离散数学最短路径和关键路径
离散数学 最短路径和关键路径
例2(续) 续 缓冲时间 TS(v1)=0-0=0 TS(v2)=2-1=1 TS(v3)=2-2=0 TS(v4)=6-4=2 TS(v5=10-8=2 TS(v6)=11-9=2 TS(v7)=6-6=0 TS(v8)=12-12=0 关键路径: 关键路径 v1v3v7v8
11
�
7.4 最短路径与关键路径
带权图 最短路径与Dijkstra标号法 标号法 最短路径与 PERT图与关键路径 图与关键路径
1
最短路径
带权图G=<V,E,w>, 其中 其中w:E→R. 带权图 → 称作e的 e∈E, w(e)称作 的权. e=(vi,vj), 记w(e)=wij . 若vi,vj不 ∈ 称作 相邻, 相邻 记wij =∞. ∞ 设L是G中的一条路径 L的所有边的权之和称作 的 中的一条路径, 的所有边的权之和称作L的 是 中的一条路径 的所有边的权之和称作 记作w(L). 权, 记作 u和v之间的最短路径 u和v之间权最小的通路 之间的最短路径 之间权最小的通路. 和 之间的最短路径: 和 之间权最小的通路 例1 L1=v0v1v3v5, w(L1)=10, L2=v0v1v4v5, w(L2)=12, L3=v0v2v4v5, w(L3)=11.
0
1
3
4
Γ =v0v1v2v4v3v5,
w(Γ)=9
5
PERT图(计划评审技术图 图 计划评审技术图 计划评审技术图)
设有向图G=<V,E>, v∈V 设有向图 ∈ v的后继元集Γ +(v)={x|x∈V∧<v,x>∈E} 的 ∈ ∧ ∈ v的先驱元集Γ -(v)={x|x∈V∧<x,v>∈E} 的 ∈ ∧ ∈ PERT图:满足下述条件的 阶有向带权图 图 满足下述条件的 阶有向带权图D=<V,E,w>, 满足下述条件的n阶有向带权图 (1) D是简单图 是简单图, 是简单图 (2) D中无回路 中无回路, 中无回路 (3) 有一个入度为 的顶点 称作始点 有一个出度为 有一个入度为0的顶点 称作始点 有一个出度为0 的顶点, 始点; 的顶点, 称作终点 终点. 的顶点 称作终点 通常边的权表示时间, 始点记作v 终点记作v 通常边的权表示时间 始点记作 1, 终点记作 n
离散数学有向图常用算法思路概述
离散数学有向图常用算法思路概述离散数学是数学的一个分支,研究离散对象及其性质。
在离散数学中,有向图是一种常见的离散结构,它由一组节点(顶点)和一组有向边(弧)组成。
有向图在计算机科学、网络分析和运筹学等领域中具有广泛的应用。
针对有向图,有许多常用的算法思路可以帮助解决各种问题。
在本文中,我们将概述离散数学中常用的有向图算法思路。
一、深度优先搜索(DFS)深度优先搜索是一种常见的图搜索算法,用于遍历有向图。
它从图中的一个节点开始,沿着路径一直前进,直到无法继续,然后回溯到前一个节点继续搜索。
深度优先搜索可以用于检测环路、寻找连通分量以及生成拓扑排序等。
该算法的思路可以用以下伪代码表示:```DFS(节点v):标记节点v为已访问对于v的每个邻接节点u:如果u未被访问:递归调用DFS(u)```二、广度优先搜索(BFS)广度优先搜索是另一种用于遍历有向图的常见算法。
与深度优先搜索不同,广度优先搜索从源节点开始,首先遍历源节点的邻接节点,然后依次遍历它们的邻接节点,直到遍历完所有可达节点。
广度优先搜索可以用于寻找最短路径、检测连通性以及解决迷宫问题等。
该算法的思路可以用以下伪代码表示:```BFS(源节点s):创建一个空队列Q标记源节点s为已访问并入队while Q非空:取出队首节点v对于v的每个未被访问的邻接节点u:标记u为已访问并入队```三、拓扑排序拓扑排序是一种特殊的有向图排序算法,用于将有向无环图(DAG)中的所有节点排序为线性序列。
拓扑排序的思想是通过不断删除图中入度为0的节点,并更新相关节点的入度值,直到所有节点都被排序。
拓扑排序可以用于任务调度、依赖关系分析等场景。
该算法的思路可以用以下伪代码表示:TopologicalSort(有向图G):创建一个空队列Q和空列表L初始化所有节点的入度将所有入度为0的节点入队while Q非空:取出队首节点v并加入Lfor v的每个邻接节点u:更新u的入度值if u的入度变为0:将u入队```四、最短路径算法最短路径算法用于找到两个节点之间的最短路径。
图的最短路径、拓扑排序和关键路径
数据结构课程辅导---图的最短路径、拓扑排序和关键路径一、最短路径由图的概念可知,在一个图中,若从一顶点到另一顶点存在着一条路径(这里只讨论无回路的简单路径),则称该路径长度为该路径上所经过的边的数目,它也等于该路径上的顶点数减1。
