数学建模作业

合集下载

数学建模结课作业

数学建模结课作业

一. 某旅游景点从山脚到山顶有一缆车索道,全长约1471m,高度 差为380m 。

采用循环单线修建,从下站到上站行经8个铁塔,将缆绳分为九段,各段的水平距离用i d 表示,高差用i h 表示,其数据见下表:每一段缆绳垂下来的最低点不低于两端铁塔最低塔顶悬挂绳处1m 。

要求:(1)折线法;(2)抛物线法,估计整个索道工程所用的缆绳总长度。

解:(一)折线法思路:考虑到实际中工程架线不能过紧,但又为了节省原料,我们采取求出最大折线和最小折线,对两者求取平均值,以得到对缆线总长度的估测。

由于八个铁塔分九段,因此此题分两部分考虑:(1) 第一段:直接求出发点到第一个铁塔的距离,即21211h d l +=(2) 第二到九段:建立坐标系,运用距离公式求取l 的长度。

设A (x -,1),B(i d x -,1i h +)得:l =用此公式求最大最小值。

matlab 求解第一段syms h1 d1h1=50d1=220l1=sqrt(d1.^2+h1.^2)第二段求最小值clearl='sqrt((-x)^2+1)+sqrt((200-x)^2+(45+1)^2)' ezplot(l,[0,200]);[xmin,lmin]=fminbnd(l,0,200)得图形可得当x=4.2553时,取得最小值205.45由图形可得当x=200时取得最大值,即clearl='sqrt((-x)^2+1)+sqrt((200-x)^2+(45+1)^2)' ezplot(l,[0,200]);[xmin,lmin]=fminbnd(l,0,200)x=200;lmax=eval(l);l=(lmin+lmax)/2;得lmax=246.0025l=225.7254第三段到第九段算法与第二段相同,所以结果为第一段:l1 = 225.6103第二到九段分别为: 225.7254 ,163.5839 ,142.7476,120.6438,142.7476,163.5839,225.7254,248.5321总长为:1658.9m抛物线法思路:参照示意图,因为将绳的形状看做抛物线,为了方便研究,以抛物线的最低点为原点建立抛物线2y ax =,则每段绳的长度为l =,最后相加求总长。

数学建模作业

数学建模作业

1.给出一个你所感兴趣的数学建模的实际问题。

(1)写出问题的实际背景。

(2)给出解答问题的建模与解答路径。

(3)解决什么样的问题。

答:(1)我们学校的教学楼中,教室的灯管的开关时间并没有一个明确的规定,这就造成了即使在大白天教室也开着灯的现象,浪费了很多的电力资源。

所以我们应该设计一个模型来对教室灯管的开关情况进行优化,以达到节省电力资源的同时又不影响同学们的正常学习。

(2)首先要统计出全校教学楼中共有多少个教室,以及每个教室的灯管的数量;其次要上网查资料,对西安一年四季的天气情况有一个初步的了解,分别统计出一年中雨天的比例,阴天的比例,和晴天的比例;最后查阅相关的资料,了解声控和光控开关的相关知识。

(3)通过建模来解决教室用电不合理的现象,即为学校节省了开销,也节约了电力资源,更可以通过这种潜移默化的形式,给同学们树立一个好榜样,使大家意识到节约用电的重要性。

2.找一本与本课有关的参考资料。

(1)你为何选择这一本书。

(2)这本资料对你的建模思想有什么启示作用。

(3)这本资料书对我么数学专业的学习有什么帮助。

答:我选择了《最优化方法》这本书。

(1)之所以选择这本书,首先是因为课堂上老师说数学建模里边,有很多问题都是要对某个问题进行优化的;其次是,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为现代管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、国防等各个领域,发挥着越来越重要的作用。

所以我选择了《最优化方法》这本书。

(2)这本书中主要是介绍线性规划问题的模型、求解及其应用――运输问题;以及动态规划的模型、求解、应用――资源分配问题。

其中的微分学中求极值、等式约束最优化问题、不等式约束最优化问题对数学建模都有很大的帮助。

用最优化方法解决实际问题,一般可经过下列步骤:①提出最优化问题,收集有关数据和资料;②建立最优化问题的数学模型,确定变量,列出目标函数和约束条件;③分析模型,选择合适的最优化方法;④求解,一般通过编制程序,用计算机求最优解;⑤最优解的检验和实施。

