全称量词和存在量词

合集下载

高一数学复习考点知识与题型专题讲解5---全称量词与存在量词

高一数学复习考点知识与题型专题讲解5---全称量词与存在量词

高一数学复习考点知识与题型专题讲解1.5全称量词与存在量词【考点梳理】考点一全称量词和存在量词全称量词存在量词量词所有的、任意一个存在一个、至少有一个符号∀∃命题含有全称量词的命题是全称量词命题含有存在量词的命题是存在量词命题命题形式“对M中任意一个x,p(x)成立”,可用符号简记为“∀x∈M,p(x)”“存在M中的元素x,p(x)成立”,可用符号简记为“∃x∈M,p(x)”考点二含量词的命题的否定p 綈p 结论全称量词命题∀x∈M,p(x)∃x∈M,綈p(x)全称量词命题的否定是存在量词命题存在量词命题∃x∈M,p(x)∀x∈M,綈p(x)存在量词命题的否定是全称量词命题【题型归纳】题型一:含全称量词和存在量词命题的判断1.下列命题中,是全称量词命题且是真命题的是( ) A .对任意的a 、b R ∈,都有222220a b a b +--+< B .菱形的两条对角线相等 C .x R ∀∈,2x x =D .正方形是矩形2.下列命题不是存在量词命题的是( )A .有些实数没有平方根B .能被5整除的数也能被2整除C .在实数范围内,有些一元二次方程无解D .有一个m 使2m -与||3m -异号 3.设2(1):x p x x +<,则以下说法错误的是( ) A .“(),x R p x ∀∈”是假命题B .()p x 是假命题 C .“(),x R p x ∃∈”是假命题D .“(),x R p x ∃∈”是真命题 题型二:含含量词的命题的否定问题4.命题“()0,1x ∀∈,20x x -<”的否定是( ) A .()0,1x ∀∉,20x x -≥B .()0,1x ∃∈,20x x -≥ C .()0,1x ∀∉,20x x -<D .()0,1x ∀∈,20x x -≥5.已知命题P :x R ∀∈,210x +>,则命题P 的否定为( ) A .x R ∃∈,210x +≤B .x R ∀∈,210x +< C .x R ∃∉,210x +≤D .x R ∀∈,210x +≤6.已知命题0:(0,1)p x ∃∈使得2340x x --=成立,则p ⌝为( )A .01x ∀∈(,)都有2340x x --<恒成立B .(0,1)x ∀∈都有2340x x --≠恒成立C . (01) x ∃∈,都有2340x x --=恒成立D .0(0,1)x ∃∈都有2340x x --≠恒成立题型三:根据全称命题的真假求参数问题7.若命题“x R ∀∈,使220x x m -->”是真命题,则实数m 的取值范围是( ) A .(,1)-∞-B .(,2)-∞C .[1,1]-D .(,0)-∞8.已知命题:p x R ∃∈,210mx +≤;命题:q x R ∀∈,210x mx ++>.若p ,q 都是假命题,则实数m 的取值范围为( )A .2m ≤-B .2m ≥C .2m ≥或2m ≤-D .22m -≤≤9.已知命题p :∀x ∈R ,ax 2+2x +3>0.若命题p 为假命题,则实数a 的取值范围是( )A .13aa ⎧⎫<⎨⎬⎩⎭∣B .103a a ⎧⎫<≤⎨⎬⎩⎭∣ C .13aa ⎧⎫≤⎨⎬⎩⎭∣D .13a a ⎧⎫≥⎨⎬⎩⎭∣题型四:根据存在量词命题的真假求参数问题10.若命题“2,10x R x ax ∃∈-+≤”是假命题,则实数a 的取值范围是( ). A .2{|}2a a -≤≤B .{|2a a ≤-或}2a ≥ C .2{|2}a a -<<D .{2|a a <-或}2a >11.命题:{|19}p x x x ∃∈≤≤,2360x ax -+≤,若p 是真命题,则实数a 的取值范围为( ) A .37a ≥B .13a ≥C .12a ≥D .13a ≤12.若命题“0x ∃∈R ,20390x mx -+<”为假命题,则实数m 的取值范围是( ) A .(2,2)-B .(,2)(2,)-∞-+∞C .[2,2]-D .(,2][2,)-∞-+∞【双基达标】一、单选题 13.命题p :“有些三角形是等腰三角形"的否定是()A .有些三角形不是等腰三角形B .有些三角形可能是等腰三角形C .所有三角形不是等腰三角形D .所有三角形是等腰三角形 14.命题“∀x ∈R ,∃n 0∈N *,使得n 0≥2x +1”的否定形式是( ) A .∀x ∈R ,∃n 0∈N *,使得n 0<2x +1 B .∀x ∈R ,∀n 0∈N *,使得n 0<2x +1 C .∃x 0∈R ,∃n ∈N *,使得n <2x 0+1 D .∃x 0∈R ,∀n ∈N *,使得n <2x 0+115.下列命题中是全称命题并且是真命题的是( ) A .所有菱形的四条边都相等 B .若2x 为偶数,则x 为自然数 C .若对任意x ∈R ,则2210x x ++> D .π是无理数16.下列全称量词命题中真命题的个数为( ) ①负数没有倒数;②对任意的实数a ,b ,都有220a b +≥; ③二次函数21y x ax =--的图象与x 轴恒有交点;④x R ∀∈,y R ∈,都有20x y +>.A .1B .2C .3D .417.若存在x ∈R ,使220x x a ++<,则实数a 的取值范围是( ) A .1a <B .1a ≤C .11a -<<D .11a -<≤18.若命题“2,2x R x a ∀∈+>”是真命题,则实数a 的取值范围是( )A .(]2-∞,B .()2-∞,C .[)2-∞,D .()2+∞, 19.已知[]04x ∃∈,, 使2250x x m -+-<是真命题, 则m 的取值范围为( )A .5∞+(,)B .()13∞+,C .()4∞+D .()13∞-,20.若命题“[]1,2x ∀∈,10ax +>”是真命题,则a 的取值范围是( )A .1,2⎛⎫-+∞ ⎪⎝⎭B .1,2⎡⎫-+∞⎪⎢⎣⎭C .()1,-+∞D .[)1,-+∞21.命题“任意a ∈R ,使方程10ax +=都有唯一解”的否定是( ) A .任意a ∈R ,使方程10ax +=的解不唯一 B .存在a ∈R ,使方程10ax +=的解不唯一 C .任意a ∈R ,使方程10ax +=的解不唯一或不存在 D .存在a ∈R ,使方程10ax +=的解不唯一或不存在 22.下列说法错误的是( )A .“若x ≠3,则x 2﹣2x ﹣3≠0”的逆否命题是“若x 2﹣2x ﹣3=0,则x =3”B .“∀x ∈R ,x 2﹣2x ﹣3≠0”的否定是“∃x 0∈R ,x 02﹣2x 0﹣3=0”C .“x >3”是“x 2﹣2x ﹣3>0”的必要不充分条件D .“x <﹣1或x >3” 是“x 2﹣2x ﹣3>0”的充要条件【高分突破】一:单选题23.命题“3[0,),0x x x ∀∈+∞+≥”的否定是A .()3,0,0x x x ∀∈-∞+<B .()3,0,0x x x ∀∈-∞+≥C .[)30000,,0x x x ∃∈+∞+<D .[)30000,,0x x x ∃∈+∞+≥24.已知命题“x R ∃∈,使212(1)02x a x +-+≤”是假命题,则实数a 的取值范围是 A .(,1)-∞-B .(1,3)- C .(3,)-+∞D .(3,1)-25.命题“x R ∀∈,210x x -+≥”的否定是( ) A .x R ∀∈,210x x -+<B .x R ∀∈,210x x -+≤C .0x R ∃∈,2010x x -+<D .0x R ∃∈,20010x x -+≤ 26.若命题“x R ∃∈,使()2110x a x ++<-”是假命题,则实数a 的取值范围为A .13a ≤≤B .13a ≤≤-C .33a ≤≤-D .11a ≤≤-27.若“122x ⎡⎤∃∈⎢⎥⎣⎦,使得2210x x λ-+<成立”是假命题,则实数λ的取值范围为 A .(,22⎤-∞⎦B .223⎡⎤⎣⎦,C .223⎡⎤-⎣⎦,D .3λ= 28.已知命题P :2,(1)10x R x a x ∃∈+-+<若命题P 是假命题,则a 的取值范围为( )A .13a ≤≤B .13a -≤≤C .13a <<D .02a ≤≤二、多选题29.下列命题的否定中,是全称量词命题且为真命题的有 A .21,0.4x x x R $?+< B .所有的正方形都是矩形 C .2,220x x x $?+R …D .至少有一个实数x ,使310x += 30.下列说法正确的是( )A .命题“x ∀∈R ,21x >-”的否定是“x ∃∈R ,21x <-”B .命题“(3,)x ∃∈-+∞,29x ≤”的否定是“(3,)x ∀∈-+∞,29x >”C .“22x y >”是“x y >”的必要而不充分条件D .“0m <”是“关于x 的方程2x 2x m 0-+=有一正一负根”的充要条件 31.命题“[]1,3x ∀∈,20x a -≤”是真命题的一个充分不必要条件是( ) A .8a ≥B .9a ≥C .10a ≥D .11a ≥ 32.下列命题中,真命题的是( ) A .0a b -=的充要条件是1a b= B .1a >,1b >是1ab >的充分条件C .命题“x R ∃∈,使得210x x ++<”的否定是“x R ∀∈都有210x x ++≥”D .命题“x R ∀∈,210x x ++≠”的否定是“x R ∃∈,210x x ++=”33.取整函数:[]x =不超过x 的最大整数,如[1.2]1,[3.9]3,[ 1.5]2==-=-,取整函数在现实生活中有着广泛的应用,如停车收费、出租车收费等等都是按照“取整函数”进行计费的,以下关于“取整函数”的性质是真命题有( ) A .,[2]2[]x R x x ∀∈=B .,[2]2[]x R x x ∃∈=C .,,[][],x y R x y ∀∈=则1x y -<D .,,[][][]x y R x y x y ∀∈+≤+三、填空题34.命题“2,3210x R x x ∀∈-+>”的否定是__________.35.若命题“x R ∃∈使()2110x a x +-+<”是假命题,则实数a 的取值范围为_____,36.已知命题“2,410x ax x ∀∈++>R ”是假命题,则实数a 的取值范围是_________________. 37.若全称命题:“x R ∀∈,2304kx kx +-<成立”是真命题,则实数k 的取值范围是______. 38.若对{}12x x x ∀∈≤≤,{}12t t t ∃∈≤≤,使得2x t m +>+成立,则实数m 的取值范围是_______.四、解答题39.用符号“∀”与“∃”表示下列含有量词的命题,并判断真假: (1)任意实数的平方大于或等于0;(2)对任意实数a ,二次函数2y x a =+的图象关于y 轴对称; (3)存在整数x ,y ,使得243x y +=; (4)存在一个无理数,它的立方是有理数.40.命题p :任意x ∈R , 2x -230mx m ->成立;命题q :存在x ∈R , 2x +410mx +<成立. (1)若命题p 为真命题,求实数m 的取值范围; (2)若命题q 为假命题,求实数m 的取值范围;(3)若命题p 、q 至少有一个为真命题,求实数m 的取值范围;41.已知a ∈R ,命题p :∀x ∈[-2,-1],x 2-a≥0,命题q :()2000,220x R x ax a ∃∈+--=.(1)若命题p 为真命题,求实数a 的取值范围;(2)若命题“p ∨q”为真命题,命题“p ∧q”为假命题,求实数a 的取值范围.42.设命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立;命题q :存在[]1,1x ∈-,使得不等式210x x m --+≤成立.(1)若p 为真命题,求实数m 的取值范围;(2)若命题p 、q 有且只有一个是真命题,求实数m 的取值范围.43.已知m R ∈,命题p :[0,1]x ∀∈,23x m m ≥-恒成立;命题q :存在x ∈R ,使得220x x m -+->. (1)若p 为真命题,求m 的取值范围;(2)若p ,q 有且只有一个真命题,求实数m 的取值范围.【答案详解】1.D 【详解】对于A 选项,命题“对任意的a 、b R ∈,都有222220a b a b +--+<”为全称命题, 但()()2222222110a b a b a b +--+=-+-≥,该命题为假命题;对于B 选项,命题“菱形的两条对角线相等”为全称命题,该命题为假命题; 对于C 选项,命题“x R ∀∈,2x x =”为全称命题,当0x <时,2x x =-,该命题为假命题;对于D 选项,命题“正方形是矩形”为全称命题,该命题为真命题. 故选:D. 2.B 【详解】选项A 、C 中“有些”是存在量词,选项D 中“有一个”是存在量词,选项B 中不含存在量词,不是存在量词命题. 故选:B . 3.C 【详解】由221551()244x x x +-=+-≥-,对于A 中,命题“(),x R p x ∀∈”是假命题,所以A 是正确的; 对于B 中,命题()p x 是假命题,所以B 是正确的;对于C 中,命题“(),x R p x ∃∈”是真命题,所以C 是错误的,D 是正确的.