由于从一顶点到另一顶点可能存在着多条路径,每条路径上所经过的边数可能不同,即路径长度不同,我们把路径长度最短(即经过的边数最少)的那条路径叫做最短路径,其路径长度叫做最短路径长度或最短距离。
上面所述的图的最短路径问题只是对无权图而言的,若图是带权图,则把从一个顶点i到图中其余任一个顶点j的一条路径上所经过边的权值之和定义为该路径的带权路径长度,从vi到vj可能不止一条路径,我们把带权路径长度最短(即其值最小)的那条路径也称作最短路径,其权值也称作最短路径长度或最短距离。
例如,在图3-1中,从v0到v4共有三条路径:{0,4},{0,1,3,4}和{0,1,2,4},其带权路径长度分别为30,23和38,可知最短路径为{0,1,3,4},最短距离为23。
图3-1 带权图和对应的邻接矩阵实际上,这两类最短路径问题可合并为一类,这只要把无权图上的每条边标上数值为1的权就归属于有权图了,所以在以后的讨论中,若不特别指明,均认为是求带权图的最短路径问题。
求图的最短路径问题用途很广。
例如,若用一个图表示城市之间的运输网,图的顶点代表城市,图上的边表示两端点对应城市之间存在着运输线,边上的权表示该运输线上的运输时间或单位重量的运费,考虑到两城市间的海拔高度不同,流水方向不同等因素,将造成来回运输时间或运费的不同,所以这种图通常是一个有向图。
如何能够使从一城市到另一城市的运输时间最短或者运费最省呢?这就是一个求两城市间的最短路径问题。
求图的最短路径问题包括两个方面:一是求图中一顶点到其余各顶点的最短路径,二是求图中每对顶点之间的最短路径。
下面分别进行讨论。
1. 从一顶点到其余各顶点的最短路径对于一个具有n个顶点和e条边的图G,从某一顶点vi(称此为源点)到其余任一顶点vj(称此为终点)的最短路径,可能是它们之间的边(i,j)或<i,j>,也可能是经过k个(1≤k≤n-2,最多经过除源点和终点之外的所有顶点)中间顶点和k+1条边所形成的路径。
关键路径和最短路径及树
关键路径和最短路径:基本思路:1.关键路径法:关键路径法对于一个项目而言,只有项目网络中最长的或耗时最多的活动完成之后,项目才能结束,这条最长的活动路线就叫关键路径。
2.最短路径法:求一个顶点到其余顶点的最短路径主要运用Dijkstra 算法,把图中的顶点分为两个集合S 和T ,集合S 皴法已确定最短路径的顶点,集合T 存放尚未确定最短路径的顶点。
按最短路径长度递增的次序逐个将T 集合中的顶点加入到S 中,直到从源点出发可以到达的所有顶点都在S 中为止。
演算过程:1.关键路径各项活动的最早时间,t(A)=0t(B)=max{2,15+4}=19t(C)=15t(D)=19+10=29t(E)=max{19+19,15+11}=38t(F)=max{29+6,38+5}=43事项的最早时间为43各事项的最迟时间,t(F)=43t(D)=43-6=37t(E)=43-5=38t(B)=min{37-10,38-19}=19t(C)=min{19-4,38-11}=15t(A)=15-15=0.所以关键路径为:A →C →B →E →FA B C DE F 2 1111 465起终2.最短路径首先将A 点分到S集合中,其余各点分到T集合,S(A)=0,其余各点为T=+∞与A相关的边(A,B),(A,C)T(B)=min{T(B),S(A)+2}=min{+∞,0+2}=2T(C)=min{T(C),S(A)+15}=min{+∞,0+15}=15∴S(C)=15,记录路径(A,C)与C相关的边(C,B),(C,E)T(B)=min{T(B),S(C)+4}=min{2,15+4}=2T(E)=min{T(E),S(C)+11}=min{+∞,15+11}=26∴S(B)=2,记录路径(A,B)与B相关的边(B,D),(B,E)T(D)=min{T(D),S(B)+10}=min{+∞,2+10}=12T(E)=min{T(E),S(B)+19}=min{26,2+19}=21∴S(D)=12,记录路径(B,D)与D相关的边(D,F)T(F)=min{T(F),S(D)+6}=min{+∞,12+6}=18∴S(E)=21,记录路径(B,E)与E相关的边(E,F)T(F)=min{T(F),S(E)+5}=min{18,21+5}=18∴S(F)=18,记录路径(D,F)从A点到到其余各顶点最短路为:所以A到F的最短路为A→B→D→FB+树和B*树:针对上述文件建立4阶的B+树和B*树索引结构,用图形描述在该文件中先后新增ID为50和45的记录,用图形分别描述新增两条记录后索引结构(B+树和B*树)的变化B+树和B*树的区别:B+叶子结点中存储记录,在B+树中,所有的非叶子结点可以看成是索引,而其中的关键字是作为“分界关键字”,用来界定某一关键字的记录所在的子树。
