高中数学课时作业17对数函数的图象及性质新人教A版必修1

合集下载

高中数学人教A版必修第一册 学案与练习 对数函数的概念、图象及性质

高中数学人教A版必修第一册 学案与练习 对数函数的概念、图象及性质

4.4 对数函数学习目标1.通过对数函数的概念及对数函数图象和性质的学习,培养数学抽象、直观想象素养.2.通过对数函数图象和性质的应用,培养逻辑推理、数学运算素养.第1课时对数函数的概念、图象及性质1.对数函数的概念一般地,函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).2.对数函数的图象与性质我们可以借助指数函数的图象和性质得到对数函数的图象和性质:对数函数的概念[例1] (1)下列函数是对数函数的是( )A.y=lg 10xB.y=log3x2C.y=ln xD.y=lo g13(x-1)(2)若函数f(x)=log a x+(a2-4a-5)是对数函数,则实数a= . 解析:(1)由对数函数的定义,得y=log a x(a>0,a≠1)是对数函数,由此得到y=ln x是对数函数.故选C.(2)由对数函数的定义可知,{a2-4a-5=0,a>0,a≠1,解得a=5.答案:(1)C (2)5判断一个函数是否为对数函数的方法判断一个函数是对数函数必须是形如y=log a x(a>0,且a ≠1)的形式,即必须满足以下条件: (1)系数为1.(2)底数为大于0,且不等于1的常数. (3)对数的真数仅有自变量x.针对训练1:(1)若函数y=log a x+a 2-3a+2为对数函数,则a 等于( ) A.1 B.2 C.3 D.4(2)已知对数函数的图象过点M(9,2),则此对数函数的解析式为 .解析:(1)因为函数y=log a x+a 2-3a+2为对数函数,所以{a 2-3a +2=0,a >0,a ≠1,解得a=2.故选B. (2)设函数f(x)=log a x(x>0,a>0,且a ≠1),因为对数函数的图象过点M(9,2),所以2=log a 9,所以a 2=9,又a>0, 解得a=3.所以此对数函数的解析式为y=log 3x. 答案:(1)B (2)y=log 3x对数型函数的定义域[例2] 求下列函数的定义域.(1)y=log a (3-x)+log a (3+x)(a>0,且a ≠1); (2)f(x)=1log 12(2x+1).解:(1)由{3-x >0,3+x >0,得-3<x<3,所以函数的定义域是{x|-3<x<3}.(2)由题意有{2x +1>0,2x +1≠1,解得x>-12,且x ≠0,则函数的定义域为(-12,0)∪(0,+∞).(1)求解含对数式的函数定义域,若自变量在底数和真数上,要保证真数大于0,底数大于0,且不等于1. (2)对数函数y=log a x 的定义域为(0,+∞).(3)形如y=log g(x)f(x)的函数,定义域由{f (x )>0,g (x )>0,g (x )≠1来确定.(4)形如y=f(log a x)的复合函数在求定义域时,必须保证每一部分都要有意义.针对训练2:函数f(x)=√lgx +lg(5-3x)的定义域是( ) A.[0,53) B.[0,53]C.[1,53) D.[1,53]解析:函数f(x)=√lgx +lg(5-3x)的定义域是{x|{x >0,lgx ≥0,5-3x >0},即{x|1≤x<53}.故选C.对数函数的图象类型一 对数型函数图象过定点问题[例3] (1)函数y=log a (x-3)+1(a>0,且a ≠1)的图象恒过定点P ,则点P 的坐标是()A.(4,1)B.(3,1)C.(4,0)D.(3,0)(2)若函数y=log a (x-1)+8(a>0,且a ≠1)的图象过定点P ,且点P 在幂函数f(x)=x α(α∈R)的图象上,则f(12) = .解析:(1)令x-3=1,求得x=4,y=1, 可得它的图象恒过定点P(4,1).故选A. (2)令x-1=1,解得x=2,此时y=8,此函数图象过定点P(2,8). 由点P 在幂函数f(x)=x α(α∈R)的图象上知, 2α=8,解得α=3,所以f(x)=x 3, 所以f(12)=( 12) 3=18.答案:(1)A (2)18涉及与对数函数有关的函数图象过定点问题的一般规律:若f(x)=klog a g(x)+b(a>0,且a ≠1),且g(m)=1,则f(x)图象过定点P(m ,b).针对训练3:(1)(多选题)下列四个函数中过相同定点的函数有( ) A.y=ax+2-a B.y=x a-2+1C.y=a x-3+1(a>0,a ≠1)D.y=log a (2-x)+1(a>0,a ≠1)(2)已知函数f(x)=log a(x-m)+n的图象恒过定点(3,5),则lg m+lg n 的值是.(3)函数y=log a(2x-1)+3(a>0,且a≠1)的图象恒过定点P,则点P的坐标是.解析:(1)由于函数y=ax+2-a=a(x-1)+2,令x=1,可得y=2,故该函数经过定点(1,2),由于函数y=x a-2+1,令x=1,可得y=2,故该函数经过定点(1,2),由于y=a x-3+1(a>0,a≠1),令x-3=0,求得x=3,y=2,故该函数经过定点(3,2),由于y=log a(2-x)+1(a>0,a≠1),令2-x=1,求得x=1,y=1,故该函数经过定点(1,1).故选AB.(2)函数f(x)=log a(x-m)+n的图象恒过定点(1+m,n),又函数f(x)的图象恒过定点(3,5),故1+m=3,n=5,即m=2,n=5,所以lg m+lg n=lg 2+lg 5=lg 10=1.(3)令2x-1=1,得x=1,y=3,所以函数的图象恒过定点P(1,3). 答案:(1)AB (2)1 (3)(1,3)类型二对数型函数图象的识别[例4] 函数y=-lg |x+1|的大致图象为( )解析:法一函数y=-lg |x+1|的定义域为{x|x≠-1},可排除A,C;当x=1时,y=-lg 2<0,显然只有D符合题意.故选D.法二y=-lg |x+1|={-lg(x+1),x>-1, -lg(-x-1),x<-1,又x∈(-1,+∞)时,y=-lg(x+1)是减函数.故选D.对数型函数图象的识别一定要注意利用对数式的真数大于0确定函数的定义域,注意利用对数型函数图象所过定点,同时结合单调性进行判断,也可以利用函数图象的变换进行判断.针对训练4:(1)(2021·河南开封期末)函数y=|lg(x+1)|的图象是( )(2)如图,①②③④中不属于函数y=log2x,y=log0.5x,y=-log3x的一个是( )A.①B.②C.③D.④解析:(1)函数的定义域为(-1,+∞),图象与x轴的交点是(0,0).故选A.