将椭圆的参数方程转换为普通方程

合集下载

参数方程和普通方程的互化

参数方程和普通方程的互化

参数方程和普通方程的互化曲线的参数方程和普通方程的互化(1)曲线的参数方程和普通方程是在同一平面直角坐标系中表示曲线的方程的两种不同形式,两种方程是等价的可以互相转化.(2)将曲线的参数方程化为普通方程,有利于识别曲线的类型.参数方程通过消去参数就可得到普通方程.(3)普通方程化为参数方程,首先确定变数x ,y 中的一个与参数t 的关系,例如x =f (t ),其次将x =f (t )代入普通方程解出y =g (t ),则⎩⎪⎨⎪⎧x =f (t )y =g (t )(t 为参数)就是曲线的参数方程.(4)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.1.参数方程⎩⎪⎨⎪⎧x =cos 2θy =sin 2θ,(θ为参数)表示的曲线是( ) A .直线 B .圆 C .线段D .射线解析:选C.x =cos 2θ∈[0,1],y =sin 2θ∈[0,1],所以x +y =1,(x ,y ∈[0,1])为线段.2.能化为普通方程x 2+y -1=0的参数方程为( )A.⎩⎪⎨⎪⎧x =sin t y =cos 2tB.⎩⎪⎨⎪⎧x =tan φy =1-tan 2φC.⎩⎨⎧x =1-t y =tD.⎩⎪⎨⎪⎧x =cos θy =sin 2θ 解析:选B.对A ,可化为x 2+y =1(y ∈[0,1]);对B ,可化为x 2+y -1=0;对C ,可化为x 2+y -1=0(x ≥0);对D ,可化为y 2=4x 2-4x 4.(x ∈[-1,1]).3.(1)参数方程⎩⎪⎨⎪⎧x =2t y =t (t 为参数)化为普通方程为____________.(2)参数方程⎩⎪⎨⎪⎧x =1+cos θy =1-sin θ,(θ为参数)化为普通方程为____________.解析:(1)把t =12x 代入y =t 得y =12x .(2)参数方程变形为⎩⎪⎨⎪⎧x -1=cos θ,y -1=-sin θ,两式平方相加,得(x -1)2+(y -1)2=1. 答案:(1)y =12x (2)(x -1)2+(y -1)2=14.(1)若x =cos θ,θ为参数,则曲线x 2+(y +1)2=1的参数方程为____________. (2)若y =2t (t 为参数),则抛物线y 2=4x 的参数方程为____________. 解析:(1)把x =cos θ代入曲线x 2+(y +1)2=1,得cos 2θ+(y +1)2=1, 于是(y +1)2=1-cos 2θ=sin 2θ, 即y =-1±sin θ, 由于参数θ的任意性, 可取y =-1+sin θ, 因此,曲线x2+(y +1)2=1的参数方程为⎩⎪⎨⎪⎧x =cos θy =-1+sin θ,(θ为参数).(2)把y =2t 代入y 2=4x , 解得x =t 2, 所以抛物线y2=4x 的参数方程为⎩⎪⎨⎪⎧x =t 2y =2t (t 为参数).答案:(1)⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ(θ为参数)(2)⎩⎪⎨⎪⎧x =t2y =2t (t 为参数)参数方程化普通方程将下列参数方程化为普通方程:(1)⎩⎨⎧x =t +1y =1-2t,(t 为参数); (2)⎩⎪⎨⎪⎧x =5cos θy =4sin θ-1,(θ为参数);(3)⎩⎪⎨⎪⎧x =1+32t y =2-12t,(t 为参数); (4)⎩⎪⎨⎪⎧x =2t 1+t 2y =1-t 21+t 2,(t 为参数).[解] (1)由x =t +1≥1,有t =x -1, 代入y =1-2t , 得y =-2x +3(x ≥1).(2)由⎩⎪⎨⎪⎧x =5cos θy =4sin θ-1得⎩⎪⎨⎪⎧cos θ=x5sin θ=y +14, ① ②①2+②2得x 225+(y +1)216=1.(3)由⎩⎪⎨⎪⎧x =1+32t y =2-12t 得⎩⎪⎨⎪⎧x -1=32t y -2=-12t , ① ②②÷①得y -2x -1=-33,所以y -2=-33(x -1)(x ≠1), 所以3x +3y -6-3=0,又当t =0时x =1,y =2也适合,故普通方程为3x +3y -6-3=0. (4)由⎩⎪⎨⎪⎧x =2t 1+t 2y =1-t 21+t 2,得⎩⎪⎨⎪⎧x 2=4t 2(1+t 2)2y 2=1+t 4-2t 2(1+t 2)2,① ② ①+②得x 2+y 2=1.(1)消参的三种方法①利用解方程的技巧求出参数的表示式,然后运用代入消元法或加减消元法消去参数; ②利用三角恒等式借助sin 2θ+cos 2θ=1等消去参数;③根据参数方程本身的结构特征,选用一些灵活的方法(例如借助⎝ ⎛⎭⎪⎫2t 1+t 22+⎝ ⎛⎭⎪⎫1-t 21+t 22=1,⎝ ⎛⎭⎪⎫t +1t 2-⎝ ⎛⎭⎪⎫t -1t 2=4等)从整体上消去参数. (2)化参数方程为普通方程应注意的问题将参数方程化为普通方程时,要注意防止变量x 和y 的取值范围的扩大或缩小,必须根据参数的取值范围,确定函数f (t )和g (t )的值域,即x 和y 的取值范围.1.参数方程⎩⎪⎨⎪⎧x =2+sin 2θy =-1+cos 2θ,(θ为参数)化为普通方程是( )A .2x -y +4=0B .2x +y -4=0C .2x -y +4=0,x ∈[2,3]D .2x +y -4=0,x ∈[2,3]解析:选D.由x =2+sin 2θ,则x ∈[2,3],sin 2θ=x -2,y =-1+1-2sin 2θ=-2sin 2θ=-2x +4,即2x +y -4=0,故化为普通方程为2x +y -4=0,x ∈[2,3].2.化参数方程⎩⎪⎨⎪⎧x =a 2⎝ ⎛⎭⎪⎫t +1t y =b 2⎝ ⎛⎭⎪⎫t -1t ,(a ,b 为大于0的常数,t 为参数)为普通方程.解:因为x =a 2⎝ ⎛⎭⎪⎫t +1t ,当t >0时,x ∈[a ,+∞),当t <0时,x ∈(-∞,-a ].由x =a 2⎝ ⎛⎭⎪⎫t +1t 两边平方可得x 2=a 24⎝⎛⎭⎪⎫t 2+2+1t 2,①由y =b 2⎝ ⎛⎭⎪⎫t -1t 两边平方可得y 2=b 24⎝⎛⎭⎪⎫t 2-2+1t 2,②①×1a 2-②×1b 2并化简,得x 2a 2-y 2b2=1(a ,b 为大于0的常数).所以普通方程为x 2a 2-y 2b2=1(a >0,b >0).普通方程化参数方程根据所给条件,把曲线的普通方程化为参数方程. (1)(x -1)23+(y -2)25=1,x =3cos θ+1.(θ为参数)(2)x 2-y +x -1=0,x =t +1.(t 为参数)[解] (1)将x =3cos θ+1代入(x -1)23+(y -2)25=1得y =2+5sin θ.所以⎩⎨⎧x =3cos θ+1,y =5sin θ+2.(θ为参数)这就是所求的参数方程.(2)将x =t +1代入x 2-y +x -1=0得:y =x 2+x -1=(t +1)2+t +1-1=t 2+3t +1,所以⎩⎪⎨⎪⎧x =t +1,y =t 2+3t +1.(t 为参数)这就是所求的参数方程.化普通方程为参数方程的方法及注意事项(1)选取参数后,要特别注意参数的取值范围,它将决定参数方程是否与普通方程等价. (2)参数的选取不同,得到的参数方程是不同的.根据所给条件,求方程4x 2+y 2=16的参数方程.(1)设y =4sin θ,θ为参数;(2)若令y =t (t 为参数),如何求曲线的参数方程?若令x =2t (t 为参数),如何求曲线的参数方程?解:(1)把y =4sin θ代入方程,得到4x 2+16sin 2 θ=16,于是4x 2=16-16sin 2θ=16cos 2θ,所以x =±2cos θ.所以4x 2+y 2=16的参数方程是⎩⎪⎨⎪⎧x =2cos θ,y =4sin θ或⎩⎪⎨⎪⎧x =-2cos θ,y =4sin θ(θ为参数).(2)将y =t 代入椭圆方程4x 2+y 2=16,得4x 2+t 2=16,则x 2=16-t24.所以x =±16-t 22.因此,椭圆4x 2+y 2=16的参数方程是⎩⎪⎨⎪⎧x =16-t 22y =t ,或⎩⎪⎨⎪⎧x =-16-t 22y =t,(t 为参数).同理将x =2t 代入椭圆4x 2+y 2=16,得椭圆的参数方程为⎩⎨⎧x =2t y =41-t 2,或⎩⎨⎧x =2t ,y =-41-t2(t 为参数).参数方程与普通方程互化的应用已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t y =3+sin t,(t 为参数),C 2:⎩⎪⎨⎪⎧x =8cos θy =3sin θ,(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线? (2)若C 1上的点P 对应的参数t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎪⎨⎪⎧x =3+2t ,y =-2+t(t 为参数)距离的最小值及此时Q 点的坐标.[解] (1)由C 1:⎩⎪⎨⎪⎧x =-4+cos ty =3+sin t ,(t 为参数),则⎩⎪⎨⎪⎧cos t =x +4,sin t =y -3,由sin 2t +cos 2t =1得(x +4)2+(y -3)2=1,即曲线C 1的普通方程.C 1表示的是圆心为(-4,3),半径为1的圆.由C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数),则⎩⎪⎨⎪⎧cos θ=x 8,sin θ=y3,由cos 2θ+sin 2θ=1得x 264+y 29=1,即曲线C 2的普通方程.C 2表示的是中心在坐标原点,焦点在x 轴上,长半轴长为8,短半轴长为3的椭圆.(2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ),故M ⎝ ⎛⎭⎪⎫-2+4cos θ,2+32sin θ, C 3为直线x -2y -7=0.则点M 到直线C 3的距离d =55|4cos θ-3sin θ-13|=55|5cos(θ+φ)-13|, 其中cos φ=45,sin φ=35,所以当cos(θ+φ)=1时,d 取得最小值855.此时cos θ=45,sin θ=-35,所以Q 点的坐标为⎝ ⎛⎭⎪⎫325,-95.(1)在利用参数方程与普通方程互化的过程中,若化参数方程为普通方程,则既要掌握几种常见的消参方法,又要注明未知数的取值范围;若化普通方程为参数方程,则既要根据选取参数的条件,把变量x ,y 表示为关于参数的函数,又要注明参数及其取值范围,做到规范答题.(2)在解题过程中,当一种方程形式不利于解题时就应设法转化为另一种形式,这是解决此类问题的基本思想在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解:(1)由ρ=23sin θ,得ρ2=23ρsin θ, 从而有x 2+y 2=23y ,所以x 2+(y -3)2=3. (2)设P ⎝ ⎛⎭⎪⎫3+12t ,32t ,又C (0,3),则|PC |=⎝ ⎛⎭⎪⎫3+12t 2+⎝ ⎛⎭⎪⎫32t -32=t 2+12, 故当t =0时,|PC |取得最小值, 此时,点P 的直角坐标为(3,0).1.参数方程和普通方程的互化参数方程化为普通方程,可通过代入消元法和三角恒等式消参法消去参数方程中的参数,通过曲线的普通方程来判断曲线的类型.由普通方程化为参数方程要选定恰当的参数,寻求曲线上任一点M 的坐标x ,y 和参数的关系,根据实际问题的要求,我们可以选择时间、角度、线段长度、直线的斜率、截距等作为参数.2.同一道题参数的选择往往不是唯一的,适当地选择参数,可以简化解题的过程,降低计算量,提高准确率.求轨迹方程与求轨迹有所不同,求轨迹方程只需求出方程即可,而求轨迹往往是先求出轨迹方程,然后根据轨迹方程指明轨迹是什么图形.3.参数方程与普通方程的等价性把参数方程化为普通方程后,很容易改变了变量的取值范围,从而使得两种方程所表示的曲线不一致,因此我们要注意参数方程与普通方程的等价性.1.