铝合金中Al,Fe,Cu的测定
铝及铝合金分析
铝及铝合金分析铝在元素周期表中属ⅢA族,其相对原子质量为26.98154,密度2.6989g/cm3(20℃)。
纯铝呈银白色,具有良好的导电性、导热性、延展性及抗腐蚀性。
铝是典型的两性元素易,溶于盐酸和其他氢卤酸,也溶于强碱溶液不溶于冷的浓硫酸和硝酸。
铝易与氟化物、柠檬酸盐、酒石酸盐、乙二胺四乙酸二钠盐(EDTA)以及许多含氧、含氮有机试剂等生成稳定的结合物。
铝及铝合金的用途很广泛。
高纯铝抗腐蚀性强,可用来制造保存和运输硝酸、过氧化氢、甲醛、有机酸的器具,并在食品工业上用作包装材料。
纯铝可用于制造电缆、电线、电容器、整流器、汇流板等。
铝合金分为变形铝合金和铸造铝合金两大类。
变形铝合金根据其成分不同有防锈铝、硬铝、锻铝、超硬铝、特殊铝等;铸造铝合金根据成分不同有铝硅合金、铝铜合金、铝镁合金、铝锌合金等。
铝合金广泛用于航空工业、汽车工业、化工、机械制造工业以及民用建筑等。
在铝及铝合金中需要对Fe、Si、Cu、Ti、Ca、Mg、Mn、Zn、Pb、Ni、Cr、V、Sn、Zr、Ga、RE、Be、Sb、Li、B、Cd等元素进行测定。
根据上述元素含量的多少,选用不同的分析方法。
铝及铝合金中铁的测定一般采用邻菲罗啉分光光度法或原子吸收光谱法。
邻菲罗啉分光光度法是在pH2-9范围内,Fe2+与邻菲罗啉形成橙红色络合物,该方法有较高的灵敏度和良好的稳定性。
原子吸收光谱法选用较窄的通带,一般采用波长248.3nm处,在空气-乙炔氧化性火焰中进行测定。
对硅、镍、钒较高的试样,在测定时要加入一定量的锶盐消除其干扰。
铝合金中硅的含量大于1%时,一般采用重量法,近年来也采用改进的硅钼蓝分光光度法。
铝及铝合金中硅的含量小于1%的试样可采用硅钼蓝分光光度法。
溶液中,硅酸与钼酸盐形成黄色的硅钼杂多酸,它有两种形态,α-硅钼酸;β-硅钼酸。
通常分析中多采用β-硅钼酸形态,这是由于形成β-硅钼酸的酸度较高,避免某些较易水解元素的干扰,加入适当的还原剂,如抗坏血酸1-氨基-2-萘酚-4-磺酸等,由硅钼黄变成硅钼蓝。
铝合金、铜合金中各元素的测定
铝合金中Si、Cu、Fe、Mn、Ti、Mg、Cr、Pb、Zn元素的测定母液的配制:1、硝酸溶液:1+12、氢氟酸:市售3、饱和硼酸溶液:30克硼酸加500ml水加热溶解后冷却称取样品100mg置于塑料烧杯中,加入硝酸溶液(1+1)6ml,用塑料吸管加入氢氟酸2ml,室温溶解(若有少量不溶物,可低温加热溶解)后,驱除黄烟,加入饱和硼酸溶液40ml,摇动片刻,加入蒸馏水200ml,摇匀,此为母液。
一、硅的测定(1)1、化学试剂:(1)钼酸铵溶液:5%(2)硫草混酸:62.5ml硫酸慢慢加入435ml水中搅匀,加草酸铵7.5g溶解。
(3)硫酸亚铁铵溶液6%:每500ml溶液中加1ml浓硫酸2、分析步骤移取母液5ml于100ml两用瓶中,加入钼酸铵溶液5ml,于沸水浴中加热30秒,取下,加入硫草混酸40ml,硫酸亚铁铵溶液10ml,稀至刻度,摇匀,以水为参比。
二、铜的测定1、化学试剂:(1)PH9.2缓冲液—柠檬酸三铵混合液:PH9.2缓冲液450ml与柠檬酸三铵溶液(5%)50ml混合。
PH9.2缓冲液:27克氯化铵,31.5ml氨水用水稀至500ml柠檬酸三铵溶液(5%):柠檬酸三铵2.5克+50ml蒸馏水(2)双环己酮草酰二腙(BCO)溶液:称取BCO0. 5g溶于60ml热乙醇(1+2)中(水浴),溶完后加入蒸馏水450ml。
乙醇(1+2):20ml 无水乙醇+40ml蒸馏水2、分析步骤移取母液10ml于150ml锥形瓶中,加入PH9.2缓冲液—柠檬酸三铵混合液20ml,双环乙酮草酰二腙(BCO)溶液溶液5ml,加水40ml摇匀,放置10分钟,以水为参比。
三、铁的测定(2)1、化学试剂:(1)0.2%抗坏血酸(2)0.4%邻菲罗啉溶液:乙醇1+2配制(3)30%六次甲基四胺溶液2、分析步骤移取母液20ml于150ml锥形瓶中,加入10ml抗坏血酸,5ml邻菲罗啉溶液,5ml六次甲基四胺溶液,摇匀,以水为参比。
铝合金的成分分析
固态原子原子吸收光谱法测定杂质元素的吸光度值。
其原理是以喷射加速的辉光放电技术及阴极溅射技术为核心的ATOMSOURCETM 原子化器,在氩气和真空环境的推动下,原子化过程中剥离出来的基态原子进入处在光线轴线位置的光室中,形成滞留一定时间的、稳定的、有凝聚力的“原子云”对真空阴极灯(HCL)产生的特征谱线进行吸收,产生吸收信号,通过检测系统将信号转换、处理(图1 所示),从而测得铝合金中各成分含量。
本方法试样处理过程简单,采用独特的固态原子化系统,很好地提高了原子化效率及分析速度。
1.样品预处理测量之前,应用砂纸磨平样品待测平面,擦拭干净,使表面平滑洁净(为能使之完全覆盖密封圈和夹紧在样品平台上,避免泄露空气,样品直径要大于2.5cm,厚度不小于0.5cm)。
2.主要仪器A30 Pulsar 金属分析仪(美国Leeman Labs 公司),由光源、原子化系统、分光系统和检测系统四部分组成。
其中。
光源采用的是空心阴极灯,一次性可安装30 只,实现自动更换;原子化系统采用ATOMSOURCETM 原子化器;分光系统由色散元件、反射镜、狭缝组成;检测系统由检测器、放大器和读数系统组成。
3.仪器主要技术指标仪器主要技术指标如表1 所示。
表1 仪器主要技术指标光谱仪 35cm Czerny Turner 单色器光栅平面光栅1800 条/mm倒线色散率 1.536nm/mm入射狭缝宽度 0.2,0.5,0.7nm 带宽出射狭缝宽度 0.2,0.5,0.7nm 带宽光电倍增管 28mm 直径,侧窗-UV 及VIS元素可选 71 种空心阴极系统 30 位灯座,直流射频电源,每一元素控时程序化氩气 99.999%冷却水 4L/min,73bar(循环冷却)4.仪器工作条件仪器工作条件如表2 所示铝基92#样品波长狭缝宽度预燃烧时间积分时间真空度电压Si 250.690nm 0.2nm 3 s 7 s 7 400v Fe 248.327 0.2 3 7 7 650 Ti 364.268 0.2 3 7 7 650 Mg 285.213 0.2 3 7 7 750(二)结果与讨论1.参数设置样品的溅射也就是燃烧条件有两个参数控制:压力与功率。
铝合金标准
欧盟标准 EN1706:1998 欧盟压铸铝合金化学成分和力学性能表Tags: casting压铸金属发布:larry| 分类:压铸/Die-casting| 评论:0| 引用:0| 浏览:380压铸合金成分的变化对力学性能的影响中国铝业网作者:王益志发布日期:2008-9-4 点击次数:关键词:摘要试验分析了380压铸合金化学成分的不同配比对力学性能的影响。
结果表明高合金含量配制的380铝合金与低合金含量配制的380铝合金相比,前者抗拉强度、屈服强度及硬度高,而后者伸长率高,标准的380铝合金成分则在二者之间。
实际应用中,应根据零件对力学性能的具体要求合理选配。
关键词:380压铸合金化学成分力学性能自从有了冷室压铸机以来,铝合金在压铸工业中的推广应用为时已久。
80年代在美国的压铸件生产中,铝合金占80%。
随着时间的推移及生产发展的需要,纳入到压铸铝合金中的品种高达23种,但是最为典型的是40年代就被采用的380铝合金(类似GD-AlSi9Cu3)。
美国对于这种合金制订出三种标准,即380,A380及B380,这类合金典型的化学成分如表1[1]所示。
表1典型380铝压铸合金的化学成分Si Cu Fe Mn Mg Ni Zn Sn 其他总量Al 380 7.5 ~9.5 3.0 ~4.0 2.0 0.50 0.10 0.50 3.0 0.35 0.50 其余A380 7.5 ~9.5 3.0 ~4.0 1.3 0.50 0.10 0.50 3.0 0.35 0.50 其余B380 7.5 ~9.5 3.0 ~4.0 1.3 0.50 0.10 0.50 1.0 0.35 0.50 其余含铁量及含锌量的不同是这几种合金的主要区别。
380的含铁量为2%,可以在热室压铸机上生产。
A380及B380含铁量均为1.3%,只用于冷室压铸机。
这种合金在开始制订标准的时候,只有380及A380,其含锌量皆限于1%。
铝产品、阳极判级标准
1.CO2反应性作为参考指标。 2.抗折强度由供需双方协商。 3.对于有残极返回生产的产品灰分要求,由供需双方协商。 4.表中数据按GB/T 8170处理。
牌号 Al99.90 Al60 Al99.50 Al99.00
铝锭、铝合金产品分析判级标准(附:阳极理化特性--牌号) 化 学 成 分 (质量分数) 杂 质 不 大 于 Al不小于 其他每种 Fe Si Cu Ga Mg Zn 99.90 0.07 0.05 0.005 0.020 0.01 0.025 0.010 99.85 0.12 0.08 0.005 0.030 0.02 0.030 0.015 99.70 0.20 0.10 0.01 0.03 0.02 0.03 0.03 99.70 0.20 0.12 0.01 0.03 0.03 0.03 0.03 99.60 0.25 0.16 0.01 0.03 0.03 0.03 0.03 99.50 0.30 0.22 0.02 0.03 0.05 0.05 0.03 99.00 0.50 0.42 0.02 0.05 0.05 0.05 0.05
