有限元分析报告大作业

合集下载

有限元的大作业报告示例

有限元的大作业报告示例

1.题目概况
矩形板尺寸如下图1,板厚为5mm。

材料弹性模量为
松比μ= 0.27 。

施加约束和载荷并讨论:

1 计算简图
1.1基本数据
E = 2⨯105N/mm2,泊
序号载荷约束备注42 向下集中载荷F=800N, 作用于cd 边3/4 处(近d) c d 点简支
1.2分析任务/分析工况
讨论板上开孔、切槽等对于应力分布的影响。

(载荷约束组合不变)。

提示:各种圆孔,椭圆孔随大小、形状、数量,分布位置变化引起的应力分布变化;各种形状,大小的切槽及不同位置引起应力分布的变化等,选择二至三种情况讨论,并思考其与机械零部件的构型的相对应关系。

2.模型建立
2.1单元选择及其分析
由于平板长宽分别为300x100,故可取网格单元大小为1。

如图:
2.2模型建立及网格划分
模型按单元为1 划分后的网格大小如图所示:
2.3载荷处理
向下集中载荷F=800N, 作用于cd 边3/4 处(近d) c d 点简支
3.计算分析
3.1位移分布及其分析
(1)位移分布如图:。

有限元分析报告大作业

有限元分析报告大作业

《有限元分析》大作业基本要求:1. 以小组为单位完成有限元分析计算,并将计算结果上交;2. 以小组为单位撰写计算分析报告;3. 按下列模板格式完成分析报告;4. 计算结果要求提交电子版,一个算例对应一个文件夹,报告要求提交电子版和纸质版。

《有限元分析》大作业小组成员:储成峰李凡张晓东朱臻极高彬月Job name :banshou完成日期:2016-11-22一、问题描述(要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况和约束情况。

图应清楚、明晰,且有必要的尺寸数据。

)如图所示,为一内六角螺栓扳手,其轴线形状和尺寸如图,横截面为一外接圆半径为0.01m的正六边形,拧紧力F为600N,计算扳手拧紧时的应力分布<图1扳手的几何结构(要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;数学模型图2数学模型如图二所示,扳手结构简单,直接按其结构进行有限元分析。

三、有限元建模3.1单元选择(要求:给出单元类型,并结合图对单元类型进行必要阐述, 包括节点、自由度、 实常数等。

)图3单元类型扳手截面为六边形,采用4节点182单元,182单元可用来对固体结构进行如进行了简化等处理,此处还应给出文字说明。

)Figure 1B2.1: PLANE1S2 Geometry二维建模。

182单元可以当作一个平面单元,或者一个轴对称单元。

它由4个结点组成,每个结点有2个自由度,分别在x,y方向。

扳手为规则三维实体,选择8节点185单元,它由8个节点组成,每个节点有3个自由度,分别在x,y,z方向。

3.2实常数(要求:给出实常数的具体数值,如无需定义实常数,需明确指出对于本问题选择的单元类型,无需定义实常数。

)因为该单元类型无实常数,所以无需定义实常数3.3材料模型(要求:指出选择的材料模型,包括必要的参数数据。

)对于三维结构静力学,应力主要满足广义虎克定律,因此对应ANSYS^的线性,弹性,各项同性,弹性模量EX 2e11 Pa,泊松比PRXY=0.33.4几何建模由于扳手结构比较简单,所以可以直接在ANSYS软件上直接建模,在ANSYS建立正六边形,再创立直线,面沿线挤出体,得到扳手几何模型VULUHES 1TYPE NUMEZ图4几何建模3.5网格划分方案(要求:指出网格划分方法,网格控制参数,最终生成的单元总数和节点总数,此外还应附上最终划分好的网格截图。