故选:C. 4.B 【分析】根据全称命题的否定是特称命题即可求出结果. 【详解】则命题“()0,1x ∀∈,20x x -<”的否定为()0,1x ∃∈,20x x -≥, 故选:B. 5.A 【详解】因为全称命题的否定是特称命题, 所以命题P 的否定为:x R ∃∈,210x +≤, 故选:A. 6.B 【详解】因为命题0:(0,1)p x ∃∈使得2340x x --=成立,则p ⌝为(0,1)x ∀∈都有2340x x --≠恒成立, 故选:B. 7.A 【详解】解:因为命题“x R ∀∈,使220x x m -->”是真命题, 所以440m ∆=+<,解得1m <- 故m 的取值范围是(,1)-∞-. 故选:A .8.B 【详解】因为命题p 为假命题,则命题p 的否定为真命题,即:2,10x R mx ∀∈+>为真命题, 解得0m ≥,同理命题q 为假命题,则命题q 的否定为真命题,即2,10R x mx ∃∈++≤为真命题, 所以240m ∆=-≥,解得2m ≥或2m ≤-, 综上:2m ≥, 故选:B 9.C先求当命题p :x R ∀∈,2230ax x ++>为真命题时的a 的取值范围 (1)若0a =,则不等式等价为230x +>,对于x R ∀∈不成立, (2)若a 不为0,则04120a a >⎧⎨∆=-<⎩,解得13a >,∴命题p 为真命题的a 的取值范围为13aa ⎧⎫>⎨⎬⎩⎭∣, ∴命题p 为假命题的a 的取值范围是13aa ⎧⎫≤⎨⎬⎩⎭∣. 故选:C 10.C 【详解】命题“2,10x R x ax ∃∈-+≤”是假命题, 则需满足240a ∆=-<,解得22a -<<.11.C命题:{|19}p x x x ∃∈≤≤,使2360x ax -+≤为真命题, 即{|19}x x x ∃∈≤≤,使2360x ax -+≤成立,即36a x x≥+能成立 设36()f x x x =+,则3636()212fx x x xx=+≥⋅=,当且仅当36x x=,即6x =时,取等号,即m i n ()12f x =,12a ∴≥,故a 的取值范围是12a ≥. 故选:C . 12.C 【详解】若命题“0x ∃∈R ,200390x mx -+<”为假命题,则若命题“x ∀∈R ,2390x mx -+≥”为真命题, 所以29360m ∆=-≤,解得22m -≤≤. 故选:C. 13.C 【详解】 命题p :“存在 x A ∈,使 ()P x成立”,p ⌝ 为:“对任意 x A ∈,有 ()P x 不成立”.故命题 p :“有些三角形是等腰三角形’’,则 p ⌝ 是“所有三角形不是等腰三角形”.14.D 【详解】解:由特称命题的否定是全称命题,全称命题的否定是特称命题,则命题“∀x ∈R ,∃n 0∈N *,使得n 0≥2x +1”的否定形式为“∃x 0∈R ,∀n ∈N *,使得n <2x 0+1”, 故选:D . 15.A 【详解】B 选项,是真命题,但不是全称命题;C 选项,是假命题,1x =-不成立;D 选项,是真命题,但不是全称命题. 故选:A 16.B 【详解】解::①负数有倒数;故错误;②对任意的实数a ,b ,都有222a b ab +…;由于2()0a b -…恒成立,故正确; ③二次函数2()1f x x ax =--与x 轴恒有交点;由于△240a =+>,故恒有交点,故正确;④x R ∀∈,y R ∈,当0x y ==时,都有2||0x y +=.故错误. 所以真命题的个数为2. 故选:B . 17.A 【详解】由题意知函数22y x x a =++的图象有在x 轴下方的部分,即440∆=->a ,解得1a <, 故选:A. 18.B 【详解】因为命题“2,2x R x a ∀∈+>”是真命题,且x R ∀∈,222x +≥, 所以2a <. 故选:B 19.C 【详解】因为[]1,4x ∃∈ 使2250x x m -+-<是真命题,所以2250x x m -+-<在[]1,4x ∈上能成立,即225x x m -+<在[]1,4x ∈上能成立,设()225g x x x =-+,开口向上,且对称轴为1x =,所以()g x 在[]1,4上的最小值为()2112154g =-⨯+=,故4m <,故选:C. 20.A 【详解】解:因为[]1,2x ∀∈,10ax +>,所以10210a a +>⎧⎨+>⎩,解得12a >-故选:A 21.D该命题的否定:存在a ∈R ,使方程10ax +=的解不唯一或不存在. 故选:D. 22.C 【详解】根据命题“若p 则q ”的逆否命题为“若q ⌝则p ⌝”,可知“若x ≠3,则x 2﹣2x ﹣3≠0”的逆否命题是“若x 2﹣2x ﹣3=0,则x =3”,即A 正确;根据全称命题的否定是特称命题可知,“∀x ∈R ,x 2﹣2x ﹣3≠0”的否定是“∃x 0∈R ,x 02﹣2x 0﹣3=0,即B 正确;不等式x 2﹣2x ﹣3>0的解为x <﹣1或x >3,故“x >3”可推出“x 2﹣2x ﹣3>0”,但 “x 2﹣2x ﹣3>0”推不出“x >3”,即“x >3”是“x 2﹣2x ﹣3>0”的充分不必要条件,C 错误,“x <﹣1或x >3” 是“x 2﹣2x ﹣3>0”的充要条件,D 正确. 故选:C. 23.C全称命题的否定是存在性命题,所以,命题“[)30,,0x x x ∀∈+∞+≥”的否定是[)30000,,0x x x ∃∈+∞+<,选C.24.B 【详解】因为命题“x R ∃∈,使212(1)02x a x +-+≤”是假命题,所以212(1)02x a x +-+>恒成立,所以2()114202a ∆=--⨯⨯<,解得13a -<<,故实数a 的取值范围是(1,3)-.故选B . 25.C 【详解】命题“x R ∀∈,210x x -+≥”的否定是“0x R ∃∈,2010x x -+<” 故选:C 26.B 【详解】由题得,原命题的否命题是“x R ∀∈,使()2110x a x ++≥-”,即2(1)40a ∆=--≤,解得13a ≤≤-.选B. 27.A 【详解】因为命题“1[,2]2x ∃∈,使得2210x x λ-+<成立”为假命题,所以该命题的否定“1[,2]2x ∀∈,使得2210x x λ-+≥恒成立成立”,即221x xλ+≤对于1[,2]2x ∀∈恒成立,而2211122222x x x x x x +=+≥⋅=(当且仅当12x x =,即22x =时取等号),即22λ≤;故选A. 28.B 【详解】由题:命题P 是假命题,其否定:2,(1)10x R x a x ∀∈+-+≥为真命题, 即2(1)40a ∆=--≤,解得13a -≤≤. 故选:B 29.AC由条件可知:原命题为特称量词命题且为假命题,所以排除BD ;又因为2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭,()2222110x x x ++=++>,所以AC 均为假命题,故选AC. 30.BD 【详解】解:A.命题“x ∀∈R ,21x >-”的否定是“x ∃∈R ,21x ≤-”,故错误; B.命题“(3,)x ∃∈-+∞,29x ≤”的否定是“(3,)x ∀∈-+∞,29x >”,正确;C.22x y x y >⇔>,x y >不能推出x y >,x y >也不能推出x y >,所以“22x y >”是“x y >”的既不充分也不必要条件,故错误;D.关于x 的方程2x 2x m 0-+=有一正一负根44000m m m ->⎧⇔⇔<⎨<⎩,所以“0m <”是“关于x 的方程2x 2x m 0-+=有一正一负根”的充要条件,正确, 故选:BD. 31.CD 【详解】由题意,命题“[]1,3x ∀∈,20x a -≤”是真命题,即20x a -≤在[]1,3x ∈上恒成立,即2a x ≥在[]1,3x ∈上恒成立,又由22()39man x ==,即9a ≥,结合选项,命题为真命题的一个充分不必要条件为C 、D. 故选:CD.32.BCD 【详解】A. 当0b =时,1a b=不成立,故不充分;当1a b=可推出0a b -=,故必要,故错误; B. 由不等式的基本性质知1a >,1b >可推出1ab >,故充分,故正确; C.存在量词命题的否定是全称量词命题,故正确; D. 全称量词命题的否定是存在量词命题,故正确; 故选:BCD 33.BC1.5x =时,[2][3]3x ==,但2[]2[1.5]212x ==⨯=,A 错;2x =时,[2][4]42[2]2[]x x ====,B 正确;设[][]x y k Z ==∈,则1k x k ≤<+,1k y k ≤<+,∴1x y -<,C 正确;0.5,0.6x y ==,则[][]0x y +=,但[][1.1]1x y +==[][]x y >+,D 错.故选:BC .34.2000,3210x R x x ∃∈-+≤ 【详解】由全称命题的否定可知,命题“2,3210x R x x ∀∈-+>”的否定是“0x R ∃∈,2032x x - 10+≤”,故答案为“0x R ∃∈,203210x x -+≤”. 35.[]1,3- 【详解】由题意得若命题“2R,(1)10x x a x ∃∈+-+<”是假命题, 则命题“2R,(1)10x x a x ∀∈+-+≥,”是真命题,则需()2014013a a ∆≤⇒--≤⇒-≤≤,故本题正确答案为[]1,3-.36.(,4]-∞ 【详解】当命题为真时,由0a >且0∆<可得4a >,故命题为假时,4a ≤,故实数a 的取值范围是(],4-∞.37.(3,0]-当0k =时,原不等式化为“304-<”对x R ∀∈显然成立.当0k ≠时,只需0k <⎧⎨∆<⎩,即2030k k k <⎧⎨+<⎩ 解得30k -<<.综合①②,得30k -<≤.故答案为:(3,0]-. 38.2m < 【详解】因为12x ≤≤,所以324x ≤+≤,又12t ≤≤,所以12m t m m +≤+≤+, 若对{}12x x x ∀∈≤≤, {}12t t t ∃∈≤≤,使得2x t m +>+成立, 则需()()min min 2x t m +>+,即31m >+,解得2m <, 故填:2m <. 39. 【详解】(1)2,0∈≥∀x R x ,是真命题;(2)a ∀∈R ,二次函数2y x a =+的图象关于y 轴对称,真命题,; (3),,243x Z y Z x y ∃∈∈+=假命题,因为242(2)x y x y +=+必为偶数; (4)3,R x Q x Q ∃∈∈ð.真命题,例如332,2x x Q ==∈. 40. 【详解】解:(1)由题,()()22430m m ∆=---<,即24120m m +<,30m \-<<(2)由题,2(4)40m D=-?,即21640m -≤,1122m \-# (3)当q 是真命题时,由(2), 12m >或12m <-∴若命题p 、q 至少有一个为真命题,由(1),则需满足30m -<<或12m >或12m <- ∴0m <或12m > 41.(1)令()[]2,2,1f x x a x =-∈--,根据题意,“命题p 为真命题”等价于“当[]2,1x ∈--时,()0min f x ≥”. ∵()1min f x a =-,∴10a -≥,解得1a ≤.∴实数a 的取值范围为(],1∞-.(2)由(1)可知,当命题p 为真命题时,实数a 满足1a ≤.当命题q 为真命题,即方程有实数根时,则有Δ=4a 2-4(2-a)≥0, 解得2a ≤-或1a ≥.∵命题“p ∨q”为真命题,命题“p ∧q”为假命题,∴命题p 与q 一真一假①当命题p 为真,命题q 为假时,得121a a ≤⎧⎨-<<⎩,解得21a -<<; ②当命题p 为假,命题q 为真时,得121a a a >⎧⎨≤-≥⎩或,解得1a >.综上可得21a -<<或1a >.∴实数a 的取值范围为()()2,11,-⋃+∞. 42.【详解】(1)对于命题p :对任意[]0,1x ∈,不等式2223x m m -≥-恒成立, 而[]0,1x ∈,有()min 222x -=-,223m m ∴-≥-,12m ∴≤≤, 所以p 为真时,实数m 的取值范围是12m ≤≤; (2)命题q :存在[]1,1x ∈-,使得不等式210x x m -+-≤成立,只需()2min 10x x m -+-≤,而22151()24x x m x m -+-=-+-,2min 5(1)4x x m m ∴-+-=-+,504m ∴-+≤,54m ≤, 即命题q 为真时,实数m 的取值范围是54m ≤, 依题意命题,p q 一真一假,若p 为假命题, q 为真命题,则1254m m m ⎧⎪⎨≤⎪⎩或,得1m <; 若q 为假命题, p 为真命题,则1254m m ≤≤⎧⎪⎨>⎪⎩,得524m <≤, 综上,1m <或524m <≤.43.(1)[0,3];(2)0m <或13m ≤≤.【详解】(1)∵[0,1]x ∀∈,23x m m ≥-∴230m m -≤,解得03m ≤≤,故实数m 的取值范围是[0,3](2)当q为真命题时,则440m∆=->,解得1m<∵p,q有且只有一个真命题当p真q假时,031mm≤≤⎧⎨≥⎩,解得:13m≤≤当p假q真时,031m mm⎧⎨<⎩或,解得:0m<综上可知,13m≤≤或0m<故所求实数m的取值范围是0m<或13m≤≤.。

