动员}, 则B∪C__________A.5.设M={1,2,4,5}, P={1,2,3}, 则有________(M∩P).6.如图所示, U是全集, M, P, S是U的三个子集, 则阴影部分表示的集合是__________.7.满足条件{1,2,3}∪B={1,2,3,4,5}的集合B的个数是__________.8.已知集合A={x|x2+2(a+1)x+a2-1=0}, B={x|x2+4x=0}, 若A∪B=B, 则实数a的取值范围是________.9.某市政府对水、电提价, 召开听证会, 如记对水提价为事件A, 对电提价为事件B.现向100名市民调查其对A、B两事件的看法, 有如下结果:赞成A的人数是全体的35, 其余的不赞成;赞成B的比赞成A的多3人, 其余不赞成;另外, 对A、B都不赞成的市民人数比对A、B都赞成的市民人数的13多1人, 问对A、B都赞成的市民和都不赞成的市民各有多少人?10.已知集合A={x|0≤x≤5}, 集合B={x|m≤x≤2m-1}, 且A∪B=A, 试用区间符号表示实数m的取值范围.参考答案1.答案:{x |x <-5或x >-3} 2.答案:{(3, -1)} 3.答案:{y |y ≥1} 4.答案:=5.答案:6.答案:S ∩M ∩P 7.答案:88.答案:{a |a ≤-1或a =1} 9.解:赞成A 的人数为100×35=60, 赞成B 的人数为60+3=63. 如图所示, 记100名市民组成的集合为U , 赞成事件A 的市民为集合A , 赞成事件B 的市民为集合B .设对事件A 、B 都赞成的市民人数为x , 则对A 、B 都不赞成的市民人数为3x+1.依题意可得, (60-x )+(63-x )+x +3x+1=100, 解得x =36, 即对A 、B 两事件都赞成的市民有36人, 对A 、B 两事件都不赞成的市民有13人. 10.解:∵A ∪B =A , ∴B A .又∵A ={x |0≤x ≤5}≠,∴B =, 或B ≠.当B =时, 有m >2m -1, ∴m <1. 当B ≠时, 如图,由图可得21215m mmm≤-⎧⎪≤⎨⎪-≤⎩,,,解得1≤m≤3.综上所述, 实数m的取值范围为(-∞, 3].函数的概念练习1.若(f x M, g(x)=|x|的定义域为N, 则M∩N等于__________.2.已知集合M={-1,2,1}, N={0,1,2}, 给出下列四个对应法则:①x→x2;②x→x+1;③xx→1x.其中能构成从M到N的函数的是__________.3.下列函数中, 与函数y=x是同一函数的是________________________________.①y②2+1y;③y④2=xyx;⑤s=t.4.函数y1的值域是__________.5.函数y__________.6.设()221 =1 xf xx -+, 则(2)12ff⎛⎫⎪⎝⎭等于__________.7.已知函数f(x), g(x)则f [g (1)]的值为x =__________. 8.求下列函数的定义域和值域.(1)32=2x y x +-;(2)2y . 9.已知()1=1f x x+, x ∈R 且x ≠-1, g (x )=x 2+2, x ∈R .(1)求f (2)和g (a );(2)求g [f (2)]和f [g (x )].10.换元思想是高中数学中的重要数学思想.我们在求函数定义域时, 也有换元思想, 如函数y =f (x )的定义域为(1,3), 则函数y =f (2x -1)的定义域, 可由1<2x -1<3得(1,2).试根据上述方法, 解决下列问题:(1)已知函数y =f (x )的定义域为[-1,3], 试求函数y =f (3x -1)的定义域; (2)已知函数y =f (3x -1)的定义域为[-1,3], 试求函数y =f (x )的定义域; (3)已知函数y =f (3x -1)的定义域为[-1,3], 试求函数y =f (1-x )的定义域.参考答案1.解析:由题意, 得M ={x |x >0}, N =R , 则M ∩N ={x |x >0}=M . 答案:M2.解析:因22=4N , 所以①不是函数. 