有限元分析大作业报告

有限元分析大作业报告

有限元分析大作业报告一、引言有限元分析是工程领域中常用的数值模拟方法,通过将连续的物理问题离散为有限个子区域,然后利用数学方法求解,最终得到数值解。

有限元分析的快速发展和广泛应用,为工程领域提供了一种强大的工具。

本报告将介绍在大作业中所进行的有限元分析工作及结果。

二、有限元模型建立本次大作业的研究对象是工程结构的应力分析。

首先,通过对结构进行几何建模,确定了结构的尺寸和形状。

然后,将结构离散为有限个单元,每个单元又可以看作一个小的子区域。

接下来,为了求解结构的应力分布,需要为每个单元确定适当的单元类型和单元属性。

最后,根据结构的边界条件,建立整个有限元模型。

三、材料属性和加载条件在建立有限元模型的过程中,需要为材料和加载条件确定适当的参数。

本次大作业中,通过实验获得了结构材料的弹性模量、泊松比等参数,并将其输入到有限元模型中。

对于加载条件,我们选取了其中一种常见的加载方式,并将其施加到有限元模型中。

四、数值计算和结果分析为了求解结构的应力分布,需要进行数值计算。

在本次大作业中,我们选用了一种常见的有限元求解器进行计算。

通过输入模型的几何形状、材料属性和加载条件,求解器可以根据有限元方法进行计算,并得到结构的应力分布。

最后,我们通过对计算结果进行分析,得出了结论。

五、结果讨论和改进方法根据计算结果,我们可以对结构的应力分布进行分析和讨论。

根据分析结果,我们可以得出结论是否满足设计要求以及结构的强度情况。

同时,根据分析结果,我们还可以提出改进方法,针对结构的特点和问题进行相应的优化设计。

六、结论通过对工程结构进行有限元分析,我们得到了结构的应力分布,并根据分析结果进行了讨论和改进方法的提出。

有限元分析为工程领域提供了一种有效的数值模拟方法,可以帮助工程师进行结构设计和分析工作,提高设计效率和设计质量。

【1】XXX,XXXX。

【2】XXX,XXXX。

以上是本次大作业的有限元分析报告,总结了在建立有限元模型、确定材料属性和加载条件、数值计算和结果分析等方面的工作,并对计算结果进行讨论和改进方法的提出。

有限元分析大作业

有限元分析大作业

有限元大作业一题目要求:图1所示为一悬臂梁,在端部承受载荷,材料弹性模量为E,泊松比为1/3,悬臂梁的厚度(板厚)为t,若该粱被划分为两个单元,单元和节点编号如图所示,试按平面应力问题计算各个节点位移计支反力。