全称量词与存在量词

全称量词与存在量词

2
【名师点评】 量词的几种否定形式
至少 原语句 是 都是 > 有一 个 一个 不都 否定形式 不是 ≤ 也没 是 有 至多 对任意 有一 x∈A使p(x) 个 真 至少 存在x0∈A 有两 使p(x0)假 个
与逻辑联结词、全(特)称命题有关的参 数问题
解决这类问题时,应先根据题目条件,
推出每一个命题的真假(有时不一定只有
第3课时 全称量词与存在量词
1.全称量词与存在量词 (1)全称量词:短语“对所有的”、
“___________”逻辑中通常叫做全称量词,用 词的命题叫做_______ (2)存在量词:短语“存在一个”、 “___________”在逻辑中通常叫做存在量词, 至少有一个 用“∃”表示;含有存在量词的命题叫做 特称命题. ___________
【解】
Δ=m -4>0 p: ,解得 m>2. m>0
2 2
2
q:Δ=16(m-2) -16=16(m -4m+3)<0. 解得 1<m<3. ∵p 或 q 为真,p 且 q 为假.∴p 为真,q 为假, 或 p 为假,q 为真. m>2 m≤2 即 或 . m≤1或m≥3 1<m<3 解得 m≥3 或 1<m≤2. 综上,m 的取值范围是 m≥3 或 1<m≤2.
例2
【思路分析】
分析命题所 明确命题是全称命题还 → 是特称命题 含量词
→ 对命题否定并判断真假
【解】 (1)¬p:存在一个实数 m0,使方程 x +m0x-1=0 没有实数根.因为该方程的判别 2 式 Δ=m0+4>0 恒成立,故¬p 为假命题. (2)¬ p:所有的三角形的三条边不全相等. 显然¬p 为假命题. (3)¬ p:有的菱形的对角线不垂直. 显然¬p 为假命题. 2 (4)¬ p:∀x∈N,x -2x+1>0. 2 显然当 x=1 时,x -2x+1>0 不成立,故¬p 是 假命题.

全称量词与存在量词教案

全称量词与存在量词教案

全称量词与存在量词教案全称量词和存在量词是数学逻辑中常见的两种量词,在逻辑推理和证明过程中起到重要作用。

下面是一个关于全称量词和存在量词的教案。

一、教学目标:1. 了解全称量词和存在量词的概念;2. 学会使用全称量词和存在量词进行逻辑推理;3. 能够根据题目要求判断何时使用全称量词和何时使用存在量词。

二、教学过程:1. 导入新知识:教师可以通过给一些例子,引导学生思考以下问题:如果有一个集合,这个集合中的元素满足某个性质,我们可以如何表达这个性质?2. 讲解全称量词:全称量词(universal quantifier)是用来表达“对于任意一个”的意思。

用“∀”来表示全称量词,例如∀x,表示对于集合中的任意一个元素x。

教师可以通过示例来解释全称量词的含义和用法,例如:如果全班同学都学习了数学,我们可以如何表达这句话?3. 练习全称量词:教师可以给出一些练习题,让学生练习使用全称量词进行逻辑推理。

例如:假设有一组数字:1, 2, 3, 4, ..., n。

我们可以用全称量词来表达这组数字的性质吗?为什么?4. 讲解存在量词:存在量词(existential quantifier)是用来表达“存在一个”的意思。

用“∃”来表示存在量词,例如∃x,表示存在集合中的一个元素x。

教师可以通过示例来解释存在量词的含义和用法,例如:如果班上存在一个学生会打篮球,我们可以如何表达这句话?5. 练习存在量词:教师可以给出一些练习题,让学生练习使用存在量词进行逻辑推理。

例如:假设有一组数字:1, 2, 3, 4, ..., n。

我们可以用存在量词来表达这组数字的性质吗?为什么?6. 总结与归纳:教师可以让学生总结全称量词和存在量词的区别和用法。

三、课堂小结:本节课我们学习了全称量词和存在量词的概念和用法。

全称量词表示对于集合中的任意一个元素,而存在量词表示存在集合中的一个元素。

在逻辑推理和证明过程中,我们可以使用全称量词和存在量词来表达命题的性质。

全称量词和存在量词教案

全称量词和存在量词教案

全称量词和存在量词教案全称量词和存在量词教案一、教学目标:1.了解全称量词和存在量词的概念;2.能够正确使用全称量词和存在量词;3.培养学生的逻辑思维和语言表达能力。

二、教学内容:1.全称量词:所有、任何、每个等;2.存在量词:有些、某个、至少一个等。

三、教学过程:1.引入:引导学生回忆上次学习的内容,问学生是否还记得量词的概念和用法。

2.概念讲解:根据学生的回答,引导他们思考量词的两种类型:全称量词和存在量词。

全称量词是指适用于所有事物的词语,如所有、任何、每个等;存在量词是指适用于某些事物的词语,如有些、某个、至少一个等。

3.例子演练:以例子的形式,给学生展示全称量词和存在量词的用法。

例子1:全称量词- 所有学生都需要参加这次考试。

- 任何人都可以参加这个活动。

- 每个孩子都应该接受教育。

例子2:存在量词- 有些人喜欢吃辣的食物。

- 某个人在你的书包里放了一只小猫。

- 至少一个学生没有完成作业。

4.练习活动:让学生进行小组活动,给出一些句子,让他们判断全称量词和存在量词的用法,并解释原因。

然后让每个组派代表汇报答案和解释。

5.概念复习:让学生回答几个问题,巩固他们对全称量词和存在量词的理解程度。

四、教学总结:对学生的反馈进行总结,重点强调全称量词和存在量词的用法和区别。

五、作业布置:布置课后练习题,让学生完成,并在下堂课上交。

六、教学反思:这节课通过例子演练的方式,生动形象地介绍了全称量词和存在量词的概念和用法,培养了学生的逻辑思维和语言表达能力。

教学目标得到了很好的实现。

但是在练习活动中,学生有些困惑,对一些句子的分类判断不准确,需要多加强化练习。

下一次教学中,应该增加更多的练习环节,加强学生对全称量词和存在量词的理解和运用能力。

高三数学知识点复习全称量词与存在量词

高三数学知识点复习全称量词与存在量词

全称量词与存在量词知识梳理1、数学命题中出现“全部”、“所有”、“一切”、“任何”、“任意”、“每一个”等与“存在着”、“有”、“有些”、“某个”、“至少有一个”等的词语,在逻辑中分别称为全称量词与存在性量词(用符号分别记为“ ∀”与“∃”来表示);由这样的量词构成的命题分别称为全称命题与存在性命题。

在全称命题与存在性命题的逻辑关系中,,∨∧都容易判断,但它们的否定形式是我们p q p q困惑的症结所在。

一般地,全称命题P:∀ x∈M,有P(x)成立;其否定命题┓P为:∃x∈M,使P(x)不成立。

存在性命题P:∃x∈M,使P(x)成立;其否定命题┓P为:∀x∈M,有P(x)不成立。

用符号语言表示:P:∀∈M, p(x)否定为⌝ P: ∃∈M, ⌝ P(x)P:∃∈M, p(x)否定为⌝ P: ∀∈M, ⌝ P(x)典例剖析题型一全称命题的否定例1:指出下列命题的形式,写出下列命题的否定。

(1)所有的矩形都是平行四边形;(2)每一个素数都是奇数;(3)∀x∈R,x2-2x+1≥0题型二存在性命题的否定例2:写出命题的否定(1)p:∃x∈R,x2+2x+2≤0;(2)p:有的三角形是等边三角形;(3)p:有些函数没有反函数;(4)p :存在一个四边形,它的对角线互相垂直且平分;备选题例3:写出下列命题的否定。

(1) 若x 2>4 则x >2.。

(2) 若m≥0,则x 2+x-m=0有实数根。

(3) 可以被5整除的整数,末位是0。

(4) 被8整除的数能被4整除。

(5) 若一个四边形是正方形,则它的四条边相等。

点击双基1、下列命题中,真.命题是 ( ) A. ,sin cos 1.5x R x x ∃∈+=.B (0,),1x x e ∀∈+∞> C .2,1x R x x ∃∈+=D .(0,),sin cos x x x π∀∈> 2、命题“存在x Z ∈,使22x x m ++≤0”的否定是( ).A 存在x Z ∈使22x x m ++0>.B 不存在x Z ∈使22x x m ++0> .C 对任意x Z ∈使22x x m ++≤0 .D 对任意x Z ∈使22x x m ++0>3、已知命题:p x ∀∈R ,sin 1x ≤,则( )A.:p x ⌝∃∈R ,sin 1x ≥B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x >D.:p x ⌝∀∈R ,sin 1x > 4、若命题P :2,10,x R x ∀∈->则命题P 的否定 .5、以下为真命题的序号是(1)2,x R x x ∃∈> (2)2,x R x x ∀∈> (3)2,80x Q x ∃∈-= (4)2,20x R x ∀∈+> 课外作业一、选择1、已知命题x x R x p sin ,:>∈∀,则p 的否定形式为 ( )A .x x R x p sin ,:<∈∃⌝B .x x R x p sin ,:≤∈∀⌝C .x x R x p sin ,:≤∈∃⌝D .x x R x p sin ,:<∈∀⌝2、以下错误的是( )A .“对任意实数x ,均有x 2-2x+1≥0;”的否定为:“存在一个实数x ,使得x 2-2x+1<0”B .“存在一个实数x ,使得x 2-9=0” 的否定为:“不存在一个实数x ,使得x 2-9=0”C .“AB ∥CD ”且“AB=CD ” 的否定为:“AB 不平行于CD 或AB ≠CD ”D .“△ABC 是直角三角形或等腰三角形” 的否定为:“△ABC 既不是直角三角形又不是等腰三角形”3、以下错误的是( )A .命题“若1,0232==+-x x x 则”的逆否命题为:“若023,12≠+-≠x x x 则”B .“x=1”是“0232=+-x x ”的充分不必要条件C .若p q ∧为假命题,则p 、q 均为假命题D .对于命题使得R x p ∈∃:012<++x x ,则01,:2≥++∈∀⌝x x R x p 均有 4、命题“对任意的3210x x x ∈-+R ,≤”的否定是( )A .不存在3210x R x x ∈-+,≤B .存在3210x R x x ∈-+,≤C .存在3210x R x x ∈-+>,D .对任意的3210x R x x ∈-+>, 5、命题“存在0x ∈R ,02x ≤0”的否定是 A.不存在0x ∈R, 02x >0 B.存在0x ∈R, 02x ≥0C.对任意的x ∈R, 2x ≤0D.对任意的x ∈R, 2x >06、已知:,10p x R x ∀∈+>,:32q >,则下列判断错误的是:( )A. “p q ∨”为真,“q ⌝”为假B. “p q ∧”为假,“p ⌝”为真C. “p q ∧”为假,“p ⌝”为假D. “p q ∧”为假,“p q ∨”为真 7、已知命题;25sin ,:=∈∃x R x p 使:,q x R ∀∈命题都有210.x x ++>给出下列结论:①命题“q p ∧”是真命题 ②命题“q p ⌝∧”是假命题③命题“q p ∨⌝”是真命题; ④命题“q p ⌝∨⌝”是假命题 其中正确的是( ). A .②④ B .②③ C .③④ D .①②③8、已知命题p:“[]21,2,0x x a ∀∈-≥”,命题q:“2,220x R x ax a ∃∈++-=”若“p 且q ”是真命题,则实数a 的取值范围是( )A .{}21a a a ≤-=或 B. {}212a a ≤-≤≤或C. {}1a a ≥D. {}21a a -≤≤二、填空9、命题“21,2≥+∈∃x R x ”的否定形式是______________________.10、若命题“∃x ∈R , 使x 2+ax +1<0”是真命题,则实数a 的取值范围为 .11、下列命题是全称命题的序号为(1)方程2x=5只有一解;(2)凡是质数都是奇数;(3)方程2x 2+1=0有实数根;(4)没有一个无理数不是实数;(5)如果两直线不相交,则这两条直线平行;(6)集合A ∩B 是集合A 的子集;三、解答12、写出下列命题的否定,并判断其真假:(1)p :∀m ∈R ,方程x 2+x-m=0必有实根;(2)q :∃∈R ,使得x 2+x+1≤0;13、写出下列命题的否定(1)所有人都晨练;(2)01,2>++∈∀x x R x ;(3)平行四边形的对边相等;(4)01,2=+-∈∃x x R x 。

全称量词和存在量词

全称量词和存在量词

解:(1)全称命题,因为x=0时,x2+x+1 =1≠0,故是假命题.
(2)特称命题,是真命题,比如10既能被2整 除,又能被5整除.
(3)全称命题,是真命题.
(4)全称命题,是假命题,因为只有x=2或x =1时满足.
例题讲解
类型二、全称命题与特称命题的表述 [例2] (1)设集合S={四边形},p(x):内角 和 为 360°. 试 用 不 同 的 表 述 写 出 全 称 命 题 “∀x∈S,p(x)”. (2)设q(x):x2=x,试用不同的表达方法写 出特称命题“∃x∈R,q(x)”.
(2)令y=0,则f(x+y)-f(y)=f(x)-f(0)=f(x)+2=(x +2×0+1)x=x2+x,∴f(x)+6=x2+x+4.
∴要使在(0,4)上存在 )存在 x0 使 a=x0+x40+1.而 x+4x+1≥4+1=5, 等号当且仅当 x=2 时成立.
解析:当x=0时,0∈N,但0<1. 故“∀x∈N,x≥1”是假命题. 答案:B
4.下列命题:
①偶数都可以被2整除;②角平分线上的任一点到 这个角的两边的距离相等;③正四棱锥的侧棱长相等; ④有的实数是无限不循环小数;⑤有的菱形是正方形; ⑥存在三角形其内角和大于180°.
既是全称命题又是真命题的是________,既是特称 命题又是真命题的是________(填上所有满足要求的序 号).
解:(1)∵3×1+1=4,3×3+1=10,5×3+1=16 均为偶数,∴是真命题. (2)∵x20-6x0-5=0 中,Δ=36+20=56>0, ∴方程有两个不相等的实根,∴是真命题. (3)∵x20-x0+1=0 中,Δ=1-4=-3<0, ∴x02-x0+1=0 无解,∴是假命题. (4)∵x=-1 时,|-1+1|=0,∴是假命题.