总和
0.10 0.15 0.30 0.30 0.40 0.50 1.00
注1:铝质量分数为100℅与质量分数等于或大于 0.010℅的所有杂质总和的差值。 注2:表中未规定的其他杂质元素,如Mn,Ti,V,供方可不做常规分析,但应定期分析,每年至少两次。 注3:用于食品,卫生工业用的重熔用铝锭,其杂质Pb,As,Cd的质量分数均不大于0.01℅。 注4:对于表中未规定的其他杂质元素含量,如需方有特殊要求时,可由供需双方另行协议。 注5:分析数值的判定采用修约比较法,数值修约规则按GB/T8170R的有关规定进。修约数位与表中所列极 限值数位一致。 *若铝中杂质Zn质量分数不小于0.010℅时,供方将其作为常规分析元素,并纳入杂质总和;若铝锭中杂质 Zn质量分数小于0.010℅时,供方可不做常规分析,但应每季度份析一次,监控其含量。
铝及铝合金中高含量铁的原子吸收光谱法测定
铝及铝合金中高含量铁的原子吸收光谱法测定卢国壬刘瑞贤(南平铝厂中心试验室福建南平353000)摘要采用铁的次灵敏线,建立了快速测定铝及铝合金中高含量铁的分析方法。
关键词原子吸收光谱分析次灵敏线铁原子吸收光谱分析铝及铝合金中高含量铁,用波长K=24813nm的灵敏线为分析线欠适当,因为灵敏度太高必须减少称样量或将试液分取稀释,增加测定误差。
实践表明,应用灵敏度比前者小10倍的次灵敏线37210nm波长为分析线,不但发射较强,而且没有分子吸收,用于铝及铝合金中高含量铁的测量是适宜的,分析精密度准确度都较好,操作又十分简捷。
1试验方法111仪器及主要试剂原子吸收分光光度计WFX)1F2B2(北京光学仪器厂制造);盐酸溶液(1+1)。
112测试条件分析线K=37012nm;光谱通带:012nm;灯电流: 213mA;火焰高度:4mm;燃气(乙炔)流量:112L/ min;助燃气(空气)流量:511L/min。
113操作方法称取试样011000g于125mL的高型烧杯中,加HCl(1+1)10mL,低温溶解(小心,防止溢出!)待激烈反应停止后,加热溶清。
稍冷,过滤于100mL容量瓶中,用热水洗涤滤纸上的残渣5至6次,洗涤液合并入容量瓶,冷却,用水稀释至刻度,摇匀。
按所列的测试条件(见112条),在原子吸收分光光度计上测量吸光度。
随同试样作试剂空白试验,计算机将试液的吸光度减去试剂空白的吸光度后根据工作曲线的一元线性回归方程直接给出试样中铝含量的信息。
2试验结果与讨论211工作曲线的绘制随同试样做标准样品试验,方法同上(113),用标样系列绘制的工作曲线如下。
Fe%(标样):01472,01944,11416,11888,2136,21832A(吸光度):01050,01099,01148,01196,01242, 01286仪器的计算机给出回归方程为Fe%=91755A,线性相关系数K=019997。
笔者用自编BASIC程序设计在PC机上运行得回归方程为Fe%=9.97A-0.0446,K=0.9998,两者计算结果在01472~21832之间有差异但很小,可认为是一致的。
铝及铝合金化学分析方法 第3部分:铜含量的测定
I C S77.120.10H12中华人民共和国国家标准G B/T20975.3 2020代替G B/T20975.3 2008铝及铝合金化学分析方法第3部分:铜含量的测定M e t h o d s f o r c h e m i c a l a n a l y s i s o f a l u m i n i u ma n da l u m i n i u ma l l o y sP a r t3:D e t e r m i n a t i o no f c o p p e r c o n t e n t2020-06-02发布2021-04-01实施国家市场监督管理总局发布前 言G B /T20975‘铝及铝合金化学分析方法“分为37个部分:第1部分:汞含量的测定;第2部分:砷含量的测定; 第3部分:铜含量的测定; 第4部分:铁含量的测定; 第5部分:硅含量的测定; 第6部分:镉含量的测定; 第7部分:锰含量的测定; 第8部分:锌含量的测定;第9部分:锂含量的测定 火焰原子吸收光谱法; 第10部分:锡含量的测定; 第11部分:铅含量的测定; 第12部分:钛含量的测定; 第13部分:钒含量的测定; 第14部分:镍含量的测定; 第15部分:硼含量的测定; 第16部分:镁含量的测定; 第17部分:锶含量的测定; 第18部分:铬含量的测定; 第19部分:锆含量的测定; 第20部分:镓含量的测定 丁基罗丹明B 分光光度法; 第21部分:钙含量的测定; 第22部分:铍含量的测定; 第23部分:锑含量的测定; 第24部分:稀土总含量的测定; 第25部分:元素含量的测定 电感耦合等离子体原子发射光谱法; 第26部分:碳含量的测定 红外吸收法; 第27部分:铈㊁镧㊁钪含量的测定 电感耦合等离子体原子发射光谱法; 第28部分:钴含量的测定 火焰原子吸收光谱法; 第29部分:钼含量的测定 硫氰酸盐分光光度法; 第30部分:氢含量的测定 加热提取热导法; 第31部分:磷含量的测定 钼蓝分光光度法; 第32部分:铋含量的测定; 第33部分:钾含量的测定 火焰原子吸收光谱法; 第34部分:钠含量的测定 火焰原子吸收光谱法; 第35部分:钨含量的测定 硫氰酸盐分光光度法; 第36部分:银含量的测定 火焰原子吸收光谱法; 第37部分:铌含量的测定㊂ⅠG B /T 20975.3 2020中国标准出版社授权北京万方数据股份有限公司在中国境内(不含港澳台地区)推广使用本部分为G B /T20975的第3部分㊂本部分按照G B /T1.1 2009给出的规则起草㊂本部分代替G B /T20975.3 2008‘铝及铝合金化学分析方法 第3部分:铜含量的测定“㊂本部分与G B /T20975.3 2008相比,除编辑性修改外主要技术变化如下: 增加了标准使用安全警示;增加了 规范性引用文件 (见第2章); 增加了 术语和定义 (见第3章); 删除了 电解重量法 ,(见2008年版的方法三 电解重量法); 删除了 草酰二酰肼分光光度法 (见2008年版的方法四草酰二酰肼分光光度法); 修改了 新亚铜灵分光光度法 的精密度(见4.7,2008年版的第8章); 修改了 火焰原子吸收光谱法 的精密度(见5.7,2008年版的第17章); 增加了硫代硫酸钠滴定法(见第6章); 增加了 试验报告 (见第7章)㊂本部分由中国有色金属工业协会提出㊂本部分由全国有色金属标准化技术委员会(S A C /T C243)归口㊂本部分起草单位:内蒙古霍煤鸿骏铝电有限责任公司㊁有色金属技术经济研究院㊁西安汉唐分析检测有限公司㊁深圳市中金岭南有色金属股份有限公司韶关冶炼厂㊁东北轻合金有限责任公司㊁昆明冶金研究院㊁内蒙古锦联铝材有限公司㊁北京有色金属与稀土应用研究所㊁广东省韶关市质量计量监督检测所㊁有研亿金新材料有限公司㊁长沙矿冶研究院有限责任公司㊂本部分主要起草人:李志辉㊁张燕㊁席欢㊁姚永峰㊁贾梦琳㊁赵欢娟㊁郭燕瑶㊁周兵㊁刘维理㊁张馨予㊁原建昌㊁吴庆春㊁范树辉㊁延凤泊㊁袁齐㊁邱伟明㊁刘朝方㊁熊晓东㊁杨永刚㊁王悦㊂本部分所代替标准的历次版本发布情况为: G B /T6987.3 1986㊁G B /T6987.3 2001;G B /T6987.29 2001; G B /T20975.3 2008㊂ⅡG B /T 20975.3 2020中国标准出版社授权北京万方数据股份有限公司在中国境内(不含港澳台地区)推广使用铝及铝合金化学分析方法第3部分:铜含量的测定警示使用本部分的人员应有正规实验室工作的实践经验㊂本部分并未指出所有可能的安全问题㊂使用者有责任采取适当的安全和健康措施,并保证符合国家有关法规规定的条件㊂1 范围G B /T20975的本部分规定了新亚铜灵分光光度法㊁火焰原子吸收光谱法和硫代硫酸钠滴定法测定铝及铝合金中铜含量㊂本部分适用于铝及铝合金中铜含量的仲裁测定㊂新亚铜灵分光光度法测定范围:0.0005%~0.012%;火焰原子吸收光谱法测定范围:0.0050%~8.00%;硫代硫酸钠滴定法测定范围:3.00%~70.00%㊂注:铜质量分数为0.0050%~0.012%时,采用新亚铜灵分光光度法为仲裁检验方法;铜质量分数为3.00%~8.00%时,采用火焰原子吸收光谱法为仲裁检验方法㊂2 规范性引用文件下列文件对于本文件的应用是必不可少的㊂凡是注日期的引用文件,仅注日期的版本适用于本文件㊂凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件㊂G B /T8005.2 铝及铝合金术语 第2部分:化学分析G B /T8170 2008 数值修约规则与极限数值的表示和判定3 术语和定义G B /T8005.2界定的术语和定义适用于本文件㊂4 新亚铜灵分光光度法4.1 方法提要试料用盐酸㊁硝酸溶解,用盐酸羟胺将二价铜离子还原为一价铜离子,于p H4.5左右用三氯甲烷萃取新亚铜灵与一价铜离子形成的有色络合物,于分光光度计波长460.0n