一、单元划分1.计算简图及单元划分如下所示:2.进行节点及单元编号节点i j m单元① 2 3 4② 3 2 13.节点坐标值节点号1 2 3 4坐标值X 2 2 0 0Y 1 0 1 0二、计算单元刚度矩阵1、计算每个单元面积△以及i b ,i c (m j i i ,,=) ①②单元的面积相等,即12121=⨯⨯=∆ 单元①的i b ,i c⎩⎨⎧=--==-=0)(1m j i m j i y x c y y b ⎩⎨⎧=--==-=2)(0i m ji m j x x c y y b ⎩⎨⎧-=--=-=-=2)(1j i mj i m y x c y y b 对平面应力问题,其表达式为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+-+-+∆-=s r s r sr s r s r s r s r s r b b uc c cb u b uc b c u c ub c c u b b u Et Krs 21212121)1(42 然后对单元①求解单元刚度子矩阵2==i r 2==i s []⎥⎦⎤⎢⎣⎡=3/1001329)1(22Et K 2==i r 3==j s []⎥⎦⎤⎢⎣⎡=03/23/20329)1(23Et K2==i r 4==m s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)1(24Et K 3==j r 3==j s []⎥⎦⎤⎢⎣⎡=4003/4329)1(33Et K 3==j r 2==i s []⎥⎦⎤⎢⎣⎡=03/23/20329)1(32Et K 3==j r 4==m s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)1(34Et K 4==m r 4==m s []⎥⎦⎤⎢⎣⎡=3/133/43/43/7329)1(44Et K 4==m r 2==i s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)1(42Et K 4==m r 3==j s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)1(43Et K由子矩阵[]e rs K 合成单元刚度矩阵[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=3/133/443/23/13/23/43/73/23/43/2143/24003/23/23/403/43/203/13/203/23/103/213/2001329)1(Et K将单元①的单元刚度矩阵补零升阶变为单元刚度矩阵,其在总体刚度矩阵中的位置为:节点号→单元②的i b ,i c⎩⎨⎧=--=-=-=0)(1m j im j i y x c y y b ⎩⎨⎧-=--==-=2)(0i m ji m j x x c y y b ⎩⎨⎧=--==-=2)(1j i mj i m y x c y y b 然后对单元 求解单元刚度子矩阵:3==i r 3==i s []⎥⎦⎤⎢⎣⎡=3/1001329)2(33Et K 3==i r 2==j s []⎥⎦⎤⎢⎣⎡=03/23/20329)2(32Et K 3==i r 1==m s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)2(31Et K 1 2 3 412[])1(22K[])1(23K[])1(24K3[])1(32K[])1(33K[])1(34K4[])1(42K[])1(43K[])1(44K2==j r 2==j s []⎥⎦⎤⎢⎣⎡=4003/4329)2(22Et K 2==j r 3==i s []⎥⎦⎤⎢⎣⎡=03/23/20329)2(23Et K 2==j r 1==m s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)2(21Et K 1==m r 1==m s []⎥⎦⎤⎢⎣⎡=3/133/43/43/7329)2(11Et K 1==m r 3==i s []⎥⎦⎤⎢⎣⎡----=3/13/23/21329)2(13Et K 1==m r 2==j s []⎥⎦⎤⎢⎣⎡----=43/23/23/4329)2(12Et K 由子矩阵[]e rs K 合成单元刚度矩阵[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡----------------=3/133/443/23/13/23/43/73/23/43/2143/24003/23/23/403/43/203/13/203/23/103/213/2001329)2(Et K将单元②的单元刚度矩阵补零升阶变为单元贡献矩阵,其在总体刚度矩阵中的位置为:节点号→1 2 3 41 [])2(11K[])2(12K[])2(13K2 [])2(21K[])2(22K[])2(23K3 [])2(31K [])2(32K [])2(33K 4三、计算总体刚度矩阵总体刚度矩阵是由各单元的贡献矩阵迭加而成)2()1(][][][][K K K K e +==∑四、进行节点约束处理根据节点约束情况,在总刚矩阵中可采用划行划列处理约束的方法,由题目易知,节点3和4的已知水平位移和垂直位移都为零,划去其相对应的行和列,则总刚矩阵由8阶变为4阶,矩阵如下:⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------2/02/03/13043/203/73/23/443/23/133/43/23/43/43/73292211p p v u v u Et329][Et K =1 2 3 413/133/43/43/743/23/23/4----3/13/23/21----000243/23/23/4----3/13003/73/43/403/13/23/21----33/13/23/21----3/43/403/13003/743/23/23/4----40003/13/23/21----43/23/23/4----3/133/43/43/7化简⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------Et p Et p v u v u 3/1603/160130122072412213424472211 五、求解线性方程组方法:采用LU 分解法 1.求解矩阵[]U 各元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------75/10775/640075/6475/353007/767/27/7502447~7/877/87/7607/87/337/207/767/27/7502447~13012207241221342447⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----353/44900075/6475/353007/767/27/7502447~ 得到的[]U 矩阵如下:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=353/44900075/6475/353007/767/27/7502447U 2.求解矩阵[]L 各元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----13012207241221342447353/44900075/6475/353007/767/27/75024471353/6475/767/20175/27/40017/40001 得到的[]L 矩阵如下:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--------=13012207241221342447L3.进行求解⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧---=⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧--=Et p Et p Et p y Et p Et p Ly 79425/850800225/323/1603/1603/160⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⇒=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡Et p Et p Et p v u v u y v u v u U 79425/850800225/323/160353/44900075/6475/353007/7675/27/750244722112211 解得Et p v /422.82-= Et p u /497.12-= Et p v /028.91-= Et p u /897.11=于是求得各节点的位移为:⎩⎨⎧-==Etp v Etp u /028.9/897.111 ⎩⎨⎧-=-=Etp v Etp u /422.8/497.122 ⎩⎨⎧==033v u ⎩⎨⎧==044v u 六、求解相应的支反力(运用静力学的平衡方程进行求解)3号节点和4号节点的支反力如下图所示:。