曲线⎩⎪⎨⎪⎧x =|sin θ|,y =cos θ(θ为参数)的方程等价于( )A .x =1-y 2B .y =1-x 2C .y =±1-x 2D .x 2+y 2=1解析:选A.由x =|sin θ|得0≤x ≤1;由y =cos θ得-1≤y ≤1.故选A. 2.方程⎩⎪⎨⎪⎧x =t +1t y =2表示的曲线是( ) A .一条直线 B .两条射线 C .一条线段D .抛物线的一部分解析:选B.因为t >0时x ≥2,t <0时x ≤-2. 所以普通方程为y =2,x ∈(-∞,-2]∪[2,+∞), 它表示的图形是两条射线.3.若y =tx (t 为参数),则圆x 2+y 2-4y =0的参数方程为( )A.⎩⎪⎨⎪⎧x =4t1+t2y =4t 21+t2(t 为参数)B .⎩⎪⎨⎪⎧x =2t1+t2y =4t 21+t2(t 为参数)C.⎩⎪⎨⎪⎧x =4t 1+t 2y =8t 1+t2(t 为参数)D .⎩⎪⎨⎪⎧x =2t1+t 2y =4t 1+t2(t 为参数)解析:选A.因为y =tx ,代入x 2+y 2-4y =0, 得x 2+(tx )2-4tx =0. 当t =0时,x =0,且y =0,即⎩⎪⎨⎪⎧x =0,y =0.当t ≠0时,x =4t1+t2.而y =tx ,即y =4t21+t 2,得⎩⎪⎨⎪⎧x =4t 1+t 2y =4t21+t2(t 为参数).综上知,所求圆的参数方程为⎩⎪⎨⎪⎧x =4t 1+t2y =4t 21+t2(t 为参数).4.已知某条曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =at 2(其中t 是参数,a ∈R),点M (5,4)在该曲线上.(1)求常数a ;(2)求曲线C 的普通方程.解:(1)由题意,可知⎩⎪⎨⎪⎧1+2t =5,at 2=4,故⎩⎪⎨⎪⎧t =2,a =1,所以a =1.(2)由已知及(1)可得,曲线C 的方程为⎩⎪⎨⎪⎧x =1+2t ,y =t2,由第一个方程,得t =x -12,代入第二个方程,得y =⎝ ⎛⎭⎪⎫x -122,即(x -1)2=4y 为所求.[A 基础达标]1.与参数方程⎩⎨⎧x =ty =21-t,(t 为参数)等价的普通方程为( )A .x 2+y 24=1B .x 2+y 24=1(0≤x ≤1)C .x 2+y 24=1(0≤y ≤2)D .x 2+y 24=1(0≤x ≤1,0≤y ≤2)解析:选D.方程⎩⎨⎧x =t ,y =21-t ,变形为⎩⎪⎨⎪⎧x =t y 2=1-t ,两式平方相加,得x 2+y 24=1,由式子t ,21-t 有意义,得0≤t ≤1,所以0≤x ≤1,0≤y ≤2,故选D.2.曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A .在直线y =2x 上B .在直线y =-2x 上C .在直线y =x -1上D .在直线y =x +1上解析:选B.将⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)化为普通方程为(x +1)2+(y -2)2=1,其表示以(-1,2)为圆心,1为半径的圆,其对称中心即圆心,显然(-1,2)在直线y =-2x 上,故选B.3.已知直线l :⎩⎪⎨⎪⎧x =2+t ,y =-2-t (t 为参数)与圆C :⎩⎪⎨⎪⎧x =2cos θ+1,y =2sin θ(θ为参数),则直线l 的倾斜角及圆心C 的直角坐标分别是( )A.π4,(1,0) B .π4,(-1,0) C.3π4,(1,0) D .3π4,(-1,0) 解析:选C.直线消去参数得直线方程为y =-x ,所以斜率k =-1即倾斜角为3π4.圆的标准方程为(x -1)2+y 2=4,圆心坐标为(1,0).4.参数方程⎩⎪⎨⎪⎧x =1-t 21+t2,y =2t1+t2(t 为参数)化为普通方程为( )A .x 2+y 2=1B .x 2+y 2=1去掉(0,1)点 C .x 2+y 2=1去掉(1,0)点 D .x 2+y 2=1去掉(-1,0)点解:选D.x 2+y 2=⎝ ⎛⎭⎪⎫1-t 21+t 22+⎝ ⎛⎭⎪⎫2t 1+t 22=1,又因为x =-1时,1-t 2=-(1+t 2)不成立,故去掉点(-1,0).5.参数方程⎩⎪⎨⎪⎧x =⎪⎪⎪⎪⎪⎪cos θ2+sin θ2,y =12(1+sin θ).(0≤θ<2π)表示的是( )A .双曲线的一支,这支过点⎝ ⎛⎭⎪⎫1,12B .抛物线的一部分,这部分过点⎝ ⎛⎭⎪⎫1,12 C .双曲线的一支,这支过点⎝ ⎛⎭⎪⎫1,-12 D .抛物线的一部分,这部分过点⎝⎛⎭⎪⎫1,-12解析:选B.因为x =⎪⎪⎪⎪⎪⎪2sin ⎝ ⎛⎭⎪⎫θ2+π4,故x ∈[0,2],又y =12(1+sin θ),故y ∈[0,1].因为x 2=1+sin θ,所以sin θ=x 2-1, 代入y =12(1+sin θ)中得y =12x 2,即x 2=2y ,(0≤x ≤2,0≤y ≤1)表示抛物线的一部分, 又2×12=1,故过点⎝ ⎛⎭⎪⎫1,12. 6.圆的参数方程为⎩⎪⎨⎪⎧x =3sin θ+4cos θy =4sin θ-3cos θ,(θ为参数),则此圆的半径为________.解析:两式平方相加,得x 2+y 2=9sin 2θ+16cos 2θ+24sin θcos θ+16sin 2θ+9cos 2θ-24sin θcos θ=9+16=25.所以圆的半径r =5. 答案:57.过原点作倾斜角为θ的直线与圆⎩⎪⎨⎪⎧x =4+2cos α,y =2sin α相切,则θ=________.解析:直线为y =x tan θ,圆为(x -4)2+y 2=4,直线与圆相切时,易知tan θ=±33,所以θ=π6或5π6.答案:π6或5π68.在直角坐标系xOy 中,已知曲线C 1:⎩⎪⎨⎪⎧x =t +1,y =1-2t (t 为参数)与曲线C 2:⎩⎪⎨⎪⎧x =a sin θy =3cos θ(θ为参数,a >0)有一个公共点在x 轴上,则a =________.解析:曲线C 1的普通方程为2x +y =3,曲线C 2的普通方程为x 2a 2+y 29=1,直线2x +y =3与x 轴的交点坐标为⎝ ⎛⎭⎪⎫32,0,故曲线x 2a 2+y 29=1也经过这个点,代入解得a =32(舍去-32). 答案:329.在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 上两点M ,N 的极坐标分别为(2,0),⎝ ⎛⎭⎪⎫233,π2,圆C 的参数方程为⎩⎨⎧x =2+2cos θ,y =-3+2sin θ(θ为参数). (1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.解:(1)由题意知,M ,N 的平面直角坐标分别为(2,0),⎝ ⎛⎭⎪⎫0,233.又P 为线段MN 的中点,从而点P 的平面直角坐标为⎝ ⎛⎭⎪⎫1,33,故直线OP 的平面直角坐标方程为y =33x . (2)因为直线l 上两点M ,N 的平面直角坐标分别为(2,0),⎝ ⎛⎭⎪⎫0,233,所以直线l 的平面直角坐标方程为x +3y -2=0.又圆C 的圆心坐标为(2,-3),半径为r =2,圆心到直线l 的距离d =|2-3-2|2=32<r ,故直线l 与圆C 相交.10.已知曲线C 1的参数方程为⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π). 解:(1)将⎩⎪⎨⎪⎧x =4+5cos t ,y =5+5sin t消去参数t ,化为普通方程(x -4)2+(y -5)2=25,即C 1:x 2+y 2-8x -10y +16=0.将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入x 2+y 2-8x -10y +16=0得 ρ2-8ρcos θ-10ρsin θ+16=0.所以C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. (2)C 2的普通方程为x 2+y 2-2y =0.由⎩⎪⎨⎪⎧x 2+y 2-8x -10y +16=0,x 2+y 2-2y =0,解得⎩⎪⎨⎪⎧x =1y =1或⎩⎪⎨⎪⎧x =0,y =2. 所以C 1与C 2交点的极坐标分别为(2,π4),(2,π2).[B 能力提升]11.已知在平面直角坐标系xOy 中圆C 的参数方程为:⎩⎨⎧x =3+3cos θ,y =1+3sin θ(θ为参数),以Ox 为极轴建立极坐标系,直线的极坐标方程为:ρcos ⎝ ⎛⎭⎪⎫θ+π6=0,则圆C 截直线所得弦长为( )A. 2 B .2 2 C .3 2D .4 2解析:选D.圆C 的参数方程为⎩⎨⎧x =3+3cos θy =1+3sin θ,圆心为(3,1),半径为3,直线普通方程为32x -12y =0,即3x -y =0,圆心C (3,1)到直线3x -y =0的距离为d =|(3)2-1|3+1=1,所以圆C 截直线所得弦长|AB |=2r 2-d 2=232-12=4 2.12.在极坐标系中,圆C 1的方程为ρ=42cos ⎝⎛⎭⎪⎫θ-π4,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,圆C 2的参数方程⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(θ为参数),若圆C 1与C 2相切,则实数a =________.解析:圆C 1的直角坐标方程为x 2+y 2=4x +4y ,其标准方程为(x -2)2+(y -2)2=8,圆心为(2,2),半径长为22,圆C 2的圆心坐标为(-1,-1),半径长为|a |,由于圆C 1与圆C 2相切,则|C 1C 2|=22+|a |=32或|C 1C 2| =|a |-22=32⇒a =±2或a =±5 2.答案:±2或±5 213.化参数方程⎩⎪⎨⎪⎧x =t +1ty =t -1t (t 为参数)为普通方程,并求出该曲线上一点P ,使它到y =2x +1的距离为最小,并求此最小距离.解:化参数方程为普通方程为x 2-y 2=4.设P (t +1t ,t -1t ),则点P 到直线2x -y +1=0的距离d =|t +3t +1|5.(1)当t >0时,d ≥23+15.(2)当t <0时,因为-t -3t≥23,所以t +3t+1≤-23+1.所以|t +3t +1|≥23-1,所以d ≥23-15.因为23+15>23-15,所以d 的最小值为23-15,即215-55,此时点P 的坐标为(-433,-233).14.(选做题)已知曲线C 1:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),曲线C 2:⎩⎪⎨⎪⎧x =22t -2,y =22t (t为参数).(1)指出C 1,C 2各是什么曲线,并说明C 1与C 2的公共点的个数;(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线C 1′,C 2′,写出C 1′,C 2′的参数方程.C 1′与C 2′公共点的个数和C 1与C 2公共点的个数是否相同?说明你的理由.解:(1)C 1是圆,C 2是直线.C 1的普通方程为x 2+y 2=1,圆心C 1(0,0),半径r =1.C 2的普通方程为x -y +2=0.因为圆心C 1到直线x -y +2=0的距离为1,所以C 1与C 2只有一个公共点.(2)压缩后的参数方程分别为C 1′:⎩⎪⎨⎪⎧x =cos θ,y =12sin θ(θ为参数),C 2′:⎩⎪⎨⎪⎧x =22t -2,y =24t(t 为参数),化为普通方程为C 1′:x 2+4y 2=1,C 2′:y =12x +22,联立消元得2x 2+22x +1=0,其判别式Δ=(22)2-4×2×1=0,所以压缩后的直线C2′与椭圆C1′仍然只有一个公共点,和C1与C2公共点的个数相同.。