因2+1=3N , 所以②不是函数.2(1)-22=221=1, 所以③是函数, 显然④不是函数.答案:③3.解析:因为y 2x |x |, 所以①不是. 因为x -1≥0, x ≥1, 所以②不是.因为55=y x x , 所以③是. 因为x ≠0, 所以④不是.因为s =t 的定义域和对应法则与y =x 的完全相同, 所以⑤是. 答案:③⑤4.解析:因为x ≥0时x ≥0, 所以y ≥1. 答案:[1, +∞) 5.答案:{x |x <0}6.解析:()222132==215f -+, 221()1132==125()12f -⎛⎫- ⎪⎝⎭+. 所以原式=-1. 答案:-17.解析:f [g (1)]=f (3)=1;当g [f (x )]=2时, f (x )=2, x =1. 答案:1 18.解:(1)由x -2≠0得定义域为{x |x ≠2}, 由32=2x y x +-=3682x x -+-=3+82x -≠3, 得值域为{y |y ≠3}.(2)由4-2x ≥0得定义域为{x |x ≤2}, 42x -≥042x --2≥-2, 得值域为[-2, +∞). 9.解:(1)()112==123f +,g (a )=a 2+2. (2)∵()12=3f , ∴g [f (2)]=21119()=()+2=339g ,f [g (x )]=f (x 2+2)=2211=1(2)3x x +++.10.解:(1)由条件得-1≤3x -1≤3,0≤x ≤43,所求定义域为4 0,3⎡⎤⎢⎥⎣⎦.(2)设t=3x-1, 由条件知-1≤x≤3,所以-4≤3x-1≤8,即-4≤t≤8.所以y=f(x)的定义域为[-4,8].(3)由(2)可知y=f(x)的定义域为[-4,8],从而-4≤1-x≤8,解得-7≤x≤5,所求定义域为[-7,5].函数的图象练习1.下列四个图形中, 可能是函数y=f(x)的图象的是__________.2.函数y=f(x)的图象与直线x=1的交点个数是__________.3.下图是某容器的侧面图, 如果以相同的速度向容器中注水, 则容器中水的高度与时间的函数关系为下图中的__________.4.如图, 正△ABC的边长为1, E, F, G分别是AB, BC, CA上的点, 且AE=BF=CG, 设△EFG的面积为y, AE的长为x, 则y关于x的函数的图象大致是________.5.二次函数y=ax2+bx+c(x∈R)的部分对应值如下表, 则不等式ax2+bx+c>0的解集是6.已知二次函数f (x )=ax 2+bx +c (a >0)的图象的对称轴为x =3, 则f (2)与f 的大小关系是__________.7.某工厂八年来某种产品总产量C 与时间t (年)的函数关系如下图所示, 则下列四种说法中正确的是________.①前三年中产量增长速度越来越快;②前三年中产量增长的速度越来越慢;③第三年后, 这种产品停止生产;④第三年后, 年产量保持不变.8.水池有2个进水口, 1个出水口, 每个进出水口进出水速度如图①②所示, 某天0点到6点, 该水池的蓄水量如图③所示(至少打开一个水口).给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则一定正确的论断是__________.9.在同一直角坐标系中, 分别作出函数y 1=x +1和y 2=x 2-3x -4的图象, 并回答x 为何值时, y 1>y 2, y 1=y 2, y 1<y 2?10.在平面直角坐标系中, 横坐标与纵坐标均为整数的点称为格点.试求由函数2132y x =-和直线x =10及x 轴所围成的三角形内部及边上的格点有多少个?参考答案1.答案:①②③ 2.答案:0或1 3.答案:③ 4.答案:③5.答案:(-∞, -2)∪(3, +∞)6.答案:f (2)>f 7.答案:②③④ 8.答案:①9.解:作出两函数的图象如图所示,由方程组21,34,y x y x x =+⎧⎨=--⎩得1,0,x y =-⎧⎨=⎩或5,6.x y =⎧⎨=⎩ 所以两图象交点坐标为(-1,0)和(5,6).从而当x ∈(-1,5)时, y 1>y 2; 当x =-1或5时, y 1=y 2;当x ∈(-∞, -1)∪(5, +∞)时, y 1<y 2. 