(完整word版)有限元分析大作业报告要点

(完整word版)有限元分析大作业报告要点

有限元分析大作业报告试题1:一、问题描述及数学建模图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:(1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(2)分别采用不同数量的三节点常应变单元计算;(3)当选常应变三角单元时,分别采用不同划分方案计算。

该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。

二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算1、有限元建模(1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences 为Structural(2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。

因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。

(3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3(4)建几何模型:生成特征点;生成坝体截面(5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后得到600个单元。

(6)模型施加约束:约束采用的是对底面BC 全约束。

大坝所受载荷形式为Pressure ,作用在AB 面上,分析时施加在L AB 上,方向水平向右,载荷大小沿L AB 由小到大均匀分布。

以B 为坐标原点,BA 方向为纵轴y ,则沿着y 方向的受力大小可表示为:}{*980098000)10(Y y g gh P -=-==ρρ2、 计算结果及结果分析 (1) 三节点常应变单元三节点常应变单元的位移分布图三节点常应变单元的应力分布图(2)六节点三角形单元六节点三角形单元的变形分布图六节点三角形单元的应力分布图①最大位移都发生在A点,即大坝顶端,最大应力发生在B点附近,即坝底和水的交界处,且整体应力和位移变化分布趋势相似,符合实际情况;②结果显示三节点和六节点单元分析出来的最大应力值相差较大,原因可能是B点产生了虚假应力,造成了最大应力值的不准确性。

有限元分析大作业

有限元分析大作业

《有限元分析及应用》大作业——齿根弯曲应力计算报告班级:无可奉告姓名:无可奉告学号:无可奉告指导老师:无可奉告目录目录 (2)1.概述 (3)1.1工程问题描述 (3)1.2问题分析 (3)2.建模过程 (4)2.1几何建模 (4)2.2CAE网格划分与计算 (5)2.3后处理 (8)3.多方案比较与结果分析 (9)3.1多方案比较 (9)3.2结果分析 (11)1.概述1.1工程问题描述我在本次作业中的选题为齿根弯曲应力的计算与校核。

通过对机械设计的学习,我们可以知道,齿轮的失效形式主要是齿面接触疲劳和齿根弯曲断裂,而闭式传动硬齿面齿轮的失效形式以齿根弯曲断裂,这个时候进行齿根弯曲应力的校核才比较有意义,在设计问题的时候应当选取这种类型的算例。

设计计算的另一个主要思路是将有限元计算的结果与传统机械设计的结算结果进行对比,以从多方面验证计算结果的准确性。

综上,我们最终选取了《机械原理》(第三版)P50例3-1中的问题进行校核计算。

已知起重机械用的一对闭式直齿圆柱齿轮,传动,输入转速n1=730r/min,输入功率P1=35kW,每天工作16小时,使用寿命5年,齿轮为非对称布置,轴的刚性较大,原动机为电动机,工作机载荷为中等冲击。

z1=29,z2=129,m=2.5mm,b1=48mm,b2=42mm,大、小齿轮均为20CrMnTi,渗碳淬火,齿面硬度为58~62HRC,齿轮精度为7级,试验算齿轮强度。

齿面为硬齿面,传动方式为闭式传动。

根据设计手册查出的许用接触应力为1363.6Mpa,计算结果为1260Mpa,强度合格。

根据设计手册查出的许用弯曲应力为613.3MPa,计算结果为619Mpa,强度略显不够。

1.2问题分析大小齿轮啮合,小齿轮受载荷情况较为严峻,故分析对象应当为小齿轮。

可以看出,由于齿轮单侧受载荷,传动过程中每个齿上载荷的变化过程是相同的,故问题可被简化为反对称问题,仅需研究单个齿。

有限元分析报告

有限元分析报告

有限元分析大作业计算分析报告A、问题描述及数学建模;B、有限元建模(单元选择、结点布置及规模、网格划分方案、载荷及边界条件处理、求解控制)C、计算结果及结果分析(位移分析、应力分析、正确性分析评判)D、多方案计算比较(结点规模增减对精度的影响分析、单元改变对精度的影响分析、不同网格划分方案对结果的影响分析等)E、建议与体会试题1图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较:1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(X)2)分别采用不同数量的三节点常应变单元计算;(V)3)当选常应变三角单元时,分别采用不同划分方案计算。