参数方程消参方法

参数方程消参方法

参数方程的消参方法1、参数方程化为普通方程的过程就是消参过程常见方法有三种: (1)代入法:利用解方程的技巧求出参数t ,然后代入消去参数。

(2)三角法:利用三角恒等式消去参数(3)整体消元法:根据参数方程本身的结构特征,从整体上消去。

化参数方程为普通方程为0),(=y x F :在消参过程中注意变量x 、y 取值范围的一致性,必须根据参数的取值范围,确定)(t f 和)(t g 值域得x 、y 的取值范围。

2、常见曲线的参数方程(1)过定点),(00y x P 倾斜角为α的直线的参数方程 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数) (2)圆222r y x =+参数方程⎩⎨⎧==θθsin cos r y r x (θ为参数)(3)圆22200()()x x y y r -+-=参数方程为:⎩⎨⎧+=+=θθsin cos 00r y y r x x (θ为参数)(4)椭圆12222=+by a x 参数方程⎩⎨⎧==θθsin cos b y a x (θ为参数) (5)抛物线Px y 22=参数方程⎩⎨⎧==Pt y Pt x 222(t 为参数)7.已知:直线l 过点)0,2(P ,斜率为34,直线l 和抛物线x y 22=相交于B A ,两点,设线段AB 的中点为M ,求(1)M P ,两点间的距离。

(2)M 点的坐标。

(3)线段AB 的长AB 。

解:由34tan =α得:53cos ,54sin ==αα,所以直线的参数方程为()为参数t t y t x ⎪⎩⎪⎨⎧=+=54532,代入x y 22=化简得:045625162=--t t ,425,8152121-==+t t t t(1)415221=+=t t PM (2)⎪⎩⎪⎨⎧=⨯==⨯+=341554417415532y x 所以⎪⎭⎫ ⎝⎛3,417M(3)()8655421221=-+=t t t t AB10 (1) 写出经过点)5,1(0M ,倾斜角是3/π的直线l 的参数方程;(2) 利用这个参数方程,求这条直线l 与直线032=--y x 的交点到点M 0的距离。

