苏教版七年级代数式与方程经典例题复习
苏科版七年级上册数学 代数式(基础篇)(Word版 含解析)
一、初一数学代数式解答题压轴题精选(难)1.先阅读下面文字,然后按要求解题.例:1+2+3+…+100=?如果一个一个顺次相加显然太繁,我们仔细分析这100个连续自然数的规律和特点,可以发现运用加法的运算律,是可以大大简化计算,提高计算速度的.因为1+100=2+99=3+98=…=50+51=101,所以将所给算式中各加数经过交换、结合以后,可以很快求出结果.解:1+2+3+…+100=(1+100)+(2+99)+(3+98)+…+(50+51)= =5050.(1)补全例题解题过程;(2)计算a+(a+b)+(a+2b)+(a+3b)+…+(a+99b).【答案】(1)解:101×50(2)解:原式=50×(2a+99b)=100a+4950b.【解析】【分析】(1)根据算式可得共有50个101,据此解答即可.(2)仿照(1)利用加法的交换律和结合律进行计算即可.2.民谚有云:“不到庐山辜负目,不食螃蟹辜负腹.”,又到了食蟹的好季节啦!某经销商去水产批发市场采购太湖蟹,他看中了A、B两家的某种品质相近的太湖蟹.零售价都为60元/千克,批发价各不相同.A家规定:批发数量不超过100千克,按零售价的92%优惠;批发数量超过100千克但不超过200千克,按零售价的90%优惠;超过200千克的按零售价的88%优惠.B家的规定如下表:数量范围(千克)0~50部分(含50)50以上~150部分(含150,不含50)150以上~250部分(含250,不含150)250以上部分(不含250)价格(元)零售价的95%零售价的85%零售价的75%零售价的70%________元;(2)如果他批发x千克太湖蟹(150<x<200),则他在A家批发需要________元,在B 家批发需要________元(用含x的代数式表示);(3)现在他要批发170千克太湖蟹,你能帮助他选择在哪家批发更优惠吗?请说明理由.【答案】(1)4968;4890(2)54x;45x+1200(3)解:当x=170时,54x=54×170=9180,45x+1200=45×170+1200=8850,因为9180>8850,所以他选择在B家批发更优惠【解析】【解答】解:(1)A:90×60×92%=4968(元),B:50×60×95%+40×60×85%=4890(元)。
苏教版七年级数学 第三章代数式知识点与典题
夯实基础融会贯通 苏教版七年级数学精准训练提升能力 第三章代数式知识点与典题 第一节字母表示数 一、知识点1、用字母表示数,能更简便、更清晰地表示有关数量关系。
2、用字母表示数,还可以表示有关规律性的数量关系。
二、典题1、小明今年n 岁,小明比小丽大2岁,小丽今年________岁。
2、小丽5h 走了Skm ,那么她的平均速度________km/h 。
3、一件羊毛衫标价a 元,若按标价的8折出售,则这件羊毛衫的售价是______元。
4、某水果市场规定:苹果批发价为每千克2.5元,小王携带现金3 000元到这个市场采购苹果,并以批发价买进,如果购买了苹果x 千克,用x•表示小王付款后的剩余现金.5、如图,上列图形都是由面积为1的正方形按一定的规律组成,其中,第 (1)个图形中面积为1的正方形有2个,第 (2) 个图形中面积为1的正方形有5个,第 (3)个图形中面积为1的正方形有9个……按此规律.则第 (n ) 个图形中面积为1的正方形的个数为 .第二节代数式 一、知识点1、代数式的定义像n 、-2 、5s 、0.8a 、a m、2n +500、abc 、2ab+2bc +2ac 等式子都是代数式。
单独一个数或一个字母也是代数式。
2、列代数式的注意点列代数式时,数字与字母、字母与字母相乘,乘号通常用·表示或省略不写,并且把数字写在字母的前面,除法运算通常写成分数的形式。
3、单项式定义:像0.9a ,0.8b ,2a ,2a 2,15×1.5%m 等都是数与字母的积,这样的代数式叫单项式。
单独一个数或一个字母也是单项式。
单项式中的数字因数叫做这个单项式的系数。
单项式中所有字母的指数的和叫做它的次数。
4、多项式的相关概念几个单项式的和叫做多项式。
其中的每个单项式叫做多项式的一个项。
次数最高项的次数叫做这个多项式的次数。
单项式和多项式都是代数式. 5、 整式的定义单项式和多项式统称整式 二、典题1、王洁同学买m 本练习册花了n 元,那么买2本练习册要______元.2、如果陈秀娟同学用v 千米/时的速度走完路程为9千米的路,那么需_______•小时.3、在西部大开发的过程中,为了保护环境,促进生态平衡,国家计划以每年10%的速度栽树绿化,如果第一年植树绿化是a 公顷,那么,•到第三年的植树绿化为_______公顷.4、说出下列代数式的意义:(1)2a-3c ; (2) ab+1; (3)a-b 25、在代数式21215,5,,,,,233x y z x y a x y xyz y π+---+-中有……( )A 、5个整式B 、4个单项,3个多项式C 、6个整式,4个单项式D 、6个整式,单项式与多项式个数相同 6、甲、乙两人同时同地同向而行,甲每小时走a 千米,乙每小时走b 千米.如果从起点到终点的距离为m 千米,甲的速度比乙快,那么甲比乙提前到达终点 ( ) A .(m b -m a)小时 B .(m a -m b)小时C .ma b+小时 D .ma b-小时第三代数式的值 一、知识点1、用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值。
初中数学苏科版七年级上册第三章 代数式3.2 代数式-章节测试习题(1)
章节测试题1.【答题】若整式x n﹣2﹣5x+2是关于x的三次三项式,那么n=______.【答案】5【分析】根据多项式的概念解答即可.【解答】由于整式x n﹣2﹣5x+2是关于x的三次三项式,所以n﹣2=5,解得:n=5,故答案为:5.2.【答题】单项式﹣a的系数是______.【答案】﹣1【分析】根据单项式的系数解答即可.【解答】﹣a=-1×a,故答案为﹣1.3.【答题】单项式-的系数是 ______,次数是 ______【答案】 6【分析】本题考查了单项式的系数与次数,熟记单项式的系数是指单项式中的数字因数,次数是指所有字母指数的和是解题的关键.【解答】单项式-的系数是,次数是 2+3+1=6,故答案为:,6.4.【答题】多项式3a2+2b3的次数是______.【答案】3【分析】多项式中次数最高项得次数就是这个多项式的次数.【解答】解:多项式的次数是3,故答案为:3.5.【答题】单项式的系数是______,次数是______.【答案】 4【分析】单项式的数字部分叫系数,单项式的所有字母的指数和叫单项式的次数.【解答】解:单项式的系数是次数是4.故答案为: 4.6.【答题】若关于x、y的多项式3x|m|y2+(m﹣2)x2y﹣4是四次三项式,则m的值为______.【答案】﹣2【分析】本题是考查多项式的次数与项数的问题,需注意“m”的取值需同时满足两个条件:(1)多项式的第一项:的次数是4;(2)第二项;的系数的值不能为0.【解答】∵关于的多项式是四次三项式,∴,解得:m=-2.故答案为:-2.7.【答题】单项式﹣的系数是______次数是______.【答案】 4【分析】在本题中,圆周率要看作常数,而不能作为字母因数.【解答】单项式的系数是,次数是.故答案为:(1);(2).8.【答题】多项式的次数是______,常数项是______.【答案】4,-3【分析】多项式的次数指的是单项式中的次数最高项的次数,常数项指多项式中的数字部分.【解答】解:多项式的次数是四,常数项式-3故答案为:(1). 4 (2).-3.9.【答题】单项式次数是______.【答案】4【分析】单项式中所有字母的指数的和就是这个单项式的次数.【解答】解:单项式次数是故答案为:4.10.【答题】单项式﹣xy2的系数是______.【答案】-【分析】根据单项式中的数字因数叫做单项式的系数求解.【解答】解:单项式﹣xy2的系数是-.故答案为:-.11.【答题】若多项式的一次项系数是-5,二次项系数是8,常数项是-2,且只含一个字母x,请写出这个多项式______.【答案】8x2-5x-2【分析】根据题目条件写出多项式即可.【解答】由题意得,这个多项式是8x2-5x-2.12.【答题】多项式按字母b降幂排序得______【答案】【分析】根据多项式的降幂排列解答即可.【解答】根据多项式中b在各项的次数从高到低依次排列,即可得按字母b降幂排列为:.故答案为:.13.【答题】单项式﹣xy2的系数是______;次数是______.【答案】 3【分析】本题考查了单项式的系数与次数,熟练掌握单项式的系数和次数的定义是解题的关键.【解答】单项式的系数是指单项式中的数字因数,次数是指单项式中所有字母指数的和,所以单项式﹣xy2的系数是;次数是3,故答案为:;3.14.【答题】将多项式按字母a降幂排列是______.【答案】【分析】根据多项式的降幂排列解答即可.【解答】由题意得,.15.【答题】已知多项式,则这个多项式的次数是______ .【答案】5【分析】单多项式的次数是多项式中次数最高项的次数.【解答】由多项式的次数是这个多项式中此时最高的项的次数可知:多项式的次数是.即答案为:5.16.【答题】单项式﹣的系数是______,次数是______【答案】 - 3【分析】此题主要考查了单项式的有关概念,解题关键是根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】根据单项式定义得:单项式﹣的系数是﹣,次数是3.故答案为:,3.17.【答题】下列结论正确的是()A. 多项式中x2的系数是-B. 单项式m的次数是1,系数是0C. 多项式t - 5的项是t和5D. 是二次单项式【答案】A【分析】本题考查了单项式和多项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】解:A、多项式中x2的系数是−,正确;B、单项式m的次数是1,系数是1,故此选项错误;C、多项式t-5的项是t和-5,故此选项错误;D、是二次多项式,故此选项错误.选A.18.【答题】的系数和次数分别是()A. ,5B. ,4C. ,4D. ,3【答案】D【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】的系数是:、次数是.选D.19.【答题】若单项式的系数是m,次数是n,则mn的值为()A. ﹣2B. ﹣6C. ﹣4D.【答案】A【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】根据单项式的概念,可知单项式的系数是m,次数是n,因此可得m=﹣,n=2+1=3,mn=﹣×3=﹣2,选A.20.【答题】下列说法中错误的是()A. -x2y的系数是-B. 0是单项式C. xy的次数是1D. -x是一次单项式【答案】C【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】A选项中,因为的系数是,所以本选项正确;B选项中,因为0是单项式,所以本选项正确;C选项中,因为的次数是2,不是1,所以本选项错误;D选项中,因为是一次单项式,所以本选项正确;选C.。
金老师教育培训苏教版数学讲义含同步练习七年级上册21《代数式》全章复习与巩固(第二课时)知识讲解