(V)1 •有限元建模单元选择、结点布置及规模、网格划分方案、载荷及边界条件处理、求解控制1)单元选择:由于ANSYS没有提供三角形常应变单元,故采用六节点三角形单元进行计算。

2)结点布置:(0,0)(6,0)(10,0)(3,0)(0,5)(3,5)3)单元数目:44)网格划分方案万案1 万案25)边界条件底边加上UX , UY的约束6)载荷受齐顶的水压力作用,呈阶梯状分布,载荷函数为F=1000 (10-Y)7)求解控制:默认,单一载荷步2 •计算结果及结果分析(位移分析、应力分析、正确性分析评判)1)位移结果与应力分析方1 :最大位移为0.109X10-05最大应力为15936最小应力为5181万案2:最大位移为0.130X10-05最大应力为15058最小应力为78342)正确性分析从应力分布图中,我们比较这两种网格划分方案的优劣,方案1的应力最大位置在(0,0)处,方案2的应力最大位置在(6,0)处,显然,方案1更贴近实际情况,因为其左下角的单元与整体单元的受力情况相似,而方案2则有较大的差别。

但是,由于这两种网格划分都非常粗燥,根据常识,在坝顶处,其受力为0,应力应接近于0,而这两种情况的最小应力分别为5181和7834。

ansys有限元分析报告大作业

ansys有限元分析报告大作业

有限元大作业设计题目: 单车的设计及ansys有限元分析专业班级:姓名:学号:指导老师:完成日期: 2016.11.23单车的设计及ansys模拟分析一、单车实体设计与建模1、总体设计单车的总体设计三维图如下,采用pro-e进行实体建模。

在建模时修改proe默认单位为国际主单位(米千克秒 mks)Proe》文件》属性》修改2、车架车架是构成单车的基体,联接着单车的其余各个部件并承受骑者的体重及单车在行驶时经受各种震动和冲击力量,因此除了强度以外还应有足够的刚度,这是为了在各种行驶条件下,使固定在车架上的各机构的相对位置应保持不变,充分发挥各部位的功能。

车架分为前部和后部,前部为转向部分,后部为驱动部分,由于受力较大,所有要对后半部分进行加固。

二、单车有限元模型 1、材料的选择单车的车身选用铝合金(6061-T6)T6标志表示经过热处理、时效。

其属性如下:弹性模量:)(2N/m 1090E .6泊松比:0.33质量密度:)(2N/m 32.70E + 抗剪模量:)(2N/m 1060E .2+ 屈服强度:)(2N/m 875E .2+ 2、单车模型的简化为了方便单车的模拟分析,提高电脑的运算效率,可对单车进行初步的简化;单车受到的力的主要由车架承受,因此必须保证车架能够有足够的强度、刚度,抗振的能力,故分析的时候主要对车架进行分析。

简化后的车架如下图所示。

3、单元体的选择单车车架为实体故定义车架的单元类型为实体单元(solid )。

查资料可以知道3D 实体常用结构实体单元有下表。

4、网格的划分1)建模使用proe,导出为IGES,再将IGES格式的车架导入ansys中file→import→IGES→找到格式为IGES的车架文件,文件导入后如下图。

2)选择单元体Main Menu→Preprocessor→Element Type→Add/Edit/Delete→Add(弹出对话框选择下图所示的单元体)3)定义车架材料的属性Main Menu →Preprocessor →Material Props →Material Models (按照下图给车架定义材料属性)定义材料的弹性模量:)(2N/m 1090E .6+、泊松比:0.33定义材料的质量密度:)(2N/m 32.70E +4)画分网格Main Menu→Preprocessor→Meshing →Mesh Tool→弹出的对话框中设置网格的边界长度设为10→点Mesh→pick all(自动生成网格如下图所示)三、单车静强度分析1)导入已画分好的模型网格2)进行菜单过滤Main Menu→Preferences→弹出的对话框中勾选Structural→点OK3)定义分析类型Main Menu→Solution→Analysis Type→New Analysis→勾选Static→点OK4)定义求解控制菜单选择Main Menu→Solution→Analysis Type→Sol’n Controls命令→打开对话框勾选Calculate prestress effects项→OK5)施加约束选择Main Menu→Solution→Define Loads→Apply→Structural→Displacement→OnAreas→选择下边的横杆→点OK→弹出的对话框中选择All DOF→OK完成约束6)施加载荷假设驾驶人的重量为60kg,那么作用在单车上的力的大小就为600N。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有限元分析》大作业基本要求:1.以小组为单位完成有限元分析计算,并将计算结果上交;2.以小组为单位撰写计算分析报告;3.按下列模板格式完成分析报告;4.计算结果要求提交电子版,一个算例对应一个文件夹,报告要求提交电子版和纸质版。