m 处测量其吸光度,以此测定铜含量㊂4.2 试剂与材料除非另有说明,在分析中仅使用确认为分析纯的试剂和实验室二级水㊂4.2.1 氢氟酸(ρ=1.14g /m L )㊂4.2.2 三氯甲烷㊂4.2.3 盐酸(1+1)㊂4.2.4 硝酸(1+1)㊂1G B /T 20975.3 2020中国标准出版社授权北京万方数据股份有限公司在中国境内(不含港澳台地区)推广使用4.2.5 硫酸(1+1)㊂4.2.6 氨水(1+1)㊂4.2.7 盐酸羟胺溶液(100g /L )㊂4.2.8 柠檬酸铵溶液(500g /L )㊂4.2.9 新亚铜灵乙醇溶液(1g /L ):称取0.1g 2,9-二甲基-1,10-菲啰啉于烧杯中,用无水乙醇稀释至100m L (放置过夜)㊂4.2.10 铜标准贮存溶液:称取1.0000g 铜(w C u ȡ99.99%),置于预先盛有20m L 水和10m L 硝酸(4.2.4)的400m L 烧杯中,盖上表面皿,待溶解完全后,置于水浴上蒸发至结晶开始析出,用水溶解,移入1000m L 容量瓶中,混匀㊂此溶液1m L 含1m g 铜㊂4.2.11 铜标准溶液:移取5.00m L 铜标准贮存溶液(4.2.10)置于500m L 容量瓶中,用水稀释至刻度,混匀㊂此溶液1m L 含0.01m g 铜㊂4.2.12 刚果红试纸㊂4.3 仪器分光光度计㊂4.4 试样将样品加工成厚度不大于1mm 的碎屑㊂4.5 分析步骤4.5.1 试料称取质量(m 0)为0.50g 的试样(4.4),精确至0.0001g ㊂4.5.2 平行试验平行做两份试验,取其平均值㊂4.5.3 空白试验随同试料(4.5.1)做空白试验㊂4.5.4 测定4.5.4.1 将试料(4.5.1)置于250m L 烧杯中,加入5m L 水和15m L 盐酸(4.2.3)㊂待试料完全溶解后加入2m L 硝酸(4.2.4),加热煮沸2m i n ~3m i n ,驱除氮氧化物(空白蒸发至2m L 左右),用少量水洗杯壁,冷却至室温㊂以慢速滤纸过滤(如清亮可不过滤)㊂用热盐酸(4.2.3)洗涤滤纸和残渣8次~10次㊂收集滤液和洗液于400m L 烧杯中,如有大量残渣,将滤纸连同残渣置于铂坩埚中,烘干后于550ħ灰化完全(不要燃烧),冷却㊂加入2m L 硫酸(4.2.5)和5m L 氢氟酸(4.2.1),逐滴滴入硝酸(4.2.4)至溶液清亮㊂加热蒸发至冒硫酸烟,于700ħ灼烧10m i n (不超过700ħ),冷却㊂加入尽量少的盐酸(4.2.3)和数毫升水,加热使沉淀完全溶解(如浑浊需过滤),将此溶液合并于主试液中㊂4.5.4.2 在试液中加入8m L 柠檬酸铵溶液(4.2.8),5m L 盐酸羟胺溶液(4.2.7),混匀,加入5m L 新亚铜灵乙醇溶液(4.2.9),投入一小块刚果红试纸(4.2.12),用氨水(4.2.6)调到刚果红试纸变红色后,改用pH 试纸再继续小心调至p H 值约4.5,将试液移入250m L 分液漏斗中,使体积约60m L ~70m L ,加入10.00m L 三氯甲烷(4.2.2)萃取2m i n ㊂4.5.4.3 将有机相的部分试液移入1c m 吸收池中,以三氯甲烷(4.2.2)作参比,于分光光度计波长2G B /T 20975.3 2020中国标准出版社授权北京万方数据股份有限公司在中国境内(不含港澳台地区)推广使用460.0n m 处测量其吸光度,将所测得吸光度减去空白试验溶液的吸光度后,从工作曲线上查得相应的铜质量(m 1)㊂4.5.5 工作曲线的绘制移取0m L ㊁0.50m L ㊁1.00m L ㊁2.00m L ㊁3.00m L ㊁4.00m L ㊁5.00m L ㊁6.00m L 铜标准溶液(4.2.11)于一组250m L 烧杯中,各加入20m L 水和3m L 盐酸(4.2.3),混匀㊂以下按4.5.4.2进行,无需调整pH 值,以试剂空白溶液为参比,于分光光度计在波长460.0n m 处测量其吸光度㊂以铜量为横坐标,吸光度为纵坐标,绘制工作曲线㊂4.6 试验数据处理铜含量以铜质量分数w C u 计,按式(1)计算:w C u =m 1ˑ10-3m 0ˑ100% (1)式中:m 1 自工作曲线上查得的铜质量,单位为毫克(m g);m 0 试料的质量,单位为克(g )㊂铜质量分数ȡ0.0010%时,计算结果保留两位有效数字;铜质量分数<0.0010%时,计算结果保留一位有效数字㊂数值修约执行G B /T8170 2008中3.2㊁3.3㊂4.7 精密度4.7.1 重复性在重复性条件下获得的两个独立测试结果的测定值,在以下给出的平均值范围内,这两个测试结果的绝对差值不超过重复性限r ,超过重复性限r 的情况不超过5%㊂重复性限r 按表1数据采用线性内插法或外延法求得㊂表1w C u /%0.00070.00170.00370.00610.011r/%0.00010.00020.00030.00040.0014.7.2 再现性在再现性条件下获得的两个独立测试结果的测定值,在以下给出的平均值范围内,两个测试结果的绝对差值不大于再现性限R ,超过再现性限R 的情况不超过5%㊂再现性限R 按表2数据采用线性内插法或外延法求得㊂表2w C u /%0.00070.00170.00370.00610.011R/%0.00010.00030.00050.00070.0025 火焰原子吸收光谱法5.1 方法提要试料用盐酸和过氧化氢溶解,于原子吸收光谱仪波长324.7n m 处,用空气-乙炔(或一氧化二氮-乙3G B /T 20975.3 2020中国标准出版社授权北京万方数据股份有限公司在中国境内(不含港澳台地区)推广使用炔)贫燃性火焰测量铜吸光度,以此测定铜含量㊂5.2 试剂除非另有说明,在分析中仅使用确认为分析纯的试剂和实验室二级水㊂5.2.1 纯铝(w A l ȡ99.99%,w C u ɤ0.0010%)㊂5.2.2 氢氟酸(ρ=1.14g /m L )㊂5.2.3 硝酸(ρ=1.42g /m L )㊂5.2.4 过氧化氢(ρ=1.10g /m L )㊂5.2.5 盐酸(1+1)㊂5.2.6 硫酸(1+1)㊂5.2.7 铝溶液(20m g/m L ):称取20.00g 纯铝(5.2.1)置于1000m L 烧杯中,盖上表皿,分次加入总量为600m L 的盐酸(5.2.5)㊂待剧烈反应停止后,缓慢加热至完全溶解,然后加入数滴过氧化氢(5.2.4),煮沸数分钟以分解过量的过氧化氢,冷却㊂将溶液移入1000m L 容量瓶中,以水稀释至刻度,混匀㊂5.2.8 铜标准贮存溶液:称取1.000g 铜(w C u ȡ99.95%),置于250m L 烧杯中,盖上表皿,加入5m L 硝酸(5.2.3),缓慢加热至完全溶解,冷却㊂将溶液移入1000m L 容量瓶中,以水稀释至刻度,混匀㊂此溶液1m L 含1m g 铜㊂5.2.9 铜标准溶液A :移取100.00m L 铜标准贮存溶液(5.2.8)置于1000m L 容量瓶中,以水稀释至刻度,混匀(用时现配)㊂此溶液1m L 含0.1m g 铜㊂5.2.10 铜标准溶液B :移取50.00m L 铜标准贮存溶液(5.2.8)置于1000m L 容量瓶中,以水稀释至刻度,混匀(用时现配)㊂此溶液1m L 含0.05m g 铜㊂5.3 仪器原子吸收光谱仪,附铜空心阴极灯㊂仪器应满足下列条件:特征浓度:在与测量试料溶液基体一致的溶液中,铜的特征浓度应不大于0.033μg /m L ; 精密度:用最高浓度的标准溶液测量吸光度10次,其标准偏差应不超过吸光度平均值的1.0%,用最低浓度的标准溶液(不是零浓度溶液)测量10次吸光度,其标准偏差应不超过最高浓度标准溶液平均吸光度的0.5%;工作曲线线性:将工作曲线按浓度等分为五段,最高段的吸光度差值与最低段的吸光度差值之比应不小于0.70㊂5.4 试样将样品加工成厚度不大于1mm 的碎屑㊂5.5 分析步骤5.5.1 试料称取质量(m 2)为1.00g 的试样(5.4),精确至0.0001g ㊂5.5.2 平行试验平行做两份试验,取其平均值㊂5.5.3 空白试验称取1.00g 纯铝(5.2.1)代替试料(5.5.1),随同试料做空白试验㊂4G B /T 20975.3 2020中国标准出版社授权北京万方数据股份有限公司在中国境内(不含港澳台地区)推广使用5.5.4 测定5.5.4.1 将试料(5.5.1)置于250m L 烧杯中,盖上表皿,加入约10m L 水,分次加入总量为30m L 盐酸(5.2.5),待剧烈反应停止后,缓慢加热至试料完全溶解㊂滴加适量的过氧化氢(5.2.4),加热煮沸10m i n,以除去过量的过氧化氢,冷却㊂5.5.4.2 如有不溶物需用定量滤纸过滤㊁洗涤,保留此溶液为主滤液,将残渣连同滤纸置于铂坩埚中,灰化(勿使滤纸燃着),在约550ħ灼烧,冷却㊂加入2m L 硫酸(5.2.6)和5m L 氢氟酸(5.2.2),并逐滴加入硝酸(5.2.3)至溶液清亮(约1m L ),加热蒸发至干㊂在约700ħ下灼烧10m i n ,冷却㊂用尽量少的盐酸(5.2.5)和少量水溶解残渣(必要时过滤),将此溶液合并于主滤液中㊂5.5.4.3 按表3将试液或处理不溶物后合并的试液移入相应容量瓶中,用水稀释至刻度,混匀㊂表3铜质量分数w C