高考数学 参数方程化成普通方程

高考数学 参数方程化成普通方程

x=1+12t,
x=(11-+kk22)r,
(1) y=5+
23t;(2)y=12+krk2.
自主预习
讲练互动
课堂达标
教材链接

(1)由
x=1+12t

t=2x-2
代入
y=5+
3 2t
中得
y=5
+ 23(2x-2),即: 3x-y+5- 3=0 就是它的普通方程. (2)xy= =( 12+k11r- k+2 kk22)r,⇒yx22==( ((1141- +k+2kkrk222) )2)22,r22,得 x2+y2= (1-2(k2+1+k4k)2)r22+4k2r2=(1(+12+k2+k2)k4)2 r2=r2.
线的类型.
x=acos (1)y=bsin
θ, θ (θ
为参数,a,b
为常数,且
a>b>0);
(2)x=coas φ,(φ 为参数,a,b 为正常数); y=btan φ
x=2pt2, (3)y=2pt (t
为参数,p
为正常数).
自主预习
讲练互动
课堂达标
教材链接
解 (1)由 cos2θ+sin2θ=1 得ax22+by22=1 这是一个长轴长为 2a, 短轴长为 2b,中心在原点的椭圆. (2)由已知co1s φ=ax,tan φ=by,由于co1s φ2-tan2φ=1, ∴有ax22-by22=1 这是一条双曲线. (3)由已知 t=2yp代入 x=2pt2 中得4yp22·2p=x, 即 y2=2px,这是一条抛物线.
为参数).
解 (1)由 y2=(sin θ+cos θ)2=1+sin 2θ=1+2x 得
y2=2x+1,∵-12≤12sin 2θ≤12,

高中数学椭圆及其参数方程

高中数学椭圆及其参数方程

x 3
cos
如参y 何数 s削呢in去?
(
x 3
)2
2 ( y )
cos2
2
sin2
,
2
2
1

x 3
2
y 2
2
1
2
问题2:你能仿此推导出椭圆
x2 a2
y2 b2
1(a
b
0)
的参数方程吗?
x2
a2
y2 b2
1
x
2
y
2
1
a b

x
a
y
b
cos sin
x
y
3.椭圆参数与圆的参数方程中参数的几何意义不同。
12
探究:P28
椭圆规是用来画椭圆的一种器械,它的构造如图所示。在一个十字型的
金属板上有两条互相垂直的导槽,在直尺上有两个固定滑块A,B它们可以分 别在纵槽和横槽中滑动,在直尺上的点M处用套管装上铅笔,使直尺转动一 周就画出一个椭圆。
你能说明它的构造原理吗?
(为参数)
椭圆的参数方程中参数φ的几何意义:
是∠AOX=,不是∠MOX= .
圆的标准方程: x2+y2=r2
圆的参数方程:
x r cos y r sin
(为参数)
θ的几何意义是 ∠AOP=θ
y
B O

M
Nx
y P
θ
O
A x
5
另外, 称为离心角,规定参数 的取值范围是 [0, 2 )
两顶点A,C,又B,D为椭圆上两个动点,且分
别在直线AC的两侧,求四边形ABCD面积的
最大值
A yB
O

数学学案:参数方程化成普通方程

数学学案:参数方程化成普通方程

§3参数方程化成普通方程1.掌握将参数方程化成普通方程的两种常用的消去参数的方法:代数法和三角恒等式法.2.选取适当的参数,能将普通方程化为参数方程.一、代数法消去参数1.代入法从参数方程中选出一个方程,解出参数,然后把参数的表达式代入另一个方程,消去参数,得到曲线的______.我们通常把这种方法称为代入法.2.代数运算法通过代数方法,如乘、除、乘方等把参数方程中的方程适当地变形,然后把参数方程中的两个方程进行______,消去参数.【做一做1】将参数方程错误!(t为参数)化为普通方程为__________.二、利用三角恒等式消去参数如果参数方程中的x,y都表示为参数的三角函数,那么可以考虑用______消去参数.常用的三角恒等式有:sin2θ+c O s2θ=1,错误!-tan2θ=1,(sin θ+c O s θ)2-2sin θc O s θ=1等.将参数方程化为普通方程时,要注意两个方面:(1)根据参数满足的条件,明确x,y的取值范围;(2)消去参数后,普通方程和参数方程中的变量x和y的取值范围要保持一致.【做一做2-1】将参数方程错误!(θ为参数)化为普通方程为__________.【做一做2-2】将参数方程错误!化为普通方程为__________.1.曲线参数方程与普通方程互化的意义剖析:在数学中有时需要把曲线的参数方程转化为普通方程,而有时又需要将普通方程转化为参数方程,这都是基于对曲线的更好的研究.有时要直接建立曲线的普通方程很困难;有时要直接建立曲线的参数方程又不容易,故在数学中常常把问题进行相互转化从而把问题更好地解决.曲线的参数方程与相应的普通方程是同一曲线方程的两种不同表现形式,在具体问题中采用哪种方程形式能更好地研究相应的曲线的性质就可以灵活地选用相应曲线的对应方程形式.2.将参数方程化为普通方程时,消去参数的常用方法剖析:①代入法.先由一个方程求出参数的表达式(用直角坐标变量表示),再代入另一个方程.②利用代数或三角函数中的恒等式消去参数.例如对于参数方程错误!如果t是常数,θ是参数,那么可以利用公式sin2θ+c O s2θ=1消参;如果θ是常数,t是参数,那么适当变形后可以利用(m+n)2-(m-n)2=4mn消参.答案:一、1.普通方程2.代数运算【做一做1】2x-y-4=0(x≥0)将x=t代入y=2错误!-4得y =2x-4。

第2章 §3 参数方程化成普通方程

第2章 §3 参数方程化成普通方程

上一页
返回首页
下一页
普通方程化为参数方程时,①选取参数后,要特别注意参数的取值范围, 它将决定参数方程是否与普通方程等价.②参数的选取不同,得到的参数方程是 不同的.如本例(2),若令 x=tan θ(θ 为参数),则参数方程为xy= =ttaann2θθ,+tan θ-1 (θ 为参数).
即(y-1)2=-14x(y≥1).
方程表示的曲线是顶点为(0,1),对称轴平行于 x 轴,开口向左的抛物线的一
部分.
上一页
返回首页
下一页
(2)由已知可得
ax=11- +tt22,


by=1+2tt2, ②
①2+②2 得ax22+by22=1(a>b>0,x≠-a),这就是所求的普通方程,方程表 示的曲线是焦点在 x 轴上的椭圆(去掉左顶点).
上一页
返回首页
下一页
【解析】 (1)把 t=x 代入②得 y=2x 即普通方程为 y=2x. (2)由 sin2 θ+cos2 θ=1 得 x2+y2=1. (3)由②得 t=y-1,代入①得 x=2(y-1)2.
【答案】 (1)y=2x (2)x2+y2=1 (3)x=2(y-1)2
上一页
返回首页
(t 为参数)
x=tan t, D.y=1-tan2t
(t 为参数)
上一页
返回首页
下一页
【解析】 A 化为普通方程为 x2+y-1=0,x∈[-1,1],y∈[0,1]. B 化为普通方程为 x2+y-1=0,x∈[-1,1],y∈[0,1]. C 化为普通方程为 x2+y-1=0,x∈[0,+∞),y∈(-∞,1]. D 化为普通方程为 x2+y-1=0,x∈R,y∈(-t 为参数);

参数方程化为普通方程

参数方程化为普通方程

3x2 y2 4
二. 利用三角恒等式消去参数
例5.将 x
5 cos
为参数化为普通方程。
y 5 sin
解:利用sin2 cos2 1得到
x2 y2 25
若 0,2 ,则普通方程是什么?
思 若 0, ,则普通方程是什么?
考 若 0, ,则普通方程是什么?
2
例6
将 x
t为参数
y t2
x
2
3t 2
1 t2 (t为 参 数 )
t2
x
(3)
t
1
t t为参数
y 1 t 2
将参数方程化为
y
t
1 t
普通方程中,必 须使x,y的取值
范围保持一致。
解:(1)x 3y 1 0(x 1) 否则,转化就是
2x 3y 00 x 3或 1 y 0 不等价的.
复习回顾
2.直线,圆,椭圆,抛物线与双曲线的参数方程
x x t cos
直线的参数方程
0
t为参数
y
y 0
t sin
圆 的 参 数 方 程 x
a
r cos
为 参 数
y b r sin
x a cos
椭圆的参数方程
为参数
y b sin
抛物线的参数方程 x y
2 pt 2 2 pt
1
普通方程是x2 y2 1
C 是直线,普通方程是x y 2 0 2
C 与C 有且只有一个交点
1
2
已知参数方

x y
at bt
cos a, b, 均不为0,0
sin
2 ,
分别取1t为参数; 2 为参数; 3 为参数.

