2014年“高教杯”数学建模竞赛A题解答
2014高教社杯全国大学生数学建模竞赛A题论文答辩
70.9 48.8 29.9 91.3 2.588 1.056 2.498
75.7 37.4 33.3 90.8 1.838 1.168 1.702
总计
1.347 2.437 2.984 3.784 2.763
求解参数N与P的关系为
N (P 3) 3
P值太大,反而会影响计算效率,因此,取
P 30 为宜。
rpGM 1.6139 103 m / s ra a
沿运动轨迹切线方向
第2页,共15页。
1.问题一:着陆准备轨道近月点和远月点的位置
加速度为:
d 2Z dt 2
e i
d 2r dt 2
r d
dt
2
i
r
d 2
dt 2
2 dr dt
d
dt
对嫦娥三号进行受力分析,由牛顿第二定律得:
mMG ei
2014年高教社杯全国大学生数学建模竞赛
A题: 嫦娥三号软着陆轨道设计
与控制策略
第1页,共15页。
1. 问题一:嫦娥三号速度的大小和方向
vp
(1 e )
(1 e )a
(1 e )
va (1 e )a
联立上式可得近月点(近拱点),远月点(远拱点)的速度:
vp
va
raGM 1.6922 103 m / s rp a
当 rp 1752.013 103 m 时,解得 cos ,则-1 ; 180
当 ra 1837.013 103 m 时,解得 cos,则1 。 0
则在近月点的位置是 (180,1752.013 103 )
远月点的位置是 (0,1837.013 103 )
第4页,共15页。
2014数学建模国赛A题
模型一:软着陆轨道运动学与力学模型问题分析由于月球没有大气,探测器着陆时无法利用大气制动,只能利用制动发动机来减制了探测器所能携带有效载荷的质量。
探测器在月面着陆可以分为硬着陆和软着陆。
硬着陆对月速度不受限制,探测器撞上月球后设备将损坏,只能在接近月球的过程中传回月面信息;软着陆对月速度比较小,探测器着陆后可继续在月面进行考察,因此相比于硬着陆,软着陆更具有实用意义模型的建立与求解:1、建立坐标系:建立坐标系如图所示, 月心惯性坐标系m O XYZ :原点位于月球中心, m O Z 轴指向动力下降起始点, m O X 轴位于环月 轨道平面内且指向前进方向, m O Y 轴按右手定则确定, 着陆器在m O XYZ 系下的位置用极坐标(,,)r a 来表示, r 为月心到着陆器的距离矢量( r 表示大小) , A 和B 分别表示经度和纬度。
轨道坐标系Oxyz 原点位于着陆器的质心, Oz 轴为月心指向着陆器质心的方向, Ox 轴位于当地水平面内指向着陆器运动方向, Oy 轴按照右手定则确定。
制动推力F 的方向与着陆器本体轴重合, 推力方位角W 和推力仰角H 描述了制动推力F 与轨道坐标系之间的位置关系, 推力方位角W 绕正Oz 轴逆时针旋转为正, 推力仰角H 绕正Oy 轴顺时针旋转为正。
2、确定卫星在椭圆轨迹方程式:嫦娥三号在轨道上高速飞行时,设嫦娥三号卫星的质量为m ,卫星在轨道上任意点速度为v ,设月球的质量为M ;卫星与月亮之距为r ;卫星—月球系统的总能量为E ;由能量守恒定律可得:212GMm mv E r -=得:v =对于月球—卫星系统,当行星在椭圆轨迹上运动时,在卫星轨迹上有存在一点p ,月球中心和p 点的矢径为p r 该点的卫星速度为p v ,p r 与p v 之间的夹角为p β。
如果月球中心与卫星运动方向之间的垂直距离为b 。
sin p p b r β=;这个b 是卫星轨道为椭圆的短半轴;根据角动量守恒定律:sin sin p p p mvr mv r ββ=因为 sin p p b r β= 所以 sin p vr v b β= 即:sin p v b vr β=结合上述式子可以推出:sin β= (1) 式(1)为卫星椭圆轨道表达式;3、确定近月点的速度:开普勒第二定律:根据开普勒第二定律知:行星和太阳的连线在相等时间内扫过相等的面积;设近月点A 与远月点B 距离月球的距离为,A B L a c L a c =-=+,在近月点与远月点两点分别取极短的相等的时间,故有A B S S ∆=∆ 代入得:B B a c v v a c-=+ 卫星运动的总机械能等于其动能和引力势能之和,故当卫星分别经过A 、B 时的机械能为:222211()2211()22A A A A B B B B GMm GMm E mv mv L a cGMm GMm E mv mv L a c =+=--=+=--由于卫星在椭圆轨道上只受万有引力作用,所以遵循机械能守恒:A B E E =最后由椭圆方程可以求出:A B b v a c v =-=由于B v 大小为在100km 轨道上的速度,可以根据万有引力求出,即,A B v v 可以求出,其中1.73/A v km s =;它的方向为轨迹的切线方向;4、制动过程的力学与运动学分析:忽略其他星球对卫星的引力影响,则可以把嫦娥卫星的制动过程看成是一个类平抛运动;其中v 为平抛的初速度;设',F F 为万有引力和卫星的推力,S 为主减速区的竖直高度 由物理关系可以得出下列等式:'2'1()2()B BA mv F F s F F t mv l v t →→→→=++== (图)解得:728.4l km =再根据数学几何关系可以求出近月点与处在主减速区的着陆点的直线距离为746.46L km =设近着陆点与月点的坐标分别为'''(,,),(,,)x y z x y z 则可以列出下列等式L = (2)5、坐标系的转换设纬度α,经度β,海拔为h (米)月球上任意一点(,,)h αβ表示三维体系中的点(,,)x y z ,则:东经:(1737.01/1000)(cos )(sin )x h αβ≈+西经:(1737.01/1000)(cos )(sin(180))x h αβ≈++(1737.01/1000)(cos )(sin())y h αβ≈+北纬:(1737.01/1000)sin z h α≈+ 南纬:(1737.01/1000)sin(90)z h α≈++ 海拔计算时单位是米,,,x y z 单位是千米则着陆点(,,)x y z 为((1138.08,1173.58,579.23))近月点'''(,,)x y z 为(1752.013cos()sin(180),1752.013cos sin ,1752.013sin )αβαβα+ 综上所述,联立上述的式(1)和式(2),并且将所有已知的条件带入公式中,得到近月点的位置坐标为:'''1387.28470.281752.01x y z ⎧=⎪=⎨⎪=⎩所以容易求出远日点的位置坐标为: ''''''1452.49492.391834.37x y z ⎧=-⎪=⎨⎪=⎩;。