u /%试液总体积V 0/m L分取体积V 1/m L测试体积V /m L补加盐酸/m L0.0050~0.050100 >0.050~0.501000>0.50~5.0050020.0010010>5.00~8.00100010.00250255.5.4.4 按表3移取相应体积的试液于相应容量瓶中,补加相应体积的盐酸(5.2.5),用水稀释至刻度,混匀㊂将空白试验溶液及试液于原子吸光谱仪波长324.7n m 处,以空气-乙炔贫燃性火焰,以水调零,测量铜的吸光度㊂用试液的吸光度(减去空白试验溶液的吸光度)从工作曲线上查出相应的铜的质量浓度(ρ)㊂5.5.5 工作曲线的绘制5.5.5.1 根据试料中铜的质量分数,系列标准溶液的制备分为以下4种:a ) 铜的质量分数为0.0050%~0.050%时,移取0m L ㊁1.00m L ㊁2.00m L ㊁4.00m L ㊁6.00m L ㊁8.00m L ㊁10.00m L 铜标准溶液B (5.2.10),分别置于一组100m L 容量瓶中,加入50.0m L 铝溶液(5.2.7),以水稀释至刻度,混匀;b ) 铜质量分数为>0.050%~0.50%时,移取0m L ㊁1.00m L ㊁2.00m L ㊁4.00m L ㊁6.00m L ㊁8.00m L ㊁10.00m L 铜标准溶液B (5.2.10),分别置于一组100m L 容量瓶中,加入5.0m L 铝溶液(5.2.7),以水稀释至刻度,混匀;c ) 铜质量分数为>0.50%~5.00%时,移取0m L ㊁2.00m L ㊁4.00m L ㊁8.00m L ㊁12.00m L ㊁16.00m L ㊁20.00m L 铜标准溶液A (5.2.9),分别置于一组100m L 容量瓶中,加入2.0m L 铝溶液(5.2.7)㊁10m L 盐酸(5.2.5)以水稀释至刻度,混匀;d ) 铜质量分数为>5.00%~8.00%时,移取0m L ㊁4.00m L ㊁5.00m L ㊁6.00m L ㊁7.00m L ㊁8.00m L铜标准溶液A (5.2.9),分别置于一组250m L 容量瓶中,加入0.5m L 铝溶液(5.2.7)㊁25m L 盐酸(5.2.5),以水稀释至刻度,混匀㊂5.5.5.2 将系列标准溶液(5.5.5.1)于原子吸收光谱仪波长324.7n m 处,用空气-乙炔贫燃性火焰,以水调零,测量系列标准溶液的吸光度㊂以铜的质量浓度为横坐标,吸光度(减去 零 浓度溶液的吸光度)为纵坐标,绘制工作曲线㊂5G B /T 20975.3 2020中国标准出版社授权北京万方数据股份有限公司在中国境内(不含港澳台地区)推广使用5.6 试验数据处理铜含量以铜质量分数w C u 计,按式(2)计算:w C u =ρV 0V ˑ10-3m 2V 1ˑ100% (2)式中:ρ自工作曲线上查得试液中铜的质量浓度,单位为毫克每毫升(m g /m L );V 0 试液总体积,单位为毫升(m L );V 测试体积,单位为毫升(m L );m 2 试料的质量,单位为克(g);V 1 分取体积,单位为毫升(m L )㊂铜的质量分数ȡ1.00%时,计算结果表示到小数点后两位;铜的质量分数<1.00%时,计算结果保留两位有效数字㊂数值修约执行G B /T8170 2008中3.2㊁3.3㊂5.7 精密度5.7.1 重复性在重复性条件下获得的两个独立测试结果的测定值,在以下给出的平均值范围内,这两个测试结果的绝对差值不超过重复性限r ,超过重复性限r 的情况不超过5%㊂重复性限r 按表4数据采用线性内插法或外延法求得㊂表4w C u /%0.00590.0961.523.836.31r/%0.00080.0060.110.120.235.7.2再现性在再现性条件下获得的两个独立测试结果的测定值,在以下给出的平均值范围内,两个测试结果的绝对差值不大于再现性限R ,超过再现性限R 的情况不超过5%㊂再现性限R 按表5数据采用线性内插法或外延法求得㊂表5w C u /%0.00590.0961.523.836.31R/%0.00100.0080.140.190.246 硫代硫酸钠滴定法6.1 方法提要试样用盐酸㊁硝酸分解㊂在氟化物存在下,用硫酸驱除硅和硝酸,然后在p H3.0~4.0的氟化氢铵溶液中,铜(Ⅱ)与碘化钾反应生成碘化亚铜并析出等物质的量的碘,用硫代硫酸钠标准溶液滴定,计算出铜含量㊂6G B /T 20975.3 2020中国标准出版社授权北京万方数据股份有限公司在中国境内(不含港澳台地区)推广使用6.2 试剂除非另有说明,在分析中仅使用确认为分析纯的试剂和实验室二级水㊂6.2.1 无水碳酸钠㊂6.2.2 盐酸(1+1)㊂6.2.3 硝酸(1+1)㊂6.2.4 硫酸(1+1)㊂6.2.5 硫酸(1+17)㊂6.2.6 氨水(1+1)㊂6.2.7 硫氰酸钾(100g /L ):称取10g 硫氰酸钾溶于50m L 水中,稀释至100m L ,必要时过滤㊂6.2.8 氟化氢铵溶液(200g /L ):称取200g 氟化氢铵溶于800m L 水中,稀释至1000m L ,贮存于聚乙烯瓶中㊂6.2.9 碘化钾溶液(200g /L ):称取200g 碘化钾溶于800m L 水中,稀释至1000m L ,置于棕色试剂瓶中贮存于暗处㊂6.2.10 重铬酸钾标准溶液[c (1/6K 2C r 2O 7)=0.1000m o l /L ]:称取4.9030g 基准重铬酸钾(预先在140ħ烘干2h 并在干燥器中冷却至室温),置于300m L 烧杯中,用水溶解,移入1000m L 容量瓶中,用水稀释至刻度,混匀㊂6.2.11 硫代硫酸钠标准滴定溶液(c 1ʈ0.1m o l /L ): 配制:称取26g 硫代硫酸钠(N a 2S 2O 3.5H 2O )或16g 无水硫代硫酸钠(N a 2S 2O 3)溶于热水,冷却后,移入1000m L 容量瓶中,以水稀释至刻度,混匀㊂ 标定:移取20.00m L 重铬酸钾标准溶液(6.2.10)于500m L 锥形瓶中,加入10m L 碘化钾(6.2.9)及20m L 硫酸(6.2.5),混匀,于暗处放置10m i n ,加50m L 水,用配制好的硫代硫酸钠标准滴定溶液滴定,近终点时(黄绿色)加入5m L 淀粉指示剂(6.2.12),继续滴定至溶液由蓝色变为亮绿色,记录消耗硫代硫酸钠标准滴定溶液体积V 3㊂同时做空白试验㊂计算:由式(3)计算硫代硫酸钠标准溶液的浓度:c 1=c (1/6K 2C r 2O 7)V 2V 3-V 4(3)式中: c (1/6K 2C r 2O 7)重铬酸钾标准溶液的浓度,单位为摩尔每升(m o l /L ); V 2 移取重铬酸钾标准溶液的体积,单位为毫升(m L ); V 3标定消耗硫代硫酸钠标准滴定溶液的体积,单位为毫升(m L ); V 4 空白试验消耗硫代硫酸钠标准滴定溶液的体积,单位为毫升(m L )㊂计算结果保留四位有效数字㊂数值修约执行G B /T8170 2008中3.2㊁3.3㊂6.2.12 淀粉指示剂(5g /L ):称取1g 淀粉用水润湿,加入200m L 沸水,再煮至透明冷却,现用现配㊂6.3 试样将样品加工成厚度不大于1mm 的碎屑㊂6.4 分析步骤6.4.1 试料按表6称取试样(6.3)的质量(m 3),精确至0.0001g㊂7G B /T 20975.3 2020中国标准出版社授权北京万方数据股份有限公司在中国境内(不含港澳台地区)推广使用表6铜的质量分数w C u /%试料质量m 3/g 加入盐酸/m L 3.00~10.000.8020>10.00~20.000.5015>20.00~70.000.20156.4.2 平行试验平行做两份试验,取其平均值㊂6.4.3 测定6.4.3.1 将试料(6.4.1)置于500m L 锥形杯中,按照表6加入盐酸(6.2.2),加热溶解至出现铜粉或铜片后加入2.5m L 氟化氢铵溶液(6.2.8)和10m L 硝酸(6.2.3),继续加热至试样完全溶解㊂加入10m L 硫酸(6.2.4),加热至刚刚冒硫酸烟,冷却,加入约40m L 水,摇匀㊂6.4.3.2 向溶液(6.4.3.1)中慢慢滴加氨水(6.2.6)至刚刚出现浑浊,加入3m L 氟化氢铵溶液(6.2.8),摇动并用水吹洗杯壁㊂稀释至100m L 左右摇匀(控制酸度范围在p H 3~4之间),冷却至室温,加入10m L 碘化钾溶液(6.2.9),摇匀,此时出现棕黄色沉淀,迅速用硫代硫酸钠标准溶液(6.2.11)滴定至溶液淡黄色,加入3m L 淀粉指示剂(6.2.12),继续滴至溶液浅蓝色,加入10m L 硫氰酸钾(6.2.7),再滴定至溶液蓝色恰好消失,即为终点,记录消耗硫代硫酸钠标准溶液体积V 5㊂6.5 试验数据处理铜含量以铜质量分数w C u 计,按式(4)计算:w C u =c 1V 5ˑ63.546ˑ10-3m 3ˑ100% (4) 式中:c 1 硫代硫酸钠标准滴定溶液的实际浓度,单位为摩尔每升(m o l /L );V 5 消耗硫代硫酸钠标准滴定溶液的体积,单位为毫升(m L );63.546 铜的摩尔质量,单位为克每摩尔(g /m o l );m 3 试料的质量,单位为克(g );计算结果表示到小数点后2位,数值修约执行G B /T8170 