图的最短路径拓扑排序和关键路径
数据结构课程辅导---图的最短路径、拓扑排序和关键路径一、最短路径由图的概念可知,在一个图中,若从一顶点到另一顶点存在着一条路径(这里只讨论无回路的简单路径),则称该路径长度为该路径上所经过的边的数目,它也等于该路径上的顶点数减1。
由于从一顶点到另一顶点可能存在着多条路径,每条路径上所经过的边数可能不同,即路径长度不同,我们把路径长度最短(即经过的边数最少)的那条路径叫做最短路径,其路径长度叫做最短路径长度或最短距离。
上面所述的图的最短路径问题只是对无权图而言的,若图是带权图,则把从一个顶点i到图中其余任一个顶点j的一条路径上所经过边的权值之和定义为该路径的带权路径长度,从v i到v j可能不止一条路径,我们把带权路径长度最短(即其值最小)的那条路径也称作最短路径,其权值也称作最短路径长度或最短距离。
例如,在图3-1中,从v0到v4共有三条路径:{0,4},{0,1,3,4}和{0,1,2,4},其带权路径长度分别为30,23和38,可知最短路径为{0,1,3,4},最短距离为23。
图3-1 带权图和对应的邻接矩阵实际上,这两类最短路径问题可合并为一类,这只要把无权图上的每条边标上数值为1的权就归属于有权图了,所以在以后的讨论中,若不特别指明,均认为是求带权图的最短路径问题。
求图的最短路径问题用途很广。
例如,若用一个图表示城市之间的运输网,图的顶点代表城市,图上的边表示两端点对应城市之间存在着运输线,边上的权表示该运输线上的运输时间或单位重量的运费,考虑到两城市间的海拔高度不同,流水方向不同等因素,将造成来回运输时间或运费的不同,所以这种图通常是一个有向图。
如何能够使从一城市到另一城市的运输时间最短或者运费最省呢?这就是一个求两城市间的最短路径问题。
求图的最短路径问题包括两个方面:一是求图中一顶点到其余各顶点的最短路径,二是求图中每对顶点之间的最短路径。
下面分别进行讨论。
1. 从一顶点到其余各顶点的最短路径对于一个具有n个顶点和e条边的图G,从某一顶点v i(称此为源点)到其余任一顶点v j(称此为终点)的最短路径,可能是它们之间的边(i,j)或<i,j>,也可能是经过k个(1≤k≤n-2,最多经过除源点和终点之外的所有顶点)中间顶点和k+1条边所形成的路径。
数据结构第19讲关键路径与最短路径
数据结构第19讲关键路径与最短路径关键路径与最短路径是数据结构中非常重要的概念和算法。
它们在许多领域中都有广泛的应用,包括项目管理、网络通信、物流运输等等。
本文将介绍关键路径和最短路径的概念、算法以及它们的应用。
一、关键路径关键路径是指在一个项目中,所有活动中最长的路径,也即完成整个项目所需的最长时间。
关键路径的长度决定了项目的最短完成时间,因此对于项目管理非常重要。
关键路径的计算通常使用网络图来表示项目的各个活动以及它们的前后关系。
在网络图中,每个活动用一个节点表示,活动之间的关系用边来表示。
活动之间的关系可以分为两种:顺序关系和并行关系。
1.顺序关系:活动A必须在活动B之前完成,这种关系用有向边表示。
2.并行关系:活动A和活动B可以同时进行,这种关系用无向边表示。
关键路径算法通过在网络图上进行正向遍历和逆向遍历来计算关键路径。
具体步骤如下:1.正向遍历:从起始节点出发,计算每个节点的最早开始时间。
最早开始时间是指在没有任何延迟的情况下,从起始节点到达该节点所需的最短时间。
2.逆向遍历:从终点节点出发,计算每个节点的最晚开始时间。
最晚开始时间是指在不延误整个项目完成时间的情况下,从终点节点回到该节点所需的最短时间。
3.计算关键路径:根据每个节点的最早开始时间和最晚开始时间,找出那些最早开始时间和最晚开始时间相等的节点,这些节点就是关键路径上的节点。
关键路径的计算可以有效地帮助项目管理者确定项目的最短完成时间,并将各个活动按照优先级进行排序和调度,从而提高项目的管理效率。
二、最短路径最短路径是指在一个加权图中,从起点到终点所经过的边的权值之和最小的路径。
最短路径算法有很多种,下面介绍两种常用的最短路径算法:迪杰斯特拉算法和弗洛伊德算法。
1.迪杰斯特拉算法:迪杰斯特拉算法是一种贪心算法,用于解决单源最短路径问题。
具体步骤如下:-创建两个集合S和V-S,分别用于存放已确定最短路径的节点和待确定最短路径的节点。
离散数学中的图论基础知识讲解
离散数学中的图论基础知识讲解图论是离散数学中的一个重要分支,研究的是图的性质和图中的关系。
