《敏感陶瓷》PPT课件 (2)

合集下载

压敏陶瓷简介PPT课件

压敏陶瓷简介PPT课件
1,压敏陶瓷的代表 2,压敏陶瓷的发展历史 3,压敏陶瓷的基本特性 4,氧化锌压敏陶瓷 5,其他压敏陶瓷简介 6,压敏陶瓷的发展方向
2019/11/4
5
1,压敏陶瓷材料代表: SiC、ZnO(佼佼者)、 BaTiO3、Fe2O3、SnO2、SrTiO3
2,压敏陶瓷历史:20世纪30年代由贝尔实验室ห้องสมุดไป่ตู้成 SiC陶瓷,1968年日本松下公司的首先Matsuoka发现
11.电流温度系数: 电流温度系数是指在压敏电阻器的两端 电压保持恒定时,温度改变1℃时,流过压敏电阻器电流的相 对变化。 12.电压非线性系数: 电压非线性系数是指压敏电阻器在 给定的外加电压作用下,其静态电阻值与动态电阻值之比。
13.绝缘电阻: 绝缘电阻是指压敏电阻器的引出线(引脚)与电 阻体绝缘表面之间的电阻值。
13
氧化锌压敏电阻的应用 ZnO压敏电阻器的应用很广,可归结为如下两方面: ①过压保护 ②稳定电压
2019/11/4
14
过压保护
各种大型整流设备、大型电 磁铁、大型电机、通讯电路、民 用设备在开关时,会引起很高的 过电压,需要进行保护,以延长 使用寿命。故在电路中接入压敏 电阻可以抑制过电压。
此外,压敏电阻还可作晶体 管保护、变压器次级电路的半导 体器件的保护以及大气过电压保 护等。
了一种新型陶瓷材料——ZnO。
依据特性: BaTiO3、Fe2O3利用的是电极与烧结体界面的非 欧姆特性 SiC、ZnO、SrTiO3利用的是晶界非欧姆特性。
目前,应用最广、性能最好的是氧化锌压敏半 导体陶瓷。
2019/11/4
6
3,压敏陶瓷的基本特性
压敏电阻陶瓷具有非线性伏 -- 安特性,对电压变化非常敏 感。

NTC热敏陶瓷——课件

NTC热敏陶瓷——课件

68/12
二. NTC热敏陶瓷的分类
NTC热敏半导瓷材料种类很多,分类方法也不尽相同。 一般按使用温度范围可分为:低温热敏材料(小于100K)、 常温热敏材料(-60-300℃)及高温热敏材料(大于300℃)等。
1. 常温热敏材料
常温热敏半导资材料种类很多,但大多数都是含锰二元或多元 尖晶石型氧化物半导瓷。主要介绍二元和三元系材料。 常 用 的 含 锰 二 元 系 氧 化 物 半 导 瓷 材 料 有 MnO-CoO-O2 系 、 MnO-NiO-O2系、MnO-FeO-O2系及MnO-CuO-O2系等.
正反电阻/Ω 1~10 1~10 30 1~10 20000
68/24
举例
MgAl2O4-MgCr2O4-LaCrO3多元系高温热敏材料
这种多元系高温热敏材料使用温度为400-l000℃,具有很好 的高温稳定性和重复性,在500℃下加电压连续工作1000小 时后的阻值变化率可控制在2%以下。
材 料 的 结 构 为 尖 晶 石 相 MgAl2O4 、 MgCr2O4 及 钙 钛 矿 型 LaCrO3固溶组成。电阻材料的阻值和B值可以通过改变尖 晶石相中的Al、Cr的比例或改变尖晶石相与钙钛矿相的比 例来调整。 材料常数B值的调整范围为7000~16000K。
68/25
3. 其它NTC热敏材料
这里只简单介绍低温热敏电阻和负温度系数临界热敏电阻两 种材料。
通常的半导体陶瓷材料长期工作在高温状态,很快就会发生 老化。因此,衡量高温热敏材料好坏最主要的标准就是高温 稳定性,一般要求热敏电阻在工作电压下于500℃以上高温 连续工作1000小时,其阻值变化率不应大于±5%。
68/18
NTC高温稳定性的影响因素
影响热敏电阻高温稳定性的因素很多,其中包括材料的 化学配比及缺陷结构、离子电导、电极接触以及外界环 境条件等。