《代数式》全章复习与巩固(提高)知识讲解【典型例题】类型一、代数式1.某商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元.该商场为促销制定了如下两种优惠方式:第一种:买一支毛笔附赠一本书法练习本;第二种:按购买金额打九折付款.八年级(5)班的小明想为本班书法兴趣小组购买这种毛笔10支,书法练习本 x (x ≥10)本.(1)用代数式分别表示两种购买方式应支付的金额.(2)若小明想为本班书法兴趣小组购买书法练习本30 本,试问小明应该选择哪一种优惠方式才更省钱【思路点拨】小明应该选择哪一种优惠方式才更省钱,是由购买的练习本的数量来确定的,把两种方式所应付的钱数,表示成练习本数量的代数式,进而比较代数式的值的大小.【答案与解析】解:设买练习本x,则得两种购买方法的代数式为:(1) 代数式分别为:25×10+5(x-10),(25×10+5x) ×90%(2)把x=30分别代入两个代数式:25×10+5(x-10) =25×10+5(30-10) =350(元) (25×10+5x) ×90%=(25×10+5×30) ×90% =360 (元)所以选择第一种优惠方式.【总结升华】本题这一类方案的选择问题是中考中经常出现的题目类型.类型二、整式的相关概念 2.下列说法正确的是( )A .1﹣xy 是单项式B .ab 没有系数C .﹣5是一次一项式D .﹣a 2b+ab ﹣abc 2是四次三项式【思路点拨】根据多项式是几个单项式的和,数字因数是单项式的系数,字母指数和是单项式的次数,多项式中次数最高的单项式的次数是多项式的次数,每个单项式是多项式的项,可得答案.【答案】D .【解析】解:A 、1﹣xy 是多项式,故A 错误;B 、ab 的系数是1,故B 错误;C 、﹣5是单项式,故C 错误;D 、﹣a 2b+ab ﹣abc 2是四次三项式,故D 正确;故选:D .【总结升华】本题考查了多项式,多项式中次数最高的项的次数是多项式的次数,每个单项式是多项式的项.举一反三:【变式1】若单项式22a b x y +-与单项式253b y x -的和是单项式,那么3a b -= .【答案】15【变式2】若多项式31(4)5(2)n m x x x n m -++---+是关于x 的二次三项式,则________m =, ________n =,这个二次三项式为 . 【答案】4,3,-259x x -- 类型三、整式的加减运算 3.若315212135m n m n x y x y --+-与是同类项,求出m, n 的值,并把这两个单项式相加. 【答案与解析】解:因为312121535m n m n x y x y --+-与是同类项, 所以315,21 1.m n -=⎧⎨-=⎩ 解得2,1.m n =⎧⎨=⎩当2m =且1n =时,55553152121424214()()35353515m n m n x y x y x y x y x y x y --++-=-=-=. 【总结升华】本题考查了同类项:含有相同的字母,并且相同字母的指数相等;合并同类项就是把系数相加减,字母部分不变.举一反三:【变式】合并同类项.(1)2222344522x xy y x xy y -+-+-;(2)3232399111552424xy x y xy x y xy x y --+---. 【答案】(1)原式=22(35)(42)(42)x xy y -+-++-22222x xy y =--+ (2)原式3232391191554422xy x y x y x y ⎛⎫⎛⎫=--+-+-- ⎪ ⎪⎝⎭⎝⎭32345x y x y =---. 【高清课堂:整式的加减单元复习388396经典例题3】4. 从一个多项式中减去234ab bc -+,由于误认为加上这个式子,得到221bc ab --,试求正确答案.【答案与解析】解:设该多项式为A ,依题意,(234)221A ab bc bc ab +-+=--(221)(234)A bc ab ab bc =----+(234)(221)2(234)A ab bc bc ab ab bc --+=----+221468869bc ab ab bc bc ab =---+-=--答:正确答案是869bc ab --.【总结升华】当整式是一个多项式,不是一个单项式时,应用括号把一个整式作为一个整体来加减.举一反三:【变式1】已知A =x 2+2y 2-z 2,B =-4x 2+3y 2+2z 2,且A +B +C =0,则多项式C 为( ).A .5x 2-y 2-z 2B .3x 2-5y 2-z 2C .3x 2-y 2-3z 2D .3x 2-5y 2+z 2【答案】B【变式2】先化简代数式22211(351)5333a a a a a ⎧⎫⎡⎤---+--⎨⎬⎢⎥⎣⎦⎩⎭,然后选取一个使原式有意义的a 的值代入求值.【答案】22211(351)5333a a a a a ⎧⎫⎡⎤---+--⎨⎬⎢⎥⎣⎦⎩⎭22211[(3515)]333a a a a a =---+-- 222116[(34)]333a a a a =----222116(34)333a a a a =--++ 22816(4)333a a a =--++228164333a a a =+--2814433a a =--. 当0a =时,原式=0-0-4=-4.【变式3】(1) (x +y )2-10x -10y +25=(x +y )2-10(______)+25;(2) (a -b +c -d )(a +b -c -d )=[(a -d )+(______)][(a -d )-(______)]. 【答案】(1)x +y (2)-b +c ,-b +c类型四、化简求值5. (1)直接化简代入当时,求代数式15a 2-{-4a 2+[5a -8a 2-(2a 2-a )+9a 2]-3a }的值.(2)条件求值已知(2a +b +3)2+|b -1|=0,求3a -3[2b -8+(3a -2b -1)-a ]+1的值. (3)整体代入 (鄂州)已知210m m +-=,求3222009m m ++的值.【思路点拨】对于化简求值问题,要先看清属于哪个类型,然后再选择恰当的方法进行 求解.【答案与解析】解:(1)原式=15a 2-[-4a 2+(5a -8a 2-2a 2+a +9a 2)-3a ]=15a 2-[-4a 2+(6a -a 2)-3a ]=15a 2-(-4a 2+6a -a 2-3a )=15a 2-(-5a 2+3a )=15a 2+5a 2—3a =20a 2—3a当时,原式===(2)由(2a +b +3)2+|b -1|=0可知:2a +b +3=0,b -1=0,解得a = -2,b =1.3a -3[2b -8+(3a -2b -1)-a ]+1=3a -3(2b -8+3a -2b -1-a )+1=3a -3(2a -9)+1=3a -6a +27+1=28—3a由a = -2 则 原式=28—3a =28+6=34(3)∵ 210m m +-=,∴ 21m m +=.∵ 22222009m m m +++3222009m m m =+++322()2009m m m =+++ 22()2009m m m m =+++22009m m =++12009=+2010=.所以3222009m m ++的值为2010.【总结升华】整体代入的一般做法是对代数式先进行化简,然后找到化简结果与已知条件之间的联系.举一反三:【变式】(2014秋•越秀区期末)先化简,再求值:(1)(5x+y )﹣(3x+4y ),其中x=,y=;(2)(a+b )2+9(a+b )+15(a+b )2﹣(a+b ),其中a+b=.【答案】解:(1)原式=5x+y ﹣3x ﹣4y=2x ﹣3y ,当x=,y=时,原式=1﹣2=﹣1;(2)原式=16(a+b )2+8(a+b ),当a+b=时,原式=1+2=3.类型五、综合应用6. 对于任意有理数x ,比较多项式2452x x -+与2352x x --的值的大小.【答案与解析】解:22222(452)(352)4523524x x x x x x x x x -+---=-+-++=+∵240x +>∴无论x 为何值,2452x x -+>2352x x --.【总结升华】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.举一反三:【变式】如果关于x ,y 的多项式2(2)mx xy x +-与 2(323)x nxy y -+的差不含二次项,求mn 的值.【答案】解:原式=22(2)(323)mx xy x x nxy y +---+=2(3)(22)3m x n xy x y -++--由题意知,则30,220m n -=+=,∴3,1m n ==-.∴3(1)1m n =-=-.【巩固练习】一、选择题1.单项式2a 的系数是( )A .2B .2aC .1D .a2.下列计算正确的个数 ( ). ① ab b a 523=+;② 32522=-y y ; ③ y x x y y x 22254=-;④ 532523x x x =+; ⑤ xy xy xy =+-33A .2B .1C .4D .03.现规定一种运算:a * b = ab + a - b ,其中a ,b 为有理数,则3 * 5的值为( ).A .11B .12C .13D .144.化简1(1)(1)n n a a +-+-(n 为正整数)的结果为( ).A .0B .-2aC .2aD .2a 或-2a5.已知a-b =-3,c+d =2,则(b+c)-(a-d)为( ).A .-1B .-5C .5D .16. 有理数a ,b ,c 在数轴上的位置如右图所示,则a c c b b a ++--+= ( ).A .-2bB .0C .2cD .2c -2b7.当x =-3时,多项式535ax bx cx ++-的值是7,那么当x =3时,它的值是( ).A .-3B .-7C .7D .-178.如果32(1)n m a a --++是关于a 的二次三项式,那么m ,n 应满足的条件是( ).A .m =1,n =5B .m ≠1,n >3C .m ≠-1,n 为大于3的整数D .m ≠-1,n =5二、填空题9.n mx y -是关于x ,y 的一个单项式,且系数是3,次数是4,则m =________,n =________.10. (1)-=+-222x y xy x (___________);(2)2a -3(b -c )=___________.(3)2561x x -+-(________)=7x+8.11.当b =________时,式子2a+ab-5的值与a 无关.12.若45a b c -+=,则30()b a c --=________. 13.一台电视机原价是2500元,现按原价的8折出售,则购买a 台这样的电视机需要 元.14.当k =__________时,多项式x 2-3kxy -3y 2-31xy -8中不含xy 项. 15.若mn=m+3,则2mn+3m ﹣5mn+10= .16.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子.三、解答题17.先化简,再求值.(a 2+1)﹣3a (a ﹣1)+2(a 2+a ﹣1),其中a=﹣1.18.观察下列一串单项式的特点:xy ,﹣2x 2y ,4x 3y ,﹣8x 4y ,16x 5y ,…(1)按此规律写出第9个单项式;(2)试猜想第N 个单项式为多少?它的系数和次数分别是多少?19. 如图所示,用三种大小不同的六个正方形和一个缺角的正方形拼成长方形ABCD, …其中,GH=2cm, GK=2cm, 设BF=x cm,(1)用含x 的代数式表示CM= cm, DM= cm.(2)若x=2cm ,求长方形ABCD 的面积.20. 测得一弹簧的长度L(厘米)与悬挂物体的质量x(千克)有下面一组对应值:试根据表中各对对应值解答下列问题:(1)用代数式表示挂质量为x 千克的物体时的弹簧的长度L .(2)求所挂物体的质量为10千克时,弹簧的长度是多少?(3)若测得弹簧的长度是18厘米,则所挂物体的质量为多少千克?(4)若要求弹簧的长度不超过20厘米,则所挂物体的质量不能超过多少千克?【答案与解析】一、选择题1.【答案】A .2.【答案】D3. 【答案】C【解析】按规定的运算得:3*5=3×5+3-5=13.4. 【答案】A【解析】分析两种情况,当n 为偶数时,(1)1n -=,1(1)1n +-=-,当n 为奇数时,(1)1n -=-,1(1)1n +-=,无论哪种情况,结果都是0.5.