全称量词与存在量词

全称量词与存在量词

全称量词与存在量词简介在语言学中,量词被用来表示数量或度量。

而在数量的表达中,全称量词和存在量词是两种常见的用法。

全称量词表达的是全体的概念,而存在量词则表达的是部分的概念。

本文将详细介绍全称量词和存在量词的概念和用法,并举例说明。

全称量词全称量词是指用来表示集合中全部成员的量词。

它强调的是全体的概念,表示所有的事物都具有某个属性或满足某种条件。

常见的全称量词包括“每个”、“所有”、“任何”等。

在句子中,全称量词通常与“都”、“皆”等副词搭配使用,以强调全体的意义。

下面是一些例句:•每个人都有自己的梦想。

•所有学生都要参加体育课。

•任何人都可以报名参加比赛。

全称量词的用法具有普遍性,适用于各种不同的情况。

它是对整个集合进行描述和判断的一种方式。

存在量词存在量词是指用来表示集合中部分成员的量词。

它强调的是存在的概念,表示集合中至少有一个事物具有某个属性或满足某种条件。

常见的存在量词包括“有些”、“部分”、“某些”等。

在句子中,存在量词通常与“至少”、“不少于”等副词搭配使用,以强调存在的意义。

下面是一些例句:•至少有些人喜欢音乐。

•不少于部分学生参加了校运会。

•某些人对政治不感兴趣。

存在量词的用法侧重于对部分集合进行描述和判断。

它表示的是一个或一部分事物具有某种属性或满足某种条件。

全称量词与存在量词的异同点全称量词和存在量词虽然用法不同,但它们都可以用来描述集合中的事物,并对其进行判断。

它们的主要区别在于强调的程度和内容。

全称量词强调的是全体,表示整个集合中的事物都具有某个属性或满足某种条件。

它的范围更广,适用于所有的情况,无论是具体还是抽象的。

存在量词强调的是存在,表示集合中至少有一个事物具有某个属性或满足某种条件。

它的范围较窄,适用于一部分的情况,有时候可能只是指代一种可能性。

结论全称量词和存在量词是语言表达中常见的量词用法。

全称量词强调的是全体,表示整个集合中的事物都具有某个属性或满足某种条件;存在量词强调的是存在,表示集合中至少有一个事物具有某个属性或满足某种条件。

全称量词和存在量词简称

全称量词和存在量词简称

全称量词和存在量词简称量词是汉语中的一个重要语言元素,它用来表示事物的数量或程度。

汉语中的量词分为两类:全称量词和存在量词。

本文将从语言学的角度,分别探讨这两种量词的特点和用法。

一、全称量词全称量词指的是表示整体数量的量词,即可以用来计算一批事物总量的单位。

常见的全称量词有:“个”、“只”、“条”、“件”等。

这些量词可以单独使用,也可以和数词一起使用。

例如,“三个苹果”、“五只猫”。

全称量词的特点是具有数量确定的特性。

因为全称量词表示的是整体数量,它的数量不会发生变化。

比如,“三个苹果”中,“三个”是确定的数量单位。

如果苹果的数量增加或减少,这个数量单位也不会变化,仍然是“三个”。

此外,全称量词还具有一定的语法特点。

在使用全称量词时,需要注意以下几点:1.全称量词后一般不加量词,但有些情况下可以加上表示数量或程度的修饰语,如“三个红苹果”、“很多只猫”。

2.在使用全称量词时,应该注意量词与名词的搭配,如“条烟”、“支笔”、“件衣服”。

3.在充当主语或宾语时,全称量词要放在名词之前,如“三只猫”、“五个小孩”。

4.在修饰名词时,全称量词一般放在名词之后,如“衣服五件”、“蓝色的鞋子两双”。

二、存在量词存在量词是表示存在数量的量词,它用来表示某个范围内存在多少个事物。

常见的存在量词有:“有”、“没有”、“几个”、“多少”等。

这些量词必须和数词或数量状语一起使用。

例如,“有三个苹果”、“几只猫”。

存在量词的特点是具有数量不确定的特性。

因为存在量词表示的是存在的数量,它的数量是不确定的。

即使是同一个场景,存在的数量也会发生变化。

比如,有时候会有“三个苹果”,有时候会有“四个苹果”,甚至会有“五个苹果”。

使用存在量词时需要注意以下几点:1.存在量词必须和数词或数量状语一起使用,如“两个苹果”、“很多猫”。

2.存在量词的数量是不确定的,常用的有“有几个”、“有多少”等。

3.存在量词有时需要加上修饰语,如“这里有两个很大的苹果”、“那里有好几只小猫”。

全称量词和存在量词逻辑推理

全称量词和存在量词逻辑推理

全称量词和存在量词逻辑推理全称量词和存在量词逻辑推理引言逻辑是哲学的一个重要分支,研究的是思维的规律和方法。

逻辑推理是逻辑学的核心内容之一,根据不同的逻辑量词,可以进行全称量词和存在量词的逻辑推理。

全称量词是指代所有元素的量词,而存在量词是指代至少一个元素的量词。

本文将通过解释全称量词和存在量词的概念,并结合例子进行详细讨论和推理分析,以帮助读者更好地理解这两个重要的逻辑概念。

一、全称量词1.1 全称量词的概念全称量词是指代一组对象中的每一个对象的量词。

它指的是全体成员都满足某一性质或条件。

例如,假设集合A包含元素a1、a2和a3,全称量词"所有"可以表示为∀x,其中x为A中的元素。

那么∀x P(x)则表示A中的每个元素都满足性质P。

1.2 全称量词的推理规则在进行全称量词的逻辑推理时,需要遵循一些推理规则。

这些推理规则有助于保持逻辑的一致性和准确性。

1.2.1 全称量词的引入规则全称量词的引入规则是从特例得到一般性的结论。

例如,已知"A中的每个元素都满足性质P",可以通过全称量词的引入规则推出"所有A中的元素都满足性质P"。

1.2.2 全称量词的淘汰规则全称量词的淘汰规则是将一般性的结论应用于特定情况。

例如,已知"所有A中的元素都满足性质P",可以通过全称量词的淘汰规则推出"A中的某个元素满足性质P"。

1.2.3 全称量词的转化规则全称量词的转化规则是通过等价变换将全称量词转化为其他形式的量词。

例如,已知"所有A中的元素都满足性质P",可以通过转化规则将其转化为"不存在A中的元素不满足性质P"。

二、存在量词2.1 存在量词的概念存在量词是指代一组对象中至少存在一个对象的量词。

它指的是存在至少一个成员满足某一性质或条件。

例如,假设集合A包含元素a1、a2、a3,存在量词"存在"可以表示为∃x,其中x为A中的元素。

知识讲解_全称量词与存在量词

知识讲解_全称量词与存在量词

全称量词与存在量词【要点梳理】要点一:全称量词与全称命题 全称量词全称量词的概念:在指定范围内,表示整体或全部的含义,这样的词叫作全称量词. 常见的全称量词:“所有”、“任意一个”、“每一个”、“任何”、“一切”等. 全称量词的表示:通常用符号“∀”表示,读作“对任意”. 全称命题全称命题的概念:含有全称量词的命题,叫做全称命题.全称命题的形式:对M 中任意一个x ,有()p x 成立.记作:x M ∀∈,()p x (其中M 为给定的集合,()p x 是关于x 的语句).要点诠释:有些全称命题在文字叙述上可能会省略了全称量词,例如:(1)“末位是0的整数,可以被5整除”;(2)“线段的垂直平分线上的点到这条线段两个端点的距离相等”;(3)“负数的平方是正数”;都是全称命题.要点二:存在量词与特称命题 存在量词存在量词的概念:表示个别或一部分的含义的量词称为存在量词.常见的存在量词:“有些”、“至少有一个”、 “有一个”、“存在”等. 存在量词的表示:通常用符号“∃”表示,读作“存在”. 特称命题特称命题的概念:含有存在量词的命题,叫做特称命题.特称命题的形式:存在M 中一个元素0x ,有0()p x 成立.记作:0x M ∃∈,0()p x (其中M 为给定的集合,()p x 是关于x 的语句).要点诠释:(1)全称命题表示整体或全部的含义,而特称命题反映对个体或整体一部分的判断.(2)一个特称命题中也可以包含多个变量,例如:存在,αβ∈∈R R 使sin()sin sin αβαβ+=+. (2)有些特称命题也可能省略了存在量词.例如:“正方形是矩形”,“球面是曲面等等”. (3)同一个全称命题或特称命题,可以有不同的表述.要点三: 全称命题与特称命题的否定 对含有一个量词的全称命题的否定要说明一个全称命题是错误的,只需找出一个反例就可以了.实际上要说明这个全称命题的否定是正确的.不难发现,全称命题的否定是特称命题.全称命题p :x M ∀∈,()p x ;p 的否定p ⌝:0x M ∃∈,0()p x ⌝.对含有一个量词的特称命题的否定要说明一个特称命题是错误的,就要说明所有的对象都不满足这一性质.实际上是要说明这个特称命题的否定是正确的.不难发现,特称命题的否定是全称命题.特称命题p :0x M ∃∈,0()p x ;p 的否定p ⌝:x M ∀∈,()p x ⌝.要点诠释:(1) 全称命题的否定是特称命题,特称命题的否定是全称命题; (2) 命题的否定与命题的否命题是不同的; (3) 一些常见量词的否定如下表所示:要点四:全称命题和特称命题的真假判断① 要判定全称命题“x M ∀∈,()p x ”是真命题,必须对集合M 中的每一个元素x ,证明()p x 成立; 要判定全称命题“x M ∀∈,()p x ”是假命题,只需找出一个反例即可,即在集合M 中找到一个元素0x ,使得0()p x 不成立.② 要判定特称命题“0x M ∃∈,0()p x ”是真命题,只需在集合M 中找到一个元素0x ,使得0()p x 成立即可; 要判定特称命题“0x M ∃∈,0()p x ”是假命题,必须证明在集合M 中,使 ()p x 成立得元素不存在.【典型例题】类型一:全称量词与存在量词、全称命题与特称命题的辨析例1.指出下列两个含有量词的命题中使用了什么量词及量词的作用范围,并把量词用相应的数学符号表示.(1)对任意正实数2,20a a a -->;(2)对某个大于10的正整数n ,1024n =. 【思路点拨】根据全称量词和存在量词的概念进行判断. 【解析】(1)该命题中有量词“任意”,这是一个全称量词,它的作用范围是正实数集合.该命题可写成“20,20a a a ∀>-->”.(2)该命题中有量词“某个”,这是一个存在量词,它的作用范围是大于10的正整数集合.该命题可写成“*10,1024n n n N ∃>∈=.【总结升华】 判断一个命题是否含有全称量词和存在量词,关键是看命题中是否有“所有”、“任意”、“任何”、“存在”、“有的”、“至少”、“有”等词语,或隐含有这些词语的意思. 