2.4敏感陶瓷

2.4敏感陶瓷

PTC的伏安特性曲线
oa段与线性电阻器变化一致,其 原因是通过热敏电阻器的电路很 小,耗散功率引起的温度变化可 忽略不计。当耗散功率增加,阻 体温度超过环境温度引起电阻增 大,曲线开始弯曲。当电压增至 Um时,电流达最大Im。电压继续 增加,电流反而减小,曲线斜率 由正变负。
Kunming University of Science and Technology
Kunming University of Science and Technology
在出现金属离子空格点时,禁带附近出现了附 加能级,位臵靠近价带顶上边,可以接受电子, 称为受主能级。 在绝对零度时,所有价电子全部填充到下面 的价带,受主能级是空的。在较高温度下, 由于热激发,价带的电子跃迁到受主能级去, 产生空穴。在电场作用下,价带中的空穴可 以沿电子方向做漂移运动,产生漂移电流导 电,对电导做出贡献。
临界温度热敏电阻(Critical temperature coefficient,CTR ) :
一些过渡金属氧化物的电阻在某一特定温度下急剧变化, 且这种变化具有再现性和可逆性,这一特定温度称临界温 度,这种材料称为临界温度热敏电阻。
线性热敏电阻(Linear temperature coefficient ) :电阻随温
3.基本特性
1)阻温特性
热敏电阻最基本的特性
E T exp( ) 2kT
ρ T—温度T时电阻率; ρ∞—温度∞时电阻率; ∆E—活化能; T—绝对温度; k—玻耳兹曼常数
1-NTC,2-CTR 3-开关型PTC 4-缓变型PTC
Kunming University of Science and Technology
形成附加能级主要有两个途径:不含杂质的氧化物主要 通过化学计量比偏离来形成;而含杂质的氧化物附加能级 的形成还与杂质缺陷有关。

热敏陶瓷05ppt课件

热敏陶瓷05ppt课件
电阻温度特性 伏安特性 电流时间特性 耐压特性
精品课件
分类、用途与组成
heat sensitive ceramics:过热保护传感器、温度计, 掺杂BT
humidity sensitive ceramics (humiceram):湿度计, ZnO-Li2O-V2O5系
photosensitive ceramics:光检测元件、光位计, CdSe
热容量c:热敏电阻器温度升高1 ℃所消耗的热能。
时间常数τ:热敏电阻温度改变到周围媒质温差的63.2%所需要 的时间。 Τ=c/H
额定功率Pm: 使用温度范围内所容许的最大功率。 工作温度T:
精品课件
热敏陶瓷的阻温特性
RTN=ANeBN/T(NTC);
RTP=APeBpT(PTC)
RTN;
缓变型( αT <10%/℃) 开关型( αT >10%/℃) (3)依据使用温度分类
低温: 中温: 高温:
精品课件
精品课件
掺 B杂aTiBO3a的T晶iO体3结构PT特C征热敏陶瓷
BaTiO3热敏陶瓷的阻温特性 BaTiO3陶瓷产生PTC效应的条件 影响BaTiO3热敏陶瓷性能的因素 BaTiO3热敏陶瓷的制备工艺 BaTiO3热敏陶瓷产生PTC效应的物理机制 BaTiO3热敏陶瓷的应用
来还出现了许多新型PTC 材料,如复合、有机PTC 等; 我国对PTC 材料的研究开始于60 年代初; PTC 材料已广泛应用于电子通讯、汽车工业、家用电器等; 2000 年,世界的产销量达8 亿支,我国突破了1.5 亿支。(朱
盈权,2002)
精品课件
何谓热敏陶瓷?
电阻率随温度发生明显变化的功能陶瓷。
精品课件
晶体结构特征

《敏感陶瓷》课件 (2)

《敏感陶瓷》课件 (2)

结语
敏感陶瓷的重要性
敏感陶瓷在传感领域的重要性不容忽视,为 各类传感器的性能提升和应用拓展提供了新 的可能。
总结及展望
通过了解敏感陶瓷的制备方法、特性分析和 应用案例,我们对其未来发展有了更深入的 认识。
制备方法
常见的制备方法
烧结法、溶胶-凝胶法的优缺点比较
不同制备方法具有各自的特点和优缺点,了解 并比较这些方法有助于选择适合的制备方法。
特性分析
1
基本特性
敏感陶瓷具有高灵敏度、快速响应、稳定性好等特性,可用于各种传感应用。
2
机理分析
通过深入研究敏感陶瓷的响应机理,可以揭示其物质结构与性能之间的关系。
电子传感器
敏感陶瓷可以用于制造各种类型的电子传感器, 如压力传感器、温度传感器等。
展望
未来应用前景
敏感陶瓷在生物医学、环境监测、智能传感等 方向具有广阔的应用前景,可以满足人们对高 性能传感器的需求。
研究方向及挑战
未来的研究可以侧重于提高敏感陶瓷响应的灵 敏度、稳定性和可靠性,同时应对制备过程等 方面的挑战。
3
性能优化
探索改善敏感陶瓷性能的方法,如增加纳米材料掺杂、调节制备工艺等。
应用案例
生物传感器
敏感陶瓷可以用于生物传感领域,用于检测细 胞、蛋白质、DNA等生物分子的存在和浓度。
化学传感器
敏感陶瓷可应用于检测污染物、化学物质浓度、 气体组分等,发挥着重要的监测功能。
光学传感器
敏感陶瓷在光学领域的应用包括光纤传感、光 学信号调制等,为高精度测量提供技术支持。
《敏感陶瓷》PPT课件 (2)
敏感陶瓷是一种具有特殊响应性能的陶瓷材料。本课程将介绍敏感陶瓷的定 义、制备方法、特性分析、应用案例、未来前景等内容。