2008中3.2㊁3.3㊂6.6 精密度6.6.1 重复性在重复性条件下获得的两个独立测试结果的测定值,在以下给出的平均值范围内,这两个测试结果的绝对差值不超过重复性限r ,超过重复性限r 的情况不超过5%㊂重复性限r 按表7数据采用线性内插法或外延法求得㊂表7w C u /%3.605.7713.0020.5240.5649.9159.04r /%0.220.170.180.440.520.620.658G B /T 20975.3 2020中国标准出版社授权北京万方数据股份有限公司在中国境内(不含港澳台地区)推广使用6.6.2 再现性在再现性条件下获得的两个独立测试结果的测定值,在以下给出的平均值范围内,两个测试结果的绝对差值不大于再现性限R ,超过再现性限R 的情况不超过5%㊂再现性限R 按表8数据采用线性内插法或外延法求得㊂表8w C u /%3.605.7713.0020.5240.5649.9159.04R /%0.200.230.250.600.901.201.507 试验报告试验报告应包括下列内容:a ) 本部分编号㊁名称及所用的方法;b ) 关于识别样品㊁实验室㊁分析日期㊁报告日期等所有的必要的信息;c ) 以适当的形式表达试验结果;d ) 试验过程中出现的异常现象;e ) 审核㊁批准等人员的签名㊂9G B /T 20975.3 2020中国标准出版社授权北京万方数据股份有限公司在中国境内(不含港澳台地区)推广使用。
alsi12cu1fe国标标准
alsi12cu1fe国标标准AlSi12Cu1Fe 国标标准AlSi12Cu1Fe是指一种铝合金,其成分符合国家标准。
本文将介绍AlSi12Cu1Fe合金的国标标准,包括其化学成分、物理性能、机械性能和应用领域。
一、化学成分AlSi12Cu1Fe合金的化学成分符合国家标准要求。
根据标准规定,其主要成分包括铝(Al)、硅(Si)、铜(Cu)和铁(Fe)。
合金中铝的含量在12%左右,硅的含量在1%左右,铜和铁的含量分别为1%和少于0.5%。
二、物理性能AlSi12Cu1Fe合金具有良好的物理性能。
首先,该合金具有较低的密度,约为2.6g/cm3,相对于其他金属材料而言较轻。
其次,该合金具有较高的熔点,约为570°C,使其在高温环境下具有良好的稳定性。
此外,该合金具有良好的导热性和导电性能,可广泛应用于导热器件和导电连接器件。
三、机械性能AlSi12Cu1Fe合金的机械性能符合国家标准。
该合金具有良好的强度和硬度,同时具有一定的塑性和韧性。
根据标准规定,在室温下进行拉伸试验时,该合金的抗拉强度应达到180MPa以上,屈服强度应达到140MPa以上,延伸率应大于3%。
此外,该合金还具有良好的耐热性和耐蚀性,适用于在高温和腐蚀环境中工作的零部件制造。
四、应用领域AlSi12Cu1Fe合金具有广泛的应用领域。
首先,由于其良好的导热性和导电性,该合金常用于制造散热器、散热片和导电插件等电子元器件。
其次,该合金由于具有良好的强度和耐热性,适用于制造汽车发动机零部件、航空航天设备零部件和其他要求高强度和耐高温的机械零部件。
此外,该合金还可应用于铸造、注射成型和粉末冶金等工艺中。
综上所述,AlSi12Cu1Fe国标标准涵盖了该合金的化学成分、物理性能、机械性能和应用领域。
该合金具有较低的密度、较高的熔点、良好的导热性和导电性能,同时具有良好的强度、硬度和耐热性。
AlSi12Cu1Fe合金在电子、机械制造和航空航天等领域有着广泛的应用前景。
X-射线荧光光谱法测定锌铝铜合金中的铝、铜、铁、硅、镍、铅和镉
X-射线荧光光谱法测定锌铝铜合金中的铝、铜、铁、硅、镍、铅和镉李颖;冯秀梅;陆筱彬;陈连芳;陈君【摘要】建立了X射线荧光光谱法测定锌铝铜合金ZnAl6Cu1中铝、铜、铁、硅、镍、铅和镉的分析方法.探讨了各元素的分析条件,比较了不同制样方式及不同放置时间对铝强度的影响.在最佳的仪器分析条件下,测定了微量元素的检出限及主、次元素的精密度和准确度.检出限结果表明:各微量元素的检出限均满足标准要求,Cd和Pb元素的定量限稍高.精密度和准确度结果表明,铝、铜、铁元素的测量相对标准偏差在2.1%~5.9%,分析结果与国家标准方法一致.【期刊名称】《中国无机分析化学》【年(卷),期】2015(005)004【总页数】5页(P69-73)【关键词】X-射线荧光光谱;锌铝铜;元素;分析【作者】李颖;冯秀梅;陆筱彬;陈连芳;陈君【作者单位】江阴市产品质量监督检验所,江苏江阴214431;江阴市产品质量监督检验所,江苏江阴214431;江阴市产品质量监督检验所,江苏江阴214431;江阴市产品质量监督检验所,江苏江阴214431;江阴市产品质量监督检验所,江苏江阴214431【正文语种】中文【中图分类】O657.34;TH744.15我国锌矿丰富,以锌合金替代铝合金和铜合金,在节约能源和降低原材料成本以及合理使用本国资源方面具有重要意义。
ZnAl6Cu1是铸造Zn-Al系合金,加入少量铜可提高其强度和耐蚀性。
ZnAl6Cu1既可直接铸造也可进行变形加工,熔点低,铸造加工性能好,可用于各种机械制造。
随着电子及计算机技术的发展,X射线荧光分析技术在金属材料分析领域的优势越来越明显。
X-射线荧光光谱法(XRF)用于锌合金的分析,具有制样方法简单、分析含量范围宽、准确度高、分析速度较快、成本低等优点[1-3]。
本文采用X射线荧光光谱法(XRF)对锌铝铜合金中7种元素进行分析,通过设立合适的分析条件来减少背景及元素间的干扰,使分析结果更准确、稳定,可应用于日常批量样品的快速分析。
Fe和Cu元素对电气用8030铝合金性能的影响
Fe和Cu元素对电气用8030铝合金性能的影响1. 引言1.1 Fe和Cu元素对电气用8030铝合金性能的影响Fe和Cu元素是常见的元素,它们在8030铝合金中起着重要的作用。
Fe元素的加入可以提高8030铝合金的强度和硬度,同时能够改善其耐腐蚀性能。
过量的Fe元素会导致合金的塑性和韧性降低,影响其加工性能。
Cu元素能够提高8030铝合金的强度和耐磨性,但过多的Cu元素可能会导致合金的焊接性能下降。
在合金设计中需要恰当控制Fe和Cu的含量,以平衡合金的各项性能。
Fe和Cu元素的共同影响也是值得注意的。
实验结果表明,适量的Fe和Cu共同加入8030铝合金中可以提高其综合性能,包括提高强度、硬度和耐腐蚀性。
在设计合金配方时需要考虑到不同元素之间的相互作用,以避免出现不良影响。
Fe和Cu元素对电气用8030铝合金的性能影响是密切相关的。
合理控制这两种元素的含量,可以有效提高合金的性能,满足不同工程领域的需求。
已成为研究人员关注的热点问题,希望通过进一步研究和实验,完善对这一问题的认识,推动8030铝合金材料的应用和发展。
2. 正文2.1 Fe元素对8030铝合金性能的影响Fe元素是一种常见的合金元素,它在8030铝合金中起着重要的作用。
Fe元素的加入可以显著影响8030铝合金的性能。
Fe元素的加入可以增强8030铝合金的强度和硬度。
Fe元素与铝形成的固溶体可以提高合金的抗拉强度和硬度,使合金具有更好的机械性能。
Fe元素还可以改善8030铝合金的耐热性能。
Fe元素的加入可以提高合金的热稳定性,使其在高温环境下表现更为优异。
Fe元素还可以改善8030铝合金的耐腐蚀性能。
Fe元素的加入可以增强合金的耐蚀性,延长其使用寿命。
Fe元素对8030铝合金的性能有着显著的影响,可以显著提高合金的强度、硬度、耐热性能和耐腐蚀性能。
在制备8030铝合金时,需要合理控制Fe元素的含量,以实现最佳性能的展现。
2.2 Cu元素对8030铝合金性能的影响Cu元素是电气用8030铝合金中的一种重要合金元素,对其性能有着显著影响。
国家标准《铝及铝合金化学分析方法第18部分:铬含量的测定 方法一》编制说明(征求意见稿).doc
铝及铝合金化学分析方法第18部分:铬含量的测定萃取分离-二苯基碳酰二肼光度法编制说明一、工作简况1、任务来源及计划要求根据国标委《国家标准委关于下达2017年第四批国家标准制修订计划的通知》(国标委综合〔2017〕128号)文件精神,《铝及铝合金化学分析方法第18部分:铬含量的测定萃取分离-二苯基碳酰二肼光度法》由全国有色金属标准化技术委员会负责归口,由广东省工业分析检测中心负责,项目计划编号为20173517-T-592,完成时间为2019年。
2018年3月14日~3月16日,全国有色金属标准化技术委员会于云南省昆明市组织召开有色金属标准工作会议,会议对国家标准《铝及铝合金化学分析方法第18部分:铬含量的测定萃取分离-二苯基碳酰二肼光度法》进行任务落实,由广东省工业分析检测中心负责起草,参与起草单位有长沙矿冶,贵州测试院,国家再生有色金属。
2、调研和分析工作的情况在当前国家“一带一路”、“中国制造2025”、国际产能和装备制造合作等战略发展形势下,随着国内外铁路、航空、电力和核发展等有力推动,促使轻量化结构材料---铝合金的需求量不断增长。
随着铝工业的不断发展,产品质量的提高,用户需求的要求水平提高,出现了许多新增的铝合金牌号广泛应用于航空航天、国防军事装备领域及汽车等民用产品中。