2014数学建模国赛A题教程
承诺书
我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参 赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下 载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网 上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
在模型优化中,我们考虑了在桌面上均匀分布的力的情况,通过建立空间力系的平
衡模型,在临界条件下(桌子支撑腿受到指向桌内的摩擦力取最大值),由理论力学知
识推导出桌面上均匀分布的力 F 与 角、钢筋位置之间的函数式。计算得出桌子的稳定
性与钢筋位置无关,桌子在这种受力情况下的稳定性只与支撑腿与竖直方向的夹角有
2. 提出问题
(1). 给定长方形平板尺寸为 120 cm × 50 cm × 3 cm,每根木条宽 2.5 cm, 连接桌腿木条的钢筋固定在桌腿最外侧木条的中心位置,折叠后桌子的高度为 53 cm。 试建立模型描述此折叠桌的动态变化过程,在此基础上给出此折叠桌的设计加工参数 (例如,桌腿木条开槽的长度等)和桌脚边缘线的数学描述。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展 示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从 A/B/C/D 中选择一项填写):
B
我们的报名参赛队号为(8 位数字组成的编号):
27006025
所属学校(请填写完整的全名):
长安大学
二、 问题分析
(1).折叠桌以铰链连接,外形由直纹曲面构成。通过反复研究折叠桌的动态视频, 分析出折叠桌的运动特性,我们采用几何投影法,化三维运动为二维运动,简化模型。 同时,为了便于分析几何关系,我们仅对单组木条中最长与最短两根木条进行探究。并 通过 Solidwoks 软件绘画其几何关系图。根据各木条之间的连动原理推导出所有木条间 的关系,建立曲线参数方程表示折叠桌整体的动态变化过程。最后计算出折叠桌的设计 加工参数,并通过函数式和三维曲线图描述桌角边缘线。
2014高教社杯全国大学生数学建模竞赛(A)题目
2014高教社杯全国大学生数学建模竞赛题目(请先阅读“全国大学生数学建模竞赛论文格式规范”)A题嫦娥三号软着陆轨道设计与控制策略嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为 2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。
嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m(见附件1)。
嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。
其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段(见附件2),要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。
根据上述的基本要求,请你们建立数学模型解决下面的问题:(1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。
(2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。
(3)对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。
附件1:问题的背景与参考资料;附件2:嫦娥三号着陆过程的六个阶段及其状态要求;附件3:距月面2400m处的数字高程图;附件4:距月面100m处的数字高程图。
附件1:问题A的背景与参考资料1.中新网12月12日电(记者姚培硕)根据计划,嫦娥三号将在北京时间12月14号在月球表面实施软着陆。
嫦娥三号如何实现软着陆以及能否成功成为外界关注焦点。
目前,全球仅有美国、前苏联成功实施了13次无人月球表面软着陆。
北京时间12月10日晚,嫦娥三号已经成功降轨进入预定的月面着陆准备轨道,这是嫦娥三号“落月”前最后一次轨道调整。
2014年全国高中数学联赛试题及答案详解(A卷)
2013
解:由题设
an
2(n 1) n
an1
2(n 1) n
2n n 1 an2
2(n 1) n
2n n 1
23 2
a1
2n1 (n
1)
.
记数列{an} 的前 n 项和为 Sn ,则
Sn =
2 + 2 × 3 + 22 × 4 + + 2n−1(n +1)
2015 2013
2015
.
2013
5. 正四棱锥 P ABCD 中,侧面是边长为 1 的正三角形,M , N 分别是边 AB, BC 的中
点,则异面直线 MN 与 PC 之间的距离是
.
答案: 2 . 4
解:设底面对角线 AC, BD 交于点 O ,过点 C 作直
线 MN 的垂线,交 MN 于点 H . 由 于 PO 是 底 面 的 垂 线 , 故 PO CH , 又
解:记 f (z) (z )2 z .则
f (z1) f (z2 ) (z1 )2 z1 (z2 )2 z2
(z1 z2 2)(z1 z2 ) z1 z2 .
①
假如存在复数 z1, z2 ( z1 , z2 1, z1 ≠ z2 ) ,使得 f (z1) f (z2 ) ,则由①知,
连接的情况数.
(1) 有 AB 边:共 25 32 种情况.