2.4敏感陶瓷资料

2.4敏感陶瓷资料

量较高,则在氧分压超过某一临界值时,气相中
的氧将向陶瓷体内部扩散,在建立新的气-固平衡
时会在晶体中产生超过化学计量比的氧过剩,其
在晶体晶格中以金属离子空格点或填隙氧离子表 现出来,使最终产品显著偏离严格的化学计量比。
例如,MO型氧化物将由MO变为MO1+x
Kunming University of Science and Technology
当氧化物存在化学计量比偏离时,晶体内部将 形成空格点或填隙原子,这种缺陷称为固有原子 缺陷,由此将产生相应的能带畸变。
1-导带; 2-价带; Eg-禁带
理想的无缺陷氧化物晶体中,价带是全满的而导带 是全空的,中间隔着一定宽度的禁带。由于晶体势 场是严格的周期性,因而晶体中的电子势能也是周 期性地改变。
Kunming University of Science and Technology
氧含量不足的情况
敏感陶瓷在高温烧结时,如果烧结气氛中 氧分压低于某一临界值时,晶粒内部中的氧将
向外界扩散而产生氧不足,而在冷却过程中高
温热平衡状态下产生的氧不足也会保留下来,
并在晶体中以氧离子空格点或填隙金属离子,
使最终产品显著偏离严格的化学计量比。 例如,MO型氧化物将由MO变为MO1-x
Kunming University of Science and Technology
2. 掺 杂
在实际生产过程中,除了在十分必要的情
况下采用气氛烧结外,最常见的还是通过控制
杂质的种类和含量来实现敏感陶瓷的半导化。
高价或低价杂质离子替位都会引起氧化物 晶体的能带畸变,分别形成施主能级和受主能 级,从而得到N型或P型半导体陶瓷。
Kunming University of Science and Technology

2.4敏感陶瓷

2.4敏感陶瓷

热敏电阻器的电阻值RT与其自身温度T的关系式:
PTC的热敏电阻值: NTC的热敏电阻值:
RT
AP
exp( BP ) TRTຫໍສະໝຸດ ANexp( BN T
)
AP、AN——取决于材料物理特性和热敏电阻器结构尺 寸的常数;
BP、BN——表征材料物理特性的常数
第17页,共67页。
Kunming University of Science and Technology
2)伏安特性
即电压-电流特性,表示在热敏电阻器两端的电压和通过它的电 流在热敏电阻器和周围介质热平衡时的关系,即加在元件上的电 功率和耗散功率相等的关系。
PTC的伏安特性曲线
oa段与线性电阻器变化一致,其原因是 通过热敏电阻器的电路很小,耗散功率 引起的温度变化可忽略不计。当耗散功 率增加,阻体温度超过环境温度引起电 阻增大,曲线开始弯曲。当电压增至Um
1-NTC,2-CTR 3-开关型PTC 4-缓变型PTC
Kunming University of Science and Technology
B E 2k
为与半导体物理性能有关的常数 , 称为材料常数,是热敏电阻材料 的特征参数。
T
1
T
dT
dT
为电阻温度系数,是温度的函 数,有正负之分,相应的材料 分别为PTC和NTC热敏陶瓷。
所谓半导化,指在禁带中形成附加能级:施主能级或受主能级。
一般来说,这些施主能级多数是靠近导带底的,而受主能级多 数是靠近价带顶的。即它们的电离能一般比较小,室温下就可 以受到热激发产生导电载流子,从而形成半导体。
形成附加能级主要有两个途径:不含杂质的氧化物主要通 过化学计量比偏离来形成;而含杂质的氧化物附加能级的形成还与

14-敏感陶瓷

14-敏感陶瓷



工业生产和科学研究领域,需要检测、控制的对 象(信息)迅速增加。信息的获得有赖于传感器 (sensor)----各种敏感元件,其中陶瓷敏感元件占有 十分重要的地位。 敏感陶瓷多属半导体陶瓷( semiconductive ceramics), 是继单晶半导体材料之后,又一类新型多晶半导 体电子陶瓷,是某些传感器中的关键材料之一 。 这些敏感陶瓷已广泛应用于工业检测、控制仪器、 交通运输系统、汽车、机器人、防止公害、防灾、 公安及家用电器等领域。
B、晶粒、晶界及陶瓷表面功能
陶瓷是由晶粒、晶界、气孔组成的多相系统,通 过人为掺杂,造成晶粒表面的组分偏离,在晶粒 表层产生固溶、偏析及晶格缺陷;在晶界(包括同 质粒界、异质粒界及粒间相)处产生异质相的析出、 杂质的聚集,晶格缺陷及晶格各向异性等。这些 晶粒边界层的组成、结构变化,显著改变了晶界 的电性能,从而导致整个陶瓷电气性能的显著变 化。
多晶陶瓷的晶界---能级-B
晶粒边界上,位错或空位等使离子排列混乱,使得 晶粒边界上的离子扩散激活能比晶体内离子的扩散 激活能低很多,晶界氧、金属及其它离子易移动。 晶粒边界面内产生界面能级,在与晶粒内的电子状 态相平衡的界面附近狭小范围内产生空间电荷。
与氧的平衡压力相对应,晶粒边界部分发生氧化或 还原,其空间电荷分布发生变化。
B、晶界及陶瓷表面的特性
人们可以从宏观上调节化学组分、气孔率(从致密 到多孔质);从微观上控制微区组分(主要是晶界 组分)和微观结构(晶粒、晶界等)。通过上述各种 因素的组合,产生一系列特殊功能材料。这些功 能材料的应用特性虽然与晶粒本身性质有关,但 更主要是利用晶界及陶瓷表面的特性。是单晶体 所不及的。
多晶陶瓷的晶界控制-B