图论在计算机科学、网络科学、运筹学等领域有着广泛的应用。
本文将从图的基本概念、图的表示方法、图的遍历算法以及一些常见的图论问题等方面进行讲解。
一、图的基本概念图是由顶点和边组成的一种数学结构。
顶点表示图中的元素,边表示元素之间的关系。
图可以分为有向图和无向图两种类型。
1. 无向图:无向图中的边没有方向,表示的是两个顶点之间的无序关系。
如果两个顶点之间存在一条边,那么它们之间是相邻的。
无向图可以用一个集合V表示顶点的集合,用一个集合E表示边的集合。
2. 有向图:有向图中的边有方向,表示的是两个顶点之间的有序关系。
如果从顶点A到顶点B存在一条有向边,那么A指向B。
有向图可以用一个集合V表示顶点的集合,用一个集合E表示有向边的集合。
二、图的表示方法图可以用多种方式进行表示,常见的有邻接矩阵和邻接表两种方法。
1. 邻接矩阵:邻接矩阵是一个二维数组,其中的元素表示两个顶点之间是否存在边。
如果顶点i和顶点j之间存在边,那么矩阵的第i行第j列的元素为1;否则为0。
邻接矩阵适用于表示稠密图,但对于稀疏图来说,会造成空间浪费。
2. 邻接表:邻接表是一种链表的数据结构,用来表示图中的顶点和边。
每个顶点对应一个链表,链表中存储与该顶点相邻的顶点。
邻接表适用于表示稀疏图,节省了存储空间。
三、图的遍历算法图的遍历是指按照某一规则访问图中的所有顶点。
常见的图的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
1. 深度优先搜索:深度优先搜索是一种递归的搜索算法。
从某个顶点出发,首先访问该顶点,然后递归地访问与它相邻的未访问过的顶点,直到所有的顶点都被访问过。
2. 广度优先搜索:广度优先搜索是一种迭代的搜索算法。
从某个顶点出发,首先访问该顶点,然后依次访问与它相邻的所有未访问过的顶点,再依次访问与这些顶点相邻的未访问过的顶点,直到所有的顶点都被访问过。
图的最短路径拓扑排序和关键路径
数据结构课程辅导---图的最短路径、拓扑排序和关键路径一、最短路径由图的概念可知,在一个图中,若从一顶点到另一顶点存在着一条路径(这里只讨论无回路的简单路径),则称该路径长度为该路径上所经过的边的数目,它也等于该路径上的顶点数减1。
由于从一顶点到另一顶点可能存在着多条路径,每条路径上所经过的边数可能不同,即路径长度不同,我们把路径长度最短(即经过的边数最少)的那条路径叫做最短路径,其路径长度叫做最短路径长度或最短距离。
上面所述的图的最短路径问题只是对无权图而言的,若图是带权图,则把从一个顶点i到图中其余任一个顶点j的一条路径上所经过边的权值之和定义为该路径的带权路径长度,从v i到v j可能不止一条路径,我们把带权路径长度最短(即其值最小)的那条路径也称作最短路径,其权值也称作最短路径长度或最短距离。
例如,在图3-1中,从v0到v4共有三条路径:{0,4},{0,1,3,4}和{0,1,2,4},其带权路径长度分别为30,23和38,可知最短路径为{0,1,3,4},最短距离为23。
图3-1 带权图和对应的邻接矩阵实际上,这两类最短路径问题可合并为一类,这只要把无权图上的每条边标上数值为1的权就归属于有权图了,所以在以后的讨论中,若不特别指明,均认为是求带权图的最短路径问题。
求图的最短路径问题用途很广。
例如,若用一个图表示城市之间的运输网,图的顶点代表城市,图上的边表示两端点对应城市之间存在着运输线,边上的权表示该运输线上的运输时间或单位重量的运费,考虑到两城市间的海拔高度不同,流水方向不同等因素,将造成来回运输时间或运费的不同,所以这种图通常是一个有向图。
如何能够使从一城市到另一城市的运输时间最短或者运费最省呢?这就是一个求两城市间的最短路径问题。
求图的最短路径问题包括两个方面:一是求图中一顶点到其余各顶点的最短路径,二是求图中每对顶点之间的最短路径。
下面分别进行讨论。
1. 从一顶点到其余各顶点的最短路径对于一个具有n个顶点和e条边的图G,从某一顶点v i(称此为源点)到其余任一顶点v j(称此为终点)的最短路径,可能是它们之间的边(i,j)或<i,j>,也可能是经过k个(1≤k≤n-2,最多经过除源点和终点之外的所有顶点)中间顶点和k+1条边所形成的路径。
离散数学PPT课件 4最短路径与关键路径(ppt文档)
第二步.若 i=n-1 则停. 否则转第三步
第三步. 对每个u’∈Si’ 计算 d(u0,u’)=muii ∈n{Sdi (u0,u’), d(u0,ui)+c(ui,u’)}
计算 mu’i∈nS{di’ (u0,u’)}
并用ui+1记下达到该最小值的那个结点u’ 置Si+1 =Si∪{ui+1} i=i+1 转第二步.