数学建模课后习题作业

数学建模课后习题作业

【陈文滨】1、在稳定的椅子问题中,如设椅子的四脚连线呈长方形,结论如何?【模型假设】(1)椅子四条腿一样长,椅脚与地面接触处视为一点,四脚的连线呈长方形.(2)地面高度是连续变化的,沿任何方向都不会出现间断 (没有像台阶那样的情况),即从数学的角度看,地面是连续曲面.这个假设相当于给出了椅子能放稳的必要条件.(3)椅子在任何位置至少有三只脚同时着地.为保证这一点,要求对于椅脚的间距和椅腿的长度而言,地面是相对平坦的.因为在地面上与椅脚间距和椅腿长度的尺寸大小相当的范围内,如果出现深沟或凸峰(即使是连续变化的),此时三只脚是无法同时着地的。

【模型建立】在上述假设下,解决问题的关键在于选择合适的变量,把椅子四只脚同时着地表示出来.首先,引入合适的变量来表示椅子位置的挪动.生活经验告诉我们,要把椅子通过挪动放稳,通常有拖动或转动椅子两种办法,也就是数学上所说的平移与旋转变换.然而,平移椅子后问题的条件没有发生本质变化,所以用平移的办法是不能解决问题的.于是可尝试将椅子就地旋转,并试图在旋转过程中找到一种椅子能放稳的情形.注意到椅脚连线呈长方形,长方形是中心对称图形,绕它的对称中心旋转180度后,椅子仍在原地.把长方形绕它的对称中心O旋转,这可以表示椅子位置的改变。

于是,旋转角度θ这一变量就表示了椅子的位置.为此,在平面上建立直角坐标系来解决问题.如下图所示,设椅脚连线为长方形ABCD,以对角线AC所在的直线为x轴,对称中心O为原点,建立平面直角坐标系.椅子绕O点沿逆时针方向旋转角度θ后,长方形ABCD转至A1B1C1D1 的位置,这样就可以用旋转角θ(0≤θ≤π)表示出椅子绕点O旋转θ后的位置.其次,把椅脚是否着地用数学形式表示出来.我们知道,当椅脚与地面的竖直距离为零时,椅脚就着地了,而当这个距离大于零时,椅脚不着地.由于椅子在不同的位置是θ的函数,因此,椅脚与地面的竖直距离也是θ的函数.由于椅子有四只脚,因而椅脚与地面的竖直距离有四个,它们都是θ的函数.而由假设(3)可知,椅子在任何位置至少有三只脚同时着地,即这四个函数对于任意的θ,其函数值至少有三个同时为0.因此,只需引入两个距离函数即可.考虑到长方形ABCD是中心对称图形,绕其对称中心 O沿逆时针方向旋转180°后,长方形位置不变,但A,C和B,D对换了.因此,记A、B两脚与地面竖直距离之和为f(θ),C、D两脚与地面竖直距离之和为g(θ),其中θ∈[0,π],从而将原问题数学化。

数学建模作业及答案

数学建模作业及答案

数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。

数学建模作业题+答案

数学建模作业题+答案

数学建模MATLAB 语言及应用上机作业11. 在matlab 中建立一个矩阵135792468101234501234A ⎡⎤⎢⎥⎢⎥=⎢⎥-----⎢⎥⎣⎦答案:A = [1,3,5,7,9;2,4,6,8,10;-1,-2,-3,-4,-5;0,1,2,3,4]2. 试着利用matlab 求解出下列方程的解(线性代数22页例14)123412423412342583692254760x x x x x x x x x x x x x x +-+=⎧⎪--=⎪⎨-+=-⎪⎪+-+=⎩ 答案:A=[2 ,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6]; B=[8;9;-5;0]; X=A\B 或A=[2,1,-5,1;1,-3,0,-6;0,2,-1,2;1,4,-7,6] b=[8,9,-5,0]' X=inv(A)*b3. 生成一个5阶服从标准正态分布的随机方阵,并计算出其行列式的值,逆矩阵以及转置矩阵。

答案:A=randn(5) det(A) inv(A) A'4. 利用matlab 求解出110430002A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦的特征值和特征向量。