10.解:作出如图所示的图象,则共有1+2+4+5+7+8+10=37(个)格点.函数的表示方法练习1.一个面积为100 cm 2的等腰梯形, 上底长为x cm, 下底长为上底长的3倍, 则把它的高y 表示成x 的函数为__________.2.下列图形是函数y =-|x |(x ∈[-2,2])的图象的是__________.3.设2()=1x f x x +, 则1()f x=__________. 4.设()2|1|211,=1,111x x f x x x x---≤≤⎧⎪⎨><-⎪+⎩,或,则1()2f f ⎡⎤⎢⎥⎣⎦等于__________.5.设()221<0,1=,0<<2,23,2,x x f x x x x +-≤⎧⎪⎪-⎨⎪≥⎪⎩,则3()4f f f ⎧⎫⎡⎤-⎨⎬⎢⎥⎣⎦⎩⎭的值为________, f (x )的定义域是__________.6.函数23,0,=3,0<1,5,>1x xy x xx x+≤⎧⎪+≤⎨⎪-+⎩的最大值为______.7.已知f(x+1)=x2-2x,则f=__________.8.A、B两地相距150 km, 某汽车以每小时50 km的速度从A地到B地, 在B地停留2 h之后, 又以每小时60 km的速度返回A地.则该车离开A地的距离s(km)关于时间t(h)的函数关系式为________.9.作函数y=|x+3|+|x-5|的图象, 并求出函数的值域.10.如图, 梯形OABC各顶点的坐标分别为O(0,0), A(6,0), B(4,2), C(2,2).一条与y轴平行的动直线l从O点开始作平行移动, 到A点为止.设直线l与x轴的交点为M, OM =x, 记梯形被直线l截得的在l左侧的图形的面积为y.求函数y=f(x)的解析式、定义域、值域以及7()2f f⎡⎤⎢⎥⎣⎦的值.参考答案1.答案:50=y x(x >0) 2.答案:② 3.答案:f (x )4.答案:413 5.答案:32[-1,0)∪(0, +∞)6.答案:4 7.答案:5-8.答案:5003=1503<5,45060,5<7.5t t s t t t ≤≤⎧⎪≤⎨⎪-≤⎩,,, 9.解:因为函数y =|x +3|+|x -5|可以化为223835225x x y x x x -+≤-⎧⎪=<<⎨⎪-≥⎩,,,-,,,所以函数的图象如图所示.由图可知函数的值域为[8, +∞).10.解:当0≤x ≤2时, 图形为等腰直角三角形, 此时y =12·x ·x =12x 2; 当2<x ≤4时, 图形为一个直角梯形, 它又可分割成一个等腰直角三角形(确定的)与一个矩形, 此时y =12×2×2+(x -2)×2=2x -2;当4<x ≤6时, 图形为一个五边形, 它可看做是原梯形去掉一个等腰直角三角形(位于直线右侧), 此时y =12×(6+2)×2-12(6-x )2=-12x 2+6x -10.于是()2210222224,1610,4 6.2x x y f x x x x x x ⎧≤≤⎪⎪=-<≤⎨⎪⎪-+-<≤⎩,,=, 并且函数y =f (x )的定义域是[0,6]. 又当0≤x ≤2时, 0≤12x 2≤2; 当2<x ≤4时, 2<2x -2≤6; 当4<x ≤6时, 6<-12x 2+6x -10≤8. 所以函数y =f (x )的值域为[0,2]∪(2,6]∪(6,8], 即为[0,8].由于72∈(2,4], 故7()2f =2×72-2=5. 又5∈(4,6], 故f (5)=-12×52+6×5-10=152.于是7()2f f ⎡⎤⎢⎥⎣⎦=f (5)=152.函数的单调性练习1.函数(f x 的单调递增区间为__________. 2.已知函数f (x )在R 上是减函数, 则满足1f x ⎛⎫⎪⎝⎭<f (1)的实数x 的取值范围是__________.3.已知二次函数y =ax 2+bx +c 的对称轴为x =2, 且a >0, 则下列不等式成立的是__________.①f (1)>f (0);②f (π)>f (1);③f ()<f(π);④f >f (π). 4.已知下列函数:①2=y x-;②y =-2x +1;③y =-2x 2+4x -1;④y 1, +∞)上单调递增的函数是__________.5.