d(u0,v5)=min{d(u0,v5),d(u0,u0)+c(u0,v5)}=min{∞,0+∞}=∞
d(u0,v6)=min{d(u0,v6),d(u0,u0)+c(u0,v6)}=min{∞,0+∞}=∞
min{3,∞,5, ∞,∞}=3
ui+1 =u1=v2 ,
实际已求出d(u0,v2)=3, 路是u0v2
i=2 S2={v1, v2 ,v4} S2’={v3,v5,v6} u2=v4 d(u0,u2)=4
3 v2 6
v1
1 5
3
v4 1
v3 3
3 6 v6 v5
d(u0,v3)=min{d(u0,v3), d(u0,u2)+c(u2,v3)}=min{9 ,4+3}=7
d(u0,v5)=min{d(u0,v5), d(u0,u2)+c(u2,v5)}=min{∞,4+1}=5
d(u0,v5)=min{d(1,v5)}=min{∞,3+∞}=∞
d(u0,v6)=min{d(u0,v6),d(u0,u1)+c(u1,v6)}=min{∞,3+∞}=∞
min{9,4,∞,∞}=4
ui+1 =u2=v4 ,
详解图的应用(最小生成树、拓扑排序、关键路径、最短路径)
详解图的应用(最小生成树、拓扑排序、关键路径、最短路径)1.最小生成树:无向连通图的所有生成树中有一棵边的权值总和最小的生成树1.1 问题背景:假设要在n个城市之间建立通信联络网,则连通n个城市只需要n—1条线路。
这时,自然会考虑这样一个问题,如何在最节省经费的前提下建立这个通信网。
在每两个城市之间都可以设置一条线路,相应地都要付出一定的经济代价。
n个城市之间,最多可能设置n(n-1)/2条线路,那么,如何在这些可能的线路中选择n-1条,以使总的耗费最少呢?1.2 分析问题(建立模型):可以用连通网来表示n个城市以及n个城市间可能设置的通信线路,其中网的顶点表示城市,边表示两城市之间的线路,赋于边的权值表示相应的代价。
对于n个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网。
即无向连通图的生成树不是唯一的。
连通图的一次遍历所经过的边的集合及图中所有顶点的集合就构成了该图的一棵生成树,对连通图的不同遍历,就可能得到不同的生成树。
图G5无向连通图的生成树为(a)、(b)和(c)图所示:G5G5的三棵生成树:可以证明,对于有n 个顶点的无向连通图,无论其生成树的形态如何,所有生成树中都有且仅有n-1 条边。
1.3最小生成树的定义:如果无向连通图是一个网,那么,它的所有生成树中必有一棵边的权值总和最小的生成树,我们称这棵生成树为最小生成树,简称为最小生成树。
最小生成树的性质:假设N=(V,{ E}) 是个连通网,U是顶点集合V的一个非空子集,若(u,v)是个一条具有最小权值(代价)的边,其中,则必存在一棵包含边(u,v)的最小生成树。
1.4 解决方案:两种常用的构造最小生成树的算法:普里姆(Prim)和克鲁斯卡尔(Kruskal)。
他们都利用了最小生成树的性质1.普里姆(Prim)算法:有线到点,适合边稠密。
时间复杂度O(N^2)假设G=(V,E)为连通图,其中V 为网图中所有顶点的集合,E 为网图中所有带权边的集合。
离散数学解决离散数学中的问题
离散数学解决离散数学中的问题离散数学是数学的一个分支领域,主要研究离散结构以及离散对象之间的关系。
它在计算机科学、信息技术、密码学等领域中有着广泛的应用。
在离散数学中,我们可以通过不同的方法和技巧来解决各种问题。
本文将介绍几个常见的离散数学问题,并探讨它们的解决方法。
一、图论问题图论是离散数学中一个重要的分支,主要研究图的性质和关系。
在图论中,常常出现以下几类问题:1. 最短路径问题:给定一个带权重的有向图,要求找到两个顶点之间的最短路径。
常用的解决方法包括Dijkstra算法和Floyd-Warshall算法。
2. 最小生成树问题:给定一个带权重的无向图,要求找到一个包含所有顶点且边的权重之和最小的生成树。
常用的解决方法包括Prim算法和Kruskal算法。
3. 旅行商问题:给定一个带权重的完全有向图,要求找到一条经过每个顶点一次且路径权重最小的环路。
该问题属于NP难问题,常用的解决方法包括动态规划和回溯法。
二、集合与逻辑问题在离散数学中,集合论和逻辑推理是非常重要的工具。
以下是几个与集合和逻辑相关的问题:1. 集合关系的判断:给定两个集合A和B,判断A是否是B的子集、两个集合是否相等等。
可以通过集合的定义和性质进行判断。
2. 命题逻辑问题:给定一系列命题,通过逻辑推理判断命题之间的关系,如“与”、“或”、“非”等。