【答案】C【解析】(b+c)-(a-d)=b+c-a+d =-a+b+c+d =-(a-b)+(c+d)当a-b =-3,c+d =2时,原式=-(-3)+2=5,所以选C .6.【答案】B7. 【答案】D【解析】由已知条件得:53(3)(3)(3)57a b c -+-+--=,通过适应变形得: 5333312a b c ++=-.当x =3时,原式533335a b c =++-,再把变形后的式子的值整体代入即可.8.【答案】D【解析】由题意得:n-3=2且m+1≠0,得n =5且m ≠-1.二、填空题9.【答案】-3 , 3【解析】由系数为3,得-m =3,则m =-3.由次数为4,得x ,y 的指数之和为4,即n+1=4,则n =3.10.【答案】22;233;5137xy y a b c x x --+--11.【答案】-2【解析】2a+ab-5=(2+b)a-5.因为式子的值与a 无关,故2+b =0,所以b =-2.12.【答案】-24【解析】因为a b c -+与b a c --互为相反数,又因为45a b c -+=, 所以45b a c --=-,由此可得430()30245b a c ⎛⎫--=⨯-=- ⎪⎝⎭. 13.【答案】2000a .14.【答案】-91; 【解析】1303k --=,解得19k =-. 15.【答案】1;【解析】解:原式=﹣3mn+3m+10,把mn=m+3代入得:原式=﹣3m ﹣9+3m+10=1,故答案为:1.16.【答案】127, 1332++n n .【解析】∵第1个图形需要7=1+6×1枚棋子,第2个比第1个多12个,即1+6×(1+2)枚,第3个比第2个多18个,即1+6×(1+2+3)枚,第4个比第三个多24个,即1+6×(1+2+3+4)=61枚,……,∴第n 个比第(n-1)个多6n 个,即1+6×(1+2+3+4+…+n )=3n 2+3n+1枚.三、解答题17. 【解析】解:原式=a 2+1﹣3a 2+3a+2a 2+2a ﹣2=5a ﹣1,当a=﹣1时,原式=﹣5﹣1=﹣6.18.【解析】解:(1)∵当n=1时,xy ,当n=2时,﹣2x 2y ,当n=3时,4x 3y ,当n=4时,﹣8x 4y ,当n=5时,16x 5y ,∴第9个单项式是29﹣1x 9y ,即256x 9y .(2)∴n 为偶数时,单项式为负数.x 的指数为n 时,2的指数为n ﹣1, ∴当n 为奇数时的单项式为2n ﹣1x n y ,它的系数是2n ﹣1,次数是n+1.19.【解析】解:(1)(x +2),(2x +2)(或(3x )).(2)长方形的长为:2214x x x x x ++++++= (cm),宽为:4242210x +=⨯+=(cm).∴长方形的面积为:14×10=140 (cm 2).答:长方形ABCD 的面积为140cm 2 .20.【解析】解:(1)0.512L x =+.(2)将10x =,代入0.512L x =+,得0.5120.5101217L x =+=⨯+=(㎝) ∴所挂物体的质量为10千克时,弹簧的长度是17㎝.(3)将18L =,代入0.512L x =+,得180.512x =+,解得12x =∴若测得弹簧的长度是18厘米,则所挂物体的质量为12千克.(4)∵弹簧的长度不超过20厘米,即L ≤20,∴0.512x +≤20,得x ≤16.∴若要求弹簧的长度不超过20厘米,则所挂物体的质量不能超过16千克.。
最新苏科版七年级上册数学 代数式单元复习练习(Word版 含答案)
一、初一数学代数式解答题压轴题精选(难)1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:方法①:________ 方法②:________请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________(2)根据(1)中的等式,解决如下问题:①已知:,求的值;②己知:,求的值.【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2(2)解:①把代入∴,∴②原式可化为:∴∴∴【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .方法②:草坪的面积= ;等式为:故答案为:,;【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.2.如图,在数轴上有两点A、B,点A表示的数是8,点B在点A的左侧,且AB=14,动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数:________ ;点P表示的数用含t的代数式表示为________ .(2)动点Q从点B出发沿数轴向左匀速运动,速度是点P速度的一半,动点P、Q同时出发,问点P运动多少秒后与点Q的距离为2个单位?(3)若点M为线段AP的中点,点N为线段BP的中点,在点P的运动过程中,线段MN 的长度是否会发生变化?若变化,请说明理由;若不变,求出线段MN的长.【答案】(1)解:8-14=-6;因此B点为-6;故答案为:-6;解:因为时间为t,则点P所移动距离为4t,因此点P为8-4t ;故答案为:8-4t(2)解:由题意得,Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;所以①P在Q的右侧时8-4t-(-2t-6)=2解得x=6②P在Q左侧时-2t-6-(8-4t)=2解得x=8答:动点P、Q同时出发,问点P运动6或8秒后与点Q的距离为2个单位.故答案为:6或8秒(3)解:①当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=7-2tMN=MP+NP=2t+7-2t=7②当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14因点M为线段AP的中点,点N为线段BP的中点所以MP=AP=2t;NP=BP=2t-7MN=MP-NP=2t-(2t-7)=7因此在点P的运动过程中,线段MN的长度不变, MN=7【解析】【分析】(1)①由数轴上两点之间距离的规律易得B的值为8-14=16;②因为时间为t,则点P所移动距离为4t,因此易得P为8-4t(2)由题易得:Q 的速度为4÷2=2(秒)则点Q为-6-2t,又点P为8-4t;分别讨论P在Q左侧或右侧的情况,由此列方程,易得结果为6或8秒;(3)结合(1)(2)易得当P在AB间以及P在B左边时的两种情况;当P在A,B之间时,线段AP=8-(8-4t)=4t;线段BP=8-4t-(-6)=14-4t;当P在P的左边时线段AP=8-(8-4t)=4t;线段BP=(-6)-(8-4t)=4t-14;利用中点性质,易得结果不变,为7.3.已知x1, x2, x3,…x2016都是不等于0的有理数,若y1= ,求y1的值.当x1>0时,y1= = =1;当x1<0时,y1= = =﹣1,所以y1=±1(1)若y2= + ,求y2的值(2)若y3= + + ,则y3的值为________;(3)由以上探究猜想,y2016= + + +…+ 共有________个不同的值,在y2016这些不同的值中,最大的值和最小的值的差等于________.【答案】(1)解:∵ =±1, =±1,∴y2= + =±2或0(2)±1或±3(3)2017;4032【解析】【解答】解:(2)∵ =±1, =±1, =±1,∴y3= + + =±1或±3.故答案为±1或±3,( 3 )由(1)(2)可知,y1有两个值,y2有三个值,y3有四个值,…,由此规律可知,y2016有2017个值,最大值为2016,最小值为﹣2016,最大值与最小值的差为4032.故答案分别为2017,4032.【分析】(1)根据题意先求出=±1,=±1,就可求出y2的3个值。
苏科版七年级上册数学 代数式单元复习练习(Word版 含答案)
一、初一数学代数式解答题压轴题精选(难)1.双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。
某校准备到此专营店购买羽毛球拍和羽毛球若干.已知羽毛球拍60元1个,羽毛球3元一个,买一个羽毛球拍送3个羽毛球.(1)如果要购买羽毛球拍8个,羽毛球50个,要付多少钱?(2)如果购买羽毛球拍x个(不超过16个),羽毛球50个,要付多少钱?用含x的代数式表示.(3)该校买了羽毛球50个若干个羽毛球拍,共花费712元,请问他们买了几个羽毛球拍.【答案】(1)解:60×8+(50-8×3)×3-50=508(元)(2)解:x≤6时,60x+(50-3x)×3=150+51x; 7≤x≤12时,60x+(50-3x)×3-50=100+51x; 13≤x≤16时,60x+(50-3x)×3-100=50+51x(3)解:设共买了x个羽毛球拍,根据题意得,60x+(50-3x)×3-50=712,解得,x=12. 答:共买了12个羽毛球拍.【解析】【分析】(1)根据题意直接列式计算。
(2)根据满500送50元券,满800送100元券活动,分三种情况讨论:x≤6时;7≤x≤12时;13≤x≤16时,分别用含x的代数式表示出要付的费用。
(3)根据一共花费712元,列方程求解即可。
2.如图,在数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB.(1)求a,c的值;(2)若数轴上有一点D满足CD=2AD,则D点表示的数为________;(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度.同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t 秒.①若点A向右运动,点C向左运动,AB=BC,求t的值;②若点A向左运动,点C向右运动,2AB-m×BC的值不随时间t的变化而改变,直接写出m的值.【答案】(1)解:∵多项式x3﹣3xy29﹣20的常数项是a,次数是c.∴a=-20,c =30(2)-70或(3)解:①如下图所示:当t=0时,AB=21,BC=29. 下面分两类情况来讨论: a.点A,C在相遇前时,点A,B之间每秒缩小1个单位长度,点B,C每秒缩小4个单位长度. 在t=0时,BC -AB=8, 如果AB=BC,那么AB-BC=0,此时t= 秒, b.点A,C在相遇时,AB=BC,点A,C之间每秒缩小5个单位长度,在t=0时,AC=50,秒, c.点A,C在相遇后,BC 大于AC,不符合条件. 综上所述,t= ②当时间为t时,点A表示得数为-20+2t,点B表示得数为1+t,点C表示得数为30+3t,2AB-m×BC=2[(1+t)-(-20+2t)]-m[(30+3t)-(1+t)],=(6-2m)t+(42-29m),当6-2m=0时,上式的值不随时间t的变化而改变,此时m=3.【解析】【解答】解:(2)分三种情况讨论,•当点D在点A的左侧,∵CD=2AD,∴AD=AC=50,点C点表示的数为-20-50=-70,‚当点D在点A,C之间时,∵CD=2AD,∴AD= AC= ,点C点表示的数为-20+ =- ,ƒ当点D在点C的右侧时,AD>CD与条件CD=2AD相矛盾,不符合题意,综上所述,D点表示的数为-70或 ;【分析】(1)根据多项式 x3﹣3xy29﹣20的常数项是a,次数是c.就可得出a、c的值。
苏科版七年级数学上 第三章代数式 复习(共19张PPT)
1.已知a,b是有理数,比较(a+b)与(a-b)的大小。
2.请你任意设想一个数,把这个数乘2后加8,然 后除以4,再减去你原来所设想的那个数的 1,我 可以知道你计算的结果是2,义 ②用陈述句
四、单项式、多项式、整式、代数式
观察下列式子:
代数式有: (1)、(3)、(4)、(6)、(7)、(8)、(9). 整式有: (1)、(3)、(4) 、(7)、(8)、(9) . 单项式有: (1)、(4)、(9).多项式有:(_3_)、__(_7_)、__(8_).