参数方程与普通方程互换

参数方程与普通方程互换

常见类型举例
线性方程
形如 $y = ax + b$ 的方程,表示一条直线 。
二次方程
形如 $y = ax^2 + bx + c$ 的方程,表示一条抛物 线。
圆的方程
形如 $(x - h)^2 + (y - k)^2 = r^2$ 的方 程,表示一个以 $(h, k)$ 为圆心、$r$ 为半 径的圆。
椭圆
对于椭圆 $frac{x^2}{a^2} + frac{y^2}{b^2} = 1$,可以引入 参数 $theta$,令 $x = acos theta$,$y = bsin theta$,得 到参数方程为 $left{ begin{matrix} x = acos theta y = bsin theta end{matrix} right.$。
曲线形状
不同的参数方程形式对应不同的曲 线形状,如直线、圆、椭圆等。
02 普通方程基本概念
定义及性质
定义
普通方程是描述平面上点集合的一种 方式,通常表示为 $y = f(x)$ 或 $F(x, y) = 0$ 的形式。
性质
普通方程反映了因变量和自变量之间 的直接关系,具有直观、易于理解的 优点。
性质
参数方程不直接表示变量间的显式关 系,而是通过参数间接表达。因此, 它具有更高的灵活性和表达能力。
常见类型举例
01
02
03
直线参数方程
形如 $x = x_0 + at, y = y_0 + bt$ 的方程,其中 $t$ 是参数,表示直线上 的点。
圆参数方程
形如 $x = rcostheta, y = rsintheta$ 的方程,其中 $theta$ 是参数,表示圆 上的点。

参数方程与普通方程互化

参数方程与普通方程互化

{x 3 1 t2 (t为参数)和{x 3 1 t2
y 2t
y 2t
练习3:曲线y=x2的一种参数方程是( )
.
A 、
x y

t2 t4
B 、
x y

sin sin
t
2
t
C、x t y t
D、
x y

t t
2
分析: 在y=x2中,x∈R, y≥0, 在A、B、C中,x,y的范围都
t表 示 抛 物 线 上 除 顶 点 外的 任 意 一 点 与 原 点 连 线的 斜 率 的 倒 数.
参数方程和普通方程 的互化典型例题分析
(1)参数方程通过代入消元或加减消元或三角消元消去参数 化为普通方程
一、代数法
1:代入法消去参数
例1、把下列参数方程化为普通方程;
(1) x

1-
1 t
(为参数)
####例6、求椭圆普通方程 x2 y2 1 94
的参数方程
(1)(令)设x 3cos,为参数。
(2)(令)设y 2t,t为参数
解:(1)把x 3cos代入椭圆方程,得到
9 cos2 y2 1,
94
所以y2 4(1 cos2 ) 4sin2 即y 2sin
x f (t)
{
.......... .......... .....( 2)
y g(t)
并且对于t的每一个允许值,由方程组(2) 所确定的点M(x,y)都在这条曲线上,那么方 程(2)就叫做这条曲线的参数方程,联系x,y 的变数t叫做参变数,简称参数.
普通方程:相对于参数方程而言,直接给出 点的坐标x,y间关系的方程叫做普通方程。

参数方程与普通方程的互化

参数方程与普通方程的互化

x y 例4 求椭圆 1 的参数方程。 9 4
2
2
(1)设x=3cos,为参数;
cos 2 sin 2 1 法二: x y 令 cos , sin 3 2 x 3cos 为参数 y 2sin
(2)设y=2t,t为参数.
(2)设y=2t,t为参数.
(
D
)
A、相交但不过圆心,B、相交且过圆心 C、相离,D、相切
6、设直线的参数方程为{
x 1 t y 2 2t
(t为参数)
4 x2 y 2 它与椭圆 1的交点为A和B,求线段 9 9 AB的长度。
解:将直线的参数方程 化为普通方程得 2 x y 4 0, 得到y 2 x 4.......... 1) ...( 椭圆化为4 x 2 y 2 9 0.......... .........( ) 2 将(1)代入(2)得8 x 16x 7 0 7 x1 x2 2, x1 x2 8 由弦长公式得

D )
a 1 x (t ) 2 t (2) (4) b 1 (t为参数,a、b为常数) y (t ) 2 t
3、将下列参数方程化为普通方程: x 2 3cosθ x sinθ (3) (2) (1) y 3sinθ y cos2θ
x 4t (2)把y 2t代入椭圆方程,得 1 9 4 于是x 9(1 t ), x 3 1 t
2 2 2 2 2 2 2
x y 所以,椭圆 1的参数方程是 9 4 { x 3 1 t y 2t
2
(t为参数)和{
x 3 1 t y 2t
2

参数方程与普通方程的相互转化

参数方程与普通方程的相互转化

x=cosθ 姨 y=-1+sinθ

化 为 普 通 方 程 得 : x2+ (y +1 )2=1 , 因 为 圆 与
直线有且只有一个交点 , 即是圆与直线相切 , 由数形 结合可知道, 圆心到直线的距离等于圆的半径, 即
姨 y=-1+sinθ
x=cosθ ,
(θ 为 参 数 ), 直 线 l 与 圆 C 有 且 只 有 一 个
t t t t t t t t t t t
点拨
≤ 2 姨21 . 3
此时 sinβ=- 2 ,cosβ=± 姨 5 ,其最大值为 PQ
3
3
max
=
1 + 2 姨21 . 2 3
2 2 例 5. 已 知 实 数 x , y 满 足 x + y =1 , 则 z=x -2y
a
16
4
t 3 x =t + 1 , x= 3 (t+ 1 ), t t t2 2 t t t 解析: 由 得t 两式平方 t 3 1 1 t3 y= (t- ) , t y=t . t 4 t t t4
的最小值为 -2 姨 2 , 最 大 值 为 2 姨 2 . 从 而 z=x-2y 的 取值范围是 [-2 姨 2 , 2 姨 2 ]. 例 6. 圆的半径为 1 , 圆心的极坐标为 (1, 0), 则 圆的极坐标方程是
2

策略 : 先利用 x=ρcosθ , y=ρsinθ 将极坐标方程 ρ-
cosθ + 姨 3 sinθ =0 化 为 直 角 坐 标 方 程 , 再 由 相 应 几 何
t t t t t t t t t t t
的取值范围是
. 16 4