(2)根据函数的图象,函数y=log a x(a>0,且a≠1)的底数决定函数的单调性,当底数a>1时,函数单调递增,当0<a<1时,函数单调递减,当底数a>1,x>1时,满足底数越大函数的图象越靠近x轴,故①对应函数y=log2x的图象,根据对称性,④对应函数y=log0.5x的图象,③对应函数y=-log3x的图象,②与函数的图象相矛盾,故②不符合题意.故选B.类型三根据图象求解析式中的参数的范围[例5] 已知函数y=log a(x+c)(a,c为常数.其中a>0,a≠1)的图象如图,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1解析:因为函数单调递减,所以0<a<1.当x=1时,log a(x+c)=log a(1+c)<0,即1+c>1,所以c>0,当x=0时,log a(x+c)=log a c>0,所以0<c<1.故选D.根据图象求解析式中的参数的范围和图象识别的方法是一致的,也是主要利用函数的单调性和图象上特殊点的坐标的大小建立有关参数的不等式.针对训练5:(1)如图,若C1,C2分别为函数y=log a x和y=log b x的图象,则( )A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>1(2)已知定义在R上的函数f(x)=log2(a x-b+1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是( )A.0<1a <1b<1 B.0<1b<a<1C.0<b<1a <1 D.0<1a<b<1解析:(1)由对数的性质log a a=1(a>0,且a≠1),画一条直线y=1,如图所示,由图可知0<b<a<1.故选B.(2)由函数单调性可知,a>1,f(0)=log2(1-b+1),故0<log2(1-b+1)<1,解得0<b<1,由log2(a-1-b+1)<0可得a-1<b,所以0<1a<b<1.故选D.典例探究:如图,直线x=t与函数f(x)=log3x和g(x)=log3x-1的图象分别交于点A,B,若函数y=f(x)的图象上存在一点C,使得△ABC为等边三角形,则t的值为( )A.√3+22B.3√3+32C.3√3+34D.3√3+3解析:由题意A(t ,log 3t),B(t ,log 3t-1),|AB|=1, 设C(x ,log 3x),因为△ABC 是等边三角形,所以点C 到直线AB 的距离为√32,所以t-x=√32,x=t-√32,所以C(t-√32,log 3(t-√32)), 根据中点坐标公式可得log 3(t-√32) =log 3t+log 3t -12=log 3t-12=log 3√3,所以t-√32=√3,解得t=3√3+34.故选C.应用探究:已知正方形ABCD 的面积为36,BC 平行于x 轴,顶点A ,B 和C 分别在函数y=3log a x ,y=2log a x 和y=log a x(其中a>1)的图象上,则实数a 的值为( ) A.√3 B.√6 C.√36D.√63解析:设B(x ,2log a x),因为BC 平行于x 轴,所以C(x ′,2log a x),即log a x ′=2log a x ,所以x ′=x 2,所以正方形ABCD 的边长|BC|=x 2-x=6,解得x=3.由已知,AB 垂直于x 轴,所以A(x ,3log a x),正方形ABCD 的边长|AB|=3log a x-2log a x=log a x=6,即log a 3=6,a 6=3,a=√36.故选C.1.函数f(x)=log 2(3+2x-x 2)的定义域为( C ) A.[-1,3] B.(-∞,-1)∪(3,+∞) C.(-1,3) D.(-∞,-1)∪[3,+∞)解析:由3+2x-x 2>0,得-1<x<3,所以f(x)的定义域为(-1,3).故选C.2.已知对数函数f(x)的图象过点(4,12),则f(x)等于( A )A.log 16xB.log 8xC.log 2xD.lo g 116x解析:由题意设f(x)=log a x(a>0,且a ≠1),由函数图象过点(4,12)可得f(4)=12,即log a 4=12,所以4=a 12,解得a=16,故f(x)=log 16x.故选A.3.如图所示的曲线是对数函数y=log a x ,y=log b x ,y=log c x ,y=log d x 的图象,则a ,b ,c ,d 与1的大小关系为 .解析:由题图可知函数y=log a x ,y=log b x 的底数a>1,b>1,函数y=log c x ,y=log d x 的底数0<c<1,0<d<1.过点(0,1)作平行于x 轴的直线l(图略),则直线l 与四条曲线交点的横坐标从左向右依次为c ,d ,a ,b ,显然b>a>1>d>c>0. 答案:b>a>1>d>c4.已知函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A ,若点A 也在函数f(x)=3x -b 的图象上,则b= . 解析:对于y=log a (x+3)+89,令x+3=1,得x=-2,则y=89,所以函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A(-2,89),又点A 也在函数f(x)=3x -b 的图象上, 则89=3-2-b ,求得b=-79.答案:-79[例1] 已知函数y=f(x)的定义域是[0,2],那么g(x)=f (x 2)1+lg (x+1)的定义域是( )A.(-1,-910)∪(-910,√2]B.(-1,√2]C.(-1,-910)D.(-910,√2)解析:依题意,{0≤x 2≤2,x +1>0,1+lg (x +1)≠0,解得-1<x<-910或-910<x ≤√2.故选A.[例2] 已知函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2),且线段AB 的中点在x 轴上,则x 1·x 2= .解析:因为函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2), 所以y 1=log 3x 1,y 2=log 3x 2.根据中点坐标公式得y1+y2=0,即log3x1+log3x2=0,所以log3(x1x2)=0,x1·x2=1.答案:1[例3] (1)求函数f(x)=log a(a x-1)(a>0,且a≠1)的定义域;(2)求函数f(x)=log a[(a-1)x-1]的定义域.解:(1)由a x-1>0,即a x>1,当a>1时,f(x)的定义域为(0,+∞),当0<a<1时,f(x)的定义域为(-∞,0).