敏感材料PPT课件

敏感材料PPT课件

化1℃时,热敏电阻阻值的变化率。即
T
1 RT

dRT dT
αT和RT对应于温度T(K)时的电阻温度系数和电
阻值,在工作温度范围内,αT不是一个常数。
热敏电阻的温度系数绝对值比金属高很多倍,
灵敏度较高,且电阻大,测量线路简单,不需要考
虑引线带来的误差,能够远距离测量。
5
敏感材料-热敏陶瓷

材料制作的PTC;另一类是以氧化钒为基的材料。
1. BaTiO3系PTC热敏电阻陶瓷
(1) BaTiO3陶瓷产生PTC效应的条件 当BaTiO3陶瓷材料中的晶粒充分半导化,而晶
界具有适当绝缘性时,才具有PTC效应。PTC效应完
全是由其晶粒和晶界的电性能决定,没有晶界的单
晶不具有PTC效应。
纯BaTiO3具有较宽的禁带,室温下的电阻率为 1012cm,接近绝缘体,不具有PTC电阻特性。
Ba2+,或用Nb5+、Ta5+、W6+等置换Ti4+,获得电阻率 为103-105cm的n型半导体。电阻率一般随掺杂浓度
的增加而降低,达到某一浓度时,电阻率降至最低
值,继续增加浓度,电阻率则迅速提高,甚至变成
绝缘体。
BaTiO3的电阻率降至最低点的掺杂浓度(质量分 数)为:Nd 0.05%,Ce、La、Nb 0.2%~0.3%,Y 0.35 %。
需要在氧化气氛下重新热处理,才能得到较好的PTC
特性,电阻率为1-103cm。
15
敏感材料-热敏陶瓷

(4) BaTiO3PTC陶瓷的生产工艺:
A、原料:一般应采用高纯度的原料,特别要控制受 主杂质的含量,把Fe、Mg等杂质含量控制在最低限
度。一般控制在0.01mol%以下。 B、掺杂:施主掺杂物La2O3、Nb2O5、Y2O3等宜在合 成时引入,含量在0.2~0.3mol%这样一个狭窄的范围 内。

第7章-敏感陶瓷1-PTC

第7章-敏感陶瓷1-PTC
1 1 B( ) T T0
BN
LnR1 LnR2 1 1 T1 T2
R R0e
7
AT T0
BP
LnR1 LnR2 T1 T2
7
7.1
热敏陶瓷
材料常数B:描述热敏电阻材料物理特性的一个参数。 对于NTC ,BN=△E/2K。△E-激活能,K-玻耳兹曼常 数。 电阻温度系数αT :温度变化1℃时电阻值的变化率
9
9
7.1
热敏陶瓷
Temperature coefficient of resistance (TCR) αT
电阻与温度的关系
热敏电阻
• 普 通 半 导 体 αT < 0 , 即 T↑ , ρv↓↓,原因是载流子数目↑; • 绝缘体 αT < 0 ,即 T↑ , ρv↓ , 原因是杂质电离→基质电离; • 金属 αT>0 即T↑, ρv↑ 原因是 振动加剧,散射↑, B曲线; PTC αT>0,A曲线 NTC αT<0,C曲线 CTR αT<0,D曲线 10
陶瓷是由晶粒、晶界、气孔组成的多相系统,通过人为的 掺杂,可以造成晶粒表面的组分偏离,在晶粒表层产生固 溶、偏析及晶格缺陷等。
另外,在晶界 处也会产生异质相的析出、杂质的聚集 、晶格缺陷及晶格各向异性等。 这些晶粒边界层的组成、结构变化,显著改变了晶 界的电性能,从而导致整个陶瓷电学性能的显著变化。
26
26
7.1
热敏陶瓷
间后进入高阻态。电流从大(起始 电流)到小有延迟
电流-时间特性(I-t 特性) 刚接通时处于常温低阻态,一定时
电机延时启动 节能灯预热软启动 在PTC 陶瓷元件两端施加某一电压的瞬间,由于其初始阻 值小, 电流迅速增大。然后, 随着时间的推移, 元件自身发 热, 进入PTC特性区,电阻阻值急剧增加, 电流大幅度下降, 最后达到稳定状态。根据这一特性, PT C 陶瓷材料可应用 于电动机的启动、继电器接点保护、延迟开关及彩色电视 机的自动消磁等。