现有的铝化学分析方法标准系列中铬含量的测定方法于2008年颁布,已使用11年,在标准使用过程中通过对各使用方的调研反馈,标准方法有的部分需要进行修订,根据国标委《国家标准委关于下达2017年第四批国家标准制修订计划的通知》(国标委综合〔2017〕128号)文件精神,广东省工业分析检测中心对该标准进行了修订。
3、起草单位情况广东省工业分析检测中心是我国南方从事金属材料、冶金产品、化工产品、再生资源质量检测、欧盟环保(RoHS)指令的有害物质检测、金属材料综合利用检测与咨询、评价以及分析测试技术研究的专业机构。
先后隶属于广州有色金属研究院、广东省工业技术研究院(广州有色金属研究院),2015年12月经广东省机构编制委员会批准成为广东省科学院属下的独立事业法人单位。
铝铜中间合金(AlCu50)检测技术研究
河南科技Henan Science and Technology能源与化学总780期第十期2022年5月铝铜中间合金(AlCu50)检测技术研究贾旭1杨雷2董清芝3(1.航宇救生装备有限公司,湖北襄阳441002;2.襄阳职业技术学院,湖北襄阳441002;3.河南《创新科技》杂志社,河南郑州,450000)摘要:笔者采用电感耦合等离子光谱法对铝-铜中间合金(AlCu50)中的三种微量元素Si 、Fe 、Zn 的测定方法进行研究。
从元素分析线的选择以及溶样方法优化两个方面进行研究,通过标准加入法去除基体中铝和铜的干扰,研究试剂中硝酸钠盐对检测结果的影响。
试验结果表明:Si 、Fe 、Zn 三种元素的加标回收率为95%~105%,相对标准偏差RSD ≤3%,满足检测的精密度和准确度要求。
关键词:电感耦合等离子光谱法;铝铜中间合金;标准加入法中图分类号:TG146.2+1文献标志码:A文章编号:1003-5168(2022)10-0088-04DOI:10.19968/ki.hnkj.1003-5168.2022.10.020Study on the Detection Technology of AlCu50JIA Xu 1YANG Lei 2DONG Qingzhi 3(1.Aerospace of Life-Saving Equipment Co.,Ltd.,Xiangyang 441002,China;2.Xiangyang Vocational and Technical College,Xiangyang 441002,China;3.Henan Innovation Science and Technology Magazine,Zhengzhou 450000,China)Abstract:The determination of three trace elements Si,Fe and Zn in Al-Cu intermediate alloy (AlCu50)was studied by inductively coupled plasma spectroscopy.In this method,the selection of elemental analy⁃sis line and the optimization of dissolution method were studied.The interference of aluminum and cop⁃per in the matrix and sodium nitrate in the reagent for the test results were removed by standard addition method.The results show that the recoveries of Si,Fe and Zn are in the range of 95%~105%,and therelative standard deviation (RSD)is less than 3%,which meets the requirements of precision and accu⁃racy.Keywords:Inductively Coupled Plasma Spectrometry;Al-Cu intermediate alloy;standard addition method0引言铝及铝合金在兵器工业中有着重要的用途,为了控制和改善铝合金的组织和性能,必须加入一定量的铝铜中间合金才能使铝及铝合金的机械性能、化学成分及切削性能达到产品的要求。
alsi12cu1fe国标标准
alsi12cu1fe国标标准alsi12cu1fe是一种铝合金,具有优良的耐热性和机械性能,被广泛应用于航空航天、汽车制造、电子产品等领域。
为了规范和统一alsi12cu1fe的生产和应用,相关部门和行业组织制定了国家标准,即alsi12cu1fe国标标准。
1. 简介alsi12cu1fe国标标准是针对alsi12cu1fe铝合金材料的物理性能、化学成分、加工工艺、检测方法等方面进行规范的标准。
该标准的制定对于保障alsi12cu1fe产品质量、促进行业健康发展具有重要意义。
2. 物理性能根据alsi12cu1fe国标标准,该合金的物理性能要求包括抗拉强度、屈服强度、延伸率、硬度等指标。
这些指标直接影响着alsi12cu1fe材料在工程领域的应用效果,因此必须严格按照国标进行测试和评定。
3. 化学成分国标标准对alsi12cu1fe的化学成分也有明确要求,包括铝、铜、铁、硅、镁等元素的含量范围和允许偏差。
通过控制好化学成分,可以保证alsi12cu1fe合金的稳定性和可靠性。
4. 加工工艺在alsi12cu1fe国标标准中,还规定了对该合金材料进行加工的工艺要求,包括熔炼、铸造、热处理等环节。
这些工艺规定的目的在于确保alsi12cu1fe制品具有一致的质量和性能。
5. 检测方法对alsi12cu1fe产品进行质量检测是保证其符合国标标准的重要手段。
国标对于alsi12cu1fe的检测方法进行了详细规定,涵盖了化学分析、金相组织检测、力学性能测试等多个方面。
总结:alsi12cu1fe国标标准的制定和实施,为推动我国铝合金材料行业的发展提供了强有力的支持。
只有严格依照国标的要求来生产和应用alsi12cu1fe产品,才能够保证其质量可靠,具有良好的性能表现。
个人观点:作为一种重要的工程材料,alsi12cu1fe合金的国标标准应该不断完善和更新,以适应不断发展的应用需求和技术要求。
行业企业和科研机构也应该加强合作,共同推动alsi12cu1fe国标标准的实施和执行,为我国工业制造注入新的活力。
各种元素在铝合金中的作用
各种元素在铝合金中的作用1.合金元素影响铜元素铝铜合金富铝部分548时,铜在铝中的最大溶解度为 5.65%,温度降到302时,铜的溶解度为0.45%。
铜是重要的合金元素,有一定的固溶强化效果,此外时效析出的CuAl2有着明显的时效强化效果。
铝合金中铜含量通常在2.5% ~ 5%,铜含量在4%~6.8%时强化效果最好,所以大部分硬铝合金的含铜量处于这范围。
铝铜合金中可以含有较少的硅、镁、锰、铬、锌、铁等元素。
硅元素Al—Si合金系富铝部分在共晶温度577 时,硅在固溶体中的最大溶解度为1.65%。
尽管溶解度随温度降低而减少,介这类合金一般是不能热处理强化的。
铝硅合金具有极好的铸造性能和抗蚀性。
若镁和硅同时加入铝中形成铝镁硅系合金,强化相为MgSi。
镁和硅的质量比为1.73:1。
设计Al-Mg-Si系合金成分时,基体上按此比例配置镁和硅的含量。
有的Al-Mg-Si合金,为了提高强度,加入适量的铜,同时加入适量的铬以抵消铜对抗蚀性的不利影响。
Al-Mg2Si合金系合金平衡相图富铝部分Mg2Si 在铝中的最大溶解度为1.85%,且随温度的降低而减速小。
变形铝合金中,硅单独加入铝中只限于焊接材料,硅加入铝中亦有一定的强化作用。
镁元素Al-Mg合金系平衡相图富铝部分尽管溶解度曲线表明,镁在铝中的溶解度随温度下降而大大地变小,但是在大部分工业用变形铝合金中,镁的含量均小于6%,而硅含量也低,这类合金是不能热处理强化的,但是可焊性良好,抗蚀性也好,并有中等强度。
镁对铝的强化是明显的,每增加1%镁,抗拉强度大约升高瞻远34MPa。
如果加入1%以下的锰,可能补充强化作用。
因此加锰后可降低镁含量,同时可降低热裂倾向,另外锰还可以使Mg5Al8化合物均匀沉淀,改善抗蚀性和焊接性能。
锰元素Al-Mn合金系平平衡相图部分在共晶温度658时,锰在固溶体中的最大溶解度为1.82%。
合金强度随溶解度增加不断增加,锰含量为0.8%时,延伸率达最大值。
返滴定法测定铝-2
量Fe试样的测定。大量Ca2+在pH=5~6时,也有部分与EDTA配合,使测定
结果不稳定。
注意事项
实验十六 配位滴定 (三) 铝合金中铝含量的测定
常规实验
▪ 实验步骤调整:
(1)配制100 cm30.02 mol·dm-3 EDTA溶液,转入试剂瓶中。
(2)配制Zn2+标准溶液:准确称~0.13g锌片,加盐酸溶解后,在200 cm3容量瓶 中定容。
无机及分析化学实验
目的要求 实验原理 注意事项
目的要求
实验十六 配位滴定 (三) 铝合金中铝含量的测定
常规实验
▪ 了解合金中组分含量测定的处理方法。
▪ 掌握配合滴定中的置换滴定法。
实验原理
实验十六 配位滴定 (三) 铝合金中铝含量的测定