举一反三:【变式1】判断下列命题是全称命题还是特称命题:(1)任何一个实数除以1仍等于这个数; (2)等边三角形的三边相等; (3)存在实数0x ,使2030x ->; (4)有一个实数,不能作除数; (5)棱柱是多面体;(6)有些四边形的四个边都相等.【答案】(1)全称命题,(2)全称命题,(3)特称命题;(4)特称命题;(5)全称命题;(6)特称命题.【变式2】判断下列命题是全称命题还是特称命题.(1)∀x ∈R ,211x +≥; (2)所有素数都是奇数;(3)存在两个相交平面垂直于同一条直线; (4)有些整数只有两个正因数. 【答案】(1)有全称量词“任意”,是全称命题; (2)有全称量词“所有”,是全称命题; (3)有存在量词“存在”,是特称命题; (4)有存在量词“有些”;是特称命题.类型二:判断全称命题、特称命题的真假 例2.判断下列命题的真假:(1)4,12x x ∀∈+≥N ;(2)300,1x x ∃∈<Z . 【思路点拨】(1)对412x +≥进行等价变形,可化为41x ≥,x 取自然数0,1,2,…代入验证;(2)中0x 取整数0,123±±±,,,…代入31x <,验证不等式是否成立. 【答案】(1)假命题;(2)真命题. 【解析】(1)由于0∈Ν,当0x =时,412x +≥不成立,故(1)为假命题; (2)由于1-∈Z ,当1x =-时能使31x <,所以(2)为真命题. 【总结升华】(1)要判断一个全称命题是真命题,必须对限定的集合M 中的每一个元素x ,验证()p x 成立;要判断全称命题是假命题,只要能举出集合M 中的一个0x x =,使0()p x 不成立即可;(2)要判断一个特称命题的真假,依据:只要在限定集合M 中,至少能找到一个0x x =,使0()p x 成立,则这个特称命题就是真命题,否则就是假命题.举一反三:【变式1】试判断下列命题的真假: (1)2,10x x ∀∈+>R ; (2)2,1x x ∀∈≥N ; (3)3,3x x ∃∈=Z ; (4)2,320x x x ∀∈-+=R ; (5)2,10x x ∃∈+=R .【答案】(1)真命题;(2)假命题;(3)假命题;(4)假命题;(5)假命题. 【变式2】在下列特称命题中假命题的个数是( ) ①有的实数是无限不循环小数; ②有些三角形不是等腰三角形; ③有的菱形是正方形;A .0B .1C .2D .3 【答案】A类型三:含有一个量词的全称命题与特称命题的否定例3.判断下列命题是全称命题还是特称命题,并判断其真假;写出这些命题的否定并判断真假.(1)三角形的内角和为180°; (2)每个二次函数的图象都开口向下; (3)存在一个四边形不是平行四边形; (4)2,20x R x ∀∈+>;(5)200,10x R x ∃∈+=. 【解析】(1)是全称命题且为真命题.命题的否定:三角形的内角和不全为180°,即存在一个三角形,它的内角和不等于180°,为假命题. (2)是全称命题且为假命题.命题的否定:存在一个二次函数的图象开口不向下,为真命题. (3)是特称命题且为真命题.命题的否定:所有的四边形都是平行四边形,为假命题. (4)是全称命题且为真命题.由于x R ∀∈都有20x ≥,故2220x +≥>,p 为真命题;p ⌝:200,20x R x ∃∈+≤,p ⌝为假命题 (5)是特称命题且为假命题.因为不存在一个实数x ,使210x +=成立,p 为假命题;p ⌝:2,10x R x ∀∈+≠,p ⌝为真命题.【总结升华】命题的否定要与否命题区别开来,全称命题的否定是特称命题,而特称命题的否定是全称命题. 举一反三:【变式1】写出下列命题的否定,并判断真假. (1)2,440x R x x ∀∈-+≥; (2)所有的正方形都是矩形;(3)2000,10x R x x ∃∈++≤; (4)至少有一个实数x 0,使得220x +=.【答案】(1)p ⌝:2000,440x R x x ∃∈-+<(假命题);(2)p ⌝:至少存在一个正方形不是矩形(真命题); (3)p ⌝:2,10x R x x ∀∈++>(真命题); (4)p ⌝:2,20x R x ∀∈+≠(真命题).【变式2】“a 和b 都不是偶数””的否定形式是( )A .a 和b 至少有一个是偶数B .a 和b 至多有一个是偶数C .a 是偶数,b 不是偶数D .a 和b 都是偶数 .【答案】A类型四:含有量词的命题的应用 例4.已知1:|1|23x p --≤,22:210(0)q x x m m -+-≤>,若p ⌝是q ⌝的必要不充分条件,求实数m 的取值范围.【思路点拨】本题是不等式与逻辑关系的综合性题目,应逐个突破,再完美衔接: 第一步:解p 与q 中的不等式;第二步:理解“p ⌝是q ⌝的必要不充分条件”的具体含义:“q ⌝∣p ⌝”≡“p ∣q ”; 第三步:问题转化为“对任意p 的x ,q 恒成立”. 【答案】[)9,+∞ 【解析】111:|1|221213210333x x x p x ----≤⇒-≤-≤⇒-≤≤⇒-≤≤ ()()22:210110q x x m ?x m x m -+-≤---+≤⎡⎤⎡⎤⎣⎦⎣⎦ 又∵m >0∴不等式的解为1-m ≤x ≤1+m .∵“p ⌝是q ⌝的必要而不充分条件”的等价命题即逆否命题为“p 是q 的充分不必要条件””, ∴不等式1|1|23x --≤的解集是()222100x x m m -+-≤>的解集的子集. 123,91109m m m m m -≤-≥⎧⎧∴⇒∴≥⎨⎨+≥≥⎩⎩∴实数m 的取值范围是[)9,+∞.【总结升华】本题以含绝对值的不等式及一元二次不等式的解法为考查对象,同时考查了充分必要条件及四种命题中等价命题的应用,强调了要点的灵活性,使用的技巧与方法是利用等价命题先进行命题的等价转化,搞清晰命题中条件与结论的关系,再去解不等式,找解集间的包含关系,进而使问题解决.举一反三:【变式1】若命题“∃x ∈R ,使得2(1)10x +a x+-<”是真命题,则实数a 的取值范围是 . 【答案】(-∞,-1)∪(3,+∞)【解析】∵“∃x∈R,使得2(1)10x+a x+-<”是真命题,∴(a-1)2-4>0,即(a-1)2>4,∴a-1>2或a-1<-2,∴a>3或a<-1.【变式2】已知c>0,设命题p:函数y=c x为减函数.命题q:当1,22x⎡⎤∈⎢⎥⎣⎦时,函数11()f x xx c=+>恒成立.如果p或q为真命题,p且q为假命题.求c的取值范围.【答案】1{|0c1}2c c<≤≥或【解析】由命题p知:0<c<1.由命题q知:1522xx≤+≤,要使此式恒成立,则12>c,即12c>.又由p或q为真,p且q为假知,p、q必有一真一假,当p为真,q为假时,c的取值范围为12c<≤.当p为假,q为真时,c≥1.综上,c的取值范围为1{|0c1}2c c<≤≥或.。

全称量词和存在量词逻辑推理

全称量词和存在量词逻辑推理

全称量词和存在量词逻辑推理全称量词和存在量词是一种逻辑推理中常用的量词。

它们用于描述命题中的对象数量。

全称量词通常用符号 "∀" 表示,意思是 "对于所有" 或 "对于一切"。

它表示命题中所有的对象都满足某个性质。

例如,命题 "∀x P(x)" 表示对于所有的 x,都满足性质 P(x)。

存在量词通常用符号 "∃" 表示,意思是 "存在" 或 "存在着"。

它表示命题中至少有一个对象满足某个性质。

例如,命题 "∃x P(x)" 表示存在一个 x,满足性质 P(x)。

在逻辑推理中,我们可以使用全称量词来作出普遍性推理。

如果可以证明一个性质对所有的对象都成立,那么我们可以推断该性质是普遍正确的。

同样,我们也可以使用存在量词来进行存在性推理。

如果可以找到一个具有某个性质的对象,那么我们可以推断该性质存在。

举个例子:1. 命题 "∀x P(x)" 表示对于所有的 x,都满足性质 P(x)。

如果我们能够证明 P(x) 对任意一个 x 都成立,那么我们可以得出结论命题 "∀x P(x)" 是真实的。

2. 命题 "∃x P(x)" 表示存在一个 x,满足性质 P(x)。

如果我们能够找到至少一个具有性质 P(x) 的对象,那么我们可以得出结论命题 "∃x P(x)" 是真实的。

综上所述,全称量词和存在量词是逻辑推理中用于描述对象数量的量词,它们在推理证明中起到了重要的作用。

全称量词和存在量词

全称量词和存在量词
一般地,对于含一个量词的特称命题的否定, 有下面的结论:特称命题p:∃x0∈M,p(x0),它的 否定綈p:∀x∈M, ¬p(x).特称命题的否定是全称 命题.如:“存在一个实数x,使得x2+x+1≤0”的 否定为“对所有实数x,都有x2+x+1>0”,其中, 把存在量词“存在一个”变为全称量词“对所有 的”.
③由于-1∈Z,当 x=-1 时,x3<1 成立. 所以命题“∃x0∈Z,x30<1”是真命题. ④由于使 x2=3 成立的数只有± 3, 而它们都不是有理数. 因此,没有任何一个有理数的平方等于 3. 所以命题“∃x0∈Q,x02=3”是假命题.
[答案] ①③
跟踪练习
1. 判断下列命题的真假. (1)∀x∈{1,3,5},3x+1 是偶数; (2)∃x0∈R,x20-6x0-5=0; (3)∃x0∈R,x20-x0+1=0; (4)∀x∈R,|x+1|>0.
有些全称命题省略了量词在这种情况下千万不要将否定写成是或不是如第小题将否定写成负数的平方不是正数就错误了因为这个命题也是全称命题是假命题
1.4 全称量 词和存在量词
一、 全称量 词和存在量词
新课讲解
1.全称量词和全称命题
(1)全称量词: 短语“所有的”、“任意一个”在逻辑中通常 叫做全称量词,并用符号“∀”表示.
(4)至少有一个集合 A,满足 A {1,2,3}.
[解] (1)是全称命题.因为∀ x∈N,2x+1 都是奇数, 所以该命题是真命题.
(2)是特称命题.因为不存在 x0∈R,使x0-1 1=0 成 立,所以该命题是假命题.
(3)是特称命题.当 m=4,n=3 时,使 m-n=1 成 立,所以该命题是真命题.
(1)实数的平方大于或等于0; (2)存在一对实数(x,y),使2x-y+1<0成立; (3)勾股定理.

第04讲 全称量词与存在量词(3大考点8种解题方法)(解析版)

第04讲 全称量词与存在量词(3大考点8种解题方法)(解析版)