(2) 无 AB 边,但有 CD 边:此时 A , B 可用折线连接当且仅当 A 与 C , D 中至少一
点相连,且 B 与 C , D 中至少一点相连,这样的情况数为 (22 1)(22 1) 9 .
2013-2014年全国数模竞赛a题讲解
2013-2014年全国数模竞赛a题讲解2013-2014年全国数模竞赛A题是一道涉及建模和优化等数学概念的综合性问题。
本文将对该题进行详细的解析和讲解,帮助读者理解题目的要求,并提供一些解题思路和方法。
第一部分:理解题目该题目的题面由多个部分组成,涉及到原问题、目标、约束条件等内容。
在进行解题之前,我们首先需要完全理解题目的要求。
原问题是一个货车经过N个城市,每个城市都有相应的货物量,目标是使得货车的路径长度最短。
同时,题目要求我们设计一个数据模型,来描述这个问题。
第二部分:建立数学模型为了更好地解决问题,我们需要建立一个数学模型来描述货车的路径以及货物量的分配。
在本部分,我们将详细讲解如何建立这个模型。
假设有N个城市,每个城市的货物量分别为w1, w2, ..., wN。
我们可以将货车的路径表示为一个N*N的矩阵D,其中D[i][j]表示从第i个城市到第j个城市的距离。
同时,我们引入一个N维的向量x,其中x[i]表示从第i个城市运送的货物量。
我们的目标是最小化路径长度,即最小化下式:Minimize ∑∑D[i][j]*x[i]*x[j] (i从1到N, j从1到N)同时,我们有一些约束条件需要满足:1. 每个城市必须运送货物:∑x[i] = W,其中W是总的货物量。
2. 每个城市的货物量不能超过其容量:x[i] <= C,其中C是城市i的容量。
第三部分:优化求解在第二部分中,我们已经建立了数学模型,现在我们需要找到一种优化方法来求解这个模型。
在现实生活中,这类问题通常是NP难问题,因此我们需要采用一些启发式搜索算法。
在本部分,我们将介绍一种常用的优化方法,即遗传算法。
遗传算法模拟了自然界中的进化过程,通过不断筛选和演化来得到最优解。
遗传算法的优化步骤如下:1. 初始化种群:随机生成一组初始解,也就是一组路径和货物分配方案。
2. 评估适应度:根据路径长度和货物量是否满足约束条件,计算每个解的适应度。
2014全国大学生数学建模大赛获奖作品解析
承诺书我们认真阅读了中国大学生数学建模比赛的比赛规则.我们完好理解,在比赛开始后参赛队员不可以以任何方式(包含电话、电子邮件、网上咨询等)与队外的任何人(包含指导教师)研究、议论与赛题有关的问题。
我们知道,剽窃他人的成就是违犯比赛规则的 , 假如引用他人的成就或其余公然的资料(包含网上查到的资料),一定依据规定的参照文件的表述方式在正文引用途和参照文件中明确列出。
我们郑重许诺,严格恪守比赛规则,以保证比赛的公正、公正性。
若有违犯比赛规则的行为,我们将遇到严肃办理。
我们参赛选择的题号是(从A/B/C/D 中选择一项填写):我们的参赛队号为(赛区已经给每个队设置):08*** ×××所属学校(请填写完好的全名):东北石油大学参赛队员(打印并署名 ) : 1.2.3.指导教师或指导教师组负责人(打印并署名 ):×××日期: 2014 年 08 月 25 日赛区评阅编号(由赛区组委会评阅行进行编号):08003嫦娥三号软着陆轨道设计与控制策略纲要重点词:实质通行能力、通行量饱和度、偏差修正、多项式拟合与插值、车流颠簸理论一、问题重述嫦娥三号于2013 年 12 月 2 日 1 时 30 分红功发射, 12 月 6 日到达月球轨道。
嫦娥三号在着陆准备轨道上的运转质量为 2.4t ,其安装在下部的主减速发动机能够产生1500N 到7500N 的可调理推力,其比冲(即单位质量的推动剂产生的推力)为2940m/s,能够知足调整速度的控制要求。
在周围安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动经过多个发动机的脉冲组合实现各样姿态的调整控制。
嫦娥三号的预约着陆点为19.51W , 44.12N ,海拔为 -2641m。
嫦娥三号在高速飞翔的状况下,要保证正确地在月球预约地区内实现软着陆,一定对着陆轨道和控制策略进行设计。
要求着陆轨道近月点为15km ,远月点100km 的椭圆轨道。
2014高教社杯数学建模A题国赛一等奖论文
2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的报名参赛队号为(8位数字组成的编号):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2014 年 9 月日2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进嫦娥三号软着陆轨道设计与控制策略摘要登月对我国整体战略发展具有重要意义,因此实现月球着陆尤为重要。
本文针对嫦娥三号软着陆轨道的问题进行了递进式的设计,建立了多个数学模型来描述和设计嫦娥登月的轨道及过程。
针对问题一,首先以月球球心作为原点,嫦娥环绕轨道所在平面作为X-O-Y面,垂直X-O-Y的过球心直线作为Z轴,按照右手螺旋法则建立空间直角坐标系,在此基础之上,建立空间解析几何模型,然后利用Kepler定律,来计算出嫦娥三号绕月轨道参数以及近地点和远地点的速度及方向,以及近月点和远月点的位置坐标。
2014-高教社杯全国大学生数学建模竞赛AB题评阅要点
2021 高教社杯全国大学生数学建模比赛A 题评阅要点[说明]本要点仅供参考, 各赛区评阅组应根据对题目的理解及学生的解答, 自主地进行评阅。
对本问题应该给出合理的建模假定, 譬如: 惯性坐标、二体问题等, 并加以分析说明。