常用的推理方法包括真值表、推理规则和演绎法。
3. 谓词逻辑问题:给定一个谓词逻辑表达式,通过推理判断该表达式的真假。
谓词逻辑是一种对命题进行量化的方式,常用的推理规则包括全称量化规则和存在量化规则。
三、组合数学问题组合数学是研究离散结构的一种方法,常常涉及到排列、组合和集合等概念。
以下是几个与组合数学相关的问题:1. 排列组合问题:给定一组元素,问有多少种排列或组合方式。
可以通过组合数学中的排列和组合公式来计算。
2. 鸽巢原理问题:给定一组容器和一组元素,要求将元素放入容器中,保证每个容器至少包含一个元素。
离散数学中路径与圈知识点详解
离散数学中路径与圈知识点详解离散数学是计算机科学中的重要基础学科之一,路径与圈是其中的核心概念之一。
在这篇文章中,我们将详细解释路径与圈的概念和相关知识点,以帮助读者更好地理解和应用离散数学中的路径与圈。
一、路径的定义与性质在图论中,路径是指由图中的顶点和边所构成的序列。
形式化地说,路径可以定义为一个顶点的非空序列,其中顶点之间通过边相连。
路径的长度等于路径中边的数量。
路径具有以下性质:1. 路径可以是有向的或无向的,具体取决于图的类型。
2. 在有向图中,路径可以是有向边的序列,顶点之间按照边的方向顺序相连。
3. 在无向图中,路径可以是顶点的序列,顶点之间通过边相连,但没有方向之分。
4. 路径的长度可以通过统计路径中的边数来计算。
二、圈的定义与性质在图论中,圈是指起点和终点相同的路径。
圈也被称为环或回路。
形式化地说,圈可以定义为一个顶点的非空序列,其中起点和终点相同,而且路径中除起点和终点之外的顶点是互不相同的。
圈具有以下性质:1. 圈可以是有向的或无向的,具体取决于图的类型。
2. 在有向图中,圈是有向边的序列,起点和终点相同。
3. 在无向图中,圈是顶点的序列,起点和终点相同,且路径中除起点和终点之外的顶点不重复。
4. 圈的长度等于圈中边的数量。
三、路径与圈在离散数学中的应用路径与圈在离散数学中有广泛的应用,特别是在图论、网络分析和算法设计中。
以下是路径与圈常见的应用场景:1. 最短路径问题:在给定图中寻找两个顶点之间的最短路径。
最短路径算法,如迪杰斯特拉算法和弗洛伊德算法,就是基于路径的概念来设计的。
2. 图的连通性:路径与圈可以帮助我们判断一个图是否连通,即是否存在路径或圈连接图中的所有顶点。
3. 图的环路检测:通过检测图中是否存在圈,可以判断图是否有环。
在拓扑排序和关键路径分析中,环路检测是一个重要的步骤。
4. 调度问题:路径与圈可以用来解决任务调度问题,如在工厂中优化生产流程,或在计算机网络中优化数据传输路径等。
离散数学中的图的遍历与最短路径
离散数学是数学的一个重要分支,研究离散结构与离散量的关系。
在离散数学当中,图是一个重要的概念,它用来描述事物之间的关系。
图的遍历与最短路径是图论中的两个重要问题,它们在计算机科学和网络通信等领域有广泛的应用。
图的遍历是指通过某种策略,按某个顺序访问图的所有节点。
在图的遍历过程中,我们需要使用一种数据结构来记录已经访问过的节点,并按照某种规则来选择下一个要访问的节点。
常用的图的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
深度优先搜索是一种递归的搜索算法,它会首先访问一个节点的所有邻接节点,然后再依次递归访问这些节点的邻接节点,以此类推,直到没有未访问的邻接节点。
深度优先搜索能够完整地遍历图中的每个节点,并且可以用来解决一些需要遍历整个图的问题,例如判断图的连通性或寻找图的割点。
广度优先搜索是一种非递归的搜索算法,它从图的某个起始节点开始,先访问该节点的所有邻接节点,然后再依次访问这些邻接节点的邻接节点,以此类推,直到遍历完整个图。
广度优先搜索能够找到最短路径,因为它首先访问的是距离起始节点最近的节点,然后再访问离起始节点更远的节点。
因此,广度优先搜索常用于寻找最短路径或解决一些需要在有限步数内找到目标节点的问题。
最短路径是图论中的一个常见问题,它用于寻找两个节点之间最短的路径。
在有向图中,最短路径可以使用Dijkstra算法或Bellman-Ford算法来求解。
Dijkstra算法通过维护一个距离数组来记录起始节点到其他节点的距离,并通过选择路径距离最短的节点来更新距离数组,直到找到最短路径。
Bellman-Ford算法则利用动态规划的思想,通过多次循环来更新距离数组,直到没有更新为止。
在无向图或有向无环图中,最短路径可以使用广度优先搜索来求解。
广度优先搜索能够找到距离起始节点最近的节点,并且同时能够记录节点之间的路径。