1、填空:
(2)23 x2 y 的系数为
次数为
2、写出一个系数为-2的关于字母x,y的3次 单项式 ___________.
四、整式的加减
①请你写出一个与 -2π ab2c3是同类项的单项
式
.
②若3x3y2n 与2xmy4可以合并为一个单项式,则 合并后的单项式为_______
③如果关于x,y的单项式2mxay3与 -4x2a-3y3 的和为0,且 xy≠0 ,则am=_____
7.食堂有煤m千克,原计划每天用煤a千克,实际 每天节约用煤12千克,节约后可以多用________天.
2、字母表示变化规律
课本p88第10题
用正方形的普通水泥块按下图的方式铺人行道:
第1个图中有彩色水泥砖_______块; 第2个图中有彩色水泥砖_______块; 第3个图中有彩色水泥砖_______块。 第n个图形有彩色水泥砖_______块。
(2)小丽身上有10元钱,请问她够不够付车费?
六、灵活应用
1、如果x=4,请写出一个含有x的代数式,使它 的值为-20.
2、写出一个含a的代数式,使字母a无论取何值, 这个代数式的值总是正数.
初中数学苏科版七年级上册第三章 代数式3.2 代数式-章节测试习题(2)
章节测试题1.【答题】式子x+y,﹣2x,ax2+bx﹣c,0,,﹣a,中()A. 有5个单项式,2个多项式B. 有4个单项式,2个多项式C. 有3个单项式,3个多项式D. 有5个整式【答案】B【分析】本题考查了单项式和多项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】单项式有4个:﹣2x,0,,﹣a;多项式有2个:x+y,ax2+bx﹣c.选B.2.【答题】多项式的次数及最高次项的系数分别是().A. 2,-3B. 5,-3C. 3,3D. 3,-3【答案】D【分析】利用多项式的相关定义进而分析得出答案.【解答】多项式是几个单项式的和,每一个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数,所以的次数为最高单项式的次数为,最高次项的系数为.选D.3.【答题】一个长方形的周长是40,若长方形的一边用字母x表示,则长方形的面积是()A. x(20﹣x)B. x(40﹣x)C. x(40﹣2x)D. x(20+x)【答案】A【分析】根据题意列出代数式即可.【解答】∵长方形的周长为40,一边长为x,∴与长为的边相邻的另一边长为(20﹣x),∴长方形的面积=x(20﹣x).选A.4.【答题】下列说法中正确的是().A. a是单项式B. 的系数是2C. 的次数是1D. 多项式的次数是4【答案】A【分析】本题考查了单项式和多项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】选项A. a是单项式,正确.选项 B. 的系数是,错误.选项C. 的次数是,错误.选项 D. 多项式的次数是2,错误.所以选A.5.【答题】在代数式x2+5,﹣1,x2﹣3x+2,π,,中,整式有()A. 3个B. 4个C. 5个D. 6个【答案】C【分析】根据多项式与单项式统称为整式,判断即可.【解答】根据整式的概念知:x2+5,﹣1,x2﹣3x+2,π,是整式,选C.6.【答题】下列说法正确的是()A. 单项式a2b的次数为2B. 单项式的系数是C. 0是单项式D. 多项式1-xy+2x2y是五次三项式【答案】C【分析】本题考查了单项式和多项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】A. 单项式a2b的次数为3,故A选项错误;B. 单项式的系数是,故B选项错误;C. 0是单项式,正确;D. 多项式1-xy+2x2y是三次三项式,故D选项错误,选C.7.【答题】多项式4x3﹣3x2y4+2x﹣7的项数与次数分别是()A. 4,9B. 4,6C. 3,9D. 3,10【答案】B式的系数.【解答】多项式4x3﹣3x2y4+2x﹣7有4个项,次数为6.选B.8.【答题】在代数式3、4+a、a2﹣b2、、中,单项式的个数是()A. 2个B. 3个C. 4个D. 5个.【答案】A【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】根据单项式的定义:“表示数与字母乘积的式子叫做单项式,单独的一个数或字母也是单项式”分析可知,上述式子中,3、是单项式,共2个;选A.9.【答题】对于单项式2×105a,下列说法正确的是()A. 系数为2,次数为1B. 系数为2,次数为6C. 系数为2×105,次数为1D. 系数为2×105,次数为0【答案】C个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式2×105a的系数为2×105,次数为1.选C.10.【答题】(3m-2)x2y n+1是关于x,y的五次单项式,且系数为1,则m,n的值分别是()A. 1,4B. 1,2C. 0,5D. 1,1【答案】B【分析】本题考查了单项式,据此解答即可.需注意:单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.【解答】由题意得:,解得.选B.11.【答题】在代数式x2+5,-1,-3x+2,π,,,5x中,整式有()A. 3个B. 4个C. 5个D. 6个【答案】C【分析】根据多项式与单项式统称为整式,判断即可.【解答】根据整式的定义:单项式、多项式的统称,故整式有x2+5,−1,−3x+2,π,5x,共5个.选C.12.【答题】代数式x+yz,4a,mn3+ma+b,-x,1,3xy2,,,中()A. 有5个单项式,4个多项式B. 有8个整式C. 有9个整式D. 有4个单项式,3个多项式【答案】D【分析】本题考查了单项式、多项式以及整式的定义,注意是整式而不是分式.【解答】单项式有:4a,x,1,3xy2,共4个;多项式有:x+yz,mn3+ma+b,,共3个;整式有:x+yz,4a,mn3+ma+b,−x,1,3xy2,共7个;分式有:,,共2个。
苏科版七年级数学上第三章代数式复习课件(2)
知识回顾
输入
11 4
-1
3 4
输出
输入x
3
04
11 14 输入x
×3
+5 输出
输出3x2-5
知识回顾
4.合并同类项
①概念:根据乘法分配律把同类项合并成一项叫做合并同类 项。 ②法则:同类项系数相加所得结果作为系数,字 母和字母的指数不变。 ③方法:分、去、找、移、合、化、代。
练习:(1)
当x 2, y 3时,求 1 x2 xy的值 2
(2) 当a 2,b 5时,求2a 5b的值
知识回顾
2. 程序框图
输入、输出框 表示最初输入的数值和最终输出的数值。
处理框 表示流入此框的数值要进行某种运算,并 将运算结果的数值流出。
判断框 判断流入此框的数值是否符合某个条件,符合时从 标注“是”或“Y”的出口处流出,不符合时从标注“否” 或“N”的出口处流出
(3)求 3 2a2b ab2 1 2 4a2b ab2 4 的值
其中a 2,b 2
课堂练习
练习:
1. n
1
2
3
4
5
6
7
5n+6
n2
(1)随着n的值逐渐变大,2个代数式的值如何变化? (2)估算一下。哪个代数式的值先超过1000?
课堂小结
通过本节课,你有何收获?
代数式的值合并同类项及整式的 加减复习
课前检测
1.已知代数式 ax3 bx,当x=-1时,代数式的
值为5,则当x=1时,ax3 bx 的值是
.
2. 则
已知
nm
5x2 yn 与 2 xm 的值为多少3?