(2)由题意(a-1)x-1>0,且a>0,a≠1,当a>1时,x>1;a-1.当0<a<1时,x<1a-1所以当a>1时,f(x)的定义域为(1,+∞);a-1当0<a<1时,f(x)的定义域为(-∞,1).a-1[例4] 已知函数f(x)=lg(a x-b x)(a>1>b>0).(1)求y=f(x)的定义域;(2)证明f(x)是增函数;(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值?(1)解:要使函数有意义,必有a x-b x>0,a>1>b>0,可得(a) x>1,解得x>0,b函数的定义域为(0,+∞).(2)证明:设g(x)=a x-b x,再设x1,x2是(0,+∞)上的任意两个数,且x1<x2,则g(x1)-g(x2)=a x1-b x1-a x2+b x2=(a x1-a x2)+(b x2-b x1),对于函数y=a x为增函数,y=b x为减函数,所以a x1-a x2<0,b x2-b x1<0,所以g(x1)-g(x2)<0,所以g(x)在(0,+∞)上为增函数,因为y=lg x在(0,+∞)上为增函数,所以f(x)在(0,+∞)上为增函数.(3)解:因为f(x)在(1,+∞)上单调递增,所以命题f(x)恰在(1,+∞)取正值等价于f(1)≥0,所以a-b≥1.选题明细表基础巩固1.函数f(x)=ln(x+2)+的定义域为( B )√2-xA.(2,+∞)B.(-2,2)C.(-∞,-2)D.(-∞,2)解析:由题意可知{x +2>0,2-x >0,解得-2<x<2.故选B.2.已知f(x)=a -x ,g(x)=log a x ,且f(2)·g(2)>0,则函数f(x)与g(x)的图象是( D )解析:因为f(2)·g(2)>0,所以a>1,所以f(x)=a -x 与g(x)=log a x 在其定义域上分别是减函数与增函数.故选D.3.已知函数f(x)=a x-1+log b x-1(a>0,且a ≠1,b>0,且b ≠1),则f(x)的图象过定点( C ) A.(0,1) B.(1,1) C.(1,0) D.(0,0)解析:当x=1时,f(1)=a 0+log b 1-1=1+0-1=0,所以f(x)的图象过定点(1,0).故选C.4.(多选题)函数f(x)=log a (x+2)(0<a<1)的图象过( BCD ) A.第一象限 B.第二象限 C.第三象限 D.第四象限解析:作出函数f(x)=log a (x+2)(0<a<1)的大致图象如图所示,则函数f(x)的图象过第二、第三、第四象限.故选BCD.5.已知f(x)为对数函数,f(12)=-2,则f(√43)= .解析:设f(x)=log a x(a>0,且a ≠1), 则log a 12=-2,所以1a2=12,即a=√2,所以f(x)=lo g √2x ,所以f(√43)=lo g √2 √43=log 2(√43)2=log 2243=43.答案:436.(2021·江苏启东期末)已知函数f(x)=log a (x+b)(a>0,a ≠1,b ∈R)的图象如图所示,则a= ,b= .解析:由图象得{log a (0+b )=2,log a (-2+b )=0,解得{a =√3,b =3.答案:√3 3能力提升7.已知函数y=lg(x 2-3x+2)的定义域为A ,y=lg(x-1)+lg(x-2)的定义域为B ,则( D ) A.A ∩B= B.A=BC.A ⫋BD.B ⫋A解析:由x 2-3x+2>0,解得x<1或x>2, 所以A=(-∞,1)∪(2,+∞);由{x -1>0,x -2>0,解得x>2,所以B=(2,+∞).故B ⫋A.故选D.8.已知等式log 2m=log 3n ,m ,n ∈(0,+∞)成立,那么下列结论:①m=n;②n<m<1;③m<n<1;④1<n<m;⑤1<m<n.其中可能成立的是( B ) A.①② B.①②⑤ C.③④ D.④⑤解析:当m=n=1时,有log 2m=log 3n ,故①可能成立;当m=14,n=19时,有log 2m=log 3n=-2,故②可能成立;当m=4,n=9时,有log 2m=log 3n=2,此时1<m<n ,故⑤可能成立.可能成立的是①②⑤.故选B. 9.如图,四边形OABC 是面积为8的平行四边形,OC ⊥AC ,AC 与BO 交于点E.某对数函数y=log a x(a>0,且a ≠1)的图象经过点E 和点B ,则a= .解析:设点E(b ,c),则C(b ,0),A(b ,2c),B(2b ,2c), 则{2bc =8,log a b =c ,log a (2b )=2c ,解得b=c=2,a=√2.答案:√210.已知f(x)=|log 3x|. (1)画出函数f(x)的图象;(2)讨论关于x 的方程|log 3x|=a(a ∈R)的解的个数. 解:(1)f(x)={log 3x ,x ≥1,-log 3x ,0<x <1,函数f(x)的图象如图所示.(2)设函数y=|log 3x|和y=a ,当a<0时,两图象无交点,原方程解的个数为0个. 当a=0时,两图象只有1个交点,即原方程只有1个解. 当a>0时,两图象有2个交点,即原方程有2个解. 11.已知函数f(x)=log 2[ax 2+(a-1)x+14].(1)若定义域为R ,求实数a 的取值范围; (2)若值域为R ,求实数a 的取值范围.解:(1)要使f(x)的定义域为R ,则对任意实数x 都有t=ax 2+(a-1)x+14>0恒成立.当a=0时,不合题意;当a ≠0时,由二次函数图象(图略)可知{a >0,Δ=(a -1)2-a <0,解得3-√52<a<3+√52.故所求实数a 的取值范围为(3-√52,3+√52).(2)要使f(x)的值域为R ,则有t=ax 2+(a-1)x+14的值域必须包含(0,+∞).当a=0时,显然成立;当a ≠0时,由二次函数图象(图略)可知,其图象必须与x 轴相交,且开口向上, 所以{a >0,Δ=(a -1)2-a ≥0, 解得0<a ≤3-√52或a ≥3+√52.故所求a 的取值范围为[0,3-√52]∪[3+√52,+∞).应用创新12.已知函数f(x)=|log 2x|,正实数m ,n 满足m<n ,且f(m)=f(n),若f(x)在区间[m 2,n]上的最大值为2,则n+m= . 解析:根据题意并结合函数f(x)=|log 2x|的图象知,0<m<1<n ,所以0<m 2<m<1.根据函数图象易知,当x=m 2时函数f(x)取得最大值,所以f(m 2)=|log 2m 2|=2.又0<m<1,解得m=12.再结合f(m)=f(n)求得n=2,所以n+m=52.答案:52。