因此,在广度优先搜索过程中,我们可以使用一个数组来记录节点之间的路径,并根据起始节点到目标节点的路径来回溯,从而找到最短路径。
最短路径与关键路径
第四节最短路径与关键路径1.最短路径:对于图G=<V, E>(有向图或无向图)的每一条边e都附加一个实数w(e),w(e)称为e的权,则称G是一个带权图或赋权图,并把它记作G=<V , E, w >,其中w是E上的实函数,叫作权函数。
对于简单图,当 e =(v i ,v j )(或<v i ,v j >),常把w(e) 记作w ij。
设G=<V , E, w >是n阶简单带权图(无向的或有向的),边(v i ,v j)(或<v i ,v j >)的权为w ij,并且约定:w ii = 0;当v i与v j之间无边关联时w ij=∞。
G中一条通路(回路)上各条边的权之和叫作该通路(回路)的权。
G中从v i到v j的权最小的通路叫作v i到v j的最短路径。
根据刚才的约定,若不存在从v i到v j的通路,则认为v i到v j的最短路径的权为∞。
所谓最短路径问题就是求给定图中两点之间的最短路径。
下面介绍求最短路径问题的Dijkstra标号法。
它仅可用于所有的权w ij ≥ 0的情况,可以求从给定顶点(设为v1)到所有顶点的最短路径。
先介绍几个符号和名词。
(1)设l i(r)∗为顶点v1(最短路径的起点)到v i(最短路径的终点)的最短路径的权。
若v i获得li(r)∗,称v i在第r(r ≥ 0)步获得了永久性标号,简称为p标号。
由于v1为起点,且w=0,故当r = 0时,l1(0)∗= 0,首先v1获得永久性标号P。
11(2)设l(jr)为v1到v j的最短路径的权在第r步获得的一个上界,称l(jr)为顶点v j的临时性标号,简称t标号,其中,r ≥ 0,开始的时候,l j = w1j。
(0)(3)设P r = {v v在前r步获p标号},称P r为第r步的通过集,r ≥ 0。
(4)设T r =V −P r,称T r为第r步未通过集。
Dijkstra标号法的计算步骤如下:(1)开始令r ← 0,获p标号:l1(0)∗= 0,P0 ={v1},T0 =V −P0,v j( j ≠1)的t标号为l(0)j= w1j (2)求下一个p标号顶点。
第20讲-关键路径与最短路径
数据结构第20次课(续表)`思考题作。
业题试对下图所示的AOE网络,解答下列问题。
(1) 这个工程最早可能在什么时间结束。
.(2) 求每个事件的最早开始时间Ve[i]和最迟开始时间Vl[I]。
(3) 求每个活动的最早开始时间e( )和最迟开始时间l( )。
(4) 确定哪些活动是关键活动。
画出由所有关键活动构成的图,指出哪些活动加速可使整个工程提前完成。
参考资料|《数据结构辅导与提高》,徐孝凯编著,清华大学出版社《数据结构习题解答与考试指导》,梁作娟等编著,清华大学出版社授课内容关键路径~对整个工程和系统,人们关心的是两个方面的问题:一)工程能否顺利进行(对AOV网进行拓扑排序)二)估算整个工程的完成所必须的最短时间(对AOE网求关键路径)1. AOE-网与AOV-网相对应的是AOE-网(Activity On Edge),即边表示活动的网。
AOE-网是一个带权的有向无环图,其中,顶点表示事件(Event),弧表示活动,权表示活动持续的时间。
通常,AOE-网可用来估算工程的完成时间。
"例:下图是一个假想的有11项活动的AOE-网。
其中有9个事件v1,v2,…,v9,每个事件表示在它之前的活动已经完成,在它之后的活动可以开始。
如v1表示整个工程开始,v9表示整个工程结束,v5表示a4和a5已经完成,a7和a8可以开始。
与每个活动相联系的数是执行该活动所需的时间。
比如,活动a1需要6天,a2需要4天等。
和AOV-网不同,对AOE-网有待研究的问题是:(1)完成整项工程至少需要多少时间(2)哪些活动是影响工程进度的关键、2. 关键路径由于在AOE-网中有些活动可以并行地进行,所以完成工程的最短时间备注:回顾是从开始点到完成点的最长路径的长度(这里所说的路径长度是指路径上各活动持续时间之和,不是路径上弧的数目)。
路径长度最长的路径叫做关键路径(Critical Path)。
假设开始点是v1,从v1到v i的最长路径长度叫做事件v i的最早发生时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1 L1=v0v1v3v5, w(L1)=10, L2=v0v1v4v5, w(L2)=12,
L3=v0v2v4v5, w(L3)=11.