有限元分析》大作业小组成员:储成峰李凡张晓东朱臻极高彬月Job name :banshou完成日期:2016-11-22一、问题描述(要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况和约束情况。

图应清楚、明晰,且有必要的尺寸数据。

)如图所示,为一内六角螺栓扳手,其轴线形状和尺寸如图,横截面为一外接圆半径为0.01m的正六边形,拧紧力F为600N,计算扳手拧紧时的应力分布图1 扳手的几何结构数学模型要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;图 2 数学模型如图二所示,扳手结构简单,直接按其结构进行有限元分析。

三、有限元建模3.1 单元选择要求:给出单元类型, 并结合图对单元类型进行必要阐述, 包括节点、自由度、 实常数等。

)图 3 单元类型如进行了简化等处理,此处还应给出文字说扳手截面为六边形,采用4 节点182单元,182 单元可用来对固体结构进行二维建模。

182单元可以当作一个平面单元,或者一个轴对称单元。

它由4 个结点组成,每个结点有2 个自由度,分别在x,y 方向。

扳手为规则三维实体,选择8 节点185单元,它由8 个节点组成,每个节点有3 个自由度,分别在x,y,z 方向。

3.2 实常数(要求:给出实常数的具体数值,如无需定义实常数,需明确指出对于本问题选择的单元类型,无需定义实常数。

)因为该单元类型无实常数,所以无需定义实常数3.3材料模型(要求:指出选择的材料模型,包括必要的参数数据。

)对于三维结构静力学,应力主要满足广义虎克定律,因此对应ANSYS中的线性,弹性,各项同性,弹性模量EX:2e11 Pa, 泊松比PRXY=0.33.4几何建模由于扳手结构比较简单,所以可以直接在ANSYS软件上直接建模,在ANSYS建立正六边形,再创立直线,面沿线挤出体,得到扳手几何模型图4 几何建模3.5网格划分方案(要求:指出网格划分方法,网格控制参数,最终生成的单元总数和节点总数,此外还应附上最终划分好的网格截图。

)图5 网格划分设定截面每条边线分割份数为3,单元边长为0.01 ,采用映射的划分单元方法最大节点数为2145,单元总数为1000,网格划分如图4 所示3.5载荷及边界条件处理(要求:指出约束条件和载荷条件。

)四、计算结果及结果分析(要求:此处包括位移分析、应力分析、支反力分析等,应附上相应截图及数据,此外还应对正确性进行分析评判。

)。

变形图:如图7 所示,根据材料力学相关分析初步判断,扳手手柄朝力的方向一定的弯曲变形。

图7 变形图位移分析:如图8 所示,扳手手柄向力的方向位移,位移最大在手柄处节点,最大位移:0.514E-03m图8 位移图应力分析:如图 9 所示,根据材料力学分析,应力主要集中在扳手的弯角处,最大应力:0.146E+09Pa附件 1:小组成员工作说明(要求: 明确说明小组各个成员在本次大作业中所做的工作, 工作内容将作为口试提问的依 据之一, 同时也作为成绩评定的依据之一。