人教A版高中数学必修一课时作业第一课时对数函数的图象及性质

人教A版高中数学必修一课时作业第一课时对数函数的图象及性质

2.2.2 对数函数及其性质第一课时对数函数的图象及性质[选题明细表]知识点、方法题号对数函数的定义及性质1,3,8,10对数函数的图象特征2,5,6,12,14 对数函数的定义域、值域问题4,7,11,13反函数9基础巩固1.下列给出的函数:①y=log5x+1;②y=log a x2(a>0,且a≠1);③y=lo x;④y=log 3x;⑤y=log x(x>0,且x≠1);⑥y=lo x.其中是对数函数的为( D )(A)③④⑤(B)②④⑥(C)①③⑤⑥ (D)③⑥解析:①②④不满足对数函数解析式特征,⑤中真数是常数,故只有③⑥是对数函数.选D.2.(2019·云南玉溪一中高一上期中)函数y=log a(3x-2)+2(a>0,且a≠1)的图象必过定点( A )(A)(1,2) (B)(2,2)(C)(2,3) (D)(,2)解析:令3x-2=1,得x=1,又log a(3×1-2)+2=2,故定点为(1,2),选A.3.(2019·吉林舒兰一中高一上学期期中)设ln b>ln a>ln c,则a,b,c 的大小关系为( A )(A)b>a>c (B)a>b>c(C)c>b>a (D)c>a>b解析:由对数函数的图象与性质可知,函数y=ln x在(0,+∞)上为单调递增函数,因为ln b>ln a>ln c,所以b>a>c,故选A.4.(2019·辽宁实验中学高一上期中)已知函数f(x)=log2(1+2-x),函数的值域是( B )(A)[0,2) (B)(0,+∞)(C)(0,2) (D)[0,+∞)解析:因为2-x+1>1,所以log2(1+2-x)>log21,故f(x)>0.故选B.5.函数y=log2|x|的图象大致是( A )解析:函数y=log2|x|为偶函数,且x>0时,y=log2x,故选A.6.已知函数f(x)=ln x,g(x)=lg x,h(x)=log3x,直线y=a(a<0)与这三个函数的交点的横坐标分别是x1,x2,x3,则x1,x2,x3的大小关系是( A ) (A)x2<x3<x1(B)x1<x3<x2(C)x1<x2<x3(D)x3<x2<x1解析:令a=-1,得ln x1=-1,lg x2=-1,log3x3=-1,故x1=,x2=,x3=,则x1>x3>x2.选A.7.(2019·陕西安康市高一上期中)若函数y=log0.5(a-2x)的定义域为(-∞,2),则a等于( D )(A)(B)(C)2 (D)4解析:由已知得a-2x>0,2x<a,x<log2a=2,a=4,故选D.8.若对数函数f(x)=(a2-2a-2)log a x,则f(9)= .解析:由对数函数定义知故a=3或a=-1(舍去),则f(x)=log3x,故f(9)=log39=2.答案:2能力提升9.(2018·河南实验中学期中)已知函数f(x)与g(x)=e x互为反函数,函数y=h(x)的图象与y=f(x)的图象关于x轴对称,若h(a)=1,则实数a 的值为( C )(A)-e (B)-(C)(D)e解析:因为函数f(x)与函数g(x)=e x互为反函数,所以f(x)=ln x.因为函数y=h(x)的图象与y=f(x)的图象关于x轴对称,所以h(x)=-ln x.因为h(a)=1,所以a=,故选C.10.(2019·湖南岳阳一中高一上期中)已知f(x)是偶函数,且在[0,+∞)上是减函数,若f(lg x)>f(1),则x的取值范围是( A )(A)(,10) (B)(0,)∪(1,+∞)(C)(,1) (D)(0,1)∪(10,+∞)解析:因为f(x)是偶函数且在[0,+∞)上是减函数,又f(lg x)>f(1),即f(|lg x|)>f(1),则|lg x|<1,故-1<lg x<1,解得<x<10.故选A.11.若函数f(x)=log5(3x-b)(x≥1)的值域是[0,+∞),则b的取值集合是.解析:因为x≥1,所以3x-b≥3-b.又f(x)=log5(3x-b)的值域是[0,+∞),所以3-b=1,故b=2.答案:{2}12.若直线y=t(t>0)与f(x)=|ln x|有两个不同的交点,且交点的横坐标分别为x1,x2,则x1x2= .解析:由题意知|ln x1|=|ln x2|,假设x1<1<x2,则-ln x1=ln x2,即ln x1+ln x2=0,故ln x1x2=0,因此x1x2=1.答案:113.已知函数f(x)=+的定义域为A.(1)求集合A;(2)若函数g(x)=(log2x)2-2log2x-1,且x∈A,求函数g(x)的最大值、最小值和对应的x值.解:(1)要使函数有意义,则即解得≤x≤4,即集合A=[,4].(2)因为x∈A,所以-1≤log2x≤2,g(x)=(log2x)2-2log2x-1=(log2x-1)2-2.当log2x=1,即x=2时,g(x)取最小值为-2,当log2x=-1,即x=时,g(x)取最大值为2.探究创新14.若定义一个区间[m,n]的长度为n-m,当函数f(x)=|log4x|在区间[a,b]上的值为[0,1]时,该区间的长度的最小值为.解析:依题意知f(x)=|log4x|在区间[a,b]上的值域为[0,1],如图,当f(x)=0时,x=1,当f(x)=1时,x=4或,因此定义域为[,1]时,区间长度最小,故b-a的最小值为.答案:。

人教A版高中同步学案数学必修第一册精品课件 第4章 指数函数与对数函数 对数函数的图象和性质

人教A版高中同步学案数学必修第一册精品课件 第4章 指数函数与对数函数  对数函数的图象和性质
解 因为y=log0.7x的定义域为(0,+∞),而且是减函数,
2 > -1,
所以由已知有2m>m-1>0,即
解得m>1.
-1 > 0.
所以m的取值范围是(1,+∞).
重难探究·能力素养全提升
探究点一
对数函数的概念
【例1】 (1)已知对数函数f(x)=(m2-3m+3)logmx,则m=
解析 由对数函数的定义可得m2-3m+3=1,即m2-3m+2=0,
其定义域为(2,+∞),值域为R,在区间
(2,+∞)上单调递增.
(2)∵f(x)=log5|x|,∴f(x)是偶函数,其图
象如图②所示.其定义域为(-∞,0)
∪(0,+∞),值域为R,函数的单调递增
区间为(0,+∞),单调递减区间为(-∞,0).
探究点五
利用对数函数的性质比较大小
【例5】 下列不等式一定成立的是(其中a>0,且a≠1)(
2.两种特殊的对数
特别地,我们称以10为底的对数函数为常用对数函数,记作y=lg x;称以无理
数e为底的对数函数为自然对数函数,记作y=ln x.
名师点睛
1.判断一个函数是不是对数函数的依据:(1)形如y=logax;(2)底数a满足a>0,
且a≠1;(3)真数为x,而不是x的函数.
2.根据指数式与对数式的关系知,y=logax可化为ay=x,由指数函数的性质可
故函数的定义域为
4
,1
5
.
4
0<5x-4<1,解得 <x<1.
5
探究点三
指数函数与对数函数关系的应用