问题1: 在已知的条件下, 确定嫦娥三号在环月轨道上近月点与远月点的相对位置和速度(1) 建立合理适用的坐标系。
(2) 对嫦娥三号进行受力分析, 建立其运动学和准备轨道的数学模型(譬如: 微分方程等模型) 。
(3) 通过求解数学模型得. 到数值结果。
问题2: 确定软着陆轨道与6 阶段的控制策略由问题对着陆轨道 6 个阶段的要求, 每个阶段都应给出起止状态(速度和位置) 和最优控制策略(推力大小和方向) , 以满足各阶段起止状态的需求。
(1) 建立各阶段的最优控制模型, 明确给出控制变量、状态变量、状态方程、约束条件和目标函数。
(2) 在粗避障和精细避障阶段挑选落点时, 需要综合考虑月面的平整度、光照条件、着陆控制误差等因素, 确定最理想的着陆地点。
(3) 各阶段的控制问题是一个无穷维的优化问题, 可以通过合理的简化(譬如离散化为有限维的优化问题) 求解得. 到合理的数值结果, 即最优的控制策略。
(4) 若未按题目要求按6 阶段设计最优控制策略, 而照抄某些文献的两阶段或三阶段的处理方法, 不能视为较好的论文。
问题3: 着陆轨道设计和控制策略的误差分析与敏感度分析对问题的稳定性有影响的误差包括:(1) 着陆准备轨道参数(近月点位置和速度) 的误差;(2) 分阶段分析发动机推力(大小和方向) 的控制误差;(3) 模型的简化假定、模型的近似与求解过程等综合分析误差;加入能针对以上几个因素对问题结果的影响及程度做相应的敏感度分析, 应给予肯定。
2021高教社杯全国大学生数学建模比赛B题评阅要点[说明]本要点仅供参考, 各赛区评阅组应根据对题目的理解及学生的解答, 自主地进行评阅。
本题主要考查学生对直纹面的描述、建模和计算功底。
2014年数学建模A题-省一等奖
关键词:软着陆、SQP算法、轨道优化、景象匹配
1
一
1.1 问题的背景
问题重述
中国是继美国、前苏联之后的第三个能使卫星登上月球实现软着陆的国家。因此, 嫦娥三号如何实现软着陆以及能否成功成为外界关注的焦点。北京时间 12 月 10 日晚, 嫦娥三号已经成功降轨进入预定的月面着陆准备轨道,这是嫦娥三号“落月”前最后一 次轨道调整。在实施软着陆之前,嫦娥三号还将在这条近月点高度约 15 公里、远月点 高度约 100 公里的椭圆轨道上继续飞行。 嫦娥三号着陆地点选在较为平坦的虹湾区。但由于月球地形的不确定性,最终“落 月”地点的选择仍存在一定难度。但嫦娥三号的预定着陆点为 19.51W,44.12N,海拔为 -2641m。在大约距离月球 15 公里时,反推发动机就要点火工作;到离月球 100 米时, 卫星将暂时处于悬停状态,此时它已不受地球上工程人员的控制,因卫星上携带的着陆 器具有很高智能,它会自动选择一块平整的地方降下去,并在离月球表面 4 米的时候关 闭推进器,卫星呈自由落体降落,确保软着陆成功。为了确保探测器能够成功在月球表 面实现软着陆,需要认真设计降落过程中探测器的发动机的控制方案,使“嫦娥 3 号” 能够顺利完成科研任务,得到最大化的应用。由于月球上没有大气,嫦娥三号无法依靠 降落伞着陆,只能靠变推力发动机,才能完成中途修正、近月制动、动力下降、悬停段 等软着陆任务。 这将是中国航天器首次在地外天体的软着陆和巡视勘探, 同时也是 1976 年后人类探测器首次的落月探测。 嫦娥三号在着陆准备轨道上的运行质量为 2.4t, 其安装在下部的主减速发动机能够 产生 1500N 到 7500N 的可调节推力。在给定主减速发动机的推力方向后,能够自动通过 多个发动机的脉冲组合实现各种姿态的调整控制。 要保证准确地在月球预定区域内实现 软着陆,关键问题是着陆轨道与控制策略的设计。其着陆轨道设计的基本要求:着陆准 备轨道为近月点 15km,远月点 100km 的椭圆形轨道;着陆轨道为从近月点至着陆点,其 软着陆过程共分为 6 个阶段,要求满足每个阶段在关键点所处的状态;尽量减少软着陆 过程的燃料消耗。 1.2 提出问题 根据上述的叙述以及基本要求,提出以下三个问题: (1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与 方向。
2014全国大学生数学建模竞赛A题题目及参考答案_
2014全国大学生数学建模竞赛A题题目及参考答案_ 2011高教社杯全国大学生数学建模竞赛题目,请先阅读“全国大学生数学建模竞赛论文格式规范”,A题城市表层土壤重金属污染分析随着城市经济的快速发展和城市人口的不断增加,人类活动对城市环境质量的影响日显突出。
对城市土壤地质环境异常的查证,以及如何应用查证获得的海量数据资料开展城市环境质量评价,研究人类活动影响下城市地质环境的演变模式,日益成为人们关注的焦点。
按照功能划分,城区一般可分为生活区、工业区、山区、主干道路区及公园绿地区等,分别记为1类区、2类区、……、5类区,不同的区域环境受人类活动影响的程度不同。
现对某城市城区土壤地质环境进行调查。
为此,将所考察的城区划分为间距1公里左右的网格子区域,按照每平方公里1个采样点对表层土(0~10 厘米深度)进行取样、编号,并用GPS记录采样点的位置。
应用专门仪器测试分析,获得了每个样本所含的多种化学元素的浓度数据。
另一方面,按照2公里的间距在那些远离人群及工业活动的自然区取样,将其作为该城区表层土壤中元素的背景值。
附件1列出了采样点的位置、海拔高度及其所属功能区等信息,附件2列出了8种主要重金属元素在采样点处的浓度,附件3列出了8种主要重金属元素的背景值。
现要求你们通过数学建模来完成以下任务:(1) 给出8种主要重金属元素在该城区的空间分布,并分析该城区内不同区域重金属的污染程度。
(2) 通过数据分析,说明重金属污染的主要原因。
(3) 分析重金属污染物的传播特征,由此建立模型,确定污染源的位置。