已知二次函数y =2x 2-(m -2)x +m 2-m 在(1, +∞)上单调递增, 则m 的取值范围是________.6.若函数f (x )在R 上单调递增, 则不等式f (x +2)<f (3x -6)的解集为__________. 7.若f (x )是二次函数, 且f (2)=-3, f (-2)=-7, f (0)=-3, 则f (x )的单调增区间是__________.8.已知函数()21,0,=2,0,x x f x x x ⎧+≤⎨>⎩则不等式f (x )>2的解集为__________.9.作出函数f (x )=x 2+x -6的图象, 并回答下列问题: (1)当x 取何值时f (x )≥0? (2)写出函数y 的单调区间. 10.若二次函数f (x )=x 2-(a -1)x +5在区间1,12⎛⎫⎪⎝⎭上是增函数, 求f (2)的取值范围. 11.判断函数2()=1axf x x -(a ∈R , 且a ≠0)在区间(-1,1)内的单调性.12.已知f(x)=-x2+2x+8, g(x)=x2-3.(1)试求f(x)的单调区间;(2)试判断x∈(2, +∞)时, f[g(x)]的单调性;(3)试猜想f[g(x)]的单调区间(不必写过程, 只写结果).参考答案1.答案:1,2⎡⎫-+∞⎪⎢⎣⎭2.答案:(-1,0)∪(0,1)3.答案:② 4.答案:①④5.答案:(-∞, 6] 6.答案:(4, +∞) 7.答案:(-∞, 1)8.答案:(-∞, -1)∪(1, +∞) 9.解:由f (x )=x 2+x -6=2125(+)24x -得顶点坐标125,24⎛⎫-- ⎪⎝⎭,又与坐标轴交点坐标为(-3,0), (2,0)和(0, -6),所以作出如下图所示的图象.(1)从图象可知, 当x ≥2或x ≤-3时, f (x )≥0. (2)对于y 其定义域为(-∞, -3]∪[2, +∞), 所以单调增区间为[2, +∞), 单调减区间为(-∞, -3].10.解:二次函数f (x )在区间1,12⎛⎫⎪⎝⎭上是增函数, 且抛物线开口向上, 故其对称轴1=2a x -或与直线1=2x 重合或位于直线1=2x 的左侧,故11=22a x -≤, 解得a ≤2, f (2)=22-(a -1)×2+5=11-2a .所以f (2)≥7.11.解:设x 1, x 2为区间(-1,1)内的任意两个值, 且x 1<x 2, 则f (x 1)-f (x 2)=12122122221212(1)()=11(1)(1)ax ax a x x x x x x x x +------. 因为-1<x 1<x 2<1,所以x 1x 2+1>0, x 2-x 1>0, x 21-1<0, x 22-1<0. ①当a >0时, f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),因此函数在区间(-1,1)上为减函数; ②当a <0时, f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2),因此函数在区间(-1,1)上为增函数.12.解:(1)由f (x )=-x 2+2x +8=-(x -1)2+9,可知函数f (x )的单调增区间为(-∞, 1), 单调减区间为(1, +∞). (2)设x 1>x 2>2,则g (x 1)=21x -3, g (x 2)=22x -3,从而g (x 1)>g (x 2)>1.由(1)可知f [g (x 1)]<f [g (x 2)], 从而f [g (x )]在(2, +∞)上单调递减.(3)当x ∈(-2,0)或x ∈(2, +∞)时函数f [g (x )]单调递减, 当x ∈(-∞, -2)或x ∈(0,2)时函数f [g (x )]单调递增.函数的最值练习1.下列函数中, 在(0,2)上为增函数的是__________. ①y =-3x +1;②y =|x +2|;③4y x=;④y =x 2-4x +3.2.函数f (x )=|x -2|-2在区间[0,3]上有最小值__________, 最大值__________. 