§3 参数方程化成普通方程

§3 参数方程化成普通方程

§3 参数方程化成普通方程1.曲线⎩⎪⎨⎪⎧ x =2cos θ-1y =2sin θ+2(θ为参数)的一条对称轴的方程为( ) A .y =0 B .x +y =0C .x -y =0D .2x +y =0解析:选D.曲线⎩⎪⎨⎪⎧ x =2cos θ-1y =2sin θ+2(θ为参数)的普通方程为(x +1)2+(y -2)2=4,圆心C (-1,2),过圆心的直线都是圆的对称轴,故选D.2.与普通方程x 2+y -1=0等价的参数方程为(t 为参数)( )A.⎩⎪⎨⎪⎧ x =sin t y =cos 2tB.⎩⎪⎨⎪⎧x =cos t y =sin 2t C.⎩⎨⎧ x =1-t y =t D.⎩⎪⎨⎪⎧x =tan t y =1-tan 2t 解析:选D.A 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1].B 化为普通方程为x 2+y -1=0,x ∈[-1,1],y ∈[0,1].C 化为普通方程为x 2+y -1=0,x ∈[0,+∞),y ∈(-∞,1].D 化为普通方程为x 2+y -1=0,x ∈R ,y ∈(-∞,1].3.若曲线⎩⎪⎨⎪⎧ x =1+cos2θ,y =sin 2θ(θ为参数),则点(x ,y )的轨迹是( ) A .直线x +2y -2=0B .以(2,0)为端点的射线C .圆(x -1)2+y 2=1D .以(2,0)和(0,1)为端点的线段解析:选D.x =1+cos2θ=1+(1-2sin 2θ)=2-2y ,∴x +2y -2=0.又∵x =1+cos2θ∈[0,2],y =sin 2θ∈[0,1].∴点(x ,y )的轨迹是以(2,0)和(0,1)为端点的线段.4.参数方程⎩⎪⎨⎪⎧ x =sin α2+cos α2y =2+sin α(α为参数)的普通方程为( ) A .y 2-x 2=1 B .x 2-y 2=1C .y 2-x 2=1(|x |≤2)D .x 2-y 2=1(|x |≤2)解析:选C.x 2=⎝⎛⎭⎫sin α2+cos α22=1+sin α, y 2=2+sin α,∴y 2-x 2=1.又x =sin α2+cos α2=2sin ⎝⎛⎭⎫α2+π4∈[-2,2],即|x |≤ 2.故应选C. 5.椭圆⎩⎪⎨⎪⎧x =5cos φy =3sin φ(φ为参数)的焦点坐标为( ) A .(-2,0),(2,0)B .(0,-2),(0,2)C .(0,-4),(0,4)D .(-4,0),(4,0)解析:选D.利用平方关系化为普通方程x 225+y 29=1,c 2=16,c =4,焦点在x 轴上,∴焦点为(-4,0),(4,0),故选D.6.(2013·咸阳质检)已知过曲线⎩⎪⎨⎪⎧ x =3cos θ,y =4sin θ(θ为参数,0≤θ≤π)上一点P ,原点为O ,直线PO 的倾斜角为π4,则点P 坐标是( ) A .(3,4) B.⎝⎛⎭⎫322,22 C .(-3,-4) D.⎝⎛⎭⎫125,125解析:选D.设|OP |=t ,则P 点坐标⎝⎛⎭⎫22t ,22t ,代入方程x 29+y 216=1,解得t =1225, 所以P 点坐标⎝⎛⎭⎫125,125.7.已知直线l :3x +4y -12=0与圆C :⎩⎪⎨⎪⎧ x =-1+2cos θ,y =2+2sin θ. (θ为参数),则它们的公共点个数为________.解析:圆的方程可化为(x +1)2+(y -2)2=4,其圆心为C (-1,2),半径为2.由于圆心到直线l 的距离d =|3×(-1)+4×2-12|32+42=75<2, 故直线l 与圆C 的公共点个数为2.答案:28.(2013陕西卷)9.(2013重庆卷)10.已知方程y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0,(0≤θ<2π).(1)试证:不论θ如何变化,方程都表示顶点在同一椭圆上的抛物线;(2)θ为何值时,该抛物线在直线x =14上截得的弦最长,并求出此弦长.解:(1)证明:将方程y 2-6y sin θ-2x -9cos 2θ+8cos θ+9=0,可配方为(y -3sin θ)2=2(x -4cos θ),∴图象为抛物线,设其顶点为(x ,y ),则有⎩⎪⎨⎪⎧ x =4cos θy =3sin θ, 消去θ得顶点轨迹就是椭圆x 216+y 29=1. (2)联立⎩⎪⎨⎪⎧x =14y 2-16y sin θ-2x -9cos 2θ+8cos θ+9=0 消去x ,得y 2-6y sin θ+9sin 2θ+8cos θ-28=0.弦长|AB |=|y 1-y 2|=47-2cos θ.当cos θ=-1,即θ=π时,弦长最大为12.11.(2013福建卷) 12.在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).①已知在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎫4,π2,判断点P 与直线l 的位置关系; ②设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.解:①把极坐标系下的点P ⎝⎛⎭⎫4,π2化为直角坐标,得点(0,4).因为点P 的直角坐标(0,4)满足直线l 的方程x -y +4=0,所以点P 在直线l 上.②因为点Q 在曲线C 上,故可设点Q 的坐标为(3cos α,sin α),从而点Q 到直线l 的距离为d =|3cos α-sin α+4|2=2cos ⎝⎛⎭⎫α+π6+42=2cos ⎝⎛⎭⎫α+π6+22, 由此得,当cos ⎝⎛⎭⎫α+π6=-1时,d 取得最小值,且最小值为 2.。