答案:A=[-1,1,0;-4,3,0;0,0,2] [V,D]=eig(A)5.画出衰减振荡曲线3sin3t y et -=在[0,4]π上的图像。

要求,画线颜色调整为黑色,画布底面为白色。

(在实际中,很多打印机时黑白的,因此大多数作图要考虑黑白打印机的效果。

) 给出恰当的x ,y 坐标轴标题,图像x 轴的最大值为4π。

6. 生成一个0-1分布的具有10个元素的随机向量,试着编写程序挑选出向量中大于0.5的元素。

数学建模和Matlab 上机作业2(2016-9-20)跟老师做(不用整合进作业中):上机演示讲解:函数,递归的两个例子的写法。

附:1. Fibonacci Sequence (斐波那契数列)在数学上,费波那西数列是以递归的方法来定义: F1= 1;F2= 1;F (n )=F (n-1)+F (n-2) 2. 阶乘举例:数学描述:n!=1×2×……×n ;计算机描述:n!=n*(n-1)!自己做(需要整合进作业中,提交到系统中):1. 写一个m 文件完成分值百分制到5分制的转换(即输入一个百分制,转换后输出一个5级对应的得分,联系条件控制语句)。

数学建模作业(1)

数学建模作业(1)

数学建模作业(1)
数模
数模
1.学校共学校共1000名学生,235人住在宿名学生,人住在A宿名学生人住在人住B宿舍人住在C宿舍舍,333人住宿舍,432人住在宿舍人住宿舍,人住在宿舍.学生们要组织一个10人的委员会人的委员会,学生们要组织一个人的委员会,试用下列办法分配各宿舍的委员数:列办法分配各宿舍的委员数:(1)按比例分配取整数的名额后,剩下的名按比例分配取整数的名额后,按比例分配取整数的名额后额按惯例分给小数部分较大者。

额按惯例分给小数部分较大者。

(2)用Q值方法。

值方法。

用值方法
数模
如果委员会从10人增至人如果委员会从人增至15人,用以上人增至2种方法再分配名额。

将2种方法两次分配种方法再分配名额。

种方法再分配名额种方法两次分配的结果列表比较。

的结果列表比较。

(3)你能提出其它的方法吗?用你的方你能提出其它的方法吗?你能提出其它的方法吗法分配上面的名额。

法分配上面的名额。

数模
2.考察模拟水下爆炸的比例模型.爆炸物质量m,在距爆炸点距离r处设置仪器,接收到的冲击波压强为p,记大气初始压强p0,水的密度ρ,水的体积弹性模量k,用量纲分析法已经得到
p0ρrp=p0(,)km3
数模
设模拟实验与现场的p0,ρ,k相同,而爆炸物模型的质量为原模型的1/1000.为了使实验中接收到与现场相同的压强p,问实验时应如何设置接收冲击波的仪器,即求实验仪器与爆炸点之间的距离是现场的多少倍?
p0,ρ,k。

数学建模作业答案

数学建模作业答案

习题1第4题(1)(i )拟合得r=0.021194,误差平方和等于17418;(ii )拟合得0x =14.994,r=0.014223,误差平方和等于2263.9;(iii )拟合得0t =1743.6,0x =7.7507,r=0.014223,误差平方和等于2263.9,但是MA TLAB 给出警告信息,指出存在病态条件,参数未必能拟合得好,综上所述,(ii )是本问题的最佳拟合方案。

(2)对指数增长模型0()0()r t t x t x e -=两边求对数得00ln ()()ln x t r t t x =-+固定0t =1790,引进变量替换ln ()Y x t =,0X t t =-,1r β=,00ln x β=,则转化为一次多项式10Y X ββ=+,然后用MALAB 函数polyfit 拟合0β,1β,进而得到0x =6.045,r=0.020219,误差平方和等于34892.(3)指数增长模型线性化拟合得误差平方和比非线性拟合大得多。

用MALAB 函数plot 绘制拟合误差比较图可以发现:非线性拟合的误差比较比较均匀,线性化拟合的误差却随着人口的增加越来越大,原因是因为对于x(t)数值越大的数据,ln ()Y x t =由于求对数带来的损失越大,以至于线性化拟合得误差越大。

(4)(i )拟合得r=0.027353,N=342.44,误差平方和等于1224.9;(ii)拟合得0x =7.6981,r=0.021547,N=446.57,误差平方和等于457.74;(iii )拟合得0t =1771.3,0x =5.1752,r=0.021547,N=446.57,误差平方和等于457.74,但MALAB 给出警告信息,指出存在病态条件,参数未必能拟合得好。