(4) 分析你所建立模型的优缺点,为更好地研究城市地质环境的演变模式,还应收集什么信息,有了这些信息,如何建立模型解决问题,DJHFSJKDHFKDSJKFHSJKDFHJKDSHFDJKSFHJKDSHFJKDSHFJK题目 A题城市表层土壤重金属污染分析摘要,本文研究的是某城区警车配置及巡逻方案的制定问题,建立了求解警车巡逻方案的模型,并在满足D1的条件下给出了巡逻效果最好的方案。
2014高教社杯数学建模A题解法
摘要本文针对嫦娥三号软着陆轨道设计与控制策略的实际问题,以理论力学(万有引力、开普勒定律、万能守恒定律等)和卫星力学知识为理论基础,结合微分方程和微元法,借助MATLAB软件解决了题目所要求解的问题。
针对问题(1),在合理的假设基础上,利用物理理论知识、解析几何知识和微元法,分析并求解出近月点和远月点的位置,即139.1097 。
再运用能量守恒定律和相关数据,计算出速度v1(近月点的速度)=1750.78m/s,v2(远月点的速度)=1669.77m/s,,最后利用曲线的切线方程,代入点(近月点与远月点)的坐标求值,计算出方向余弦即为相应的速度方向。
针对问题(2)关键词:模糊评判,聚类分析,流体交通量,排队论,多元非线性回归一、问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。
嫦娥三号的预定着陆点为19.51W,44.12N,海拔为-2641m(见附件1)。
嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。
其着陆轨道设计的基本要求:着陆准备轨道为近月点15km,远月点100km的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段(见附2),要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。
根据上述的基本要求,请你们建立数学模型解决下面的问题:(1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。
(2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。
2014高教社杯全国大学生数学建模竞赛A题_共26页
2014 高教社杯全国大学生数学建模竞赛
编号专用页
赛区评阅编号(由赛区组委会评阅前进行编号):
赛区评阅记录(可供赛区评阅时使用): 评 阅 人 评 分 备 注
全国统一编号(由赛区组委会送交全国前编号):
全国评阅编号(由全国组委会评阅前进行编号):
嫦娥三号软着陆轨道设计与控制策略 摘要
本文针对嫦娥三号软着陆轨道设计与控制策略问题,通过提取题目中的信 息,利用拱点的概念、B 样条函数逼近的统计定位方法、非线性规划问题及哈 密尔顿函数为理论基础进行了完整的建模工作。首先,通过建立坐标系结合物 理学运动公式求解出了近月点与远月点的位置及相应的速度;在此基础上,利 用 B 样条函数逼近的方法确定了嫦娥三号的着陆轨;最后通过分解着陆过程并 利用非线性规划问题及哈密尔顿函数确定着陆阶段的最优控制策。
参赛队员 (打印并签名) :1.
2.
3.
指导教师或指导教师组负责人 (打印并签名):
(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上
内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖
资格。)
日期: 2014 年 9 月 15 日
赛区评阅编号(由赛区组委会评阅前进行编号):
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开 展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从 A/B/C/D 中选择一项填写):
A
我们的报名参赛队号为(8 位数字组成的编号):
07033001
所属学校(请填写完整的全名):吉林师范大学博达学院
针对问题二,采用 B 样条函数逼近的运动学统计定位方法确定了在着陆弧 段上任意时刻的位置方程,从而刻画出了嫦娥三号的着陆轨道,并用 matlab 对轨 迹进行了模拟。在 6 个阶段的最优控制策略上,先通过直角坐标系得出质心的运 动方程,再通过对 6 个阶段初始条件和终端状态的分解,利用非线性规划问题 求解哈密尔顿函数,得出性能指标(耗燃量)的最小值为:382.6531kg,从而确 定了最优控制策略。
2014年全国数学建模a题解析
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要嫦娥三号卫星着陆器实现了我国首次地外天体软着陆任务。
要保证准确的在月球预定区域内实现软着陆轨道与控制策略的设计。
问题一运用活力公式[1]来建立速度模型,利用matlab软件代入数值计算出。
所求速度33⨯⨯(=1.692210m/s,=1.613910m/s)v v远近采用轨道六根数[2]来建立近月点,远月点位置的模型。
轨道根数是六个确定椭圆轨道的物理量,也是联系赤道直角坐标与轨道极坐标重要夹角的关系。
通过着陆点的位置求出轨道根数各个值的数据,从而确定近月点,远月点的位置,坐标分别为(19.51W 27.88N 15KM),(160.49 27.885S 100KM)E。
2014全国大学生数学建模竞赛A题论文解析