对数函数的图像和性质 课件-高一上学期数学人教A版必修第一册

对数函数的图像和性质 课件-高一上学期数学人教A版必修第一册

a<1.
x-4<x-2
解集为(4,+∞)
3.对数型函数的奇偶性和单调性
例 4.函数 f(x)=log1 (x2-3x-10)的单调递增区间为( )
2
A.(-∞,-2)
B.(-∞,32)
C.(-2,3) 2
D.(5,+∞)
[解析] 由题意,得x2-3x-10>0,∴(x-5)(x+2)>0,∴x<-2或x>5.
∴函数f(x)为奇函数
若函数y=loga(2-ax)在x∈[0,1]上是减函数,则a的取值范围是( B )
A.(0,1)
B.(1,2)
C.(0,2)
D.(1,+∞)
令u=2-ax,由于a>0且a≠1,所以u=2-ax为减函数, 又根据对数函数定义域要求u=2-ax在[0,1] 上恒大于零,当x∈[0,1]时,umin=2-a>0,解得a<2.
1
o1
x
最后把y=lg(x-1)的图象在x轴下方的部分 对称翻折到x轴上方
类型2 对数函数的性质
1.比较大小 例2.比较下列各组中两个值的大小:
(1) log25.3 , log24.7 y=log2x在( 0,+∞) 是增 函数.log25.3 > log24.7
(2) log0.27 , logo.29 y=log0.2x在( 0,+∞) 是减 函数.log0.27 > logo.29
②当 0<a<1 时,有12<a,从而12< a<1.
∴a 的取值范围是( 1
2
,1).
a<(14. ).解不等式:loga(x-4)>loga(x-2).
①当 a①>当1 时a>,1有时xx--a,<有4212>>,00a<此12时,无此解时无解 x-4>x-2

人教A版高中数学必修一对数函数的图像及其性质 教案

人教A版高中数学必修一对数函数的图像及其性质 教案

对数函数的图像及其性质一、教学目标:知识技能(1)理解对数函数的概念.(2)掌握对数函数的性质.了解对数函数在生产实际中的简单应用.过程与方法(1)培养学生数学交流能力和与人合作精神.(2)用联系的观点分析问题.通过对对数函数的学习,渗透数形结合的数学思想.情感、态度与价值观(1)通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣.(2)在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质.二、重点难点重点:对数函数的定义、图象和性质;难点:底数a 对图象的影响.三、教学方法通过让学生观察、思考、交流、讨论、发现对数函数的图象的特点.四、教学过程(1)情景导学;师:如2.2.1的例6,考古学家一般通过提取附着在出土文物、古遗址上死亡物体的残留物,利用t =log573021P估算出土文物或古遗址的年代.根据问题的实际意义可知,对于每一个碳14含量P ,通过对应关系t =log573021P ,都有唯一确定的年代t 与它对应,所以,t 是P 的函数.设计意图:由实际问题引入,不仅能激发学生的学习兴趣,而且可以培养学生解决实际问题的能力(2)问题探究: 对数函数概念一般地,函数y =log a x (a >0,且a ≠1)叫做对数函数,由对数概念可知,对数函数y =log a x 的定义域是(0,+∞),值域是R .探究1:(1)在函数的定义中,为什么要限定a >0且a ≠1.(2)为什么对数函数log a y x (a >0且a ≠1)的定义域是(0,+∞).探究2. 对数函数的图象.借助于计算器或计算机在同一坐标系中画出下列两组函数的图象,并观察各组函数的图象,探求它们之间的关系.(1)y =2x ,y =log 2x ; (2)y =(21)x ,y =log 21x .2.当a >0,a ≠1时,函数y =a x ,y =log a x 的图象之间有什么关系?对数函数图象有以下特征图象的特征(1)图象都在y 轴的右边(2)函数图象都经过(1,0)点(3)从左往右看,当a >1时,图象逐渐上升,当0<a <1时,图象逐渐下降 .(4)当a >1时,函数图象在(1,0)点右边的纵坐标都大于0,在(1,0)点左边的纵坐标都小于0. 当0<a <1时,图象正好相反,在(1,0)点右边的纵坐标都小于0,在(1,0)点左边的纵坐标都大于0 .对数函数有以下性质0<a <1 a >1图 象定义域 (0,+∞)值域 R性 质 (1)过定点(1,0),即x =1时,y =0(2)在(0,+∞)上是减函数(2)在(0,+∞)上是增函数设计意图:由特殊到一般,培养学生的观察、归纳、概括的能力.例1 求下列函数的定义域:(1)y =log a x 2; (2)y =log a 1-x (a >0,a ≠1)解:(1)由x 2>0,得x ≠0. ∴函数y =log a x 2的定义域是{x |x ≠0}.(2)由题意可得1-x >0,又∵偶次根号下非负,∴x -1>0,即x >1.∴函数y =log a 1-x (a >0,a ≠1)的定义域是{x |x >1}.小结:求函数的定义域的本质是解不等式或不等式组.例2 求证:函数f (x )=lg x x+-11是奇函数.证明:设f (x )=lg x x +-11,由xx +-11>0,得x ∈(-1,1),即函数的定义域为(-1,1), 又对于定义域(-1,1)内的任意的x ,都有f (-x )=lgx x -+11=-lg x x +-11=-f (x ), 所以函数y =lg xx +-11是奇函数. 注意:函数奇偶性的判定不能只根据表面形式加以判定,而必须进行严格的演算才能得出正确的结论.例3 溶液酸碱度的测量.溶液酸碱度是通过pH 刻画的.pH 的计算公式为pH=-lg [H +],其中[H +]表示溶液中氢离子的浓度,单位是摩尔/升.(1)根据对数函数性质及上述pH 的计算公式,说明溶液酸碱度与溶液中氢离子的浓度之间的变化关系;(2)已知纯净水中氢离子的浓度为[H +]=10-7摩尔/升,计算纯净水的pH.解:根据对数的运算性质,有pH=-lg [H +]=lg [H +]-1=lg ]H [1+.在(0,+∞)上,随着[H +]的增大,]H [1+减小,相应地,lg ]H [1+也减小,即pH 减小.所以,随着[H +]的增大,pH 减小,即溶液中氢离子的浓度越大,溶液的酸度就越小.(2)当[H +]=10-7时,pH=-lg10-7,所以纯净水的pH 是7. 事实上,食品监督监测部门检测纯净水的质量时,需要检测很多项目,pH 的检测只是其中一项.国家标准规定,饮用纯净水的pH 应该在5.0~7.0之间.五、课堂小结1.对数函数的定义.2.对数函数的图象和性质.六、课后作业课时练与测七、教学反思备选例题;例1 求函数)416(log )1(x x y -=+的定义域.【解析】由⎪⎩⎪⎨⎧≠+>+>-11010416x x x ,得⎪⎩⎪⎨⎧≠-><012x x x .∴所求函数定义域为{x | –1<x <0或0<x <2}.【小结】求与对数函数有关的定义域问题,首先要考虑真数大于零,底数大于零且不等于1.例2 求函数y = log 2|x |的定义域,并画出它的图象.【解析】函数的定义域为{x |x ≠0,x ∈R }.函数解析式可化为y =⎪⎩⎪⎨⎧<->)0()(log )0(log 22x x x x , 其图象如图所示(其特征是关于y 轴对称).。