§3 参数方程化成普通方程

§3 参数方程化成普通方程

§3 参数方程化成普通方程1.代数法消去参数(1)这种方法是从参数方程中选出一个方程,解出参数,然后把参数的表达式代入另一个方程,消去参数,得到曲线的普通方程.我们通常把这种方法称为代入法.(2)通过代数方法,如乘、除、乘方等把参数方程中的方程适当地变形,然后把参数方程中的两个方程进行代数运算.消去参数. 2.利用三角恒等式消去参数如果参数方程中的x ,y 都表示为参数的三角函数,那么可以考虑用三角函数公式中的恒等式消去参数,这是参数方程转化为普通方程的基本方法之一. 【思维导图】【知能要点】1.代数法消去参数把参数方程化为普通方程.2.利用三角恒等式消去参数把参数方程化为普通方程.题型一 代数法消去参数这种方法的基本方法是由参数方程中的一个方程,解出参数,然后代入另一个参数方程中得普通方程,这种方法思路简单,可能运算量大.其次就是把参数方程适当地变形,然后把两参数方程进行代数运算消去参数,这种方法运算量小,但往往需要提前进行适当的变形. 【例1】 把参数方程化为普通方程. (1)⎩⎪⎨⎪⎧x =1+12t ,y =5+32t ;(2)⎩⎪⎨⎪⎧x =(1-k 2)r 1+k 2,y =2kr1+k 2.解 (1)由x =1+12t 得t =2x -2代入y =5+32t 中得y =5+32(2x -2), 即:3x -y +5-3=0就是它的普通方程. (2)⎩⎪⎨⎪⎧x =(1-k 2)r 1+k 2,y =2kr1+k 2⇒⎩⎪⎨⎪⎧x 2=(1-k 2)2r 2(1+k 2)2,y 2=4k 2r2(1+k 2)2,得x 2+y 2=(1-2k 2+k 4)r 2+4k 2r 2(1+k 2)2=(1+2k 2+k 4)r 2(1+k 2)2=r 2.∴x 2+y 2=r 2就是它的普通方程.【反思感悟】 用代数法消去参数有时用一个参数方程解析出参数太复杂,如第(2)小题,这时为了减少运算量,就要对参数方程的两个式子进行适当变形.即两边取平方.然后相加消去参数.1.将下列参数方程化成普通方程.(1)⎩⎪⎨⎪⎧x =t +1t -1,y =2t t 3-1;(2)⎩⎨⎧x =2t 2-t -3,y =t 2-t -1;(3)⎩⎪⎨⎪⎧x =p t2+pt 2,y =p t -pt . 解 (1)由x =t +1t -1,得t =x +1x -1.代入y =2t t 3-1化简得y =(x +1)(x -1)23x 2+1(x ≠1).(2)由x -2y =t -1得t =x -2y +1,代入y =t 2-t -1化简得x 2-4xy +4y 2+x -3y -1=0.(3)将y =p t -pt 的两边平方得y 2=p 2t 2+p 2t 2-2p 2=p ⎝ ⎛⎭⎪⎫p t 2+pt 2-2p 2,以x =p t 2+pt 2代入上式, 得y 2=p (x -2p ).题型二 利用三角恒等式消去参数利用这种方法消去参数必须是x ,y 都表示成参数的三角函数,然后利用三角函数的恒等变形式消去参数,这种方法大部分都要对两个参数方程先进行适当的变形,然后进行代数运算消去参数,化为普通方程.【例2】 将下列曲线的参数方程化为普通方程,并指明曲线的类型. (1)⎩⎨⎧x =a cos θ,y =b sin θ(θ为参数,a ,b 为常数,且a >b >0); (2)⎩⎪⎨⎪⎧x =a cos φ,y =b tan φ(φ为参数,a ,b 为正常数); (3)⎩⎨⎧x =2pt 2,y =2pt(t 为参数,p 为正常数). 解 (1)由cos 2θ+sin 2θ=1得x 2a 2+y 2b 2=1这是一个长轴长为2a ,短轴长为2b ,中心在原点的椭圆.(2)由已知1cos φ=x a ,tan φ=y b ,由于⎝ ⎛⎭⎪⎫1cos φ2-tan 2φ=1,∴有x 2a 2-y 2b 2=1这是一条双曲线.(3)由已知t =y 2p 代入x =2pt 2中得y 24p 2·2p =x , 即y 2=2px ,这是一条抛物线.【反思感悟】 用三角恒等式法把参数方程转化为普通方程时,要特别注意保证等价性.2.化下列参数方程为普通方程,并作出曲线的草图. (1)⎩⎪⎨⎪⎧x =12sin 2θ,y =sin θ+cos θ(θ为参数); (2)⎩⎪⎨⎪⎧x =1t ,y =1t t 2-1(t 为参数).解 (1)由y 2=(sin θ+cos θ)2=1+sin 2θ=1+2x 得y 2=2x +1, ∵-12≤12sin 2θ≤12, ∴-12≤x ≤12.∵-2≤sin θ+cos θ≤2, ∴-2≤y ≤ 2.故所求普通方程为y 2=2⎝ ⎛⎭⎪⎫x +12⎝ ⎛⎭⎪⎫-12≤x ≤12,-2≤y ≤2,图形为抛物线的一部分.(2)由x 2+y 2=⎝ ⎛⎭⎪⎫1t 2+⎝ ⎛⎭⎪⎫1t t 2-12=1及x =1t ≠0,xy =t 2-1t 2≥0知,所求轨迹为两部分圆弧x 2+y 2=1(0<x ≤1,0≤y <1或-1≤x <0,-1<y ≤0).1.若曲线⎩⎨⎧x =1+cos 2θ,y =sin 2θ(θ为参数),则点(x ,y )的轨迹是( ) A.直线x +2y -2=0 B.以(2,0)为端点的射线 C.圆(x -1)2+y 2=1D.以(2,0)和(0,1)为端点的线段解析 x =1+cos 2θ=1+1-2sin 2θ=2-2y ,故普通方程为x +2y -2=0,但⎩⎨⎧0≤sin 2θ≤1,0≤1+cos θ≤2,即0≤y ≤1,0≤x ≤2,故为一条线段. 答案 D2.参数方程⎩⎨⎧x =cos 2θ,y =sin 2θ(θ为参数)表示的曲线是( )A.直线B.圆C.线段D.射线解析 ∵x =cos 2θ,y =sin 2θ,∴x ∈[0,1],y ∈[0,1],y =1-cos 2θ=1-x , ∴x +y =1,是一条线段,故选C.答案 C3.将参数方程⎩⎪⎨⎪⎧x =t +1t ,y =t 2+1t 2(t 为参数)化为普通方程为________.解析 y =t 2+1t 2=t 2+2·t ·1t +1t 2-2=⎝ ⎛⎭⎪⎫t +1t 2-2=x 2-2(x ≠0). 答案 y =x 2-2(x ≠0)4.在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =t +3,y =3-t (参数t ∈R ),圆C的参数方程为⎩⎨⎧x =2cos θ,y =2sin θ+2(参数θ∈[0,2π]),则圆C 的圆心坐标为________,圆心到直线l 的距离为________.解析 消参数得圆方程为x 2+(y -2)2=4,得圆心坐标为(0,2).消参数后直线方程为x +y =6,那么圆心到直线的距离为|0+2-6|2=2 2.答案 (0,2) 22[P 42练习]已知参数方程⎩⎨⎧x =at +λcos θ,y =bt +λsin θ(a ,b ,λ均不为0,0≤θ≤2π)分别取:(1)t 为参数,(2)λ为参数,(3)θ为参数. 则下列结论中成立的是( ) A.(1),(2),(3)均是直线 B.只有(2)是直线C.(1),(2)是直线,(3)是圆D.(2)是直线,(1),(3)是圆锥曲线 解析 (1)t 为参数,t =x -λcos θa 代入y =bt +λsin θ中得,y =b x -λcos θa+λsin θ. 整理得:bx -ay -λb cos θ+λa sin θ=0,其中a 、b 、λ、θ为常数,故为直线. (2)λ为参数⎩⎨⎧x =at +λcos θ,y =bt +λsin θ⇒⎩⎨⎧x -at =λcos θ,y -bt =λsin θ.消去参数λ,y -btx -at =tan θ,整理得,y =tan θ·x -at tan θ+bt 为直线.(3)θ为参数⎩⎨⎧x =at +λcos θ,y =bt +λsin θ,用三角恒等式消去参数θ.得(x -at )2+(y -bt )2=λ2为以(at ,bt )为圆心,λ为半径的圆. 由以上解答,应选C. 答案 C【规律方法总结】由参数方程化为普通方程时,有两种基本方法.代数法和三角恒等法.这两种方法中都有可能先对参数方程进行变形然后经过代数运算进行消去参数,但在变形中特别注意取等价性,有时要进行必要的讨论,有时要利用三角函数写出x ,y 的取值范围.一、选择题1.参数方程⎩⎨⎧x =r cos α,y =r sin α(r 为参数)表示的曲线为( )A.直线B.圆C.椭圆D.双曲线解析 消去参数yx =tan α,即y =tan α·x 为直线. 答案 A2.直线y =ax +b 通过第一、二、四象限,则圆⎩⎨⎧x =a +r cos θ,y =b +r sin θ(θ为参数)的圆心位于 ( ) A.第一象限 B.第二象限 C.第三象限D.第四象限解析 由题意知,a <0,b >0,又由于圆心坐标为(a ,b ),故在第二象限.选B. 答案 B3.曲线的参数方程是⎩⎪⎨⎪⎧x =1-1t ,y =1-t 2(t 是参数,t ≠0),它的普通方程是( )A.(x -1)2(y -1)=1B.y =x (x -2)(1-x )2C.y =1(1-x )2-1D.y =x 1-x 2解析 ∵x =1-1t ,∴1t =1-x ,t =11-x ,代入y =1-t 2得,y =1-1(1-x )2=(1-x )2-1(1-x )2=x (x -2)(1-x )2.答案 B4.由方程x 2+y 2-4tx -2ty +5t 2-4=0(t 为参数)所表示的一组圆的圆心轨迹是( ) A.一个定点 B.一个椭圆 C.一条抛物线D.一条直线解析 将方程x 2+y 2-4tx -2ty +5t 2-4=0化为标准方程为(x -2t )2+(y -t )2=4,圆心坐标为(2t ,t ),故圆心轨迹为⎩⎨⎧x =2t ,y =t 消去参数t 为x =2y ,为直线,故选D. 答案 D 二、填空题5.将参数方程⎩⎨⎧x =1+2cos θ,y =2sin θ(θ为参数)化为普通方程是________.解析 参数方程⎩⎨⎧x =1+2cos θ,y =2sin θ⇒⎩⎨⎧x -1=2cos θ,y =2sin θ.平方相加,得(x -1)2+y 2=4.答案 (x -1)2+y 2=46.若x 2+y 2=4,则x -y 的最大值是________.解析 x 2+y 2=4的参数方程为⎩⎨⎧x =2cos θ,y =2sin θ(θ为参数),x -y =2cos θ-2sin θ=22cos ⎝ ⎛⎭⎪⎫θ+π4,∴最大值为2 2. 答案 2 27.设直线l 1的参数方程为⎩⎨⎧x =1+t ,y =1+3t (t 为参数),直线l 2的方程为y =3x +4,则l 1与l 2间的距离为________.解析 l 1的参数方程⎩⎨⎧x =1+t ,y =1+3t 化为普通方程为y =3x -2,则l 1与l 2平行再利用两平行线间的距离公式可求得d =3105. 答案31058.若点(x ,y )在圆⎩⎨⎧x =3+2cos θ,y =-4+2sin θ(θ为参数)上,则x 2+y 2+3x 的最小值是________.解析 ∵x 2+y 2+3x =(3+2cos θ)2+(2sin θ-4)2+3(3+2cos θ) =9+12cos θ+4cos 2θ+4sin 2θ-16sin θ+16+9+6cos θ =38+18cos θ-16sin θ=38+2145cos(θ+φ). 其中cos φ=182145.∴最小值为38-2145. 答案 38-2145 三、解答题9.在平面直角坐标系xOy 中,设P (x ,y )是椭圆x 23+y 2=1上的一个动点,求s =x +y 的最大值.解 因椭圆x 23+y 2=1的参数方程为⎩⎨⎧x =3cos φ,y =sin φ(φ为参数),故可设动点P 的坐标为(3cos φ,sin φ), 其中0≤φ<2π,因此,s =x +y =3cos φ+sin φ=2·⎝ ⎛⎭⎪⎫32cos φ+12sin φ=2sin ⎝ ⎛⎭⎪⎫φ+π3,所以,当φ=π6时,s 取最大值2.10.求方程4x 2+y 2=16的参数方程: (1)设y =4sin θ,θ为参数;(2)以过点A (0,4)的直线的斜率k 为参数.解 (1)把y =4sin θ代入方程,得到4x 2+16sin 2θ=16,于是4x 2=16-16sin 2θ=16cos 2θ,∴x =±2cos θ.由于参数θ的任意性,可取x =2cos θ,因此4x 2+y 2=16的参数方程是⎩⎨⎧x =2cos θ,y =4sin θ(θ为参数).(2)设M (x ,y )是方程4x 2+y 2=16上异于A 点的任一点.则y -4x =k (x ≠0),将y =kx +4代入方程,得x [(4+k 2)x +8k ]=0. ∴⎩⎪⎨⎪⎧x =-8k4+k 2,y =-4k 2+164+k 2(k ≠0),另有一点⎩⎨⎧x =0,y =4.∴所求的参数方程为⎩⎪⎨⎪⎧x =-8k4+k 2,y =-4k 2+164+k 2(k ≠0)和⎩⎨⎧x =0,y =4.习题2-3 第42页A 组1.解 (1)2x -y -7=0,直线. (2)x 216+y 29=1,椭圆. (3)x 2a 2-y 2b 2=1,双曲线.(4)原参数方程变形为⎩⎪⎨⎪⎧x =1-1t +2,y =2-4t +2,所以y -2x -1=4.所以4x -y -2=0,直线. (5)⎝ ⎛⎭⎪⎫y -122=x +54,抛物线. 2.圆的普通方程为x 2+y 2=25,半径为5.3.椭圆的普通方程为(x -4)24+(y -1)225=1,焦距为221.4.椭圆的普通方程为(x -1)216+y 29=1,c =7,左焦点(1-7,0).5.双曲线的普通方程为(x -2)24-(y -1)24=1,中心坐标(2,1).6.双曲线的普通方程为(y +2)29-(x -1)23=1,所以a =3,b =3,渐近线的斜率为±3,两条渐近线的夹角为60°.7.抛物线的普通方程为x 2=2(y -1),准线方程为y =12.8.解 根据一元二次方程根与系数的关系得sin α+cos α=-a 2,sin α·cos α=b2,点(a ,b )的轨迹的普通方程是a 2=4(b +1).B 组1.设动点A (x ,y ),则⎩⎨⎧x =sin θ+cos θ,y =sin θ-cos θ,即x 2+y 2=2.2.解 设动点M (x ,y ),则⎩⎪⎨⎪⎧x =3cos φ-4sin φ-1,y =125cos φ+95sin φ+2. 所以⎩⎪⎨⎪⎧x +1=3cos φ-4sin φ,53(y -2)=4cos φ+3sin φ.两式平方相加,得(x +1)2+25(y -2)29=25.即(x +1)225+(y -2)29=1.3.解 曲线的方程可以变形为(x -3cos θ)2=4(y -2sin θ), 顶点为(3cos θ,2sin θ),焦点(3cos θ,2sin θ-1). 所以焦点的轨迹方程为x 29-(y -1)24=1.4.(1)普通方程为y =3x -2g v 20x 2,射程为3v 202g ,(2)证明略.。