综上所述,(ii )是本问题的最佳拟合方案。

习题2第1题“两秒准则”表明前后车距D 与车速v 成正比例关系2D K v =,其中2K =2s 。

数学建模作业及答案

数学建模作业及答案

数学建模作业姓名:叶勃学号:班级:024121一:层次分析法1、 分别用和法、根法、特征根法编程求判断矩阵1261/2141/61/41A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦11/2433217551/41/711/21/31/31/52111/31/5311A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦的特征根和特征向量(1)冪法求该矩阵的特征根和特征向量 程序为:#include<iostream> #include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20 #define err 0.0001 //幂法求特征值特征向量 void main(){cout<<"**********幂法求矩阵最大特征值及特征向量***********"<<endl; int i,j,k;double A[n][n],X[n],u,y[n],max;cout<<"请输入矩阵:\n"; for(i=0;i<n;i++) for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 cout<<"请输入初始向量:\n"; for(i=0;i<n;i++)cin>>X[i]; //输入初始向量 k=1; u=0;while(1){ max=X[0]; for(i=0;i<n;i++) {if(max<X[i]) max=X[i]; //选择最大值 }for(i=0;i<n;i++)y[i]=X[i]/max; for(i=0;i<n;i++)X[i]=0;for(j=0;j<n;j++)X[i]+=A[i][j]*y[j]; //矩阵相乘}if(fabs(max-u)<err){cout<<"A的特征值是 :"<<endl; cout<<max<<endl; cout<<"A的特征向量为:"<<endl; for(i=0;i<n;i++) cout<<X[i]/(X[0]+X[1]+X[2])<<" ";cout<<endl;break;}else{if(k<N) {k=k+1;u=max;} else {cout<<"运行错误\n";break;}}} }程序结果为:(2)和法求矩阵最大特征值及特征向量程序为:#include<stdio.h>#include<iostream>#include<math.h> using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j,k;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********和法求矩阵的特征根及特征向量*******"<<endl;cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵 //计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;} //求特征向量w[0]=0;w[1]=0;w[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){w[i]+=W[i][j];}cout<<"特征向量为:"<<endl; for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征根为:"<<endl;cout<<max/n<<endl; }运行结果为:(3)根法求矩阵最大特征值及特征向量:程序为:#include<stdio.h>#include<iostream>#include<math.h>using namespace std;#define n 3 //三阶矩阵#define N 20void main(){int i,j;double A[n][n],w[n],M[n],u[n],W[n][n],max;cout<<"********根法求矩阵的特征根及特征向量*******"<<endl; cout<<"请输入矩阵:\n";for(i=0;i<n;i++)for(j=0;j<n;j++)cin>>A[i][j]; //输入矩阵//计算每一列的元素和M[0]=0;M[1]=0;M[2]=0;for(i=0;i<n;i++)for(j=0;j<n;j++){M[i]+=A[j][i];}//将每一列向量归一化for(i=0;i<n;i++)for(j=0;j<n;j++){W[j][i]=A[j][i]/M[i];}//输出按列归一化之后的矩阵Wcout<<"按列归一化后的矩阵为:"<<endl;for(i=0;i<n;i++)for(j=0;j<n;j++){cout<<W[i][j]<<" ";if(j==2)cout<<endl;}//求特征向量//w[0]=A[0][0];w[1]=A[0][1];w[2]=A[0][2];w[0]=1;w[1]=1;w[2]=1;for(i=0;i<n;i++){for(j=0;j<n;j++){w[i]=w[i]*W[i][j];}w[i]=pow(w[i], 