3.设f (x )>0是定义在区间D 上的单调递减函数, 则下列函数:①y =3-f (x );②2=1+()y f x ;③y =[f (x )]2;④=1()y f x -中单调增函数的个数为__________. 4.若函数f (x )=x 2-ax +3在区间[1,3]上有最小值-1, 则a 的值为__________.5.函数f (x )=x 4+2x 2-1的最小值是__________. 6.函数2()=k f x x-在区间[1,3]上有最大值3, 则k =__________. 7.已知定义域为(0, +∞)的函数f (x )=ax 2+1(a <0), 求满足f (x )<f (2-x )的x 的取值范围是__________.8.对任意函数f (x ), g (x )在公共定义域内, 规定f (x )g (x )=min{f (x ), g (x )}, 若f (x )=3-x ,g (x )=23x -, 则f (x )g (x )的最大值为______.9.求证:函数y =f (x )=x 2+21x在(0, +∞)上的最小值为2. 10.设x ∈R , 求函数y =2|x -1|-3|x |的最大值.11.设a 为实数, 函数f (x )=2x 2+(x -a )|x -a |. (1)若f (0)≥1, 求a 的取值范围; (2)求f (x )的最小值.12.对于定义域为D 的函数y =f (x ), 若同时满足下列条件:①f (x )在D 内单调递增或单调递减;②存在区间[a , b ]D , 使f (x )在[a , b ]上的值域为[a , b ], 那么把y =f (x )(x ∈D )叫闭函数.(1)求闭函数y =-x 3符合条件②的区间[a , b ].(2)判断函数31()=4f x x x+(x >0)是否为闭函数?并说明理由.参考答案1.答案:② 2.答案:-2 0 3.答案:3 4.答案:4 5.答案:-1 6.答案:5 7.答案:(1,2) 8.答案:19.证明:任取x 1, x 2∈(0,1], 且x 1<x 2,则x 2-x 1>0, x 1+x 2>0,0<2212x x <1,22121x x >1, ∴1-22121x x <0. 2121()()f x f x x x --=1x 2-x 12221222111()x x x x -+- =211x x -2221()x x -22211(1)x x - =(x 2+x 1)22211(1)x x -<0,∴f (x 2)<f (x 1).∴f (x )在(0,1]上是单调减函数. 同理可得f (x )在[1, +∞)上是单调增函数. 故f (x )在(0, +∞)上的最小值为f (1)=2. 10.解法一:去掉绝对值符号后可得:2,1,52,01,2,0,x x y x x x x --≥⎧⎪=-+≤<⎨⎪+<⎩故可得图象如下图.由图可知当x =0时, y ma x =2.解法二:当x≥1时, y≤-3;当0≤x<1时, -3<y≤2;当x<0时, y<2.从而可得当x=0时, y ma x=2.11.解:(1)若f(0)≥1,则-a|a|≥1⇒20, 1a a <⎧⎨≥⎩⇒a≤-1.(2)当x≥a时, f(x)=3x2-2ax+a2,f(x)min=(),0,03f a aaf a≥⎧⎪⎨⎛⎫<⎪⎪⎝⎭⎩=222,0,2,0,3a aaa⎧≥⎪⎨<⎪⎩当x<a时, f(x)=x2+2ax-a2,f(x)min=(),0()0f a af a a-≥⎧⎨<⎩=222,0,2,0,a aa a⎧-≥⎨<⎩综上, f(x)min=222,0,2,0.3a aaa⎧-≥⎪⎨<⎪⎩12.解:(1)由题意, y=-x3在[a, b]上递减,则33,,,b aa bb a⎧=-⎪=-⎨⎪>⎩解得1,1.ab=-⎧⎨=⎩所以, 所求的区间为[-1,1].(2)取x1=1, x2=10,则f(x1)=74<7610=f(x2),即f(x)不是(0, +∞)上的减函数.取x1=110, x2=1100, f(x1)=340+10<3400+100=f(x2), 即f(x)不是(0, +∞)上的增函数.