3
标号法(E.W.Dijkstra, 1959)
设带权图G=<V,E,w>, 其中eE, w(e)0. 设V={v1,v2,,vn}, 求v1到其余各顶点的最短路径
的顶点, 称作终点. 通常边的权表示时间, 始点记作v1, 终点记作vn
7
关键路径
关键路径: PETR图中从始点到终点的最长路径 vi的最早完成时间TE(vi): 从始点v1沿最长路径到vi 所需的时间
TE(v1)=0
TE(vi)=max{TE(vj)+wji|vj -(vi)}, i=2,3,,n
vi的最晚完成时间TL(vi): 在保证终点vn的最早完成 时间不增加的条件下, 从始点v1最迟到达vi的时间
TL(vn)=TE(vn)
TL(vi)=min{TL(vj)-wij|vj +(vi)}, i=n-1,n-2,,1
8
关键路径(续)
vi的缓冲时间TS(vi)=TL(vi)-TE(vi), i=1,2,,n vi在关键路径上TS(vi)=0
离散数学最短路径和 关键路径
7.4 最短路径与关键路径
带权图 最短路径与Dijkstra标号法 PERT图与关键路径
2
最短路径
带权图G=<V,E,w>, 其中w:ER.
eE, w(e)称作e的权. e=(vi,vj), 记w(e)=wij . 若vi,vj不 相邻, 记wij =.
设L是G中的一条路径, L的所有边的权之和称作L的 权, 记作w(L). u和v之间的最短路径: u和v之间权最小的通路.
1. v1获p标号:
l
( i
0
)
=0,
P0={v1},
T0=V-{v1},
vj(j=2,3,,n)获t
标
号:
l
( j
0
)
=wij.
令r1.
2. 设
l(r1) i
vm jTri1{nl(jr1)},
vi获得p标号:
l(r) i
li(r1)
.
令 Pr=Pr-1{vi}, Tr=Tr-1-{vi}.
若Tr=, 则结束.
9
例2 求PERT图中各顶点的最早完成时间, 最晚完成 时间, 缓冲时间及关键路径. 解 最早完成时间
TE(v1)=0 TE(v2)=max{0+1}=1 TE(v3)=max{0+2,1+0}=2 TE(v4)=max{0+3,2+2}=4 TE(v5)=max{1+3,4+4}=8 TE(v6)=max{2+4,8+1}=9 TE(v7)=max{1+4,2+4}=6 TE(v8)=max{9+1,6+6}=12
p标号(永久性标号)l
( i
r
):
第r步获得的v1到vi最短路径的
权
t到标达号v(i临的时路性径标的号最)小l i(权r ) :,
第r步获得的v1经过p标号顶点 是v1到vi的最短路径的权的上
界
第r步通过集Pr={v | v在第r步已获得永久性标号} 第r步未通过集Tr=V-Pr
4
标号法(续)
算法:
10
例2(续) 最晚完成时间
TL(v8)=12 TL(v7)=min{12-6}=6 TL(v6)=min{12-1}=11 TL(v5)=min{11-1}=10 TL(v4)=min{10-4}=6 TL(v3)=min{6-2,11-4,6-4}=2 TL(v2)=min{2-0,10-3,6-4}=2 TL(v1)=min{2-1,2-2,6-3}=0
11
例2(续) 缓冲时间
TS(v1)=0-0=0 TS(v2)=2-1=1 TS(v3)=2-2=0 TS(v4)=6-4=2 TS(v5=10-8=2 TS(v6)=11-9=2 TS(v7)=6-6=0 TS(v8)=12-12=0 关键路径: v1v3v7v8
12
THANK YOU
6
PERT图(计划评审技术图)
设有向图G=<V,E>, vV
v的后继元集 +(v)={x|xV<v,x>E} v的先驱元集 -(v)={x|xV<x,v>E}
PERT图:满足下述条件的n阶有向带权图D=<V,E,w>, (1) D是简单图, (2) D中无回路, (3) 有一个入度为0的顶点, 称作始点; 有一个出度为0
3. vjTr, 令 l(jr) mi{ln(jr1),li(r)wij}
令r=r+1, 转2.
5
标号法(续)
例1(续) 求v0到v5的最短路径
r vi v0
v1
v2
v3
v4
v5
0
0 1 4
1
1/v0 3
8
6
2
3/v1 8
4
3
7 4/v2 10
4
7/
9
5
9/v3
w0
1374
9
=v0v1v2v4v3v5, w()=9