1.0/3);}cout<<"特征向量为:"<<endl;for(i=0;i<n;i++){u[i]=w[i]/(w[0]+w[1]+w[2]);cout<<u[i]<<" "<<endl;}//求最大特征值max=0;for(i=0;i<n;i++){w[i] = 0;for(j=0;j<n;j++){w[i] += A[i][j]*u[j];}}for(i = 0;i < n;i++){max += w[i]/u[i];}cout<<"最大特征值为:"<<endl; cout<<max/n;}运行结果为:2、编程验证n阶随机性一致性指标RI:运行结果:3、考虑景色、费用、居住、饮食、旅途五项准则,从桂林、黄山、北戴河三个旅游景点选择最佳的旅游地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习 题 1
1. 请编写绘制以下图形的MA TLAB 命令,并展示绘得的图形.
(1) 221x y +=、224x y +=分别是椭圆2241x y +=的内切圆和外切圆. (2) 指数函数x y e =和对数函数ln y x =的图像关于直线y=x 对称. (3) 黎曼函数
1, (0)(0,1) 0 , (0,1), 0,1
q x p q q x y x x x =>∈⎧=⎨
∈=⎩当为既约分数且当为无理数且或者 的图像(要求分母q 的最大值由键盘输入).
3. 两个人玩双骰子游戏,一个人掷骰子,另一个人打赌掷骰子者不能掷出所需点数,输赢的规则如下:如果第一次掷出3或11点,打赌者赢;如果第一次掷出2、7或12点,打赌者输;如果第一次掷出4、5、6、8、9或10点,记住这个点数,继续掷骰子,如果不能在掷出7点之前再次掷出该点数,则打赌者赢. 请模拟双骰子游戏,要求写出算法和程序,估计打赌者赢的概率. 你能从理论上计算出打赌者赢的精确概率吗?请问随着试验次数的增加,这些概率收敛吗?
4. 根据表1.14的数据,完成下列数据拟合问题:
(1) 如果用指数增长模型0()0()e r t t x t x -=模拟美国人口从1790年至2000年的变化过程,请用MATLAB 统计工具箱的函数nlinfit 计算指数增长模型的以下三个数据拟合问题:
(i) 取定0x =3.9,0t =1790,拟合待定参数r ;
(ii) 取定0t =1790,拟合待定参数0x 和r ; (iii) 拟合待定参数0t 、0x 和r .
要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图.
(2) 通过变量替换,可以将属于非线性模型的指数增长模型转化成线性模型,并用MA TLAB 函数polyfit 进行计算,请说明转化成线性模型的详细过程,然后写出程序,给出拟合参数和误差平方和的计算结果,并展示拟合效果图.
(3) 请分析指数增长模型非线性拟合和线性化拟合的结果有何区别?原因是什么?
(4) 如果用阻滞增长模型00
()
00()()e
r t t Nx x t x N x --=
+-模拟美国人口从1790年至2000年的变化过程,请用MA TLAB 统计工具箱的函数nlinfit 计算阻滞增长模型的以下三个数据拟合问题:
(i) 取定0x =3.9,0t =1790,拟合待定参数r 和N ;
(ii) 取定0t =1790,拟合待定参数0x 、r 和N ; (iii) 拟合待定参数0t 、0x 、r 和N .
要求写出程序,给出拟合参数和误差平方和的计算结果,并展示误差平方和最小的拟合效果图.
年份 1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
人口 3.9 5.3 7.2 9.6 12.9 17.1 23.2 31.4 38.6 50.2 62.9 年份1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 人口76.0 92.0 106.5 123.2 131.7 150.7 179.3 204.0 226.5 251.4 281.4
习题 2
1. 继续考虑第
2.2节“汽车刹车距离”案例,请问“两秒准则”和“一车长度准则”一样吗?“两秒准则”是否足够安全?对于安全车距,你有没有更好的建议?
4. 继续考虑第2.3节“生猪出售时机”案例,假设在第t 天的生猪出售的市场价格(元/公斤)为