第3章 敏感陶瓷材料

第3章  敏感陶瓷材料

伏安特性
稳态情况下,热敏电阻I与U的关系,你为热敏电阻的伏安特性 1、当流过电流小的时候,热敏电阻伏安特性符合欧姆定律 2、电流增大到一定值时,自身温度升高,热敏电阻出现负阻特性,电阻减少,电压下降 3、使用热敏电阻时,应尽量减少电流,以减少自热效应。
热敏电阻的分类
• ①电阻随温度升高而增大的热敏电阻称为正温度系数热敏电阻,
敏感陶瓷在某些传感器中,是关键
材料之一,用于制造敏感元件。
气体报警器
工业用固定式气体报警器由报警控制器和探测器组成, 控制器可放置于值班室内,主要对各监测点进行控制,探 测器安装于气体最易泄露的地点,其核心部件为内置的气 体传感器,传感器检测空气中气体的浓度。探测器将传感 器检测到的气体浓度转换成电信号,通过线缆传输到控制
新千年之初一个令人兴奋的消息便是,具有负折射率的材料实际上是存在的,它就是我们所说的“超材料”。上世纪60年代,前苏联科学家菲斯拉 格便预言,同时具备负渗透率和负电容率的材料便可拥有负折射率。时下,这一预言已成为现实:在穿过超材料时,光线或者微波会朝着“错误的 方向”弯曲。第一种超材料是安装在印刷电路板格构上由金属线和开口环构成的一个合成物,这是一种人造的由重复微型元件组成的结构,在设计 上拥有特殊性质。至关重要的是,如果超材料的结构在很大程度上小于光的波长,我们仍可以用麦克斯韦的电磁理论描述它的电磁反应:细金属线 结构产生千兆赫频率的负电反应;开口环结构产生负磁反应。2000年,加州大学圣地亚哥分校的大卫-史密斯、威利-帕蒂拉和谢丽-斯库特兹第一次 将这些结构组合在一起,制造出拥有负折射率电阻 (最适合测温的材料) 具有负的温度系数的半导体陶瓷材料 电阻值随温度升高而降低
Mn,Co,Ni,Fe的氧化物的混合物
NTC电阻材料

11敏感陶瓷04962

11敏感陶瓷04962
要获得细晶陶瓷,首先要求原料细、纯、匀、来源 稳定,其次可通过添加一些晶粒生长抑制剂,达到均 匀细小净粒结构的目的。此外,加入玻璃形成剂和控 制升温速度也可以抑制晶粒长大。
C、化学计算比(Ba/Ti)的影响
B在a过Ti量O2时稍体微积过电量阻时率通往常往会会呈增现高最,低且体使积瓷电料阻易率于;实在 现细晶化。
一、PTC热敏陶瓷 1、PTC热敏电阻的基本特性 (1)电阻—温度特性
其电阻—温度曲线(R-T曲线)。 居里温度Tc可通过掺杂来调整。 (2)电阻温度系数α 是指零功率电阻值的温度系数,其定义为:
α T=1/RT*dRT/dT 对于PTC,α T=2.303/(T2-T1)*lgR2/R1
PTC热敏电阻
三、PTC热敏电阻的应用 为温度敏感特性的应用、延迟特性的
应用及加热器方面的应用。
1、温度监控传感器 2、彩色电视机消磁 3、电冰箱起动器
PTC热敏电阻可用于计算机及其外部 设备、移动电话、电池组、远程通讯和
网络装备、变压器、工业控制设备、汽
车及其它电子产品中,作为开关类的 PTC陶瓷元件,具有开关功能。使电器 设备避免过流、过热损坏;作为加热类 的PTC陶瓷元件,它是一种温度自控的 发热体,大量用于暖风机、电吹风、电
1、 BaTiO3系PTC热敏电阻陶瓷 (1) BaTiO3陶瓷产生PTC效应的条件
具当有Ba适Ti当O3绝陶缘瓷性材时料,中才的具晶有粒P充T分C效半应导。化,而晶界
PTC效应完全是由其晶粒和晶界的电性能决定, 没有晶界的单晶不具有PTC效应。
(2)陶瓷的半导化
由于在常温下是绝缘体,要使它们变成半导体, 需要一个半导化。所谓半导化,是指在禁带中 形成附加能级:施主能级或受主能级。在室温 下,就可以受到热激发产生导电载流子,从而 形成半导体。

6.4 敏感陶瓷(2009.12.13)

6.4 敏感陶瓷(2009.12.13)


1.2 应用 敏感陶瓷广泛应用于工业检测、控制仪器、交通 运输系统、汽车、机器人、防止公害、防灾、公 安及家用电器等领域。 各种敏感陶瓷的分类、用途及材料见表6-6 (P200)。
2 敏感陶瓷的半导化过程