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题.我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出.我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性.如有违反竞赛规则的行为,将受到严肃处理.我们参赛选择的题号是(从A/B/C/D中选择一项填写)赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略摘要本文针对嫦娥三号软着陆轨道设计与控制策略的实际问题,以理论力学(万有引力、开普勒定律、万能守恒定律等)和卫星力学知识为理论基础,结合微分方程和微元法,借助MATLAB软件解决了题目所要求解的问题。
针对问题(1),在合理的假设基础上,利用物理理论知识、解析几何知识和微元法,分析并求解出近月点和远月点的位置,即139.1097 。
再运用能量守恒定律和相关数据,计算出速度v(近月点的速度)1=1750.78/v(远月点的速度)=1669.77/m s,,最后利用曲线的切线m s,2方程,代入点(近月点与远月点)的坐标求值,计算出方向余弦即为相应的速度方向。
针对问题(2)关键词:模糊评判,聚类分析,流体交通量,排队论,多元非线性回归一、问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
2014年高教杯全国大学生数学建模竞赛A题 嫦娥三号软着陆轨道设计与控制策略
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的报名参赛队号为(8位数字组成的编号):所属学校(请填写完整的全名):许昌学院参赛队员(打印并签名) :1. 张彦平2. 李晓伟3. 吴海峰指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期: 2014 年 9 月 15 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):A题 嫦娥三号软着陆轨道设计与控制策略摘要对于问题一:由于嫦娥三号从近月点下落到着陆点的经度偏移很小,以月球庞大的体积来说几乎可以忽略不计,而且资料中也没有给出嫦娥三号下落过程中的经度偏移数据,所以我们可以假设嫦娥三号的近月点在月球上的投影坐标与着陆点在同一条经线上。
2014年全国数学建模大赛A题
2014高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A 我们的报名参赛队号为(8位数字组成的编号):25001113所属学校(请填写完整的全名):云南大学参赛队员(打印并签名) :1. 林博文2. 张竞文3. 方春晖指导教师或指导教师组负责人(打印并签名):李海燕(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:2014年9月15日赛区评阅编号(由赛区组委会评阅前进行编号):2014高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):嫦娥三号软着陆轨道设计与控制策略优化摘 要 嫦娥三号是中国国家航天局嫦娥工程第二阶段的登月探测器,包括着陆器和玉兔号月球车。
嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。
2014全国大学生数学建模a题
2014高教社杯全国大学生数学建模竞赛a题摘要2013年嫦娥三号成功发射,标志着我国航天事业上的又一个里程碑,针对嫦娥三号软着陆问题,分别建立着陆前轨道准备模型和软着陆轨道模型,建立动力学方程,以燃料最省为目标进行求解。
问题一:在软着陆前准备轨道上利用开普勒定律、能量守恒定律以及卫星轨道的相关知识,利用牛顿迭代法分别确定了近月点和远月点的速度分别为 1.6925km/s、1.6142km/s,位置分别为(19.91W,20.96N),(160.49E,69.31S)。
问题二:在较为复杂的软着陆阶段,因为相对于月球的半径,嫦娥三号到月球的表面的距离太小,如果以月球中心建立坐标系会造成比较大的误差,因此选择在月球表面建立直角坐标系,在主减速阶段的类平抛面上建立相应的动力学模型,求出关键点的状态和并设计出相应的轨道,接下来通过利用灰度值阀值分割方法和螺旋搜索法对粗避障阶段和精避障阶段的地面地形进行相应的分析,找出安全点,然后调整嫦娥三号的方向以便安全降落,最后在落地时通过姿态发动机调整探测器的姿态,使之可以平稳的落到安全点上,在以上的各个阶段都可以以燃料最省为最优指标,从而建立非线性的最优规划的动力学模型,并基于该动力学模型可以对各个阶段的制导率进行优化设计由此就可以得到各个阶段的最优控制策略,问题三:最后针对所设计的轨道和各个阶段的控制策略进行了误差分析和灵敏度分析。
对系统误差和偶然误差都做了解释;通过灵敏度分析发现,嫦娥三号在近月点的位置对结果的影响最大。
关键字牛顿迭代法,灰度值阀值分割,螺旋搜索法,灵敏度分析一、问题重述嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为 2.4t,其安装在下部的主减速发动机能够产生1500N到7500N的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s,可以满足调整速度的控制要求。
在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。
2014年数学建模A题
Z0 轴构成直角坐标系; 坐标系示意图及着陆器位置与推力矢关系下图所示.
图 1.2:软着陆坐标系定义与推力矢量空间关系 要考察着陆器在月心赤道惯性坐标系下的运动规律, 需要得到月心赤道惯性 系与月心惯性参考系之间的变换关系. 以降轨着陆为例, 两坐标系的关系如 图所示.