与椭圆有关的定值、定点问题

与椭圆有关的定值、定点问题

与椭圆有关的定值问题例题
故答案为
$frac{sqrt{3}}{2}$.
解析
由椭圆的定义可知,任意一点$P$到它的两个焦点$F_1, F_2$的距离之和为$2a$,即$|PF_1| + |PF_2| = 4$。
与椭圆有关的定点问题例题
例题3:已知椭圆C:$frac{x^2}{a^2} + frac{y^2}{b^2} = 1(a > b > 0)$的右焦点为$F$,过点$F$作直线与椭圆 C交于$A, B$两点,过点$A, B$分别作$x$轴的平行线分 别与椭圆C交于点D、E。若$Delta AFB$的面积为 $sqrt{3}$,且$angle AFB = 60^{circ}$,则$Delta ADE$的面积为____.
涉及切线与离心率
切线性质
过椭圆上任一点作椭圆的切线,切线 与长轴和短轴的交点到切点的线段长 度相等。
离心率性质
椭圆的离心率$e$定义为$c/a$,其中 $c$是焦点到中心的距离,$a$是长轴 的长度。离心率具有性质$0 < e < 1$。
其他定点问题
涉及焦点弦的问题
过椭圆的一个焦点作直线与椭圆相交,则交点满足一定的性质,如焦半径性质、 焦弦性质等。
03 与椭圆有关的定点问题
涉及焦点与顶点
01
02
03
焦点性质
椭圆上任一点到两焦点的 距离之和等于长轴的长度, 即$2a$。
顶点性质
椭圆的顶点是长轴和短轴 的交点,即$A(a,0)$和 $B(-a,0)$。
焦点与顶点关系
椭圆的焦点位于长轴上, 且与顶点距离为$c$,其 中$c^2 = a^2 - b^2$。
• 例题1:已知椭圆C:$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 上存在点P,满足$\vec{OP} = \frac{1}{2}(\vec{OA} + \vec{OB})$,其中A、B 为椭圆C上的点,直线AB的斜率为$\frac{1}{2}$,则椭圆C的离心率为( )

参数方程化普通方程

参数方程化普通方程

参数方程化普通方程[重点难点]掌握参数方程化普通方程的方法,理解参数方程和消去参数后所得的普通方程的等价性;应明确新旧知识之间的联系,提高综合运用所学知识解决数学问题能力。

[例题分析]1.把参数方程化为普通方程(1)(θ∈R,θ为参数)解:∵y=2+1-2sin2θ, 把sinθ=x代入,∴y=3-2x2,又∵|sinθ|≤1, |cos2θ|≤1, ∴|x|≤1, 1≤y≤3,∴所求方程为y=-2x2+3 (-1≤x≤1, 1≤y≤3)(2)(θ∈R,θ为参数)解:∵x2=(sinθ+cosθ)2=1+2sinθcosθ,把y=sinθcosθ代入,∴x2=1+2y。

又∵x=sinθ+cosθ=sin(θ+)y=sinθcosθ=sin2θ∴|x|≤,|y|≤。

∴所求方程为x2=1+2y (|x|≤, |y|≤)小结:上述两个例子可以发现,都是利用三角恒等式进行消参。

消参过程中都应注意等价性,即应考虑变量的取值范围,一般来说应分别给出x, y的范围。

在这过程中实际上是求函数值域的过程,因而可以综合运用求值域的各种方法。

(3)(t≠1, t为参数)法一:注意到两式中分子分母的结构特点,因而可以采取加减消参的办法。

x+y==1,又x=-1≠-1,y=≠2,∴所求方程为x+y=1 (x≠-1, y≠2)。

法二:其实只要把t用x或y表示,再代入另一表达式即可。

由x=, ∴x+xt=1-t,∴(x+1)t=1-x,即t=代入y==1-x,∴x+y=1,(其余略)这种方法称为代入消参,这是非常重要的消参方法,其它不少方法都可以看到代入消参的思想。

(4)(t为参数)分析:此题是上题的变式,仅仅是把t换成t2而已,因而消参方法依旧,但带来的变化是范围的改变,可用两种求值域的方法:法一:x=-1, ∵t2≥0, t2+1≥1,∴0<≤1, ∴-1<-1≤1, ∴-1<x≤1。

法二:解得t2=≥0, ∴-1<x≤1,同理可得出y的范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

将椭圆的参数方程转换为普通方程
椭圆是一种常见的二维几何图形,它具有独特的形状和特征。

椭圆的参数方程是一种描述椭圆的方程形式,它能够直观地表示出椭圆的形状和位置。

然而,有时我们需要将椭圆的参数方程转换为普通方程,以便更方便地进行计算和分析。

本文将介绍如何将椭圆的参数方程转换为普通方程。

让我们回顾一下椭圆的参数方程。

一个椭圆可以由以下两个参数方程表示:
x = a * cos(t)
y = b * sin(t)
其中,a和b分别表示椭圆的长半轴和短半轴的长度,t表示参数,取值范围为0到2π。

为了将椭圆的参数方程转换为普通方程,我们需要利用三角函数的性质以及坐标系中的关系。

首先,我们将参数方程中的cos(t)和sin(t)分别表示为x轴和y轴上的坐标值,即:
cos(t) = x / a
sin(t) = y / b
将上述两个等式代入椭圆的参数方程中,得到:
x = a * (x / a)
y = b * (y / b)
简化上述等式,得到:
x^2 / a^2 + y^2 / b^2 = 1
这就是椭圆的普通方程,也被称为椭圆的标准方程。

在普通方程中,x和y分别表示椭圆上的点的坐标,a和b表示椭圆的长半轴和短半轴的长度。

椭圆的普通方程可以帮助我们更方便地计算和分析椭圆的性质。

例如,可以通过普通方程确定椭圆的中心点、长半轴和短半轴的长度,进而计算出椭圆的周长和面积。

除了将椭圆的参数方程转换为普通方程,我们还可以将普通方程转换为参数方程。

这样做可以更方便地描述椭圆的轨迹和位置。

具体的转换方法可以通过将普通方程中的x和y表示为参数t的函数来实现。

总结起来,本文介绍了将椭圆的参数方程转换为普通方程的方法。

通过将参数方程中的cos(t)和sin(t)表示为x轴和y轴上的坐标值,我们可以得到椭圆的普通方程。

椭圆的普通方程可以帮助我们更方便地计算和分析椭圆的性质。

同时,我们还可以通过将普通方程转换为参数方程来描述椭圆的轨迹和位置。

希望本文的内容能够对读者理解椭圆的参数方程转换为普通方程有所帮助,以及在相关的计算和分析中能够应用到这些知识。

椭圆是数学中重要的几何图形之一,它在实际生活和科学研究中都有广泛的应用,因此对椭圆的理解和掌握是很有价值的。

相关文档
最新文档