人教A版数学必修一对数函数的图象及其性质.docx

人教A版数学必修一对数函数的图象及其性质.docx

对数函数的图象及其性质一、基本应用(包含比较大小、解对数不等式、确定相关函数的定义域、值域)例1、求函数()x x x f 2log log 22⋅=的最小值. 二、综合应用(I )函数图像变换——函数x y a log =及x y a log =()1,0≠>a a 且由对数函数的图象出发,利用图象变换可以得到两类重要的基本函数的图象.同时请注意这两类函数的特殊性质.例1、已知()x x f a log =()1,0≠>a a 且在区间[)+∞,3上恒有()1>x f 成立,求a 的取值范围.例2、做出()21log 2++=x x f 的图象,并写出单调区间及其值域. 例3、判断方程01log 33=-x x 解的个数. 例4、已知函数()⎩⎨⎧>+-≤=4,64,log 2x x x x x f ,对互不相同的c b a ,,有()()()c f b f a f ==,则abc 的取值范围是.例4’、已知()x x f 2log =,()xx g 1=,若()x f 与()x g 图象交于()()2211,,,y x B y x A 两点,则21x x 与1的大小关系是 .例5、已知10<<x ,1,0≠>a a 且,比较()x a -1log 与()x a +1log 的大小.例6、已知()x x f 2log =的定义域为()*∈⎥⎦⎤⎢⎣⎡N n m n m ,,1时,值域为[]20,,则满足条件的整数对()n m ,共有 对. (II )函数的单调性利用复合函数的单调性原则,我们可以确定更为复杂的函数的单调性,从而解决相关问题.例1、求下列函数的单调区间:①()23log 223.0+-=x x y ;②11ln -+=x x y ;③()x y -=2lg .例2、已知函数()()⎩⎨⎧<--≥=1,461,log x a x a x x x f a ()1,0≠>a a 且在R 上单调,求a 的取值范围.例3、已知函数()()x a x f a -=log ()1,0≠>a a 且在[]3,2上单调递减,求a 的取值范围.例4、已知函数()xa ax x f 2lg-+=在[]2,1上单调递增,求a 的取值范围. 例5、已知函数()a ax x y ---=23log 在区间(]31,-∞-上单调递增,求a 的取值范围.(III )恒成立问题,恰成立问题例1、若函数()1log 23++-=ax x y 的定义域为R ,值域为R ,求对应m 的取值范围.例2、若函数()()a x x f a -=2log ()1,0≠>a a 且在⎥⎦⎤⎢⎣⎡3221,上恒有()0>x f 成立,求a 的取值范围.例2’、若函数()()()12log 1-2+=x x f a ()1,0≠>a a 且在⎪⎭⎫⎝⎛∞+,23上恒有()0>x f 成立,求a 的取值范围.例3、对任意的⎥⎦⎤ ⎝⎛∈21,0x ,x a xlog 4<()1,0≠>a a 且恒成立,求a 的取值范围.例4、已知1>a ,[][]2,,2,a a y a a x ∈∃∈∀使得3log log =+y x a a 成立,求a 的取值范围.例5、当R x ∈时,()a x x y +-=2log 23的值域为[)∞+,0,求a 的值. (IV )函数的奇偶性 例1、判断下列函数的奇偶性()xxx f a-+=11log ()1,0≠>a a 且;()()x x x f a -+=21log ()1,0≠>a a 且; ()()21ln x e x f x-+=;()()⎪⎩⎪⎨⎧<->=0,log 0,log 212x x x x x f例2、()()ax e x f x ++=1ln 3为偶函数,求a 的值.()()a e x f x +=3ln 为奇函数,求a 的值.例3、已知函数()()1log 011ax f x a a x+=≠->且.(1)若()()2120f t t f t --+-<,求实数t 的取值范围;(2)若10,2x ∈⎡⎤⎢⎥⎣⎦时,函数()f x 的值域是[]0,1,求实数a 的值.(a=2)当a>1时,由22122111t t tt t t ----<---⎧⎪⎨⎪⎩><,得13t <<;当0<a<1时,由22122111t t t t t t -------⎧⎪⎨⎪⎩>><,得32t <<。

高中数学 课时作业17 对数函数的图象及性质 新人教A版必修1

高中数学 课时作业17 对数函数的图象及性质 新人教A版必修1
【答案】C
5.函数y=|log2x|的图像是图中的()
【解析】有关函数图像的变换是考试的一个热点,本题目的图像变换是翻折变换,可知这个函数是由y=log2x经上折而得到的.
【答案】A
二、填空题(每小题5分,共15分)
6.若f(x)=logax+(a2-4a-5)是对数函数,则a=________.
【解析】由对数函数的定义可知
定义域为(-1,+∞),值域为R,与x轴的交点是(0,0).
14.已知函数f(x)= 的定义域为A,函数g(x)= x(-1≤x≤0)的值域为B.
(1)求A∩B;
(2)若C={y|y≤a-1},且B⊆C,求a的取值范围.
【解析】(1)由题意知:
⇒x≥2,
所以A={x|x≥2},B={y|1≤y≤2},
∴函数y= 的定义域为{x|x>0且x≠1}.
(3)由 >0,得x< .
∴函数y=log7 的定义域为 .
10.求出下列函数的反函数:
(1)y=log x;
(2)y= x;
(3)y=πx.
【解析】(1)对数函数y=log x,它的底数为 ,所以它的反函数是指数函数y= x;
(2)同理,指数函数y= x的反函数是对数函数y=log x;
【答案】C
2.已知函数f(x)=log2(x+1),若f(a)=1,则a=()
A.0B.1
C.2 D.3
【解析】f(a)=log2(a+1)=1,所以a+1=2,所以a=1.
【答案】B
3.设集合A={x|y=log2x},B={y|y=log2x},则下列关系中正确的是()
A.A∪B=AB.A∩B=∅
(3)指数函数y=πx的反函数为对数函数y=logπx.