第04讲全称量词与存在量词(3大考点8种解题方法)考点考向一、全称量词和存在量词(1)全称量词有:所有的,任意一个,任给,用符号“∀”表示;存在量词有:存在一个,至少有一个,有些,用符号“∃”表示.(2)含有全称量词的命题,叫做全称命题.“对M 中任意一个x ,有p (x )成立”用符号简记为:∀x ∈M ,p (x ).(3)含有存在量词的命题,叫做特称命题.“存在M 中元素x 0,使p (x 0)成立”用符号简记为:∃x 0∈M ,p (x 0).二、含有一个量词的命题的否定一般地,对于含有一个量词的命题的否定,有下面的结论:(1)全称量词命题p :∀x ∈M ,p (x ),它的否定﹁p :∃x ∈M ,﹁p (x );(2)存在量词命题p :∃x ∈M ,p (x ),它的否定﹁p :∀x ∈M ,﹁p (x ).全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题.命题命题的否定∀x ∈M ,p (x )∃x 0∈M ,p (x 0)考点精讲考点一:全称量词与全称命题题型一:判定全称命题的真假一、单选题1.(2021·全国·高一期末)下列命题既是全称量词命题又是真命题的是()A .x ∀∈R ,有3x =B .所有的质数都是奇数C .至少有一个实数x ,使20x ≤D .有的正方形的四条边不相等【答案】A【分析】利用全称量词命题和特称量词命题的定义判断,全称量词命题要为真命题必须对所有的都成立.【详解】对于A ,是全称量词命题,且为真命题,所以A 正确,对于B ,是全称量词命题,而2是质数,但2不是奇数,所以此命题为假命题,所以B 错误,对于C ,是特称量词命题,所以C 错误,对于D ,是特称量词命题,且为假命题,所以D 错误,故选:A.2.(2021·重庆市实验中学高一阶段练习)下列是全称量词命题且是真命题的为()A .x R ∀∈,20x >B .x ∀、y Q ∈,都有x y Q +∈C .0x Z ∃∈,2011x -+≥D .x ∀,y R ∈,0x y +>【答案】B【分析】根据全称量词和特称量词的定义和性质进行逐一判断即可.【详解】A :当0x =时,不等式20x >不成立,因此本命题是假命题,所以本选项不符合题意;B :因为x ∀、y Q ∈,都有x y Q +∈是真命题,且是全称命题,本选项符合题意;C :本命题是特称命题,不符合题意;D :因为当0x y ==时,0x y +>不成立,因此本命题是假命题,所以本选项不符合题意.故选:B3.(2022·湖南·高一课时练习)下列命题中是全称量词命题并且是真命题的是()A .每个二次函数的图象都开口向上B .存在一条直线与已知直线不平行C .对任意实数a ,b ,若0a b -≤则a b ≤D .存在一个实数x ,使等式2210x x -+=成立【答案】C【分析】根据全称量词命题的定义,结合命题真假的判断即可得到答案.【详解】易知C 正确;A 选项是假命题;B 选项是存在量词命题;D 选项是存在量词命题.故选:C.二、多选题4.(2021·福建省德化第一中学高一阶段练习)下列叙述中正确的是()A .若AB A =,则A B ⊆;B .若x A B ∈,则x A B ∈U ;C .已知,a b ∈R ,则“b aa b<”是“0a b <<”的必要不充分条件;D .命题“2,0x Z x ∀∈>”的是真命题.【答案】ABC【分析】根据交集、并集的定义判断A ,B ,根据充分条件、必要条件的定义判断C ,利用特例判断D ;【详解】解:对于A :若AB A =,则A B ⊆,故A 正确;对于B :若x A B ∈,则x A ∈且x B ∈,所以x A B ∈U ,故B 正确;对于C :由b a a b <,即()()220b a b a b a b a a b ab ab-+--==,所以0a b >>或0a b <<或0b a >->或0b a ->>,故充分性不成立,由0a b <<可以得到b a a b <,故“b aa b<”是“0a b <<”的必要不充分条件,故C 正确;对于D :当0x =时,20x =,故D 错误;故选:ABC 三、填空题5.(2022·江苏·高一)已知真分数ab (b >a >0)满足11a b ++>22a a b b ++,>1313a a b b ++++,>22a b ++,….根据上述性质,写出一个全称量词命题或存在量词命题(真命题)________【答案】0,0b a m n ∀>>>>,a m a nb m b n++>++(答案不唯一)【分析】结合条件及全称量词命题、存在量词命题的概念即得.【详解】∵真分数a b (b >a >0)满足11a b ++>22a a b b ++,>1313a a b b ++++,>22a b ++,…∴0,0b a m n ∀>>>>,a m a nb m b n++>++.故答案为:0,0b a m n ∀>>>>,a m a nb m b n++>++.题型二:根据全称命题的真假求参数一、单选题1.(2022·全国·高一专题练习)已知命题:“x R ∀∈,方程240x x a ++=有解”是真命题,则实数a 的取值范围是()A .4a <B .4a ≤C .4a >D .4a ≥【答案】B【分析】由根的判别式列出不等关系,求出实数a 的取值范围.【详解】“x R ∀∈,方程240x x a ++=有解”是真命题,故1640a ∆=-≥,解得:4a ≤,故选:B2.(2022·全国·高一专题练习)已知“2,0x x a ∀∈-R ”是真命题,则实数a 的取值范围是()A .{}0aa ∣ B .{0}aa <∣C .{0}aa >∣D .{}0aa ∣ 【答案】A【分析】根据题意只需要求2y x =的最小值即可.【详解】命题“2,0x x a ∀∈-R ”是真命题,即2a x 恒成立,得0a .故选:A 二、多选题3.(2022·江苏·高一)命题“对任意x >0,都有mx +1>0”为真命题的一个充分不必要条件是()A .1m >-B .1m >C .0m =D .2m >【答案】BCD【分析】对任意x >0,都有mx +1>0,即1m x>-,求得m 的范围,即可得解.【详解】解:因为对任意x >0,都有mx +1>0,所以1m x >-,又0x >,所以10x-<,所以0m ≥.故选:BCD.4.(2021·湖北·华中科技大学附属中学高一阶段练习)若“[]1,2x ∀∈,20x a -≤”为真命题,则a 的取值可以是()A .4B .5C .3D .2【答案】AB【分析】要使20x a -≤在[]1,2x ∈上恒成立,则2x a ≤,令2y x =,则max y a ≤,求出y 的最大值即可【详解】要使20x a -≤在[]1,2x ∈上恒成立,则2x a ≤,令2y x =,则max y a ≤,2y x =在[]1,2x ∈单调递增,则max 4y =,所以4a ≥,根据题意可得所求对应得集合是[)4,+∞的真子集,根据选项AB 符合题意.故选:AB.三、填空题5.(2021·天津市武清区杨村第一中学高一阶段练习)已知命题p :[]1,3x ∀∈-,220x a --≥,若p 为真命题,则实数a 的取值范围为___________.【答案】(],2-∞-【分析】利用分离常数法来求得a 的取值范围.【详解】命题p :[]1,3x ∀∈-,220x a --≥,依题意p 为真命题,则22a x ≤-在区间[]1,3-上恒成立,[][]220,9,22,7x x ∈-∈-,所以2a ≤-.故答案为:(],2-∞-6.(2021·河北·大名县第一中学高一阶段练习)若2,230x R x mx ∀∈-+≥恒成立,则实数m 的取值范围为________.【答案】[-.【分析】根据命题2,230x R x mx ∀∈-+≥恒成立,结合二次函数的图象与性质,即可求解.【详解】由题意,命题2,230x R x mx ∀∈-+≥恒成立,可得2240m ∆=-≤,解得m -≤≤即实数m 的取值范围为[-.故答案为:[-.四、解答题7.(2021·全国·高一单元测试)若命题“[]1,2x ∀∈,一次函数y x m =+的图象在x 轴上方”为真命题,求实数m 的取值范围.【答案】{}1m m >-【分析】由12x ≤≤得12m x m m +≤+≤+,要使一次函数y x m =+的图象在x 轴上方,需()min 0x m +>,由此可得实数m 的取值范围.【详解】解:当12x ≤≤时,12m x m m +≤+≤+.因为一次函数y x m =+的图象在x 轴上方,所以10m +>,即1m >-,所以实数m 的取值范围是{}1m m >-.考点二:存在量词与特称量词题型三:判定特称(存在性)命题的真假一、概念填空1.(2022·江苏·高一)判断正误.(1)命题“任意一个自然数都是正整数”是全称量词命题.()(2)命题“三角形的内角和是180︒”是全称量词命题.()(3)命题“梯形有两边平行”不是全称量词命题.()【答案】正确正确错误【详解】(1)“任意”是全称量词,所以它是全称量词命题,该结论正确.(2)这里省略了全称量词“所有”,意思是“所有三角形内角和是180°”,该结论正确.(3)这里省略了全称量词“所有”,意思是“所有梯形有两边平行”,该结论错误.2.(2022·全国·高一课时练习)全称量词命题和存在量词命题的否定(1)全称量词命题的否定对含有一个量词的全称量词命题的否定,有下面的结论:全称量词命题:p x M ∀∈,()p x ,它的否定p ⌝:_________.全称量词命题的否定是存在量词命题.(2)存在量词命题的否定对含有一个量词的存在量词命题的否定,有下面的结论:存在量词命题:p x M ∃∈,()p x ,它的否定p ⌝:_________.存在量词命题的否定是全称量词命题.(3)在书写这两种命题的否定时,相应地_______变为全称量词,全称量词变为_______.【答案】x M ∃∈,()p x 不成立x M ∀∈,()p x 不成立存在量词存在量词3.(2022·全国·高一课时练习)判断正误.(1)命题“有些菱形是正方形”是全称命题.()(2)命题“存在一个菱形,它的四条边不相等”是存在量词命题.()(3)命题“有的实数绝对值是正数”是存在量词命题.()【答案】错误正确正确【详解】(1)“有些”是存在量词,所以它是存在量词命题,不是全称命题,故该结论错误.(2)“存在”是存在量词,所以它是存在量词命题,故该结论正确.(3)“有的”是存在量词,所以它是存在量词命题,故该结论正确.二、单选题4.(2021·全国·高一单元测试)以下四个命题既是存在性命题又是真命题的是()A .锐角三角形有一个内角是钝角B .至少有一个实数x ,使x 2≤0C .两个无理数的和必是无理数D .存在一个负数x ,使1x>2【答案】B【分析】结合存在性命题的知识对选项进行分析,由此确定正确选项.【详解】锐角三角形的内角都是锐角,A 是假命题.0x =时,20x ≤,所以B 选项中的命题既是存在性命题又是真命题.(0=,所以C 选项中的命题是假命题.0x <时,102x<<,所以D 选项中的命题是假命题.故选:B三、多选题5.(2022·江苏·高一单元测试)已知集合P ,Q 是全集U 的两个非空子集,如果P Q Q ⋂=且P Q Q ⋃≠,那么下列说法中正确的有()A .P ∀∈,有x Q ∈B .P ∃∈,使得x Q ∉C .Q ∀∈,有x P ∈D .Q ∃∈,使得x P∉【答案】BC【分析】根据P Q Q ⋂=且P Q Q ⋃≠确定正确选项.【详解】由于,P Q 是全集U 的非空子集,P Q Q ⋂=且P Q Q ⋃≠,所以Q 是P 的真子集,所以P ∃∈,使得x Q ∉、Q ∀∈,有x P ∈,即BC 选项正确.故选:BC6.(2021·辽宁·大连市第三十六中学高一期中)下列命题中为假命题的是()A .,e 0x R x ∀∈>B .2,0x N x ∀∈>C .00,ln 1x R x ∃∈<D .200,10x N x *∃∈-=【答案】AB【分析】利用特值法,结合对数运算,对每个选项进行逐一分析,即可判断.【详解】A :当0x <时,e 0x <,故,e 0x R x ∀∈>为假命题;B :当0x =时,20x =,故2,0x N x ∀∈>为假命题;C :当01x =时,0ln 01x =<,故00,ln 1x R x ∃∈<为真命题;D :当01x =时,2010x -=,故200,10x N x *∃∈-=为真命题.综上所述,假命题的有:AB.故选:AB.题型四:根据特称(存在性)命题的真假求参数一、单选题1.(2021·江苏·南京市金陵中学河西分校高一阶段练习)已知命题p :∃x 0∈R ,x 02+ax 0+a <0是假命题,则实数a 的取值范围是()A .(﹣∞,0)∪(0,4)B .(0,4)C .(﹣∞,0]∪[4,+∞)D .[0,4]【答案】D【分析】由命题p :∃x 0∈R ,x 02+ax 0+a <0是假命题,可知:∀x ∈R ,x 2+ax +a ≥0,利用判别式法即可求解.【详解】由命题p :∃x 0∈R ,x 02+ax 0+a <0是假命题可知:∀x ∈R ,x 2+ax +a ≥0,∴∆=a 2﹣4×1×a ≤0,解得:a ∈[0,4].故选:D .2.(2022·山西·高一阶段练习)若“x R ∃∈,2390ax ax -+≤”是假命题,则a 的取值范围为()A .[0,4]B .(0,4)C .[0,4)D .(0,4]【答案】C【分析】由“x R ∀∈,2390ax ax -+>”是真命题,利用判别式法求解.【详解】因为“x R ∃∈,2390ax ax -+≤”是假命题,所以“x R ∀∈,2390ax ax -+>”是真命题,所以当0a =时,90>成立;当0a ≠时,则29360a a a >⎧⎨∆=-<⎩,解得04a <<,综上:04a ≤<,所以a 的取值范围为[0,4),故选:C 二、多选题3.(2021·江西·高一期中)命题:p x ∃∈R ,210x bx ++ 是假命题,则实数b 的值可能是()A .94-B .32-C .1-D .12-【答案】BCD【分析】先由p 是假命题,得到p ⌝是真命题,求出b 的范围,对四个选项一一验证.【详解】由:p x ∃∈R ,210x bx ++ ,得:p x ⌝∀∈R ,210x bx ++>.