所以, 函数在定义域内不单调递增或单调递减, 从而该函数不是闭函数.函数的奇偶性练习1.奇函数f(x)在区间[3,7]上为单调增函数, 最小值为5, 那么函数f(x)在区间[-7, -3]上为单调__________函数, 且最__________值为__________.2.函数f(x)是R上的偶函数, 且在[0, +∞)上单调递增, 则下列各式成立的是__________.①f(-2)>f(0)>f(1);②f(-2)>f(1)>f(0);③f(1)>f(0)>f(-2);④f(1)>f(-2)>f(0).3.下列函数中是奇函数且在(0,1)上单调递增的函数是__________.①f(x)=x+1x;②f(x)=x2-1x;③(f x;④f(x)=x|x|.4.下列函数是奇函数的是__________.①(1)1x x y x -=-;②y =-3x 2;③y =-|x |;④y =πx 3-35x ;⑤y =x 3·|x |. 5.若φ(x ), g (x )都是奇函数, f (x )=aφ(x )+bg (x )在(0, +∞)上有最大值5, 则f (x )在(-∞, 0)上有__________.(填最值情况)6.设函数()(1)()x x a f x x++=为奇函数, 则a =__________.7.若f (x )是定义在R 上的奇函数, 当x ≥0时, f (x )=x 2-2x , 则在R 上f (x )的表达式为__________.8.已知f (x )=x 3+1x, 且f (a )=1, 则f (-a )=____. 9.判断函数()(][)22(5)4,6,1,(5)4,1,6x x f x x x ⎧+-∈--⎪⎨--∈⎪⎩=的奇偶性. 10.已知函数f (x )=x 2+a x(x ≠0), 常数a ∈R , 讨论函数f (x )的奇偶性并说明理由.11.若函数()22,0,,0,x x x f x ax x x ⎧-+>=⎨+≤⎩当a 为何值时, f (x )是奇函数?12.已知f (x )是定义在R 上的奇函数, 且当x >0时, f (x )=x 2-4x +3. (1)求f [f (-1)]的值; (2)求函数f (x )的解析式;(3)求函数f (x )在区间[t , t +1](t >0)上的最小值.参考答案1.解析:根据题意作出如图所示的草图即可知.答案:增大-52.解析:由条件得f(-2)=f(2),因为f(x)在[0, +∞)上单调递增,所以f(0)<f(1)<f(2),即f(-2)>f(1)>f(0).答案:②3.解析:由定义可知①④是奇函数,但对于函数f(x)=x+1x来说,当x=12时,1()2f=52,当x=13时,1()3f=103,所以①不是递增函数.答案:④4.解析:先判断定义域关于原点是否对称, 再确定f(-x)与-f(x)的关系.①中定义域为(-∞, 1)∪(1, +∞)关于原点不对称, 所以排除①;②③均是偶函数;④⑤中函数的定义域是R, 可得f(-x)=-f(x), 则它们是奇函数.答案:④⑤5.解析:由条件得f(-x)=aφ(-x)+bg(-x)=-aφ(x)-bg(x)=-f(x),所以f(x)为奇函数, 它的图象关于原点对称.答案:最小值-56.解析:由f(-x)+f(x)=0得(1)()(1)()x x a x a xx x++--+-=0, 解得a=-1.答案:-17.解析:当x<0时, -x>0,f(-x)=(-x)2-2(-x)=x2+2x, ∵f(x)为奇函数,∴f(x)=-f(-x)=-x2-2x.综上所述, ()222,0,2,0x x x f x x x x ⎧-≥=⎨--<⎩答案:()222,0,2,0x x x f x x x x ⎧-≥=⎨--<⎩8.解析:f (x )=x 3+1x的定义域是(-∞, 0)∪(0, +∞), 关于原点对称, 且f (-x )=(-x )3+1x -=31x x ⎛⎫-+ ⎪⎝⎭=-f (x ), 所以f (x )为奇函数.因此f (-a )=-f (a )=-1.答案:-19.解:f (x )的定义域为(-6, -1]∪[1,6), 关于原点对称. 