敏感陶瓷绝大部分是由各种氧化物组成的,在常温下 它们都是绝缘体,要使它们变为半导体,需要一个半 导化的过程。 所谓半导化,是指在禁带中形成附加能级:施主能级 或受主能级。它们的电离能一般比较小,在室温下就 可以受到热激发产生导电载流子,从而形成半导体。 形成附加能级主要有两个途径:不含杂质的氧化物主 要通过化学计量比偏离来形成;而含杂质的氧化物附 加能级的形成还与杂质缺陷有关。

4 气敏陶瓷

随着现代科学技术的发展,人们所使用和接触的气体 越来越多,因此要求对这些气体的成分进行分析、检 测及报警的领域也日益扩大。尤其是易燃、易爆、有 毒气体等,必须对这些气体进行严密监测,避免火灾、 爆炸及大气污染等事故的发生。 对于以上气体的分析、检测、监测等可采用新发展起 来的半导法。半导法结构简单、灵敏度高、使用方便、 价格便宜。气敏陶瓷就是其中较重要的分支。
6.4 敏感陶瓷
本章主要内容: 1 敏感陶瓷的分类及应用 2 敏感陶瓷的半导化过程 3 热敏陶瓷 3.1 热敏陶瓷的分类 3.2 热敏陶瓷的电阻温度系数 3.3 热敏陶瓷阻温特性 3.4 PTC热敏电阻陶瓷 3.5 NTC热敏电阻陶瓷 4 气敏陶瓷 4.1 气敏陶瓷分类 4.2 气敏陶瓷的性能 4.3 典型的气敏陶瓷
1 敏感陶瓷的分类及应用
1.1 分类

敏感陶瓷多属半导体陶瓷,是新型多晶半导体电子陶瓷。 根据某些陶瓷的电阻率、电动势等物理量对热、湿、光、 电压及某种气体、某种离子的变化特别敏感这一特性, 可把这些材料分别称作热敏、湿敏、光敏、压敏、气敏 及离子敏感陶瓷。这类材料大多是半导体陶瓷,如ZnO、 SiC、SnO2、TiO2、Fe2O3、BaTiO3和SrTiO3等。 此外,还有具有压电效应的压力、位置、速度、声波敏 感陶瓷,具有铁氧体性质的磁敏陶瓷及具有多种敏感特 性的多功能敏感陶瓷等。

第三章 敏感陶瓷与器件

第三章 敏感陶瓷与器件

122/21
3.1电子元器件基础知识
光敏电阻(MG): 光敏电阻器是利用半导体材料的电阻率受光照的 影响很大的性质制成的。

图形符号
光敏电阻的阻值随光照强度的变化而变化。 无光照时,为高阻态,阻值可达1.5MΩ;有光 照时,为低阻态,阻值减小到1k Ω左右。
122/22
3.1电子元器件基础知识

3.1电子元器件基础知识

特殊电阻 特殊电阻器都是用特殊材料制造的,它们在常态下的
阻值是固定的,当外界条件发生变化时,其阻值也随之发生
变化,故又称其为敏感型电阻。
按输入、输入关系可分为“缓变型”和“突变型”两
种。
根据性质可分为:热敏、光敏、压敏、气敏、湿敏、 磁敏电阻器等。
122/19
3.1电子元器件基础知识
1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 1.0 2.2 3.3 4.7 6.8
V
122/23
3.1电子元器件基础知识

磁敏电阻 MC 磁敏电阻器是采用砷化铟或锑化铟等材料,根据 半导体的磁阻效应制成的,阻值随穿过它的磁通 量增大而增大。是一种对磁场敏感的半导体元件 ,可以将磁感应信号转变为电信号。主要用于测 磁场强度、磁卡文字识别、磁电编码、交直流变 换。 其符号为:
×
122/24
31电子元器件基础知识12253欧洲半导体分立器件型号命名法第一部分第二部分第三部分第四部分用字母表示器件使用的材料用字母表示器件类型的用数字或字母加数字表示登记号用字母对同一器件进行分档锗材料禁带为0610ev硅材料禁带为1013ev砷化镓材料禁带大于13ev于13ev复合材料检波二极管开关二极管混频二极管变容二极管低频小功率三极管rtj15w低频大功率三极管tj15w隧道二极管高频小功率管rtj15w复合器件及其它器件磁敏二极管开放磁路中的霍尔元件高频大功率三极管tj15w封闭磁路中的霍尔元件光敏器件发光器件小功率可控硅rtj15w小功率开关管rtj15w大功率可控硅rtj15w大功率开关管rtj15w倍增二极管整流二极管稳压二极管代表通用半导体器件的登记序号体器件的登记序号代表专用半导体器件的登记序号1225412255日本半导体分立器件型号命名方法第一部分第二部分第三部分第四部分第五部分用数字表示器件有效电极数或类型日本电子工业协会jeia注册标志用数字表示器件使用材料极性和类型器件在日本电子工业协会jeia的登记号同一型号的改进产品标n1光电二极管或三极管及包括上述器件的组合管二极管三极管或具有三个电极的其它器件具有四个有效电极的器件具有n个有效电极的器件已在日本电子工业协会jeia注册登记的半导体器kmpnp高频晶体管pnp低频晶体管npn高频晶体管npn低频晶体管p控制极可控硅n控制极可控硅n基极单结晶体管n沟道场效应管p沟道场效应管n双向可控硅这一器件在日本电子工业协会jeia的注册登记号但不同厂家生产的器件可以使用同一个登记表示这一器件12256jeia登记号pnp高频晶体管jeia注册产品三极管42例2