由于命题p 是假命题,所以p ⌝是真命题,所以210x bx ++>在x ∈R 时恒成立,则240b ∆=-<,解得22b -<<.故选:BCD.4.(2021·全国·高一单元测试)已知p :[]2,3x ∃∈,220x a -+≤成立,则下列选项是p 的充分不必要条件的是()A .6a >B .6a <C .10a ≥D .10a ≤【答案】AC【分析】依题意由存在量词命题为真求出参数的取值范围,再根据充分条件、必要条件的定义判断即可;【详解】解:由p :[]2,3x ∃∈,220x a -+≤成立,得当[]2,3x ∈时,()2min26a x ≥+=,即6a ≥.对于A ,“6a >”是“6a ≥”的充分不必要条件;对于B ,“6a <”是“6a ≥”的既不充分也不必要条件;对于C ,“10a ≥”是“6a ≥”的充分不必要条件;对于D ,“10a ≤”是“6a ≥”的既不充分也不必要条件.故选:AC.三、填空题5.(2021·河北·石家庄市藁城区第一中学高一阶段练习)命题“2000,410,x R x ax ∃∈-+<”为真命题,则实数a 的取值范围是_______.【答案】()(),44,-∞-⋃+∞【分析】根据命题为真可转化为方程2410x ax -+=有2个不等实根,利用判别式求解即可.【详解】因为命题“2000,410,x R x ax ∃∈-+<”为真命题,所以方程2410x ax -+=有2不等实根,故24410a ∆=-⨯⨯>,解得4a >或4a <-,故答案为:()(),44,-∞-⋃+∞四、解答题6.(2022·全国·高一专题练习)已知集合{}|14A x x =-≤≤,{2B x x =<-或}5x >.(1)求B R ð,()A ⋂R ðB ;(2)若集合{}21|C x m x m =<<+,且∃x C x A ∈∈,为假命题.求m 的取值范围.【答案】(1){}25B x x =-≤≤R ð,()()(),25,R A B ⋂=-∞-⋃+∞ð(2)2m ≤-或1m ≥【分析】(1)由集合的交并补运算可得解;(2)转化条件为A C ⋂=∅,对C 是否为空集讨论即可得解.(1){}25B x x =-≤≤R ð,{R 1A x x =<-ð或}4x >,(){R2A B x x ⋂=<-ð或}5x >;(2)∵∃x C x A ∈∈,为假命题,∴x C x A ∀∈∉,为真命题,即A C ⋂=∅,又{}21|C x m x m =<<+,{}|14A x x =-≤≤,当C =∅时,21m m ≥+,即1m ≥,A C ⋂=∅;当C ≠∅时,由A C ⋂=∅可得,2111m m m <+⎧⎨+≤-⎩,或2124m m m <+⎧⎨≥⎩,解得2m ≤-,综上,m 的取值范围为2m ≤-或1m ≥.7.(2022·黑龙江·大庆外国语学校高一开学考试)已知:p x ∃∈R ,220x ax ++=.():0,1q x ∀∈,20x a -<.(1)若p 为真命题,求a 的取值范围;(2)若p ,q 一个是真命题,一个是假命题,求a 的取值范围.【答案】(1))(,⎡+∞⋃-∞-⎣(2)(,1,⎡-∞-⋃⎣【分析】(1)根据p 为真命题,则0∆≥,解之即可;(2)分别求出p ,q 是真命题时,a 的范围,再分p 是真命题,q 是假命题时和p 是假命题,q 是真命题时,两种情况讨论,即可得出答案.(1)解:由:p x ∃∈R ,220x ax ++=,若p 为真命题,则280a ∆=-≥,解得a ≥a ≤-,所以a 的取值范围为)(,⎡+∞⋃-∞-⎣;(2)解:若q 为真命题时,则2a x >对()0,1x ∀∈恒成立,所以1a ≥,若p ,q 一个是真命题,一个是假命题,当p 是真命题,q 是假命题时,则1a a ⎧≥⎪⎨<⎪⎩1a a ⎧≤-⎪⎨<⎪⎩,解得a ≤-,当p 是假命题,q 是真命题时,则1a a ⎧-<<⎪⎨≥⎪⎩1a ≤<,综上所述(,1,a ⎡∈-∞-⋃⎣.8.(2021·安徽宣城·高一期中)设全集U =R ,集合{}15A x x =≤<,非空集合{}212B x x a =≤≤+,其中a R ∈.(1)若“x A ∈”是“x B ∈”的必要条件,求a 的取值范围;(2)若命题“x B ∃∈,x A ∈R ð”是真命题,求a 的取值范围.【答案】(1)1,22⎡⎫⎪⎢⎣⎭;(2)[)2,+∞【分析】(1)由题意得出B A ⊆,从而列出不等式组,求a 的范围即可,(2)由题意R B A ≠∅ð,列出不等式,求a 的范围即可.(1)解:若“x A ∈”是“x B ∈”的必要条件,则B A ⊆,又集合B 为非空集合,故有122125a a +⎧⎨+<⎩ ,解得122a < ,所以a 的取值范围1,22⎡⎫⎪⎢⎣⎭,(2)解:因为{}15A x x =≤<,所以{|1R A x x =<ð或5}x ,因为命题“x B ∃∈,x A ∈R ð”是真命题,所以R B A ≠∅ð,即125a + ,解得2a .所以a 的取值范围[)2,+∞.考点三:含有一个量词的命题的否定题型五:全称命题的否定及其真假判断一、单选题1.(2022·河南河南·高一期末)命题“R x ∀∈,0x x -≥”的否定是()A .0R x ∃∈,000x x -<B .R x ∀∈,0x x -≥C .0R x ∃∈,000x x -≥D .R x ∀∈,0x x -<【答案】A【分析】根据全称量词命题的否定为特称量词命题判断即可;【详解】解:命题“R x ∀∈,0x x -≥”为全称量词命题,其否定为“0R x ∃∈,000x x -<”;故选:A2.(2022·江苏·高一)命题“2(1,0),0x x x ∀∈-+<”的否定是()A .2(1,0),0x x x ∀∈-+≥B .2(1,0),0x x x ∀∉-+<C .2000(1,0),0x x x ∃∉-+≥D .2000(1,0),0x x x ∃∈-+≥【答案】D【分析】根据全称命题的否定是特称命题进行判断即可.【详解】因为全称命题的否定是特称命题,所以命题“2(1,0),0x x x ∀∈-+<”的否定是2000(1,0),0x x x ∃∈-+≥,故选:D3.(2022·全国·高一专题练习)已知命题:,0p x R x x ∀∈+>,则p 的否定为()A .,0x R x x ∀∈+≤B .,0x R x x ∃∈+<C .,0x R x x ∃∈+≤D .,0x R x x ∀∈+<【答案】C【分析】根据全称命题的否定可得答案.【详解】:,0p x R x x ∀∈+>的否定为,0x R x x ∃∈+≤,故选:C4.(2022·河南·郑州市回民高级中学高一期末)命题“∀x ∈R ,|x |+x 2≥0”的否定是()A .∀x ∈R ,|x |+x 2<0B .∀x ∈R ,|x |+x 2≤0C .∃x 0∈R ,|x 0|+20x <0D .∃x 0∈R ,|x 0|+20x ≥0【答案】C【分析】利用全称命题的否定可得出结论.【详解】由全称命题的否定可知,命题“x R ∀∈,20x x +≥”的否定是“0x R ∃∈,2000x x +<”.故选:C.5.(2021·广西·高一阶段练习)命题“1x ∀>,2230x x --≤”的否定形式为().A .01x ∃>,200230x x -->B .1x ∀>,2230x x -->C .1x ∀≤,2230x x -->D .01x ∃≤,200230x x -->【答案】A【分析】依据全称命题的否定规则即可得到命题“1x ∀>,使2230x x --≤”的否定形式.【详解】命题“1x ∀>,2230x x --≤”的否定形式为01x ∃>,200230x x -->故选:A 二、多选题6.(2021·湖南·衡阳市田家炳实验中学高一阶段练习)下列说法正确的是()A .已知命题p :2个三角形三个内角对应相等,q :2个三角形全等.则“若q ,则p ”是q 成立的性质定理.B .集合M ={x |2x -6>0},N ={x |-1<3x +2<8}.则x ∈R M ð是x ∈N 的必要不充分条件.C .已知全集U =AB ={1,2,3…,8},A ∩U B ð={1,4,5,6}.则B ={2,3,7,8}}D .“∀x ∈{y |y 为两条对角线相等的四边形},x 为矩形”的否定为假命题.【答案】ABC【分析】根据逻辑联结词的含义进行判断即可.【详解】对于A ,若q 则必然有p ,显然p 是q 成立时所具有的性质,故正确;对于B ,()()3,,1,2,M N =+∞=-(],3R M =-∞ð,则R N M ⊂ð,∴若x ∈N 则R x M ∈ð,反之R x M ∈ð,并不能推出x ∈N ,若故B 正确;对于C ,∵{}1,4,5,6U A B =ð,能推出{}1,4,5,6U B ⊆ð,由于A B U ⋃=,∴{}2,3,7,8B =,故C 正确;对于D ,两条对角线相等的四边形也可以是等腰梯形,故原命题为假,其否定即为真,故D 错误;故选:ABC 三、填空题7.(2022·广东茂名·高一期中)命题“3x ∀<-,223x x +>”的否定是___________.【答案】3x ∃<-,223x x +≤【分析】“∀”改为“∃”,“>”改为“≤”,即可得解.【详解】命题“3x ∀<-,223x x +>”的否定是:3x ∃<-,223x x +≤.故答案为:3x ∃<-,223x x +≤.题型六:特称命题的否定及其真假判断一、单选题1.(2022·广西柳州·高一期末)命题“[)0,x ∃∈+∞,210x -<”的否定为()A .[)20,,10x x ∀∈+∞-≥B .()2,0,10x x ∃∈-∞-<C .[)20,,10x x ∀∈+∞-<D .[)20,,10x x ∃∈+∞-≥【答案】A【分析】根据存在量词命题的否定直接得出结果.【详解】命题“2[0,)10x x ∃∈+∞-<,”的否定为:“2[0,)10x x ∀∈+∞-≥,”.故选:A2.(2022·江苏·高一)命题“230,14x x x ∃>-+<”的否定是()A .230,14x x x ∀≤-+≥B .230,14x x x ∀>-+≥C .230,14x x x ∃>-+≥D .230,14x x x ∃≤-+≥【答案】B【分析】由特称命题的否定判断【详解】命题“230,14x x x ∃>-+<”的否定是“230,14x x x ∀>-+≥”故选:B 二、多选题3.(2021·江苏·高一专题练习)下面四个结论正确的是()A .,R a b ∀∈,若a b >,则22a b >.B .命题“2(3,),9x x ∈-+∞≤∃”的否定是“2(3,),9x x ∈-+∞>∀.C .“22x y >”是“x y >”的必要而不充分条件.D .“0m <是关于x 的方程2x 2x m 0-+=有一正一负根的充要条件.【答案】BD【分析】举特值判断A ;根据特称命题的否定判断B ,根据充分条件和必要条件的定义进行判断C 、D 作答.【详解】对于A ,取1,3a b ==-,满足a b >,而22a b <,A 不正确;对于B ,存在量词命题的否定是全称量词命题,则“2(3,),9x x ∈-+∞≤∃”的否定是“2(3,),9x x ∈-+∞>∀”,B 正确;对于C ,取2,1x y =-=,满足22x y >,而x y <,即22x y >不能推出x y >,反之,取x 1,y 2==-,满足x y >,而22x y <,即x y >不能推出22x y >,所以“22x y >”是“x y >”的既不充分又不必要条件,C 不正确;对于D ,当方程2x 2x m 0-+=有一正一负根时,由方程两根之积可得0m <,反之,当0m <时,440m ∆=->,方程有两个根,并且两根之积为负数,两根异号,所以“0m <”是“关于x 的方程2x 2x m 0-+=有一正一负根”的充要条件,D 正确.故选:BD 三、填空题4.(2022·浙江浙江·高一期中)0x ∃>,12x x+>的否定是___________.【答案】0x ∀>,12x x+≤【分析】利用含有一个量词的命题的否定的定义求解.【详解】解:因为0x ∃>,12x x+>是存在量词命题,所以其否定是全称量词命题,即0x ∀>,12x x+≤,故答案为:0x ∀>,12x x+≤.题型七:含有一个量词的命题的否定的应用二、多选题1.(2021·江苏淮安·高一期中)若“R x ∃∈,使得2210x x λ-+<成立”是假命题,则实数λ可能的值是()A .0B .1C .D .【答案】ABC【分析】由假命题的否定是真命题,利用二次函数性质得出结论.【详解】由题意x R ∀∈,不等式2210x x λ-+≥恒成立,所以280λ∆=-≤,λ-≤≤.故选:ABC .三、填空题2.(2022·全国·高一)命题“对任意的x ∈R ,x 3-x 2+1≤0”的否定是_______.(填序号)①不存在x ∈R ,x 3-x 2+1≤0②存在x ∈R ,x 3-x 2+1≤0③存在x ∈R ,x 3-x 2+1>0④对任意的x ∈R ,x 3-x 2+1>0【答案】③【分析】原命题是全称命题,否定是特称命题,根据特称命题的写法可得到结果.【详解】原命题是全称命题,否定是特称命题,则其否定应为:存在x ∈R ,x 3-x 2+1>0.故答案为:③.题型八:根据全称或特称命题的真假判断复合命题的真假一、单选题1.(2021·全国·高一专题练习)若P :命题“01200,2x x N x +∃∈>”的否定是“21,2x x N x +∀∈≤”,q :命题“若0ab =,则0a =或0b =”的否定是“若0ab ≠,则0a ≠或0b ≠”.则下列命题为真命题的是()A .p ⌝B .p q∧C .()p q⌝∧D .()p q ∧⌝【答案】D【分析】依题意得P 为真命题,q 为假命题,结合复合命题的真假判断方法即可得结果.【详解】P :命题“01200,2x x N x +∃∈>”的否定是“21,2x x N x +∀∈≤”,为真命题;因为“若0ab =,则0a =或0b =”的否定是“若0ab ≠,则0a ≠且0b ≠”,则q 为假命题,q ⌝为真命题所以()p q ∧⌝为真命题故选:D2.(2021·广东·广州外国语学校高一阶段练习)已知命题p :∃x ∈R ,220mx +≤;命题q :∀x ∈R ,2210x mx -+>.若p 、q 都为假命题,则实数m 的取值范围是()A .[1,+∞)B .