2()(0)p t p gt ht =-+ (2.4.1) 其中h 为价格的平稳率,取h =0.0002. 其它模型假设和参数取值保持不变.
(1) 试比较(2.4.1)式与(2.3.1)式,解释新的假设和原来的假设的区别与联系. (2) 在新的假设下求解最佳出售时机和多赚的纯利润.
(3) 做灵敏度分析,分别考虑h 对最佳出售时机和多赚的纯利润的影响. (4) 讨论模型关于价格假设的强健性.
5. 继续考虑第2.3节“生猪出售时机”案例,假设在第t 天的生猪体重(公斤)为
()000()m
t
m w w w t w w w e
α-=
+- (2.4.2) 其中0(0)90w w ==(公斤),270m w =(公斤),其它模型假设和参数取值保持不变.
(1) 试比较(2.4.2)式与(2.3.2)式,解释新的假设和原来的假设的区别与联系(提示:说明当α (α>0)取何值时,在t =0时可以保持(0)1w r '==;说明当t 增大时,猪的体重会如何变化).
(2) 在新的假设下求解最佳出售时机和多赚的纯利润.
(3) 参数m w 代表猪长成时的最终重量,对m w 做灵敏度分析,分别考虑m w 对最佳出售时机和多赚的纯利润的影响.
(4) 讨论模型关于生猪体重假设的强健性.
习 题 3
4. 某成功人士向学院捐献20万元设立优秀本科生奖学金,学院领导打算将这笔捐款以整存整取一年定期的形式存入银行,第二年一到期就支取,取出一部分作为当年的奖学金,剩下的继续以整存整取一年定期的形式存入银行……请你研究这个问题,并向学院领导写一份报告.
5. 有一位老人60岁时将养老金10万元以整存零取方式(指本金一次存入,分次支取本金的一种储蓄)存入,从第一个月开始每月支取1000元,银行每月初按月利率0.3%把上月结余额孳生的利息自动存入养老金. 请你计算老人多少岁时将把养老金用完?如果想用到80岁,问60岁时应存入多少钱?
10. 继续考虑第3.4.3小节“人口预报”案例,用前差公式计算美国人口的年增长率,假设人口年增长率是人口数量的二次函数,重新建模、求解和分析.
习题 4
1. 请估算第4.1.6小节“排污量的估计”案例中氨氮污染物的排放量.
2. 继续考虑第4.1.7小节“饮酒驾车”案例,大李在喝了3瓶啤酒后多长时间内驾车就会违反新的国家标准?分别在以下两种情况下回答:
(1) 酒是在很短时间内喝的;
(2) 酒是在较长一段时间(比如2小时)内喝的.
3. 继续考虑第3.
4.2小节“酵母培养物的增长”案例,建立微分方程模型,模拟酵母培养物的增长.
习题 6
2. 13名儿童参加了一项睡眠时间(分钟)与年龄(岁)关系的调查,表6.18中的睡眠时间是根据连续3天记录的每天睡眠时间的平均值得到的. 请建立和求解回归模型,解释得到的结果,给出10岁儿童的平均睡眠时间及预测区间.
序号年龄睡眠时间序号年龄睡眠时间
1 4.4 586 8 8.9 515
2 14.0 462 9 11.1 493
3 10.1 491 10 7.8 528
4 6.7 56
5 11 5.5 576
5 11.5 462 12 8.
6 533
6 9.6 532 13 7.2 531
7 12.4 478
3. 水的沸点与大气压强有密切关系,表6.19中包含了17次试验中所测得的水的沸点(华氏温度)和
大气压强(水银英寸),请建立回归模型估计沸点和压强之间的关系,并给出当沸点为201.5F o 时压强的预测值及预测区间.
沸点 194.5 194.3 197.9 198.4 199.4 199.9 压强 20.79 20.79 22.40 22.67 23.15 23.35 沸点 200.9 201.1 201.4 201.3 203.6 204.6 压强 23.89 23.99 24.02 24.01 25.14 26.57 沸点 209.5 208.6 210.7 211.9 212.2 压强
28.49
27.76
29.04
29.88
30.06
习 题 7
1. 对于不允许缺货的确定性静态库存模型,做灵敏度分析,讨论参数1p 、2p 和r 的微小变化对最优订货策略的影响.
2. 某配件厂为装配线生产若干种部件. 每次轮换生产不同的部件时,因更换设备要付生产准备费(与生产数量无关). 同一部件的产量大于需求时,因积压资金、占用仓库要付库存费. 今已知某一部件的日需求量100件,生产准备费5000元,库存费每日每件1元. 如果生产能力远大于需求,并且不允许出现缺货,请制定最优生产计划.
3. 某商场把销售所剩的空纸皮箱压缩并打成包准备回收,每天能产生5包,在商场后院存放的费用是每包每天10元. 另一家公司负责将这些纸包运送到回收站,要收取固定费用1000元租装卸车,外加运输费每包100元. 请制定运送纸包到回收站的最优策略.
6. 继续考虑例
7.2.1,约束条件保持不变,将每吨内、外墙涂料的利润分别修改为5千元和4千元,请分别用图解法和单纯形法求解.。

相关文档
最新文档