5
图 1.3:月心赤道惯性系与月心惯性参考系之关系
1
成功降轨进入预定的月面着陆准备轨道,这是嫦娥三号“落月”前最后一次轨道 调整。在实施软着陆之前,嫦娥三号还将在这条近月点高度约 15 公里、远月点 高度约 100 公里的椭圆轨道上继续飞行。 期间, 将稳定飞行姿态, 对着陆敏感器、 着陆数据等再次确认,并对软着陆的起始高度、速度、时间点做最后准备。 根据其环月轨道以及着陆点, 我们对嫦娥三号软着陆贵高设计和控制策略问 题进行研究。 1.2、问题的意义 月球是离地球最近的天体, 成为空间探测的首选目标,月球探测将为继空间 站之后载人航天的下一步人类重返月球和建立月球基地提供依据, 对月球本身的 科学研究可以大大提高人类对宇宙的认识。 2.问题的重述 月球作为地球的唯一一颗天然卫星以及太阳系第五大卫星, 其神秘性以及丰 富的资源一直吸引着人类, 特别是近代以来地球多种资源的枯竭,以及人类文明 发展对资源的需求却与日俱增。 人类把目光投向了月球,但是若要对月球进行直 接的科学考察并开发利用月球资源就必须解决人类航天探测器的着陆以及月夜 生存等重大问题。 软着路即通过减速使航天器在接触地球或其他星球表面瞬时的 垂直速度降低到最小值从而实现安全着陆的技术。 软着陆的目的是保证航天员的 安全和航天器上的仪器设备完好无损,获得丰富的学科资料。2013 年 12 月 2 日 1 时 30 分,嫦娥三号成功成功发射,12 月 6 日抵达月球轨道,12 月 10 日成功 降轨,实现了嫦娥三号的软着路。嫦娥三号具体情况如下:着陆准备轨道上的运 行质量为 2.4 顿,主减速发动机可产生可调节推力 1500N 到 7500N,比冲为 2940m/s,预定着陆点为 19.51W,44.12N,海拔为-2641m。嫦娥三号在高速飞行 的情况下实现软着陆,关键问题是着陆轨道与控制策略的设计。基本要求是着陆 准备轨道为近月点 15km,远月点 100km 的椭圆形轨道;着陆轨道为从近月点至 着陆点, 其软着陆过程共分为 6 个阶段: 着陆准备轨道、 主减速段、 快速调整段、 粗避障段、精避障段、缓速下降阶段。在上述基础上确定着陆准备轨道近月点和 远月点的位置, 嫦娥三号相应速度的大小与方向,着陆轨道和在 6 个阶段的最优 控制策略, 并且设计着陆轨道和控制策略做相应的误差分析和敏感性分析已获得 最优解决方案。 根据上述的基本要求,请你们建立数学模型解决下面的问题: (1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的 大小与方向。 (2)确定嫦娥三号的着陆轨道和在 6 个阶段的最优控制策略。 (3) 对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。 3.问题的分析 问题一的分析: 该问题中要确定“嫦娥三号”在着陆准备中近月点和远月点的位置和相对应 的速度,那么我们需要明确卫星围绕月球的轨迹。在嫦娥三号着陆准备轨道中,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写): A我们的报名参赛队号为(8位数字组成的编号):25018007所属学校(请填写完整的全名):红河学院参赛队员(打印并签名) :1. 郭聪聪2. 建晶晶3. 丁柱花指导教师或指导教师组负责人(打印并签名):张德飞(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):A题嫦娥三号软着陆轨道设计与控制策略摘要本文以月心为圆心建立空间直角坐标系,通过能量守恒定律并假设轨道方程为椭圆方程确定嫦娥三号着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。
接着利用三阶样条逼近函数确定轨道方程,并从动力学的角度建立动力学质心运动方程,在这个方程的基础上选择推力F和 作为控制策略,建立燃料消耗最小的目标函数,通过选取一些样本获得了最优控制策略。
最后对着陆轨道和控制策略进行了误差分析,采用安全着陆的概率为指标进行了敏感性分析。
关键词:能量守恒定律;样条逼近函数;动力学质心运动方程;控制策略一、问题重述1.问题的背景嫦娥三号于2013年12月2日1时30分成功发射,12月6日抵达月球轨道。
嫦娥三号在着陆准备轨道上的运行质量为 2.4t ,其安装在下部的主减速发动机能够产生1500N 到7500N 的可调节推力,其比冲(即单位质量的推进剂产生的推力)为2940m/s ,可以满足调整速度的控制要求。
在四周安装有姿态调整发动机,在给定主减速发动机的推力方向后,能够自动通过多个发动机的脉冲组合实现各种姿态的调整控制。
嫦娥三号的预定着陆点为19.51W ,44.12N ,海拔为-2641m (见附件1)。
嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略的设计。
其着陆轨道设计的基本要求:着陆准备轨道为近月点15km ,远月点100km 的椭圆形轨道;着陆轨道为从近月点至着陆点,其软着陆过程共分为6个阶段(见附件2),要求满足每个阶段在关键点所处的状态;尽量减少软着陆过程的燃料消耗。
2.问题的提出根据上述的基本要求,请你们建立数学模型解决下面的问题: (1)确定着陆准备轨道近月点和远月点的位置,以及嫦娥三号相应速度的大小与方向。
(2)确定嫦娥三号的着陆轨道和在6个阶段的最优控制策略。
(3)对于你们设计的着陆轨道和控制策略做相应的误差分析和敏感性分析。