常规实验
铝合金中铝经溶样后转化成Al3+,由于Al3+离子易水解,易形成多核羟 基配合物,同时Al3+与EDTA配合速度慢,故一般采用返滴定法或置换滴 定法测定铝。本实验采用置换滴定法,先调节溶液的pH为3~4,加入过量 EDTA溶液,煮沸,使Al3+与EDTA充分配合,冷却后,再调节溶液的pH 值为5~6,以二甲酚橙为指示剂,用Zn2+溶液滴定过量EDTA(不计体积) 。然后,加入过量NH4F,加热至沸,使AlY-与F-之间发生置换反应,并释 放出与Al3+配合的EDTA,再用Zn2+标准溶液滴定至紫红色,即为终点。 求算出铝的含量。
实验十六配位滴定铝合金中铝含量的测定常规实验铝合金中铝经溶样后转化成al离子易水解易形成多核羟基配合物同时al与edta配合速度慢故一般采用返滴定法或置换滴定法测定铝
基本实验
通过基本实验主要是训练学生从事化学研究最基本的 操作和技能,建立对化学研究的感性认识,初步掌握进行 化学实验的基本规律。
2024铝合金实验报告
目录一、实验目的与任务二、基本要求三、实验材料和实验方法3.1 2024铝合金简介3.2 2024铝合金成分及主要原材料介绍3.3 实验所需仪器设备3.4 实验原理3.5 合金的熔铸3.6 试样的制备3.7 测试方法3.8 技术路线四、实验结果与分析4.1实验结果4.2实验结果分析五、实验结论与心得体会5.1实验结论5.2心得体会六、参考文献一.实验目的和任务本综合实验是在金属材料本科生完成相关专业理论课之后的一次全面综合实验训练,通过从铝合金材料设计与选择、制造到性能检测的全面训练,使学生了解铝合金材料及其加工的生产全过程,所学基础理论和专业理论来解释试验中的各种现象,培养学生的动手能力和综合分析问题的能力,特别是学生的独立设计实验方案及创新能力。
二.基本要求1)了解课题所研究铝合金材料设计方法;2)初步掌握铝合金材料制备和试样加工基本技能;3)熟悉铝合金材料生产的过程,了解与掌握材料科学与工程研究的基本步骤及思维方法,所用的仪器设备及操作使用;4)学会整理数据,运用知识解释实验中的现象,理论联系实际,培养动手能力,采集并分析数据的综合能力。
三.实验材料和实验方法3.1 2024铝合金简介2024铝合金(标准:JIS H4000-1999)属Al-Cu-Mg系铝合金。
这是一种高强度硬铝,可进行热处理强化。
在淬火和刚淬火状态下塑性中等,点焊焊接良好,用气焊时有形成晶间裂纹的倾向。
合金在淬火和冷作硬化后其可切削性能尚好,退火后可切削性低,抗腐蚀性不高,常采用阳极氧化处理与涂漆方法或表面加包铝层以提高其抗腐蚀能力。
其主要用于制作各种高负荷的零件和构件(但不包括冲压件锻件),如飞机上的骨架零件、2) 主要原材料物理化学性能介绍※铝铝原子序数为13,银白色轻金属,有延性和展性。
铝的相对密度2.70,熔点660℃,沸点2327℃。
易溶于稀硫酸、硝酸、盐酸、氢氧化钠和氢氧化钾溶液,不溶于水。
在潮湿空气中能形成一层防止金属腐蚀的氧化膜。
光电直读光谱法测定稀土铝合金中La,Ce,Pr,Nd,Sm,Si,Fe,Cu
中田分类号 : 6 7 3 O 5 .1
文献标识码 : A
文章 编号 :000 9 (0 20 .370 10 -53 2 0 }20 1—3 12 工作气 体 . 氩气 , 纯度 9 .9 %。 9 96
13 样 品要求 .
随着材科科学 的发展 , 土元素 在铝工业 中的应用 越来 稀
为 : - 光源预燃 曝光均 为单 向全功率放 电, 气 冲洗 3s KH 5 氩 ,
预 燃 5s曝 光 1 。 . 0s
的强度值在正常范围之内 , 方式三 的半功率放 电灵 敏度偏低 . 虽可用提高光 电倍增 管 的高压 来提 高, 但要 降低光 电倍增管 的使用寿命 , 故选择方式一较适宜 。
维普资讯
第2卷, 2 2 第 期 2 00 2年 4月
光e 谱 so y a d S e ta 分 iss S cr c p n 光 cr l &v析 p to 学 与 p 谱 An i
. .o2p37 1 2 N .. 1. 9 2 0 3
中的元素为非 痕量元素 , 本研究以净 强度为指标 , 考奄第 一 仅
1 实验部分
1 1 仪器 . 美 国贝尔德公 司 D -10 V 4 0 0型光 电直读光 谱仪 , 光系 分
统 ; 米 凹面光 栅 , 1 捌线 14 0条 - n 色 散率 一级 0 64 4 mr~; 6
nm ・ m m ~
数 的选择及光源激发方式 的选择 , 使其 方法的 准确度精密 度 提高 , 结果令人满 意。
2 结果 与讨论
2 1 光源激发方式 的选择 . 光谱分析的误 差主要 来源 于激发光源 , 激发方式 的选择 尤为重要。K 5 源有四种激发方式 :)全 功率放 电、 H- 光 1: 峰值 电压 4 6Vt )振 荡方式 . 1 2 : 主要 用 于非导体材料分 析 ; )半 3: 功率放 电. 峰值电压 2 8v; )线 路中加一 附加 电感 , 0 4 : 产生 电 弧式 的放电 , 主要用 于金 属 中痕 量元素 的测定 。稀 士铝合金
铝合金的腐蚀特点及检验对策
铝合金的腐蚀特点及检验对策发表时间:2019-08-06T09:13:43.203Z 来源:《基层建设》2019年第15期作者:刘盼[导读] 摘要:近年来,铝合金作为一种性能优越的金属材料在舰船建造上得到了广泛的应用,铝合金上层建筑及全铝合金结构船体的船舶数量急速增加,很多船采用 5083-H116、5083-H321 和 5383-H321 等铝合金作为舰体结构材料,6061-T6 和 6082-T6 作为舰体挤压成型件(管材)及加固材料。
澳龙船艇科技有限公司广东中山 519000摘要:近年来,铝合金作为一种性能优越的金属材料在舰船建造上得到了广泛的应用,铝合金上层建筑及全铝合金结构船体的船舶数量急速增加,很多船采用 5083-H116、5083-H321 和 5383-H321 等铝合金作为舰体结构材料,6061-T6 和 6082-T6 作为舰体挤压成型件(管材)及加固材料。
与此同时,舰艇的铝合金结构的防腐蚀问题应该引起我们的高度重视。
关键词:铝合金;腐蚀特点;检验对策1.舰船用铝合金典型腐蚀类型铝及其合金的腐蚀环境湿度临界值为76 RH%,当环境湿度高于该临界值时,铝合金表面就会形成水膜,从而促使电化学腐蚀速率迅速上升。
该值与铝合金表面状态紧密相关,当金属表面越粗糙、裂缝与小孔越多时,临界相对湿度值越低;若铝合金表面粘附易于吸潮的盐类或灰尘时,其临界值也降低。
5 系(Al-Mg)铝合金和 6 系(Al-Mg-Si)铝合金是应用最广的舰用铝合金,常见的腐蚀类型包括:均匀腐蚀、点腐蚀、缝隙腐蚀、晶间腐蚀和应力腐蚀。
1.1 均匀腐蚀在 H 3 PO 4 或 NaOH 介质中,铝合金通常发生均匀腐蚀,此时金属表面的钝化膜会发生大面积均匀溶解,即全面腐蚀。
1.2 点腐蚀。
点蚀是铝及其合金最常见的腐蚀类型,在海洋大气环境中,当空气湿度达到腐蚀临界值时,铝合金表面形成极薄水膜,使极性较强的Cl - 进入于铝合金表面薄液膜。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定量分析综合实验——铝合金中Al、Fe、Cu含量的测定实验研究报告班级:05091135姓名:***2008年1月铝合金中Al、Fe、Cu含量的测定实验方案一、铝含量的测定(置换滴定法):采用返滴定法测定时,先调节溶液pH为3.5,加入过量的EDTA煮沸,是Al3+与EDTA 络合,冷却后再调节溶液pH为5~6,以二甲酚橙为指示剂,用Zn2+标准溶液滴定过量的EDTA,即可求得Al3+的含量。
但返滴定法选择性不高,所有与EDTA形成稳定络合物的金属离子都干扰测定,在复杂试样中的铝测定,需要在返滴定法的基础上,再结合置换滴定法测定。
利用F-和Al3+生成更稳定的AlF63-性质,加入NH4F以置换出与Al3+等量络合的EDTA,再用Zn2+标准溶液滴定之,从而精确计算Al3+的含量。
置换滴定法测定Al3+时,Ti4+、Zr4+、Sn4+发生与Al3+相同的置换反应而干扰Al3+的测定,这时可以加入络合掩蔽剂将他们掩蔽。
根据滴定所消耗的体积,再由下式计算出铝合金中铝的含量。
250*(CV)Zn Mw(Al)= *100%20*0.1006二、铁含量的测定(邻二氮菲分光光度法):邻二氮菲和Fe2+在pH3~9的溶液中,生成一种稳定的橙红色络合物,铁含量在0.1~6ug/ml范围内遵守比尔定律。
显色前需要用盐酸羟胺将Fe3+全部还原为Fe2+,然后加入邻二氮菲,并调节溶液酸度至适宜的显色酸度范围。
2Fe3++2NH2OH·HCl===2Fe2++N2↑+2H2O+4H++2Cl-用分光光度法测定物质的含量,一般采用标准曲线法,即配制一系列浓度的标准溶液,在实验条件下依次测量各标准溶液的吸光度(A),以溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。
在同样的实验条件下,测定待测溶液的吸光度,根据测得吸光度值从标准曲线上查出相应的浓度值,再根据下式即可计算式样中被测物质的质量浓度。