苏教版七年级上册数学[《代数式》全章复习与巩固(基础)知识点整理及重点题型梳理]
苏教版七年级上册数学[《代数式》全章复习与巩固(基础)知识点整理及重点题型梳理]代数式》全章复与巩固(基础)知识讲解研究目标:1.进一步理解用字母表示数的意义,能分析简单问题的数量关系,并用代数式表示;2.理解代数式的含义,能解释一些简单代数式的实际背景或几何意义,体会数学与现实生活的密切联系;3.会求代数式的值,能解释值的实际意义,能根据代数式的值推断代数式反映的规律;4.理解并掌握单项式与多项式的相关概念;5.理解整式加减的基础是去括号和合并同类项,并熟练的运用整式的加减运算法则,进行整式的加减运算、求值;6.深刻体会本章体现的主要的数学思想——整体思想。
要点梳理:1.代数式是用运算符号(+、-、×、÷、乘方、开方)把数和表示数的字母连接而成的式子,像16n、2a+3b、34、n、2、(a+b)等式子都是代数式,单独的一个数或一个字母也是代数式。
代数式的书写规范:1) 字母与数字或字母与字母相乘时,通常把乘号写成“·”或省略不写;2) 除法运算一般以分数的形式表示;3) 字母与数字相乘时,通常把数字写在字母的前面;4) 字母前面的数字是分数的,如果既能写成带分数又能写成假分数,一般写成假分数的形式;5) 如果字母前面的数字是1,通常省略不写。
2.单项式是由数与字母的乘积组成的代数式,单独的一个数或一个字母也是单项式。
单项式的系数是指单项式中的数字因数,单项式的次数是指单项式中所有字母的指数和。
多项式是几个单项式的和,每个单项式叫做多项式的项。
在多项式中,不含字母的项叫做常数项。
多项式中次数最高的项的次数,就是这个多项式的次数。
如果一个多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式。
3.多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列。
另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列。
最新苏科版七年级数学上册 代数式(基础篇)(Word版 含解析)
一、初一数学代数式解答题压轴题精选(难)1.任何一个整数N,可以用一个的多项式来表示:N= .例如:325=3×102+2×10+5.一个正两位数的个位数字是x,十位数字y.(1)列式表示这个两位数;(2)把这个两位数的十位上的数字与个位上的数字交换位置得到一个新的两位数,试说明新数与原数的和能被11整除.(3)已知是一个正三位数.小明猜想:“ 与的差一定是9的倍数。
”请你帮助小明说明理由.(4)在一次游戏中,小明算出、、、与等5个数和是3470,请你求出这个正三位数.【答案】(1)解:10y+x(2)解:根据题意得:10y+x+10x+y=11(x+y),则所得的数与原数的和能被11整除(3)解:∵ - =100a+10b+c-(100b+10c+a)=99a-90b-9c =9(11a-10b-c),∴与的差一定是9的倍数(4)解:∵ + + + + + =3470+ ∴222(a+b+c)=222×15+140+ ∵100<<1000,∴3570<222(a+b+c)<4470,∴16<a+b+c≤20.尝试发现只有a+b+c=19,此时 =748成立,这个三位数为748.【解析】【分析】(1)由已知一个正两位数的个位数字是x,十位数字y ,因此这个两位数是:十位上的数字×10+个位数的数字。
(2)根据题意将新的两位数和原两位数相加,再化简,即可得出结果。
(3)分别表示出两个三位数,再求出它们的差,就可得出它们的差是否为9的倍数。
(4)根据题意求出a+b+c的取值范围,再代入数据进行验证即可。
2.根据数轴和绝对值的知识回答下列问题(1)一般地,数轴上表示数m和数n两点之间的距离我们可用│m-n│表示。
例如,数轴上4和1两点之间的距离是________.数轴上-3和2两点之间的距离是________.(2)数轴上表示数a的点位于-4与2之间,则│a+4│+│a-2│的值为________.(3)当a为何值时,│a+5│+│a-1│+│a-4│有最小值?最小值为多少?【答案】(1)3;5(2)6(3)解:①a≤1时,原式=1-a+2-a+3-a+4-a=10-4a,则a=1时有最小值6;②1≤a≤2时,原式=a-1+2-a+3-a+4-a=8-2a,则a=2时有最小值4③2≤a≤3时,原式=a-1+a-2+3-a+4-a=4④3≤a≤4时,原式=a-1+a-2+a-3+4-a=2a-2;则a=3时有最小值4⑤a≥4时,原式=a-1+a-2+a-3+a-4=4a-10;则a=4时有最小值6综上所述,当a=2或3时,原式有最小值4.故答案为:(1)3;5;(2)6;(3)当a=2或3时,原式有最小值4.【解析】【解答】(1)解:数轴上表示1和4的两点之间的距离是3;表示-3和2的两点之间的距离是5( 2 )解:根据题意得:-4<a<2,即a+4>0,a-2<0则原式=a+4+2-a=6.【分析】(1)根据数轴上任意两点间的距离等于这两点所表示的数的差的绝对值即可直接算出答案;(2)根据数轴上所表示的数的特点得出-4<a<2,进而根据有理数的加减法法则得出a+4>0,a-2<0,然后根据绝对值的意义去绝对值符号,再合并同类项即可;(3)分①a≤1时,②1≤a≤2时,③2≤a≤3时,④3≤a≤4时,⑤a≥4时,五种情况,根据绝对值的意义分别取绝对值符号,再合并同类项得出答案,再比大小即可.3.从2022年4月1日起龙岩市实行新的自来水收费阶梯水价,收费标准如下表所示:(2)某用户8月份用水量为24吨,求该用户8月份应缴水费是多少元.(3)若某用户某月用水量为m吨,请用含m的式子表示该用户该月所缴水费.【答案】(1)解:2.2×10=22元,答:该用户4月份应缴水费是22元,(2)解:15×2.2+(24﹣15)×3.3=62.7元,答:该用户8月份应缴水费是 62.7元(3)解:①当m≤15时,需交水费2.2m元;②当15<m≤25时,需交水费,2.2×15+(m﹣15)×3.3=(3.3m﹣16.5)元,③当m>25时,需交水费2.2×15+10×3.3+(m﹣25)×4.4=(4.4m﹣44)元.【解析】【分析】(1)先根据月用水量确定出收费标准,再进行计算即可;(2) 8月份应缴水费为:不超过15吨的水费+超出的9吨的水费;(3)分①m≤15吨,②15<m≤25吨,③m>25吨三种情况,根据收费标准列式进行计算即可得解。
苏教版七年级数学复习专题训练《代数式》(含答案)
七年级数学复习专题训练《代数式》 考试时间:90分钟 满分:120分一、选择题(每题3分,共30分) 1.代数式21xy-的正确解释是( ) A. x 与y 的倒数的差的平方 B. x 的平方与y 的倒数的差 C.x 的平方与y 的差的倒数 D. x 与y 的差的平方的倒数2.已知,,a b c 均为有理数,则a b c ++的相反数是( ) A.b ac +- B. b a c --- C. b a c --+ D. b a c -+3. 若单项式39mxy 与单项式24n x y 是同类项,则m n +的值是( )A. 2B. 3C. 4 5. 5 4.若2222221131(3)(4)()2222x xy y x xy y x y -+---+-=-++,则括号中的一项是( ) A.7xy - B. 7xy C. xy - D. xy5.已知代数式2346xx -+的值为9,则2463x x -+的值为( )A. 18B. 12C. 9D. 7 6.给出下列说法:①若a 为任意有理数,则21a+总是正数;②若0a a +=,则a 是负数;③单项式34a b -的系数与次数分别为4-和4;④代数式2t ,3a b +,2b都是整式.其中正确的有( )A. 4个B. 3个C. 2个D. 1个 7. 已知数,,a b c 在数轴上的位置如图所示,则化简a b c b+--的结果是( )A.a c + B. c a - C. a c -- D. 2abc +-8.国庆期间,某商店推出全场打八折的优惠活动,持贵宾卡的客户还可在八折的基础上再打九折.若某人持贵宾卡买一件商品花了a 元,则该商品的标价是( ) A.1720a 元 B. 2017a 元 C. 1825a 元 D. 2518a 元 9.如图的图形都是由同样大小的圆圈按一定规律组成的,其中图①中一共有6个小圆圈,图②中一共有9个小圆圈,图③中一共有12个小圆圈,…,按此规律排列,则图⑦中小圆圈的个数为( )A. 21B. 24C. 2 7D. 3010. 把四张形状、大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底部未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A.4n B. 4m C. 2()m n + D. 4()m n -二、填空题(每题3分,共24分) 11.若三角形三边的长分别为(21)x +cm ,2(2)x -cm ,2(21)x x -+cm ,则其周长为cm.12.已知当1x =时,22axbx +的值为3,则当2x =时,2ax bx +的值为 .13.某班学生在实践基地进行拓展活动分组,因为器材的原因,教练要求分成固定的a 组.若每组5人,就有9名同学多出来;若每组6人,最后一组的人数将不满,则最后一组的人数用含a 的代数式可表示为 . 14.已知:2222233+=⨯;2333388+=⨯;244441515+=⨯,…若299a ab b+=⨯(,a b 为正整数),则ab = .15.已知,a b 互为相反数,,c d 互为倒数,并且1x =,则代数式(2)(3)a b x cd bx cdx +--+ 的值为 .16. 如图,阴影部分的面积为 .17.已知有理数,,a b c 满足0,0,0a b c<>>,且b a c<<.(1)在数轴上将,,a b c 三个数填在相应的括号内:(2)化简:22a b b c c a -+---= .18.如图,已知四边形ABCD 是正方形.(1)试用两种不同的方法来表示正方形ABCD 的面积: 或 ;(2)若x 为有理数,则2(1)x +221x x ++,2(1)x - 221x x --.(填“>”“<”或 “=”) 三、解答题(共66分) 19. (12分)化简: (1) 22223()x x y y -+-; (2)5(27)3(410)x y x y ---;(3)2222111()()()236a b a b a b -+-++.20. ( 6分)先化简,再求值:22112[(4)7]22a ab a ab ab----,其中,a b满足21(3)02a b ++-=.21. (6分)已知点,,,A B C D 的位置如图所示.(1)用含,a b 的代数式表示,A C 两点之间的距离是 ; (最后结果需化简)(2)若已知,A C 两点之间的距离是12,求,C D 两点之间的距离.22. ( 9分)图①②分别由两个长方形拼成,其中ab >.(1)用含,a b 的代数式表示它们的面积,则=S ① ,=S ② ; (2)S ①与S ②之间有怎样的大小关系?请你解释其中的道理; (3)请你利用上述发现的结论计算式子: 222016-2014.23. ( 6分)已知,a b 为有理数,且,,,a a b a b ab b+-中恰有三个数相等,求(2)ba -的值.24.(9分)某品牌饮水机厂生产一种饮水机和饮水机桶,饮水机每台定价350元,饮水机桶每只定价50元.厂家开展促销活动期间,可以同时向客户提供两种优惠方案:①买一台饮水机送一只饮水机桶;②饮水机和饮水机桶都按定价的90%付款.