-敏感陶瓷

-敏感陶瓷
瓷体内扩散,吸附在晶界或材料表面,使陶 瓷的电导率发生变化。
精品文档
14.3 敏感(mǐngǎn)陶瓷的半导化过程A
敏感陶瓷绝大部分是由各种氧பைடு நூலகம்物组成的, 这些氧化物多数具有比较宽的禁带(通常 Eg≥3 eV),常温下都是绝缘体,要使它们变 为半导体,需要一个半导化的过程。
定义:所谓半导化,是指在禁带中形成附加 (fùjiā)能级:施主能级或受主能级。
按特性可分为:热敏、压敏、湿敏、光敏、气 敏及离子敏感陶瓷。这类材料大多是半导体陶 瓷,如ZnO、SiC、SnO2、TiO2、Fe2O3、 BaTiO3和SrTiO3等。
此外,还有具有压电效应的压力、位置、速度、 声波(shēnɡ bō)敏感陶瓷,具有铁氧体性质的 磁敏陶瓷及具有多种敏感特性的多功能敏感陶 瓷等。
敏感陶瓷多属半导体陶瓷( semiconductive ceramics), 是继单晶半导体材料之后,又一类新型多晶半导体电 子陶瓷,是某些传感器中的关键材料之一 。
这些敏感陶瓷已广泛应用于工业检测、控制仪器、交 通运输系统、汽车、机器人、防止公害、防灾、公安 及家用电器等领域。
精品文档
14.1 敏感陶瓷的分类(fēn lèi)及应用
精品文档
B、晶粒、晶界及陶瓷表面(biǎomiàn)功能
陶瓷是由晶粒、晶界、气孔组成的多相系统,通过 (tōngguò)人为掺杂,造成晶粒表面的组分偏离,在晶 粒表层产生固溶、偏析及晶格缺陷;在晶界(包括同质 粒界、异质粒界及粒间相)处产生异质相的析出、杂质 的聚集,晶格缺陷及晶格各向异性等。这些晶粒边界 层的组成、结构变化,显著改变了晶界的电性能,从 而导致整个陶瓷电气性能的显著变化。
2、而含杂质的氧化物附加能级的形成还与 杂质缺陷有关----掺杂。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