高中数学课时训练(十七)对数函数的图象及性质新人教A版必修1(2021年整理)

高中数学课时训练(十七)对数函数的图象及性质新人教A版必修1(2021年整理)

(浙江专版)2017-2018学年高中数学课时跟踪检测(十七)对数函数的图象及性质新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江专版)2017-2018学年高中数学课时跟踪检测(十七)对数函数的图象及性质新人教A版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江专版)2017-2018学年高中数学课时跟踪检测(十七)对数函数的图象及性质新人教A版必修1的全部内容。

课时跟踪检测(十七)对数函数的图象及性质层级一学业水平达标1.函数f(x)=错误!+lg(1+x)的定义域是()A.(-∞,-1) B.(1,+∞)C.(-1,1)∪(1,+∞) D.(-∞,+∞)解析:选C 由题意知错误!解得x〉-1且x≠1.2.对数函数的图象过点M(16,4),则此对数函数的解析式为()A.y=log4x B.y=log 1 4xC.y=log 12x D.y=log2x解析:选D 由于对数函数的图象过点M(16,4),所以4=log a16,得a=2.所以对数函数的解析式为y=log2x,故选D。

3.函数f(x)=log2(3x+1)的值域为( )A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)解析:选A ∵3x>0,∴3x+1>1.∴log2(3x+1)>0.∴函数f(x)的值域为(0,+∞).4.函数y=lg(x+1)的图象大致是()解析:选C 由底数大于1可排除A、B,y=lg(x+1)可看作是y=lg x的图象向左平移1个单位.(或令x=0得y=0,而且函数为增函数)5.若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数且f(2)=1,则f(x)=()A.log2x B.1 2xC.log 12x D.2x-2解析:选A 函数y=a x(a>0,且a≠1)的反函数是f(x)=log a x,又f(2)=1,即log a2=1,所以a=2。