现某客户到该饮水机厂购买饮水机30台,饮水机桶x 只(x 超过30). (1)若该客户按方案①购买,求客户需付款;(用含x 的代数式表示) (2)若该客户按方案②购买,求客户需付款;(用含x 的代数式表示)(3)当40x =时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并计算出所需的钱数.25. ( 9分)某单位准备组织部分员工到某地旅游,现在联系了甲、乙两家旅行社,两家旅行社的报价均为2 000元/人,两家旅行社都对10人以上的团体推出了优惠措施:甲旅行社对每名员工给予七五折优惠;乙旅行社是免去一名带队员工的费用,其余员工八折优惠.(1)若设该单位参加旅游的员工共有m (10m >)人,则甲旅行社的费用为 元,乙旅行社的费用为 元;(用含m 的代数式表示并化简) (2)若这个单位组织包括带队员工在内的共20名员工到某地旅游,则该单位选择哪一家旅行社比较优惠?说明理由.(3)①若这个单位计划在2月外出旅游七天,设最中间一天的日期为n ,则这七天的日期之和为 ;(用含n 的代数式表示并化简)②若这七天的日期之和为63的倍数,则他们可能于2月几日出发?(写出所有符合条件的可能性,并写出简单的计算过程)26. ( 9分)某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个.市场调研表明:当销售价每上涨1元时,其销售量将减少10个.若设每个台灯的销售价上涨a 元. (1)试用含a 的代数式填空:①涨价后,每个台灯的销售价为 元; ②涨价后,每个台灯的利润为 元;③涨价后,商场的台灯平均每月的销售量为 个;(2)如果商场要想平均每月销售利润达到10 000元,商场经理甲说:“在原售价每个40元的基础上再上涨40元,可以完成任务.”商场经理乙说:“不用涨那么多,在原售价每个40元的基础上再上涨10元就可以了.”试判断经理甲与乙的说法是否正确,并说明理由.参考答案1. B2. B3. D4. C5. D6. C7. A8. D9. B 10. A 11.22x12. 6 13. 15a - 14. 720 15. 2-或4- 16. 24m mn π-17. (1) a b c (2) c -18. (1)2()a b + 222a ab b ++(2) = > 19. (1)2222xy -(2)25x y -- (3)2221113362a ab b +-- 20. 原式=246a ab +因为21(3)02a b ++-= 所以12a=-,3b = 将12a =-,3b =代入,得,原式=2114()6()3822⨯-+⨯-⨯=-21. (1)32a b -(2) 5 22. (1)22ab - ()()a b a b +-(2)=S S ①② 相同的两个长方形拼成的两个图形的面积相等,即都等于这两个长方形面积的和 (3)8060.23. 因为0b ≠,所以a b a b +≠-,所以ab 一定与ab相等, 所以0a =或1b =±.若0a =,则0b =,矛盾;若1b =,则,,,aa b a b ab b +-中不可能有三个数相等, 若1b =-,则a ab a b b ==+或aab a b b ==-, 对应的a 值分别为12或12-,所以(2)ba -1=±24. (1) (509000)x + 元(2)(459450)x +元(3) 当40x =时,方案①需付款5040900011000⨯+=(元),方案②需付款4540945011250⨯+= (元),所以方案①合算.更为省钱的购买方案:先按方案①购买30台饮水机,送30只饮水机桶,需10 50。
苏教版七年级上册第3章代数式 计算专项训练(含答案)
完成时间: 分钟 做对 题 家长签字:练习1:代数式的值(1)1.当2,4==b a时,求下列代数式的值. (1));)((b a b a -+ (2).222b ab a ++2.已知2,3-==b a,求代数式3221b a +-的值.3.求代数式35+-a a 的值.(1);8=a (2).3=a4.当2,2,21-===c b a 时,求代数式ac bc ab a +-+25.0313的值.5.已知b a .互为相反数,d c ,互为倒数,m 是最大的负整数,求代数式cd b a m 3)1(2+-+-的值.6.已知,0)1(|2|2=++-b a 求))((22b ab a b a +-+的值.7.已知32=-b a ,求b a 429+-的值.参考答案 3.77.62.53724.43121131.325.242121.1--)()()()(练习2:代数式的值(2)1.若0|21|)2(2=++-y x ,求代数式25322-+-xy y x 的值;2.已知b a ,互为相反数,d c ,互为倒数,2||=m ,求代数式cd m b a -++-++21)1(24的值.3.规定※表示一种运算,且a ※b =ab a22-,求下列各式的值. (1)4※21; (2)-3※(3※1).4.已知323-=+-y x y x ,求代数式y x y x y x y x +-+-+26232的值.5.已知96432=+-x x ,求代数式5342+-x x 的值.6.已知1,1==+xy y x ,求代数式)53()25(y xy x --+的值.参考答案完成时间: 分钟 做对 题 家长签字: 14.66.5316.427.313.2437.1--或练习3:代数式的值(3)1.按照如图所示的操作步骤,若输入x 的值为-2,求输出的值.2.如图是一个数值转换机的示意图,若输入的x 是-3,y 是2,求输出的结果.3.如图是一个数值运算程序,当输入x 的值为3时,求输出的结果.4.按如图所示的程序计算,若开始输入的值为3=x ,求最后输出的结果.5.如图所示是计算某计算程序,若开始输入2-=x ,求最后输出的结果.参考答案 10.5231.45.31.27.1---练习4:代数式的值(4)1.如图是一个运算程序,若输入x 的值为8,输出的结果是m ,若输入x 的值为3,输出的结果是n ,求n m +的值.2.如图是一个简单的数值运算程序,当输入n 的值为3时,求输出的结果.3.根据如图所示的程序,若输入x 的值为1,求输出y 的值.4.某计算程序编辑如图所示,若输出的8=y ,求输入x 的值.完成时间: 分钟做对 题 家长签字: 5.有一个数值转换器,原理如图所示,若开始输入x 的值是7,可以发现第1次输出结果是12,第二次输出结果是6,第三次输出结果是3,按照这种方式,第2016次输出的结果是多少?参考答案 2.5111.44.3870.25.1或=-=+y n m练习5:整式加减(1) 1.化简:(1)22232p p p ---;(2)a a a a 742322-+-;(3)b a b a 322123+--;(4);523322+-+-x x x(5)223.23.12b b b b --+-;(6)222225533y y x y y x x +-++--;(7);52214.0412222ab b a ab b a +-- (8).2121222233ab b a b a ba b a -+--2.先化简,再求值;(1)7968722-+--y x y x,其中;3,3-==y x(2)7785322--+--p q q p,其中.1,3-==q p参考答案 .1007310)2(17)1.(22123)8(41)7()6(3)5(2)4(3425)3(97)2(61.122223222222-=-+-=-=-+=-----++---q p y x ab b a b a b a x bb x x b a aa p 原式原式)(完成时间: 分钟 做对 题 家长签字:练习6:整式加减(2)1.化简:(1);273532222xy y x xy xy y x-++- (2);526245222+++-+-xy y x xy xy yx(3)把)(y x -看成一个整体,合并同类项:;5.3)(21)(3)(2)(522--+---+-y x y x y x y x2.先化简,再求值;(1)23452222--++-x x x x x ,其中;21=x(2)),2(3)4(2323x x x x x -+----其中1-=x ;(3)已知41,2=-=b a ,求代数式b a ab ab b a 2241132++-的值;(4)22313313c a c abc a +--+,其中.3,2,61==-=c b a参考答案1)4(286)3(633)2(2122)1.(25.3)(25)(2354222101.12222222-===+=-=-=-=--=--+-++--abc ab b a x x x y x y x xy y x xyxy y x 原式原式原式原式)()()(练习7:整式加减(3)1.化简:(1);43845222222x a ax ax ax x aax --+-- (2).2)(323512222222xy y x xy y x xy y x xy ---+++--2.先化简,再求值;(1),1284222++--+x x x x 其中;21-=x(2)2261243222-+-+-+a a a a a,其中;1-=a(3)222223232xy xy xy y x xyxy +--+-,其中2,32-==y x ;(4)b a ab ab b a222293510-+-,其中0)1(|2|2=++-b a ;(5)mn nm n m n m n m ++++++-23232)(312)(,其中n m ,均为最大的负整数.参考答案完成时间: 分钟 做对 题 家长签字: 374)(32)5(82)4(33243)3(01)2(4397)1.(25929881.1232222222222=+++-=-=-==-==-=-=-+=--mn n m n m ab b a xy y x a bx x xy ax x a ax 原式原式原式原式原式)()(练习8:整式加减(4)1.填空: (1)=-+)(c b a ; (2))312(3c b a +-= ; (3))()(d c b a ---= ; (4))2(2c b a +-= ;(5))()(d c b a +---= ; (6))]([z y x +--= ;(7)122--x x = ; (8))(2222-=--a c b a ; 2.化简:(1));4()(2)3(y x x y x ----+-- (2)).322()132(833232+-+-+-c c c c c c3.先化简,再求值:(1))43()28(3a a a --+-+,其中;21=a(2))()3(2323a b b a+-+--,其中;2,1==b a(3),10)126(21)2(222+---y x y x 其中.2,5.0==y x参考答案4313102)3(76)2(231)1.(236102621.2)8(12)7()6()5(42)4()3(63)2()1.(12232222=++-==-+-=-=--=+--++++-++--+---+--+-++y x b b a a c c yx c b x x zy x dc b a cb a dc b a cb a cb a 原式原式原式)()(练习9:整式加减(5) 1.化简:完成时间: 分钟 做对 题 家长签字:(1));232(3692⨯--+-y xy (2))]72(53[2b a a b a ----.2.把13322++---y x xy x 中的二次项放在前面带有“-”的括号里,一次项放在前面带有“+”号的括号里.3.先化简,再求值:(1))63(31)2(213b a b a a ---+,其中;3,2-==b a(2)5)32(3)(222----ab a ab a ,其中;31,2=-=b a(3))42()12()34(222a a a a a a --+-+--,其中;2-=a(4)),63()(222xy x xy x ---其中.1,21-==y x参考答案.494)4(2338)3(3175)2(25.2)1(1)3()32(.2109246121.122222-=+-==+-=-=-==+=++-+-+--++-xy x a a ab b a y x y xy x ba x y 原式原式原式原式)()(练习10:整式加减(6)1.