磁敏陶瓷及具有多种敏感特性的多功能敏感
陶瓷等。
这些敏感陶瓷已广泛应用于工业检测、
控制仪器、交通运输系统、汽车、机器人、
防止公害、防灾、公安及家用电器等领域。
精选ppt
4
1、敏感陶瓷分类
①物理敏感陶瓷:
光敏陶瓷,如CdS、CdSe等;
热敏陶瓷,如PTC陶瓷、NTC和CTR 热敏陶瓷等;
磁敏陶瓷,如InSb、InAs、GaAs等;
精选ppt
11
②电阻随温度的升高而减小的热敏电阻 称为负温度系数热敏电阻,简称NTC热敏电 阻( negative temperature coefficient );
③电阻在某特定温度范围内急剧变化的
热敏电阻,简称为CTR临界温度热敏电阻(
critical temperature resistor )。
精选ppt
17
BaTiO3的化学计量比偏离半导化采用 在真空、惰性气体或还原性气体中加热
BaTiO3。 由于失氧,BaTiO3内产生氧缺位,为
了 保 持 电 中 性 , 部 分 Ti4+ 将 俘 获 电 子 成 为
Ti3+。在强制还原以后,需要在氧化气氛下
重新热处理,才能得到较好的PTC特性,电
阻率为1--103cm。精选ppt
精选ppt
7
2. 敏感陶瓷的结构与性能
陶瓷是由晶粒、晶界、气孔组成的多相 系统,通过人为的掺杂,可以造成晶粒表 面的组分偏离,在晶粒表层产生固溶、偏 析及晶格缺陷等。
精选ppt
8
另外,在晶界 处也会产生异质相的析 出、杂质的聚集、晶格缺陷及晶格各向异 性等。
这些晶粒边界层的组成、结构变化, 显著改变了晶界的电性能,从而导致整个 陶瓷电学性能的显著变化。
20
BaTiO3的电阻率降至最低点的掺杂浓 度(质量分数)为:Nd 0.05%,Ce、La、 Nb 0.2%~0.3%,Y 0.35%
精选ppt
21
采用掺杂使BaTiO3半导化的方法之二 是 AST 掺 杂 法 , 以 SiO2 或 AST ( 1/3A12O3 ·3/4SiO2·1/4TiO2 )对BaTiO3进 行掺杂,AST加入量3%(摩尔分数)于1260 --1380℃烧成后,电阻率为40--100cm。
精选ppt
22
典型03Ca0.04 )TiO3 + 0.0011Nb2O5 + 0.01TiO2(先预烧);
辅助成分摩尔分数:Sb2O3 0.06%, MnO2 0.04%,SiO2 0.5%,A12O3 0.167%,
Li2CO3 0.1%。
精选ppt
12
⑵ 陶瓷热敏电阻材料
①BaTiO3 PTC陶瓷 BaTiO3陶瓷是否具有PTC效应,完全由
其晶粒和晶界的电性能所决定。
精选ppt
13
纯BaTiO3具有较宽的禁带,常温下电子 激发很少,其室温下的电阻率为1012cm, 已接近绝缘体,不具有PTC电阻特性。
精选ppt
14
将BaTiO3的电阻率降到104cm以下, 使其成为半导体的过程称为半导化。
精选ppt
23
② NTC电阻材料
一般陶瓷材料都有负的电阻温度系数,但 温度系数的绝对值小,稳定性差,不能应用于 高温和低温场合。
NTC热敏电阻材料是用特定组分合成, 其电阻率随温度升高按指数关系减小的一类材 料,分低温型、中温型和高温型三大类。
第五章 敏 感 陶 瓷
随着科学技术的发展,在工业生产领 域、科学研究领域和人们的日常生活中, 需要检测、控制的对象(信息)迅速增加。
精选ppt
1
信息的获取有赖于传感器,或称敏感 元件。
在各种类型的敏感元件中,陶瓷敏感 元件占有十分重要的地位。
敏感陶瓷在某些传感器中,是关键材 料之一,用于制造敏感元件。
即在其禁带中引入一些浅的附加能级: 施主能级或受主能级。
精选ppt
15
通常情况下,施主能级多数是靠近导带 底的;而受主能级多数是靠近价带顶的。
施主能级或受主能级的电离能一般比较 小,因此,在室温下就可受到热激发产生导 电载流子,从而形成半导体。
精选ppt
16
形成附加能级主要通过两种途径:化 学计量比偏离和掺杂,使得晶粒具有优良 的导电性,而晶界具有高的势垒层,形成 绝缘体。
精选ppt
9
3. 热敏陶瓷
热敏陶瓷是一类电阻率、磁性、介电性 等性质随温度发生明显变化的材料,主要用 于制造温度传感器、线路温度补偿及稳频的 元件--热敏电阻(thermistor)。
热敏陶瓷具有灵敏度高、稳定性好、制 造工艺简单及价格便宜等特点。
精选ppt
10
⑴ 热敏陶瓷的特性分类
①电阻随温度升高而增大的热敏电阻 称为正温度系数热敏电阻,简称PTC热敏 电阻( positive temperature coefficient );
精选ppt
2
敏感陶瓷用于制造敏感元件,是根据某些 陶瓷的电阻率、电动势等物理量对热、湿、光、 电压及某种气体、某种离子的变化特别敏感的 特性而制得的。
按其相应的特性,可把这些材料分别称作 热敏、湿敏、光敏、压敏、气敏及离子敏感陶 瓷。
精选ppt
3
此外,还有具有压电效应的压力、位置、
速度、声波等敏感陶瓷,具有铁氧体性质的
18
采用掺杂使BaTiO3半导化的方法之一是 施主掺杂法,该法也称原子价控制法。
如果用离子半径与Ba2+相近的三价离子(
如La3+、Ce3+、Nd3+、Ga3+、Sm3+、Dy3+、
Y3+、Bi3+、Sb3+等)置换Ba2+,或者用离子半径
与Ti4+相近的五价离子(如Ta5+、Nb5+、Sb5+等)
置换Ti4+,采用普通陶瓷工艺,即能获得电阻
率为103--105cm的n精型选pBpt aTiO3半导体。
19
五价离子掺杂浓度对BaTiO3的电阻率影 响很大。
一般情况下,电阻率随掺杂浓度的增加 而降低,达到某一浓度时,电阻率降至最低 值,继续增加浓度,电阻率则迅速提高,甚 至变成绝缘体。
精选ppt
精选ppt
5
声敏陶瓷,如罗息盐、水晶、 BaTiO3、PZT等;
压敏陶瓷,如ZnO、SiC等;
力敏陶瓷,如PbTiO3、PZT等。
精选ppt
6
②化学敏感陶瓷
氧敏陶瓷,如SnO2、ZnO、ZrO2等; 湿敏陶瓷,TiO2—MgCr2O4、ZnOLi2O-V2O5等。 生物敏感陶瓷也在积极开发之中。
相关文档
最新文档