当x ∈(-6, -1]时, -x ∈[1,6),f (-x )=(-x -5)2-4=(x +5)2-4=f (x ); 当x ∈[1,6)时, -x ∈(-6, -1],f (-x )=(-x +5)2-4=(x -5)2-4=f (x ). 综上可知, 对于x ∈(-6, -1]∪[1,6), 都有f (-x )=f (x ), 所以f (x )为偶函数.10.解:当a =0时, f (x )=x 2对任意的x ∈(-∞, 0)∪(0, +∞), f (-x )=(-x )2=f (x ),所以f (x )为偶函数.当a ≠0时, f (x )=x 2+ax(x ≠0), 不妨取x =±1, f (-1)+f (1)=2≠0, f (-1)-f (1)=-2a ≠0, 所以f (-1)≠-f (1), f (-1)≠f (1).所以函数既不是奇函数又不是偶函数.11.解:假设f (x )是奇函数, 则有f (-x )=-f (x ). 当x >0时, -x <0,则f (-x )=a (-x )2+(-x )=ax 2-x .又∵x >0时, f (x )=-x 2+x ,∴-f (x )=x 2-x . ∵f (-x )=-f (x ),即ax 2-x =x 2-x , ∴a =1.下面证明()22,0,,0x x x f x x x x ⎧-+>=⎨+≤⎩是奇函数.证明:当x >0时, -x <0,则f (-x )=(-x )2+(-x ) =x 2-x =-(-x 2+x )=-f (x ); 当x ≤0时, -x ≥0,则f (-x )=-(-x )2+(-x )=-x 2-x =-(x 2+x )=-f (x ),于是22(),0,()(),0.x x x f x x x x ⎧--+>=⎨-+≤⎩- ∴f (-x )=-f (x ).∴假设成立, a =1.12.解:(1)因为f (-1)=-f (1)=0, 故f [f (-1)]=f (0), 由奇函数的性质知f (0)=0,从而有f [f (-1)]=0.(2)当x =0时, 由奇函数的性质知f (0)=0; 当x <0时, -x >0, 故f (x )=-f (-x )=-[(-x )2-4(-x )+3]=-x 2-4x -3.综上所述, 2243,0,()=0,0,43,0.x x x f x x x x x ⎧-+>⎪=⎨⎪---<⎩(3)当x >0时, f (x )=x 2-4x +3=(x -2)2-1, 对称轴为x =2.当0<t ≤1时, 区间[t , t +1](t >0)在对称轴的左侧, 此时f (x )min =f (t +1)=t 2-2t ;当1<t ≤2时, 对称轴在区间[t , t +1](t >0)内部, 此时f (x )min =f (2)=-1; 当t >2时, 区间[t , t +1](t >0)在对称轴的右侧, 此时f (x )min =f (t )=t 2-4t +3.综上所述, ()2min 22,01,1,12,43, 2.t t t f x t t t t ⎧-<≤⎪-<≤⎨⎪-+>⎩=课后训练千里之行 始于足下1.下列函数为单调增函数的序号是________. ①2()f x x =(x >0);②()f x =1()f x x x=-+;④()1f x =+2.函数y =x 2-3x +2的单调减区间是________, 最小值是________.3.下列命题正确的序号是________.①定义在(a , b )上的函数f (x ), 若存在x 1, x 2∈(a , b ), 使得x 1<x 2时, 有f (x 1)<f (x 2), 则f (x )在(a , b )上递增.②定义在(a , b )上的函数f (x ), 若有无穷多对x 1, x 2∈(a , b ), 使得x 1<x 2时, 有f (x 1)<f (x 2), 则f (x )在(a , b )上递增.③若f (x )在区间I 1上是单调增函数, 在区间I 2上也是单调增函数, 则f (x )在I 1∪I 2上也一定是单调增函数.④若f (x )在区间I 上单调递增, g (x )在区间I 上单调递减, 则f (x )-g (x )在区间I 上单调递增.4.已知函数y =f (x )与函数y =g (x )的图象如图:。