化简:).13(2)22(322+--+-x x x x2.把多项式532322-+---y x y xy x分成两组,两个括号间用负号连接,并且使第一个括号内是含字母x 的项.3.先化简,再求值:(1)),22()13(2)1(22----+y x y x 其中;1,21-==y x(2)),2(2)3(22222b a ab b a ab b a---+-其中;2,1-==b a(3)),2(4)85(222x xy x xy y ---+其中;2,21=-=y x(4)],2)34(217[322x x x x----其中.21-=x参考答案 4955)4(3)3(4)2(234)1.(3)53()23.(24.12222222=-==+=-=-=-=+=+----+x x xy y ab y x y y x xy x x 原式原式原式原式完成时间: 分钟 做对 题 家长签字:练习11:整式加减(7)1.化简:.)]3(4[23c b c a c b +-----2.先化简,再求值:(1)),23(25)38(22m mn mn mmn ----其中;31,2-==n m(2))(2)42(222y x y x x-+--,其中;21,1=-=y x(3),3)72(31)31(222-+-+yx y y xy 其中;2,1=-=y x(4))],23(22[322y x xy xy y x---其中.2,1=-=y x3.已知,662,3334,433222322332233-+++=+----=+-++-=xy xy y x y C xy xy y x x y B xy xy y x y x A 求C B A ++.参考答案1.384)4(312331)3(22)2(63)1.(24.122-==-=--==+==-=xy xy y x mn m a原式原式原式原式练习12:整式加减(8)1.化简:)].3(2[43222ab a a ab a--+-2.先化简,再求值:(1)],4)3(22[3a b a b a --+--其中;21,3=-=b a(2)),123()344()672(322332-+----++++--x x x x x x x xx 其中21-=x ;(3)],4)(2[322222xy y x xy y x y x----其中;5,1-=-=y x(4),3]4)31(323[212222abc c a c a abc b a b a ------其中.1,3,1=-=-=c b a完成时间: 分钟 做对 题 家长签字:3.已知.24,5232222a b ab B ab a b A -+=+-=(1)化简:;32B A - (2)若|1|+a 和2)2(-b 是相反数,求B A 32-的值.参考答案3)2(232)1.(3932)4(1255)3(41)2(1185)1.(222.1222222=--=-=+-=-==-=-=-=+=+原式原式原式原式原式aba B A c ab a xy x b a aba练习13:易错专题训练(1)1.化简:(1));2(2)3(3x y y x --- (2)].4)131(32[522x x x x+---2.在122322-+-++-y x y xy x 中,不改变代数式的值,把含字母x 的项放在前面带“+”号的括号里,同时把不含字母x 的项放在前面带“-”的括号里.3.先化简,再求值:(1))12(2222-+--x x x ,其中;21-=x(2)),2(222222y x z x xy z x y x-++-其中z y x ,,是你喜欢的数值;(3)),321(4)(5)31(1222222+--+-b a b a ab ab b a 其中5,51==b a .4.若2,1-==b a,求整式222225)]4(22[3ab ab b a ab b a -+---的值.参考答案 2.46125)3(0,0.0)2(5244)1.(3)223()1(.2321171.1222222222=+=-=-+=====+-==+-=-+-++------ab b a ab b a y x xy z x x x x xy x y y x x yx 原式原式(答案不唯一)原式令原式原式)()(完成时间: 分钟 做对 题 家长签字: 练习14:易错专题训练(2)1.化简:).35()13(222x x x x-+----2.先化简,再求值:(1)ab b a ab ab b a2)523(5222++--,其中1,2-==b a ;(2)22223])4321(42[3xy xy y x xy xy y x++---,其中;1,3-==y x(3))2(3)2(4)2(2)2(522b a b a b a b a +++-+-+,其中;9,21==b a(4)]}5)2(23[2{b a b a a b a ++-+-+,其中;1,21-==b a3.已知0|3||2|2=++-+mn n m ,求]3)(2[3)]([mn n m n m mn -+-++的值.参考答案 40.3542)4(110)2()3(0)2(1443)1.(2393.12222--=+-==+==+=-=+-=+-b a b a xy xy ab ab x x 原式原式原式原式练习15:易错专题训练(3)1.一个多项式加上2352-+x x的2倍得x x +-231,求这个多项式.2.先化简,再求值(1)),4()3334(332a a a aa +----+其中2-=a ;(2))(3)(3)22(22222222y y x x y x y x+++--,其中;2,1=-=y x(3))]213(2)5[(32222y xy x y xy xxy -+--+-,其中.2,1=-=y x3.已知222225,23,0)5(|2|4y xy x B y xy x A y x -+=+-==-++,求B A 3-的值.4.已知22223,3b ab a Q b ab a P+-=++=,化简:)].(2[Q P P Q P ----参考答案 22222223222182.41653.374)3(3)2(553537)1.(25925513.1b ab a y xy B A x xy y x a a a xy x x ++=+-=--=+==+-=-=-++-=+--原式原式原式原式)(完成时间: 分钟 做对 题 家长签字:练习16:易错专题训练(4)1.化简:).43(2)]76([323232y y y y y y y-+----2.先化简,再求值:(1)22226)33()(3ab ab ab a ab a+-+--,其中;2,1=-=b a(2)),43(2)]76([323233x x x x x x x----+-其中;1-=x(3),42)()(22222y xy x y x xy y x+---+其中41,2=-=y x .3.若代数式)1532()62(22-+--+-+y x bx y ax x的值与字母x 的取值无关,求代数式:)]3(2[52222ab b a b a ab -+-的值.4.c b a ,,在数轴上的位置如图所示,化简:.||||2||b c c a b a -+---参考答案c a b c c a a b b a y x y x x ab a -=-+-+-=-==-==++=-==-=+=22.460,1,3.304)3(1515)2(1032)1.(2222原式原式原式原式原式。
苏教版七年级数学代数式知识点汇总及练习题
苏教版七年级代数式知识点汇总及练习题姓名 日期:代数式章节知识点汇总1、代数式:用运算符号(加、减、乘、除、乘方和开方等)将 的式子;单独的2、同类项:所含字母相同,并且相同字母的指数也分别相同的项。
3、整式:单项式和多项式统称为整式。
(1)单项式:由数字与字母的积或字母与字母的积所组成的代数式(单独的一个数字或字母也是单项式)。
①单项式中的数字因数叫做这个单项式的系数。
②所有字母的指数之和叫做这个单项式的次数。
任何一个非零数的零次方等于1。
(2)多项式:几个单项式的和组成的式子(减法中有:减一个数等于加上它的相反数)。
①多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数。
4、整式的加减: 几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接.整式加减的一般步骤是: (i)如果遇到括号.按去括号法则先去括号:括号前是“十”号,把括号和它前面的“+”号去掉。
括号里各项都不变符号,括号前是“一”号,把括号和它前面的“一”号去掉.括号里各项都改变符号。
(ii )合并同类项: 同类项的系数相加,所得的结果作为系数.字母和字母的指数不变。
一、选择题。
1.下列代数式表示a 、b 的平方和的是( )A .(a+b )2B .a+b 2C .a 2+b D .a 2+b 22.下列各组代数式中,为同类项的是( ) A .5x 2y 与-2xy 2B .4x 与4x2C .-3xy 与32yx D .6x 3y 4与-6x 3z 4 3.下列各式中是多项式的是 ( ) A.21-B.y x +C.3abD.22b a -4.下列说法中正确的是( ) A.x 的次数是0 B.y 1是单项式 C.21是单项式 D.a 5-的系数是5 5.-a+2b -3c 的相反数是( )A .a -2b+3cB .a 2-2b -3c C .a+2b -3c D .a -2b -3c 6.当3≤m<5时,化简│2m -10│-│m -3│得( )A .13+mB .13-3mC .m -3D .m -13 7.已知-x+2y=6,则3(x -2y )2-5(x -2y )+6的值是( )A .84B .144C .72D .360 8.如果多项式A 减去-3x+5,再加上x 2-x -7后得5x 2-3x -1,则A 为( )A .4x 2+5x+11B .4x 2-5x -11C .4x 2-5x+11D .4x 2+5x -11 9.下列合并同类项正确的是( )A .2x+4x=8x 2B .3x+2y=5xyC .7x 2-3x 2=4 D .9a 2b -9ba 2=0 10.只含有z y x ,,的三次多项式中,不可能含有的项是( )A.32xB.xyz 5C.37y - D.yz x 241 11.若代数式2x 2+3x+7的值是8,则代数式4x 2+6x+15的值是( )A .2B .17C .3D .16 12.一批电脑进价为a 元,加上20%的利润后优惠8%出售,则售出价为( ) A .a (1+20%) B .a (1+20%)8% C .a (1+20%)(1-8%) D .8%a 13. 若a 、b 互为倒数,x 、y 互为相反数,则()()y x b a ab ++-的值为( )A.0B.1C.-1D.1或-114. 用棋子摆出下列一组三角形,三角形每边有n 枚棋子,每个三角形的棋子总数是S .按此规律推断,当三角形边上有n 枚棋子时,该三角形的棋子总数S 等于 ( )A. 33-nB. 3-nC. 22-nD. 32-n 二、填空题。
【精选】苏科版数学七年级上册 代数式专题练习(解析版)
一、初一数学代数式解答题压轴题精选(难)1.某超市在十一长假期间对顾客实行优惠,规定如下:________元:小明妈妈一次性购300元的衣服,她实际付款________元:如果他们两人合作付款,则能少付________元. (2)小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款________元(用含x的式子表示,写最简结果)(3)如果小芳奶奶两次购物货款合计900元,第一次购物的货款为a元(200<a<300),两次购物小芳奶奶实际付款多少元?(用含a的式子表示)(4)如何能更省钱,请给出一些建议.【答案】(1)190;280;10(2)(0.8x+60)(3)解:100+0.9(a-100)+100+0.9×(500-100)+0.8(900-a-500)=(0.1a+790)元. 答:两次购物小芳奶奶实际付款(0.1a+790)元。