二、符号说明符号说明:1、R 为月球半径2、()()1,2,,1,2,i i i i ααββ==分别表示纬度和经度3、()(),,1,2i i i x y z i =为软着陆轨道上任意一点在以月心为原点,,,ox oy oz 分别为月球的零度经线,月球自转方向,极轴所确定的三维直角坐标系中的具体位置 3、1w 为推力f 在主减速阶段所做的功,'",,f f f 均为不同的推力4、12,E E 分别为近月点和远月点的总能量;5、1r 为近月点的月心距,2r 为远月点的月心距,1v 为近月点的速度,2v 为远月点的速度,1h ,2h 分别为近月点、远月点的高;6、()1,2,3,4,5,6i v i =表示软着陆阶段着陆器在第()1,2,3,4,5,6i i =段的初始速度大小,7v 为着陆器到达月球表面指定地点时的速度大小7、h 为海拔高度,()1,2,3,4,5,6i h i =为软着陆阶段第()1,2,3,4,5,6i i =阶段始末位置的高度差,i T 为第i 个阶段着陆器运动所用的总时间 8.()J i 为第i 个阶段的能量消耗 9. F 为发动机推力三、模型假设1、在确定嫦娥三号着陆准备轨道近月点和远月点时,假设燃料燃烧引起的着陆器质量变化忽略不计,在软着陆过程中将月球的向心加速度视为常量,且等于月球表面的向心加速度(21.63/m s ).2、在确定近(远)月点位置时忽略月球自转,着陆器在飞往月球过程中,按照影响球理论,假设每一时刻只受对其运动影响最大的中心引力体的作用。
3、在yoz 平面内求解近(远)月点位置的过程中假设快速调整后着陆器做垂直于月球表面的直线运动,推力在每一阶段都是恒力(要么是7500N ,要么是1500N )且忽略悬停时间4.在几百秒范围内的下降时间内,月球引力非球项、日月引力摄动和月球旋转等影响因素均忽略不计。
四、确定着陆准备轨道近月点和远月点的位置和速度建立如图1所示的三维空间直角坐标系oxyz oxyz ,其中o 为月球的月心,,ox oy oz 分别为月球的零度经线,月球自转方向和极轴,其中着陆器在月球表面的着落点的坐标为(111,,x y z ),在近月点的坐标为(222,,x y z )。
图1 三维空间直角坐标系求着落点的坐标的方法如下:若月球上任意一点为(,,h αβ),那么将其表示为三维体系中的点(,,x y z ),则有 东经: (/1000)cos sin x R h αβ=+ (1) 西经:(/1000)cos sin(180)x R h αβ=++ (2) (/1000)cos cos y R h αβ=+ (3) 北纬:(/1000)sin z R h α=+ (4) 南纬:(/1000)sin(90)z R h α=++ (5)上式中R 是月球半径,其单位是:km ,h 是海拔高度,其单位是:mα是纬度,β是经度。
将1753.013R km = 2641h m =- 44.12α= 19.51β= 将数值代入得 1415.82x km =- 11173.59y km = 11207.41z km =由于嫦娥三号将在近月点15km 处以抛物线下降,故可在yoz 平面内建立如图2所示着陆器的轨迹方程,其中oz 轴为极轴,oy 轴为月球自转方向。
轨迹过0,1752.013,1,1y z 两点。
将两点坐标代入2z ay ay c =++得1752.013c =21173.59+1173.59)a (+1752.013=1207.4 (6)在主减速阶段即()20,y y ∈,着陆器在这0y =的速度大小为:117/v km s =,在2y y =的速度大小为:257/0.057/v m s km s ==由动能定理得等式:2221111122mv mv mgh w -=+ (7)这一过程推力做的功为: ()2010cos(180)y w fg y dy =⎰(8)()()'2+c 2g y ay ay ay a =+=+ (9) 由(6)(7)(8)(9)得0.0003946573a =-2221212222mgh mv mv ay ay f-++= (10)由于zoy 平面是着陆器的下降轨迹所在的平面,所以近月点在ox 轴的坐标与着陆点轴在ox 轴的坐标相等即12x x =当7500f N =时,将112h km =,117/v km s =,257/0.057/v m s km s ==,2103.91y km =时,21415.82x x km ==-,代入(2)(3)(10)得:175.6992α= 175.9685β=当1500f N =时,将112h km =,117/v km s =,257/0.057/v m s km s ==,2103.91y km =时,21415.82x x km ==-,代入(2)(3)(10)得:274.1178α= 260.7393β=综上得:7500f N =时,近月点的位置为75.6992N ,75.9685W ; 1500f N =时,近月点的位置为74.1178N ,60.7393W .由于近月点与远月点在同一条经线上,所以近月点与远月点的经度大小相同,且在oy 轴上的坐标相同,故由(3)得:7500f N =时,远月点的位置为75.6692S ,75.9685E ; 1500f N =时,远月点的位置为74.1178S ,60.7393E 。
由总能量在轨道上的任何一点都是相同的。
嫦娥三号在近月点和远月点的总能量分别为21111E =mv -m 2r GM22221=mv -m 2r GM E其中,GM 为月球常数,1r 为近月点的月心距,2r 为远月点的月心距,1v 为近月点的速度,2v 为远月点的速度。
由于12E =E ,有 2212121122GM GM mv m mv m r r -=- 即2212121122GM GM v v r r -=- (11) 由开普勒定律可知,近月点和远月点的速度之比等于其月心距的反比,即 1212r v v r =代入式(11),有 2211112211()*22r GM GM v v r r r -=- 整理后,得 2121211*2r r GM v r r += 令212rk r r =+,有 21112GM v k r = 称上式为能量平衡式,它表示在近月点动能等于其势能的k 倍。
由于着陆准备轨道为近月点15km ,远月点100km 的椭圆轨道,又月球的平均半径1737.103R km =,月球的质量227.3477*10M kg =,则4900GM = 故有11221737.013151752.0131737.0131001837.013r R h r R h =+=+=⎧⎨=+=+=⎩ 1121837.0130.5121752.0131837.013r k r r ===++式中1h ,2h 分别为近月点、远月点的高。