高中数学 课时跟踪检测(二十六)对数函数的图象和性质 新人教A版必修第一册-新人教A版高一第一册数学

高中数学 课时跟踪检测(二十六)对数函数的图象和性质 新人教A版必修第一册-新人教A版高一第一册数学

课时跟踪检测(二十六) 对数函数的图象和性质A 级——学考水平达标练1.下列式子中成立的是( ) A .log 0.44<log 0.46 B .1.013.4>1.013.5C .3.50.3<3.40.3D .log 76<log 67解析:选D 因为y =log 0.4x 为减函数,故log 0.44>log 0.46,故A 错;因为y =1.01x为增函数,所以1.013.4<1.013.5,故B 错;由幂函数的性质知,3.50.3>3.40.3,故C 错.2.已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b解析:选D ∵0<a =2-13<20=1,b =log 213<log 21=0,c =log 1213>log 1212=1,∴c >a >b .故选D.3.函数f (x )=log 2(1-x )的图象为( )解析:选A 函数的定义域为(-∞,1),排除B 、D ,函数f (x )=log 2(1-x )在定义域内为减函数,排除C ,故A 正确.4.函数y =a x(a >0,且a ≠1)的反函数的图象过点(a ,a ),则a 的值为( ) A .2 B .12C .2或12D .3解析:选B 法一:函数y =a x(a >0,且a ≠1)的反函数为y =log a x (a >0,且a ≠1),故y =log a x 的图象过点(a ,a ),则a =log a a =12.法二:∵函数y =a x(a >0,且a ≠1)的反函数的图象过点(a ,a ),∴函数y =a x(a >0,且a ≠1)的图象过点(a ,a ),∴a a=a =a 12,即a =12.5.若点(a ,b )在函数f (x )=ln x 的图象上,则下列点中,不在函数f (x )图象上的是( )A.⎝ ⎛⎭⎪⎫1a ,-b B .(a +e,1+b ) C.⎝ ⎛⎭⎪⎫e a,1-bD .(a 2,2b )解析:选B 因为点(a ,b )在f (x )=ln x 的图象上,所以b =ln a ,所以-b =ln 1a,1-b =ln e a,2b =2ln a =ln a 2,故选B.6.函数f (x )=ln(2-x )的单调减区间为________. 解析:由2-x >0,得x <2.又函数y =2-x ,x ∈(-∞,2)为减函数, ∴函数f (x )=ln(2-x )的单调减区间为(-∞,2). 答案:(-∞,2)7.函数f (x )=ln(x +2)+ln(4-x )的单调递减区间是________.解析:由⎩⎪⎨⎪⎧x +2>0,4-x >0得-2<x <4,因此函数f (x )的定义域为(-2,4).f (x )=ln(x +2)+ln(4-x )=ln(-x 2+2x +8)=ln[-(x -1)2+9],设u =-(x -1)2+9,又y =ln u 是增函数,u =-(x -1)2+9在(1,4)上是减函数,因此f (x )的单调递减区间为(1,4). 答案:(1,4)8.已知函数y =log a (2-ax )(a >0,且a ≠1)在[0,1]上是减函数,则实数a 的取值X 围是________.解析:令u =2-ax ,则y =log a u ,因为a >0,所以u =2-ax 递减,由题意知y =log a u 在[0,1]内递增,所以a >1.又u =2-ax 在x ∈[0,1]上恒大于0,所以2-a >0,即a <2.综上,1<a <2.答案:(1,2)9.比较下列各组数的大小 (1)log 0.13与log 0.1π; (2)log 45与log 65;(3)3log 45与2log 23;(4)log a (a +2)与log a (a +3)(a >0且a ≠1). 解:(1)∵函数y =log 0.1x 是减函数,π>3, ∴log 0.13>log 0.1π.(2)法一:∵函数y =log 4x 和y =log 6x 都是增函数, ∴log 45>log 44=1,log 65<log 66=1. ∴log 45>log 65.法二:画出y =log 4x 和y =log 6x 在同一坐标系中的图象如图所示,由图可知log 45>log 65.(3)∵3log 45=log 453=log 4125=log 2125log 24=12log 2125=log 2125,2log 23=log 232=log 29,又∵函数y =log 2x 是增函数,125>9, ∴log 2125>log 29,即3log 45>2log 23. (4)∵a +2<a +3,故①当a >1时,log a (a +2)<log a (a +3); ②当0<a <1时,log a (a +2)>log a (a +3).10.已知f (x )=|lg x |,且1c>a >b >1,试比较f (a ),f (b ),f (c )的大小.解:先作出函数y =lg x 的图象,再将图象位于x 轴下方的部分折到x 轴上方,于是得f (x )=|lg x |图象(如图),由图象可知,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增.由1c >a >b >1得:f1c>f (a )>f (b ),而f 1c =⎪⎪⎪⎪⎪⎪lg 1c =|-lg c |=|lg c |=f (c ).∴f (c )>f (a )>f (b ).B 级——高考水平高分练1.若函数f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的大致图象是( )解析:选A f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上是奇函数,∴f (0)=(k -1)a-a 0=k -2=0,∴k =2.∵f (x )是减函数,∴0<a <1,∴g (x )=log a (x +k )的图象是选项A 中的图象.2.(2018·全国卷Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<abD .ab <0<a +b解析:选B ∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0.∵a +b ab =1a +1b=log 0.30.2+log 0.32=log 0.30.4,∴1=log 0.30.3>log 0.30.4>log 0.31=0,∴0<a +bab<1,∴ab <a +b <0. 3.是否存在实数a ,使函数y =log a (ax 2-x )在区间[2,4]上是增函数?如果存在,求出a 的取值X 围;如果不存在,请说明理由.解:存在.设u =g (x )=ax 2-x ,则y =log a u .假设符合条件的a 值存在. (1)当a >1时,只需g (x )在[2,4]上为增函数,故应满足⎩⎪⎨⎪⎧12a≤2,g (2)=4a -2>0.解得a >12.∴a >1.(2)当0<a <1时,只需g (x )在[2,4]上为减函数,故应满足⎩⎪⎨⎪⎧12a≥4,g (4)=16a -4>0.无解.综上所述,当a >1时,函数y =log a (ax 2-x )在[2,4]上是增函数. 4.设函数f (x )=log a ⎝⎛⎭⎪⎫1-a x,其中0<a <1.(1)证明:f (x )是(a ,+∞)上的减函数; (2)若f (x )>1,求x 的取值X 围.解:(1)证明:任取x 1,x 2∈(a ,+∞),不妨令0<a <x 1<x 2,g (x )=1-a x,则g (x 1)-g (x 2)=⎝ ⎛⎭⎪⎫1-a x 1-⎝ ⎛⎭⎪⎫1-a x 2=a (x 1-x 2)x 1x 2,∵0<a <x 1<x 2,∴x 1-x 2<0,x 1x 2>0,∴g (x 1)-g (x 2)<0, ∴g (x 1)<g (x 2),∴g (x )为增函数,又∵0<a <1,∴f (x )是(a ,+∞)上的减函数.(2)∵log a ⎝⎛⎭⎪⎫1-a x >1,∴0<1-a x<a , ∴1-a <a x<1.又∵0<a <1,∴1-a >0, ∴a <x <a1-a,∴x 的取值X 围是⎝ ⎛⎭⎪⎫a ,a 1-a .5.森林具有净化空气的功能,经研究发现,森林净化空气量Q 与森林面积S 的关系是Q =50log 2S10.(1)若要保证森林具有净化效果(Q ≥0),则森林面积至少为多少个单位? (2)当某森林面积为80个单位时,它能净化的空气量为多少个单位? 解:(1)由题意,当Q =0时,代入关系式可得0=50log 2S10,解得S =10,因为Q 随S 的增大而增大,所以当Q >0时S ≥10. 所以森林面积至少有10个单位. (2)将S =80代入关系式, 得Q =50log 28010=150,所以当森林面积为80个单位时,它能净化的空气量为150个单位.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业十七:对数函数的图象及性质
(建议用时:45分钟)
[学业达标]
一、选择题
1.已知下列函数:①y =log 12
(-x )(x <0);②y =2log 4(x -1)(x >1);③y =ln x (x >0);
④y =log (a 2+a )x (x >0,a 是常数).
其中为对数函数的个数是( ) A .1 B .2 C .3
D .4
2.函数y =1+log 12
(x -1)的图象一定经过点( )
A .(1,1)
B .(1,0)
C .(2,1)
D .(2,0)
3.函数y =
1log 2

的定义域为( )
A .(-∞,2)
B .(2,+∞)
C .(2,3)∪(3,+∞)
D .(2,4)∪(4,+∞)
4.已知0<a <1,函数y =a x
与y =log a (-x )的图象可能是( )
5.函数f (x )=log a (x +2)(0<a <1)的图象必不过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限
二、填空题 6.函数f (x )=
log
12
-的定义域是________.
7.已知对数函数f (x )的图象过点(8,-3),则f (22)=________. 8.已知函数y =log 22-x
2+x
,下列说法:
①关于原点对称;②关于y 轴对称;③过原点.其中正确的是________. 三、解答题
9.已知函数f (x )=log a x +1
x -1
(a >0,且a ≠1). (1)求f (x )的定义域;
(2)判断函数的奇偶性.
10.若函数f (x )为定义在R 上的奇函数,且x ∈(0,+∞)时,f (x )=lg(x +1),求f (x )的表达式,并画出大致图象.
[能力提升]
1.满足“对定义域内任意实数x ,y ,f (x ·y )=f (x )+f (y )”的函数可以是( ) A .f (x )=x 2
B .f (x )=2x
C .f (x )=log 2x
D .f (x )=e
l n x
2.已知lg a +lg b =0,则函数f (x )=a x
与函数g(x )=-log b x 的图象可能是( )
3.设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2017)=8,则f (x 2
1)+f (x 2
2)+…+f (x 2
2017)的值等于________.
4.若不等式x 2
-log m x <0在⎝ ⎛⎭
⎪⎫0,12内恒成立,求实数m 的取值范围.。

相关文档
最新文档