(4)解:一次性购物能更省钱。
【解析】【解答】(1)解:小明的爷爷一次性购200元的保健食品,他实际付款100+0.9×(200-100)=190元:小明妈妈一次性购300元的衣服,她实际付款100+0.9×(300-100)=280元:如果他们两人合作付款,则能少付190+280-[100+0.9×(200+300-100)]=10元.故答案为:190;280;10( 2 )解:小芳奶奶在该超市一次性购物x元生活用品,当x大于或等于500时,她们实际付款100+360+0.8(x-500)=(0.8x+60)元.故答案为:(0.8x+60)【分析】(1)根据优惠办法"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠"可球得实际付款;(2)由"少于100元不予优惠,超过100元但低于500元,超过100元部分给予九折优惠,超过500元的,超过500元部分给予八折优惠"可列出代数式;(3)分别求出两次购物小芳奶奶实际付款的钱数,相加即可求解;(4)通过计算可知一次性购物能更省钱.2.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收贵的价目表如下(注:水费按月份结算,m3表示立方米)5m3和8m3,则应收水费分别是________元和________元.(2)若该户居民3月份用水量am3(其中6<a≤10),则应收水费多少元?(用含a的式子表示,并化简)(3)若该户层民4、5两个月共用水14m3(5月份用水量超过4月份),设4月份用水xm3,求该户居民4、5两个月共交水费多少元?(用含x的式子表示,并化简)【答案】(1)10;20(2)解:由依题意得:6×2+(a﹣6)×4=4a﹣12(元)答:应收水费(4a﹣12)元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数式与方程知识点及经典例题列代数式1.甲数比乙数的2倍大3,若乙数为x ,则甲数为………………………………………( )A .2x -3B . 2x+3C .21x -3D .21x+3 2.a 、b 两数的平方和: a 、b 两数的平方差:a 、b 两数和的平方: a 、b 两数差的平方:a 与b 的倒数的和: a 与b 的和的倒数:a 与b 的倒数的差: a 与b 的差的倒数:3.【打折问题】苹果每千克P 元,买10千克以上打9折,买20千克应 元。
4.【出租车问题】已知某市出租车的起步价是10元(3≤x 公里),超过3公里的路程,每公里收费1.8元,当x >3公里时,所付的费用是 元。
5.【水费问题】我市为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费;若每月用水超过7立方米,则超过部分按每立方米2元收费. 如果某居民用户今年5月用水a 立方米,那么这户居民今年5月应交纳水费 元; 如果某居民用户今年5月缴纳了17元水费,那么这户居民今年5月的用水量为________立方米 .5.【风速、水流问题】某飞机无风航速为a 千米/时,风速为20千米/时,飞机顺风飞行4小时的行程是 千米;逆风飞行3小时的行程是 千米考点三:解方程143312=---x x 154353+=--x x 352)63(61-=-x x 36)452(3)233(51=---x x 21131+-=--x x 15331++=--x x x 1255241345--=-++y y y 14126110312-+=+--x x x 方程的应用1.若23(2)0x y ++-=,则=yx __________。
2.代数式353x x x -+-与互为相反数,则的值为___________.3.如果23321133a b x y x y +--与是同类项,那么a=_________,b=___________. 4.方程423x m x +=-与方程662x -=-的解一样,则m =________. 【数字问题】○1三个连续偶数的和是60,那么其中最大的一个是 ○2一个两位数,个位上的数字是十位上数字的3倍,它们的和是12, 那么这个两位数是______ .○3一个两位数的个位数字与十位数字都是x ,如果将个位数字与十位数字分别加2和1,所得新数比原数大12,则可列方程是( )A. 2312x +=B. (10)10(1)(2)12x x x x +-+-+=C. 2312x +=D. 10(1)(2)1012x x x x +++=++○3一个两位数,个位数字与十位数字的和为9,如果将个位数字与十位数字对调后所得新数比原数大9,则原来两位数是( )A.54B.27C.72D.45○4有一列数,按一定规律排列成 8127931、、、、--其中某三个相邻的数之和是-1701,求这三个数分别为多少?【行程问题】○1一艘船从甲码头到乙码头顺水行驶,用了2小时;从乙码头返回甲码头逆水行驶,用了2.5小时,已知水流的速度是3千米/时。
求船在静水中的平均速度。
○2一架飞机在两域之间飞行。
风速为24千米/时。
顺风飞行需要2小时50分,逆风飞行需要3小时。
求无风时飞机的航速和两域之间的航程。
○3电气机车与磁悬浮列车从相距298千米的两地同时出发相对而行。
磁悬浮列车的速度比电气机车的速度的5倍还快20千米/时,半小时后两车相遇,两车的速度各是多少? ○4东华运动场的跑到一圈长400米,甲练习骑自行车,平均每分骑350米,乙练习跑步,平均每分跑250米,两人从同一处同时反向出发,经过多少时间首次相遇?若同向出发,经过多少时间首次相遇?○5甲、乙两站间的距离为365千米,一列慢车从甲站开往乙站,每小时行驶65千米;慢车行驶了1小时后,另有一列快车从乙站开往甲站,每小时行驶85千米,快车行驶了几小时后与慢车相遇?○6一列火车匀速行驶,经过一条长300米的隧道需要20S 的时间,隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?若能,火车的长度是多少?若不能,请说明理由。
【工程问题】○1.某工厂计划每天烧煤5吨,实际每天少烧2吨,m 吨煤多烧了20天,则可列的方程是( ) A. 2052m m -= B. 2053m m -= C. 2057m m -= D. 2035m m -= ○2做500个零件,甲要4个小时,乙要5个小时,两人合作需要多少小时完成?甲做了多少个零件?○3一件工作甲单干用20小时完成,乙单干用的时间比甲多4小时,丙单干用的时间是甲的21还多2小时. (1)甲的工作效率是 乙的工作效率是 丙的工作效率是(2)甲乙合作此项工作需要 小时完成(3)若甲、乙合作先干10小时,丙单干再用 小时完成?○4.一项工程甲单独做要40天完成,乙单独做要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是( ) A.44014050x +=+ B. 44014050x +=⨯C. 440150x += D. 44014050x x ++= ○5某中学的学生自己动手整修操场,如果让初一学生单独工作,需要7.5小时完成,如果让初二学生单独工作,需要5小时完成,。
如果让初一、初二学生一起工作1小时,再由初二学生单独完成剩余部分,共需多少小时完成?○6整理一批数据,由一人做需要80小时完成,现在计划先由一些人做2小时,再增加5人做8小时,完成这项工作的43,问怎样安排参与整理数据的具体人数? 【调配问题】○1一批图书分给25班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本,这个班有多少名学生?这批图书共有多少本?○2某班原分成两个小组活动,第一组26人,第二组22人,根据学校活动器材的数量,要将第一组人数调整为第二组人数的一半,应从第一组调多少人到第二组去?○3某校师生参加建校劳动,原来安排80人挖土,52人运土,后来情况变化要求挖土人数是运土人数的3倍,那么需要从运土的人中调出多少人去挖土?○4课外活动中,一些学生分组参加活动。
原来每组8人,后来重新编组,每组12人,这样比原来减少2组。
问这些学生共有多少人?【配套问题】○1有工人100名,每人每天平均可以加工螺栓18个或螺母24个,要使每天加工的螺栓和螺母配套(1个螺栓配2个螺母)(若2:3),若设分配x 个工人加工螺栓,则可列方程为( )A .)100(2418x x -=B .2)100(2418⨯-=x xC .)100(24218x x -=⨯D .x x 242)100(18=⨯-○2某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母。
为了使每天的产品刚好配套,应该分配多少名工人生产螺钉,多少名工人生产螺母?【方案设计问题】○1小文经常去某影碟出租店租影碟,该影碟点开设两种租碟方式:方式一是零星租碟,每张收费1元;另一种是会员卡租碟,会员每月交会员费12元,另外租碟费每张0.4元:(1)若小文某月一共租了15张影碟,按哪种方式更划算?(3分)(2)是否存在某个影碟数量,使两种方式下小文所需支付的钱数一样多?若存在,请算出该数量.(3分)(3)请分析在哪种情况下按方式一更划算,哪种情况下按方式二更划算.(2分)○2某学校要刻录一批电脑光盘,若到电脑公司刻录,每张需要8元;若学校自己刻,除租用刻录机需要120元外,每张还需要成本4元。
(1)刻录多少张光盘时,到电脑公司刻录与学校自己刻录所需费用一样?(2)刻录多少张光盘时,学校自己刻录较合算?○3某中学组织初一同学参加一次公益活动,需乘车前往,原计划租用45座客车若干辆,但15人没有座位,如果改租60座客车,则恰可少租一辆,且每辆刚好座满.已知45座客车租金为每辆220元,60座客车租金为每辆300元,试问:(1)初一年级人数是多少?原计划租用45座客车多少辆?(2)要使每个同学都有座位,怎样租用车辆更合算?○4某地电话拨号入网有两种收费方式,用户可以任选其一:(A)计时制:0.05元/分;(B)包月制:50元/月。
此外,每一种上网方式都得加收通信费0.02元/分。
(1)某用户某月上网的时间为x小时,请你分别写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网的时间为20小时,你认为采用那种方式较为合算?【年龄问题】○1儿子今年12岁,父亲今年39岁,()父亲的年龄是儿子的年龄的4倍.(A)3年后;(B)3年前;(C)9年后;(D)不可能○2今年,小李的年龄是他爷爷年龄的51,12年后,他的年龄是爷爷年龄的31,试求出今年小李的年龄。
○3小明说:“我姐姐今年的年龄是我去年的年龄的2倍少6,”已知姐姐今年20岁,问小明今年几岁?【利率问题】○1若125班有a 名女生,其中男生占60%,则全班人数为 ○2 某件商品9折降价销售后每件商品售价为a 元,则该商品每件原价为( )。
A. 9.0a B. 1.1a C. 0.9a D. 1.1a ○3一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本为 元. (结果保留整数)○4为了拓展销路,商店对某种照相机的售价作了调整,按原价的8折出售,此时的利润率为14%,若此种照相机的进价为1200元,问该照相机的原售价是多少元?○5某商贩在一次买卖中,同时卖出两件上衣,每件都以135元出售,若按成本计算,其中一件赢利25%,另一件亏本25%,在这次买卖中,该商贩( ).(A )不赔不赚 (B )赚9元 (C )赔18元 (D )赚18元○6小红的妈妈将一笔奖金存入银行,一年定期,按照银行利率牌显示:定期储蓄一年的年利率是2.25%,利息税是20%,经计算, 小红的妈妈可在一年后得到税后利息108元,那么小红的妈妈存入的奖金是_________元。