第8章-土壤氮、磷循环与环境效应-环境土壤学
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反硝化作用:硝酸盐等较复杂含氮化合物 转化为N2、NO、N2O
土壤氮素损失 ——化学脱氮过程
主要是一些特殊环境条件下的化学反应,如:
a. 氨态氮挥发
NH4+ + OH- NH3 + H2O 在碱性条件下进行
b. 亚硝酸分解反应
3HNO2 HNO3 + 2NO + H2O 条件:酸性愈强,分解愈快。
土壤氮素损失 ——反硝化(生物脱氮过程)
过程: NO3-
硝酸盐 还原酶
NO2-
硝酸盐 还原酶
氧化氮
氧化亚氮
NO 还原酶 N20 还原酶 N2
N2
+ 2H+ -2H2O
2NO
- 4H+
+2H2O
N2O
- H20
厌氧 微生物
HN03
厌氧微生物 +4H+ - 2H2O
2HNO2
+4H+ -2H2O
H2N2O2
为硝酸的生物化学过程。
第一步:亚硝化作用
2HN4+ + 3O2 亚硝化微生物 2NO2- + 2H2O + 4H+ + 158千卡
第二步:硝化作用
硝化微生物
2NO2- + O2
速率:硝化作用>亚硝化作用>铵化作用。 因此,正常土壤中,很少有亚硝态氮和铵态 氮及氨的积累。
2NO3- + 40千卡
硝化作用:NH4+或NH3经NO2-氧化Байду номын сангаасNO3-
➢ 土壤中氮可以通过一系列化学反应和物理过程以各种 形态进入大气和水体,对局部乃至全球环境产生种种 负面影响。围绕施用氮肥产生的效益与弊端的讨论一 直是土壤、肥料、地球物质循环、农产品品质、环境 科学等多个研究领域密切关注的问题。
二. 土壤中氮素的形态
有机态氮
• 可溶性有机氮 < 5%; • 水解性有机氮50~70%; • 非水解性有机氮30~50%。
定义:含氮的有机合化物,在多种微生物的作用下
降解为简单的氨态氮的过程。它包括:
a. 水解:
水解
蛋白质 朊酶
水解
多肽 肽酶
氨基酸
b. 氨化:
氨化微生物
RCHNH2COOH + O2 酶
RCH2COOH + NH3 + 能量
土壤氮素有效化 ——硝化过程:
定义:将土壤中的氨、胺、酰胺等微生物的作用下氧化
在土壤中主要以游离态存速在效。氮:土壤溶液中的铵、
•
亚硝态氮(NO2-
—
N):主交要换在性嫌铵气和性硝条态件氮下因才能有直可接能存在, 被植物根系所吸收,常被称
而且数量也极少。在土壤为里速主效要态以氮游。离态存在。
• 其他,氨态氮、氮气及气态氮氧化合物。
几个概念
全氮:土壤中氮素的总量。
有效氮:能被当季作物利用的
一般土壤含量范围:0.02%~0.50% 我国耕地含量:0.04%~0.35% 表层高,心、底土低
来源:
A 生物固氮:包括自生固氮 、共生固氮和联合固氮; B 降水:1.5-10.5 kg/hm2.a; C 灌水; D 施肥;有机肥、无机化肥
目前肥料是农田土壤氮肥的主要来源。
➢ 氮素是土壤中活跃营养元素,作物需求量大。和植物 需求相比,全世界大部分土壤缺氮,氮肥的应用有力 地促进农业生产的发展,开创了农业历史的新纪元。
➢ 1994-1998年,氮年损失2300万吨,其中化肥氮为1900 万吨,为同期化肥氮的84%。
➢ 氮损失量增加与氮肥利用率有很大关系,氮肥利用率 低可能是氮肥损失原因,也可能是氮肥损失的结果。 20世纪60年代氮肥利用率为0.6,70至80年代为0.5~0.4, 90年代则进一步下降为0.35~0.32 ,
主要可能是杂环态氮、缩胺类 。
无机态氮
数量少、变化大,表土中占全氮 1~2% ,最多不超过5~8%。
• 铵态氮(NH4+ — N):可被土壤胶体吸附,一般不易流失, 但在旱田中,铵态氮很少,在水田中较多。
在土壤里有三种存在方式:游离态、交换态、固定态。
• 硝态氮(NO3- — N) :移动性大;通气不良时易反硝化损失;
– 适宜施氮量,避免盲目过量施氮 – 氮肥深施、早作上表施氮肥(特别是尿素)立即适量灌
水、前氮后移 – 使用改性氮肥,延长肥效 – 利用作物与微生物共生固氮
……
施用氮肥对环境质量的影响
➢ 据估计,我国农业中氮损失正以惊人速度增加,如 1969-1973年农业中氮(化肥和有机肥)年损失500万 吨,其中化肥为200万吨,是同期化肥氮用量69%;
主要内容
第一节. 土壤中氮素转化与环境质量 第二节. 土壤中磷素的转化与环境质量 第三节. 土壤中氮磷流失控制
第一节. 土壤中氮素转化与环境质量
• 一. 土壤氮素的含量及其来源 • 二. 土壤中氮素的形态 • 三. 土壤中氮素的转化 • 四. 土壤氮素管理与环境质量
一. 土壤氮素的含量及其来源
含量:
氮素,包括无机氮(<2%)和易分 解的有机氮
碱解氮:测得的有效氮。
速效氮:土壤溶液中的铵、交
换性铵和硝态氮因能直接被植物 根系所吸收,常被称为速效态氮。
速
有
全
效
效
氮
氮
氮
中国不同地区耕层土壤的全氮含量
三. 土壤中氮素的转化
NH3
N2、NO、N2O
挥发损失
反硝化作用
有
机 态
矿化作用
生物固定 铵态氮
硝化作用
硝酸还原作用硝态氮
氮
吸附固定
淋洗损失
有
生 物
机
固态 定氮
吸附态铵或固定态铵
水体中的硝态氮
土壤氮素的有效化
• 有机氮的矿化(有机氮水解;氨化) • 硝化(亚硝化;硝化)
土壤氮素的损失
• 反硝化——生物脱氮 • 化学脱氮(亚硝酸分解;氨挥发) • 粘粒对铵的固定 • 生物固定 • 氮素淋洗
土壤氮素有效化 ——有机氮矿化:
土壤氮素损失 ——其他损失途径
• 粘粒矿物对铵的固定
北方的土壤中,能固铵的粘粒矿物较多,但其土壤中铵极少,而 南方水田的铵态较多,而能固定铵的粘土矿物不多。因此,铵的 粘土矿物固定在我国的意义不大。
• 生物固定
• 氮素的淋洗
硅铝片
NH4+
淋
硅铝片
洗
四. 土壤氮素流失与环境质量
氮肥生产效率趋于下降,农业环境污染则趋于加重 保障粮食安全和农产品供应,减少农业环境污染环境 降低农田中化肥氮损失、提高氮肥利用率 途径:
无机态氮
• 铵态氮(NH4+); • 硝态氮(NO3-); • 亚硝态氮(NO2-)。
有机态氮
占全氮的绝大部分,95%以上。 • 可溶性有机氮 < 5%,
主要为: 游离氨基酸、胺盐及酰胺类化合物; • 水解性有机氮50~70%,用酸碱或酶处理而得。
包括:蛋白质及肽类、核蛋白类、氨基糖类; • 非水解性有机氮30~50%,