需注意,附件 1 的撰写应由小组成员共同完成。

) 储成峰:启动 ANSYS 程序,定义分析类型,单元类型。

张晓东:材料属性,创建几何模型,划分网格。

朱臻极:添加约束,添加载荷。

李凡:处理变形图,应力图,位移图。

高彬月: 计算结果及结果分析, 文档的整理。

附件 2:详细的计算过程说明(按照上机指导的格式撰写)1. 启动 ANSYS 程序开始 — —所 有程序 — — ANSYS ED — — ANSYS Product Launcher — — SimulationEnvironment 下拉框中选择 ANSYSE D , Product 下拉框中选 ANSYSE D ; File Management 选项图 9 应力图卡:设置Working Directory 和Job Name 命名为banshou ——Run。

2.设定分析类型Main Menu ——Preferences ——Structural ——OK。

3.定义单元类型Main Menu——Preprocessor ——Element Type——Add——Structural Solid ,Quad4 Node182 ——Apply —Brick 8node 185--OK 。

4.定义材料属性Main Menu——Preprocessor ——Material Props ——Material Models ——Structural ——Linear ——Elastic ——Isotropic ——EX=2e11,PRXY=0.3.5.创建正六边形拾取菜单main menu —preprocessor —modeling —creat —areas —polygon —hexagon,在wpx,wpy,radius 文本框中分别输入0,0,0.01 。

6.改变视点拾取菜单uility menu —plotctrls —pan zoom rotate ,单击iso ,fit 。

7.显示关键点,线号拾取菜单uility menu —plotctrls —numbering ,把关键点和线号打开,单击ok。

8.创建关键点拾取菜单main menu —preprocessor —modeling —creat —keypoints —in active cs ,在npt 输入7,x,y,z ,输入0,0,0 ,单击apply ,在npt 中输入8,x ,y ,z,输入0,0,0.05, 在npt 中输入9,x,y,z,输入0,0.1,0.05 ,单击ok。

9.创建直线拾取菜单main menu —preprocessor —modeling —creat —lines —lines —straight line ,选取关键点7,8 和8,9 创建两条直线。

10.创建圆角拾取菜单main menu—preprocessor —modeling —creat —lines —linesfillet ,拾取直线7,8 单击ok ,在rad 输入0.01511.创建直线拾取菜单main menu —preprocessor —modeling —creat —lines —lines —straight line ,选取关键点1,4 ,创建直线。

12.将六边形划分为两部分拾取菜单main menu —preprocessor —modeling —operate —Booleans —divide —area by line ,分别拾取六边形面和1,4 间的直线。

13,划分单元拾取菜单main menu—preprocessor —meshing —meshtool ,单击size controls 的lines 后的set ,拾取直线2,3,4 ,单击ok,在NDIV 文本框中输入3,单击apply ,再次拾取直线实用文档7,9,8 单击ok,删除NDIV文本框中的3,在SIZE 文本框中输入0.01 ,单击ok,在mesh 区域中选择单元形状为quad,选择划分单元的方法为mapped,单击mesh,弹出拾取窗口,拾取六边形面的两部分,单击ok14,由面沿直线挤出体拾取菜单main menu —preprocessor —modeling —operate —extrude —areas —alonglines ,分别拾取六边形面的两部分和直线7,9,815,清除面单元拾取菜单main menu—preprocessor —meshing —clear —areas ,拾取z=0 的两个面,点击ok16 . 施加约束拾取菜单main menu —solution —defineloads —apply —structural —displacement —on areas ,弹出拾取窗口,拾取z=0 的两个平面,单击‘ ok',在列表中选择“ ALLDOF”单击“ ok ”拾取菜单main menu —solution —define loads —apply —structural —force/moment —on keypoints, 弹出拾取窗口,拾取扳手长臂端面的六个顶点,单击ok ,选择lab 为fx ,在value 文本框中输入100,单击ok 。

17,求解拾取菜单main menu —solution —solve —current ls —点击solve current load step 中的ok ,出现solution is ok ,可以查看结果18,后处理(1)变形图Main menu ——General Postproc ——Plot Result ——deformed shape(2)应力图Main menu ——General Postproc ——Plot Result ——contour plot ——Nodal solution ——von mises stress(3)位移图Main Menu → General Postproc → Contour Results → Nodal Solution →(Contour Nodal Solution Data 对话框)DOF Solution → Displacement vector sum→ OK。

标准文案。

相关文档
最新文档