再由下式计算铝合金中铁的含量:50*CVMw(Fe)%= *100%20*m三、铜含量的测定1、碘量法测铜:以浓硝酸溶解,尿素溶液分解氮氧化物,加氟化钠,冷至室温,加碘化钠,并用硫代硫酸钠标准溶液滴定,发生如下反应:2Cu2++4I-==Cu2I2 ↓+I2I2+2S2O32-==2 I-+S4O62-Cu2I2+2SCN-==Cu(SCN)2↓并以下式计算铝合金中铜的含量:250*CV(Na2S2O3)Mw(Cu)= *100%20*0.9801测定范围(铜含量)0.1%。
2.分光光度法测铜:铜与BCO在柠檬酸存在下,在PH9.25生成稳定的络合物。
用分光光度法测定物质的含量,一般采用标准曲线法,即配制一系列浓度的标准溶液,在实验条件下依次测量各标准溶液的吸光度(A),以溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。
在同样的实验条件下,测定待测溶液的吸光度,根据测得吸光度值从标准曲线上查出相应的浓度值,即可计算式样中被测物质的质量浓度。
再根据下式即可计算出铜的含量。
w%(Cu)=(25Cx/m)*100%式中C 为从工作曲线上查出相应的铜浓度,为测定时所称取的样品的质量。
铝合金中Al、Fe、Cu含量的测定1前言:铝合金在人们的生产生活中应用非常广泛。
我们根据分析化学课介绍的定量分析方法,对铝合金产品—易拉罐中铜、铁、铝的含量进行测定,并对测定的条件进行了探讨。
本实验是针对易拉罐罐体的铝合金含量进行测定。
主要采用分光光度法、碘量法、置换滴定法测定铝合金中铝、铁、铜的含量。
2.1置换滴定法测铝:2.11实验材料、仪器:NaOH溶液200g/L;HCl 1:1、1:3;0.020mol/lEDTA标准溶液;0.020mol/LZn2+标准溶液,氨水1:1,六亚甲基四胺溶液200g/L;二甲酚橙2g/L水溶液;NH4F溶液200g/L贮于塑料瓶中;铝合金试样2.12实验原理:采用返滴定法测定时,先调节溶液pH为3.5,加入过量的EDTA煮沸,是Al3+与EDTA 络合,冷却后再调节溶液pH为5~6,以二甲酚橙为指示剂,用Zn2+标准溶液滴定过量的EDTA,即可求得Al3+的含量。
但返滴定法选择性不高,所有与EDTA形成稳定络合物的金属离子都干扰测定,在复杂试样中的铝测定,需要在返滴定法的基础上,再结合置换滴定法测定。
即利用F-和Al3+生成更稳定的AlF63-性质,加入NH4F以置换出与Al3+等量络合的EDTA,再用Zn2+标准溶液滴定之,从而精确计算Al3+的含量。
置换滴定法测定Al3+时,Ti4+、Zr4+、Sn4+发生与Al3+相同的置换反应而干扰Al3+的测定,这时可以加入络合掩蔽剂将他们掩蔽。
2.13实验步骤:准确称取0.10~0.12g铝合金于50ml塑料瓶中,1:1HCl,在沸水浴上将其溶解完全。
将其定量转移至250ml容量瓶中,用水稀释至刻度,摇匀。
移取上述试液20.00ml于250ml锥形瓶中,加入30ml0.020mol/LEDTA标准溶液,2滴二甲酚橙,此时溶液呈黄色,滴加氨水至溶液呈紫红色,再滴加1:3HCl使溶液呈黄色,并过量3滴。
煮沸3min冷却。
加入20ml六亚甲基四胺,此时溶液应为黄色,如果溶液呈现红色,还须滴加1:3HCl,使其变黄。
用Zn2+标准溶液滴定,当溶液由黄色变为紫红色停止滴定,不计体积。
再加入10ml200g/LNH4F,加热至微沸,取下冷至室温,再补加2滴二甲酚橙,此时溶液应为黄色。
若为红色,应滴加1:3HCl使溶液呈黄色。
再用Zn标准溶液滴定,当溶液由黄色变为紫红色时,即为终点。
根据消耗的Zn2+标准溶液的体积,计算试样中Al的质量分数。
2.14实验结果:250*(CV)Zn Mw(Al)= *100%20*0.10062.15问题与讨论:(1)为什么测定简单试样中的Al3+用返滴定法即可,而测定复杂试样中的Al3+则须采用置换滴定法。
答:因试样简单,金属离子种类很少,控制一定的条件,加入一定过量的EDTA时只有Al3+形成络离子,而过量的EDTA才能准确被滴定。
因复杂试样中金属离子的种类较多,条件不易控制,加入的EDTA不只是和Al3+反应,还要和其它离子反应,所以就不能用剩余的EDTA直接计算Al3+的含量,还需要再置换出与Al3+络合的EDTA,因此测定复杂试样中的Al3+,则须采用置换滴定法。
(2)用返滴定法测定简单试样中的Al3+时,所加入过量EDTA溶液的浓度是否必须准确?为什么?答:加入的EDTA溶液的浓度必须准确,如果浓度不准确就无法计算出与Al3+反应的量。
(3)本实验中使用的EDTA溶液要不要标定?答:本实验中采用置换滴定法测定Al3+的含量,最后是用Zn2+标准溶液的体积和浓度计算试样中Al3+的含量,所以使用的EDTA溶液不要标定。
(4)为什么加入过量的EDTA,第一次用Zn2+标准溶液滴定时,可以不计所消耗的体积?但此时是否须准确滴定溶液由黄色变为紫红色?为什么?答:因第一次是滴定过量的EDTA后,也即未与Al3+反应的EDTA,所以可以不计体积。
但必须准确滴定溶液由黄色变为紫红色,否则溶液中还有剩余EDTA,使结果偏高。
(5)将含有六亚甲基四胺的溶液加热时,由于六亚甲基四胺的部分水解,而使溶液pH 升高,致使二甲酚橙显红色,此时可以直接滴定吗?答:此时应补加HCl使溶液呈黄色后,再进行滴定:(CH2)6N4 +6H2O=6HCHO+4NH3(6)溶解时若有黑色炭化物颗粒,则应如何?答:应滴加300g/LH2O2破坏之。
2.2邻二氮菲分光光度法测定铁:2.21仪器与试剂:仪器:721型分光光度计。
试剂:0.1mg/L铁标准储备液准确0.7020gNH4Fe(SO4)2.6H2O置于烧杯中,加少量水和20mL1:1H2 SO4溶液,溶解后,定量转移到1L容量瓶中,用水稀释至刻度,摇匀。
0. 1g/L铁标准溶液可用铁储务液稀释配制.100g/L盐酸羟胺水溶液用时现配.1.5g/L邻二氮菲水溶液避光保存,溶液颜色变暗时即不能使用.1.0mol/L乙酸钠溶液.0.1mol/L氢氧化钠溶液.2.22实验方案:邻二氮菲和Fe2+在pH3~9的溶液中,生成一种稳定的橙红色络合物,铁含量在0.1~6ug/ml范围内遵守比尔定律。
显色前需要用盐酸羟胺或抗坏血酸将Fe3+全部还原为Fe2+,然后加入邻二氮菲,并调节溶液酸度至适宜的显色酸度范围。
2Fe3++2NH2OH·HCl===2Fe2++N2↑+2H2O+4H++2Cl-用分光光度法测定物质的含量,一般采用标准曲线法,即配制一系列浓度的标准溶液,在实验条件下依次测量各标准溶液的吸光度(A),以溶液的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线。
在同样的实验条件下,测定待测溶液的吸光度,根据测得吸光度值从标准曲线上查出相应的浓度值,再根据下式即可计算式样中被测物质的质量浓度。
50*CVMw(Fe)%= *100%20*m2.23实验步骤:显色标准溶液的配制在序号为1~6的6只50m L容量瓶中,用吸量管分别加入0,0.20,0.40,0.60,0.80,1.0mL铁标准溶液,分别加入1mL100g/L盐酸羟胺溶液,摇匀后放置2min,再各加入2mL1.5g/L邻二氮菲溶液、5mL1.0mol/L乙酸钠溶液,以水稀释至刻度,摇匀.吸收曲线的绘制在用lcm 比色皿,以试剂空白溶液(1号)为参比,在440~560nm之间,每隔10nm测定一次等测溶液(5号)的吸光度A,以波长为横坐标,吸光度为纵坐标,绘制吸收曲线,从而选择测定铁的最大吸收波长.标准曲线的测绘用lcm 比色皿,在选定波长下测定2~6号各显色标准溶液的吸光度.以铁的浓度为横坐标,相应的吸光度为纵坐标,绘制标准曲线.铁含量的测定试样溶液按上述步骤显色后,在相同条件下测量吸光度,由标准曲线计算试样中微量铁的质量浓度.2.24实验结果:标准曲线由图可得A=0.2317C Fe=0.2317*0.0025/0.425=0.001363mol/L50*CVMw(Fe)%= *100%=0.189%20*m2.25问题与讨论:(1)用邻二氮菲测定铁时,为什么要加入盐酸羟胺?其作用是什么?答:盐酸羟胺是还原剂,可以防止Fe2+氧化成Fe3+。
(2)在有关条件实验中,均以水为参比,为什么在测绘标准曲线和测定试液时,要以试剂空白溶液为参比?答:主要是消除试液中产生吸光的因素。
(3)比色皿的光面不能弄脏,否则会影响测定准确性。
(4)用分光光度计时注意操作规范,拉格是不要拉过头,放置比色皿时要注意不要使液体溅出,以免腐蚀仪器。
2.3碘量法测铜2.31试剂:氢氧化钠溶液(30%)、硝酸(浓)、尿素溶液(10%)、氟化钠固体、硫代硫酸钠标准溶液[c(Na2S2O3)=0.05mol/L].2.32实验方案:以浓硝酸溶解,尿素溶液分解氮氧化物,加氟化钠,冷至室温,加碘化钠,并用硫代硫酸钠标准溶液滴定,发生如下反应:2Cu2++4I-==Cu2I2 ↓+I2I2+2S2O32-==2 I-+S4O62-Cu2I2+2SCN-==Cu(SCN)2↓测定范围(铜含量)0.1%2.33实验步骤:称取0.5000~1.0000g试样于500mL锥形瓶中,加浓硝酸溶解,煮沸约3min,冷却。