(-∞,-1]C .(-∞,-2]D .[-1,1]【答案】A【详解】p ,q 都是假命题.由p :∃x ∈R ,220mx +≤为假命题,得∀x ∈R ,220mx +>,∴0m ≥.由q :∀x ∈R ,2210x mx -+>为假,得∃x ∈R ,2210x mx -+≤∴2(2)40m ∆=--≥,得1m ≤-或m 1≥.∴m 1≥.故选A.二、填空题3.(2021·江苏·高一单元测试)某中学采用小组合作学习模式,高一某班某组王小一同学给组内王小二同学出题如下:若命题“x R ∃∈,220x x m ++≤”是假命题,求实数m 的取值范围.王小二略加思索,反手给了王小一一道题:若命题“x R ∀∈,220x x m ++>”是真命题,求实数m 的取值范围.你认为两位同学题中所求实数m 的取值范围一致吗?答:___________.(填“一致”或“不一致”)【答案】一致【分析】根据全称命题与存在命题的关系,以及命题的否定之间的逻辑关系,即可得到结论.【详解】根据全称命题与存在性命题的关系,可得命题“x R ∃∈,220x x m ++≤”的否定为“x R ∀∈,220x x m ++>”,因为命题“x R ∃∈,220x x m ++≤”是假命题与命题“x R ∀∈,220x x m ++>”是真命题等价,所以两位同学题中所求实数m 的取值范围是一致的.故答案为:一致.4.(2022·贵州铜仁·高一期末)若命题“2,220x R x ax a ∃∈++-=是假命题”,则实数a 的取值范围是___________.【答案】21a -<<【分析】等价于2,220x R x ax a ∀∈++-≠,解2=44(2)0,a a ∆--<即得解.【详解】解:因为命题“2,220x R x ax a ∃∈++-=是假命题”,所以2,220x R x ax a ∀∈++-≠,所以222=44(2)4480,20,21a a a a a a a ∆--=+-<∴+-<∴-<<.故答案为:21a -<<三、解答题5.(2020·山东·枣庄市第三中学高一阶段练习)已知p :x R ∀∈,210mx +>,q :x R ∃∈,210x mx ++≤.(1)写出命题p 的否定q ⌝;命题q 的否定q ⌝;(2)若p ⌝和q ⌝至少有一个为真命题,求实数m 的取值范围.【答案】(1)p ⌝:x R ∃∈,210mx +≤;q ⌝:x R ∀∈,210x mx ++>;(2)2m <.【解析】(1)直接利用“改量词,否结论”求解即可;(2)先求出p ⌝和q ⌝为真命题时,实数m 的范围,再利用p ⌝和q ⌝至少有一个为真命题转化为p ⌝真或q ⌝真,即可得出结果.【详解】(1)p ⌝:x R ∃∈,210mx +≤;q ⌝:x R ∀∈,210x mx ++>.(2)由题意知,p ⌝真或q ⌝真,当p ⌝真时,0m <,当q ⌝真时,240m ∆=-<,解得22m -<<,因此,当p ⌝真或q ⌝真时,0m <或22m -<<,即2m <.【点睛】本题主要考查了全称命题、特称命题的否定及复合命题的判定.属于较易题.巩固提升一、单选题1.(2022·河南·陕州中学高一阶段练习)命题“*x ∃∈N ,sin x x =”的否定是()A .*x ∃∈N ,sin x x ≠B .*x ∀∈N ,sin x x =C .x ∀∈N ,sin x x≠D .*x ∀∈N ,sin x x≠【答案】D【分析】根据存在量词的命题的否定直接求解即可.【详解】因为存在量词命题的否定是全称量词命题,所以*x ∃∈N ,sin x x =的否定是*x ∀∈N ,sin x x ≠,故选:D2.(2021·全国·高一专题练习)若命题p :0x ∃∈R ,20010x x -+≤,命题q :0x ∀<,||0x >,则下列命题中是真命题的是()A .p q ∧B .p q ∧⌝C .p q ⌝∧⌝D .p q⌝∧【答案】D【分析】根据二次函数性质判断命题p 的真假,根据绝对值的定义判断q 的真假,从而可逐项判断真假.【详解】对于关于x 的二次方程210x x -+=,∵140∆=-<,故210x x -+>恒成立,∴不存在0x ∈R ,使得20010x x -+≤,∴命题p 是假命题,命题p ⌝为真命题;当x<0时,||0x >,∴命题q 是真命题,命题q ⌝是假命题;故p q ∧为假命题,p q ∧⌝为假命题,p q ⌝∧⌝为假命题,p q ⌝∧为真命题.故选:D .3.(2022·安徽省利辛县第一中学高一阶段练习)命题“0x R ∃∈,200cos 2x x +<”的否定为()A .0x R ∃∈,200cos 2x x +>B .0x R ∃∈,200cos 2x x +≥C .x R ∀∈,2cos 2x x +>D .x R ∀∈,2cos 2x x +≥【答案】D【分析】根据题意,写出命题的否定即可【详解】存在量词命题的否定为全称量词命题,故“0x R ∃∈,200cos 2x x +<”的否定为“x R ∀∈,2cos 2x x +≥”,故选:D4.(2022·全国·高一期末)若“2[1,2],10x x ax ∀∈-+≤”为真命题,则实数a 的取值范围为()A .2a ≥B .52a ≥C .52a ≤D .1a ≤【答案】B【分析】利用参数分离法得到max 1a x x ⎛⎫≥+⎪⎝⎭,[1,2]x ∈,再求出1y x x=+在[1,2]上的最值即可.【详解】2[1,2],10x x ax ∀∈-+≤为真命题,∴max1a x x ⎛⎫≥+ ⎪⎝⎭,[1,2]x ∈,∵1y x x =+在区间[1,2]上单调递增,max 115222x x ⎛⎫∴+=+= ⎪⎝⎭,即52a ≥,∴实数a 的取值范围为5,2⎡⎫+∞⎪⎢⎣⎭.故选B5.(2021·徐州市第三十六中学(江苏师范大学附属中学)高一期中)命题“R 10x x ∃∈+>,”的否定是()A .R 10x x ∀∈+≤,B .R 10x x ∃∈+>,C .R 10x x ∃∈+≤,D .R 10x x ∀∈+>,【答案】A【分析】根据特称命题的否定形式为全称命题,可得答案.【详解】命题“R 10x x ∃∈+>,”为特称命题,它的否定是全称命题形式:即R 10x x ∀∈+≤,,故选:A6.(2021·安徽·池州市江南中学高一期末)已知命题():0,1e 1xp x x ∀>+>,则命题p 的否定为()A .()0,1e 1xx x ∀+ B .()0000,1e 1xx x ∃+ C .()0,1e 1xx x ∀>+ D .()0000,1e 1xx x ∃>+ 【答案】D【分析】根据含有一个量词的命题的否定的方法求解即可.【详解】():0,1e 1xp x x ∀>+>的否定为()000:0,1e 1x p x x ⌝∃>+≤.故选:D.7.(2022·全国·高一专题练习)给出下列四个命题:①若x A B ∈⋂,则x A ∈或x B ∈;1x ∀>②,都有23x x >;a b >③的必要不充分条件的是000x a x b ∃<+≥,200023x R x x ∃∈+>④,的否定是“223x R x x ∀∈+≤,”;其中真命题的个数是()A .1B .2C .3D .4【答案】A【分析】本题考查命题真假性的判定,属于小综合题目,涉及知识点较多,属于中档题目.逐一判断即可.【详解】解:①若x A B ∈⋂则x A ∈且x B ∈,故①错误;②当1x >时,23x x <,故②错误;③a b >能推出000x a x b ∃<+≥,,但反过来也成立,故③错误;0x R ∃∈④,20023x x +>的否定为x R ∀∈,223x x +≤,故④正确.故选A .8.(2021·湖南·衡阳市田家炳实验中学高一阶段练习)命题p :存在一个自然数n 使n 2>2n +5成立.则p 的否定的符号形式及其真假为()A .∀n ∈N ,n 2≤2n +5.真B . ∀n ∈N ,n 2≤2n +5.假C .∀n ∈N ,n 2>2n +5.假D . ∃n ∈N ,n 2>2n +5.真【答案】B【分析】对特称命题的否定为全称命题,再求解真伪即可.【详解】由于p :存在一个自然数n 使得225n n >+,∴其否定符号为p ⌝:()2,25n n N n n ∀∈≤+,当n =5时,25255>⨯+,所以是假命题;故选:B.9.(2020·湖北·襄阳市第二十四中学高一阶段练习)已知命题2:0,0p x x ∀>>,则非p 为()A .20,0x x ∀>≤B .20,0x x ∃>≤C .20,0x x ∀<≤D .20,0x x ∃>≤【答案】D【分析】根据全称命题与存在性命题互为否定关系,准确改写,即可求解.【详解】根据全称命题与存在性命题互为否定关系,可得命题2:0,0p x x ∀>>,可得非p 为“20,0x x ∃>≤”.故选:D.10.(2022·江苏南通·高一期末)命题“1x ∀≥,21x ≥”的否定是()A .1x ∃≥,21x <B .1x ∃<,21x ≥C .1x ∃≥,21x ≥D .1x ∃<,21x <【答案】A【分析】直接用存在量词否定全称命题即可得到答案.【详解】因为用存在量词否定全称命题,所以命题“1x ∀≥,21x ≥”的否定是“1x ∃≥,21x <”.故选:A11.(2022·全国·高一专题练习)在下列命题中,是真命题的是()A .2R,30x x x ∃∈++=B .2R,20x x x ∀∈++>C .2R,x x x∀∈>D .已知{}{}2,3A aa n Bb b m ====∣∣,则对于任意的*,n m N ∈,都有A B =∅【答案】B【分析】可通过分别判断选项正确和错误,来进行选择/【详解】选项A ,2R,30x x x ∃∈++=,即230x x ++=有实数解,所以112110∆=-=-<,显然此方程无实数解,故排除;选项B ,2R,20x x x ∀∈++>,2217720244x x x ++=++≥(,故该选项正确;选项C ,2R,x x x ∀∈>,而当0,00x =>时,不成立,故该选项错误,排除;选项D ,{}{}2,3A aa n Bb b m ====∣∣,当*,n m N ∈时,当a b 、取得6的正整数倍时,A B ⋂≠∅,所以,该选项错误,排除.故选:B.12.(2022·广东·盐田高中高一阶段练习)下列结论中正确的个数是()①命题“所有的四边形都是矩形”是存在量词命题;②命题“2,10x R x ∀∈+<”是全称量词命题;③命题“2,210x R x x ∃∈++≤”的否定为“2,210x R x x ∀∈++≤”;④命题“a b >是22ac bc >的必要条件”是真命题;A .0B .1C .2D .3【答案】C【分析】根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案.【详解】对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误;对于②:命题“2R 10x x ∀∈+<,”是全称量词命题;故②正确;对于③:命题2:R,210p x x x ∃∈++≤,则2:R,210p x x x ⌝∀∈++>,故③错误;对于④:22ac bc >可以推出a b >,所以a b >是22ac bc >的必要条件,故④正确;所以正确的命题为②④,故选:C 二、多选题13.(2020·广东·梅州市梅江区梅州中学高一阶段练习)下列四个命题中真命题为()A .∀x ∈R ,2x 2-3x +4>0B .∀x ∈{1,-1,0},2x +1>0C .∃x ∈N *,x 为29的约数D .对实数m ,命题p :∀x ∈R ,x 2-4x +2m ≥0.命题q :m ≥3.则p 是q 的必要不充分条件【答案】ACD【分析】A 利用配方即可判断,B 取1x =-代入判断;C 利用约数概念进行理解判断,D 命题p 可得()2480m ∆=--≤,结合充分、必要条件的概念加以判断.【详解】223232323420488x x x ⎛⎫-+=-+≥> ⎪⎝⎭,A 正确;∵1x =-,则2110x +=-<,B 不正确;29的约数有1和29,C 正确;∀x ∈R ,x 2-4x +2m ≥0,则()2480m ∆=--≤,即2m ≥p 是q 的必要不充分条件,D 正确;故选:ACD .14.(2022·江苏淮安·高一期末)下面选项中正确的有()A .命题“所有能被3整除的整数都是奇数”的否定是“存在一个能被3整除的整数不是奇数”B .命题“∀x ∈R ,x 2+x +1<0”的否定是“∃x ∈R ,x 2+x +1>0”C .“α=k π+β,k ∈Z ”是“tanα=tanβ”成立的充要条件D .设a ,b ∈R ,则“a ≠0”是“ab ≠0”的必要不充分条件【答案】ACD【分析】选项A ,求出原命题的否命题后再进行判断;选项B ,将全称命题变为其否定形式的特称命题即可判断;选项C ,可以看条件和结论之间是否存在推演关系,即可做出判断;选项D ,可以看条件和结论之间是否存在推演关系,即可做出判断.【详解】对于A :命题“所有能被3整除的整数都是奇数”的否定是“存在一个能被3整除的整数不是奇数”,故A 正确;对于B :命题“∀x ∈R ,x 2+x +1<0”的否定是“∃x ∈R ,x 2+x +1≥0”,故B 错误;对于C :当“α=k π+β,k ∈Z ”时,“tanα=tanβ”成立,反过来,当“tanα=tanβ”成立,那么“α+β=k π,k ∈Z ”,即为“α=k π+β,k ∈Z ”.故“α=k π+β,k ∈Z ”是“tanα=tanβ”成立的充要条件;故C 正确;对于D :设a ,b ∈R ,则“a ≠0,b =0”时,则“ab =0”,反过来,a ,b ∈R ,若“ab ≠0”时,则能推出“a ≠0”且“b ≠0”,故设a ,b ∈R ,则“a ≠0”是“ab ≠0”的必要不充分条件,故D 正确.故选:ACD .15.(2022·重庆·高一期末)已知全集为U ,A ,B 是U 的非空子集且U A B ⊆ð,则下列关系一定正确的是()A .x U ∃∈,x A ∉且xB ∈B .x A ∀∈,x B∉C .x U ∀∈,x A ∈或x B∈D .x U ∃∈,x A ∈且x B ∈【答案】AB【分析】根据给定条件画出韦恩图,再借助韦恩图逐一分析各选项判断作答.。

全称量词和存在量词乐乐课堂

全称量词和存在量词乐乐课堂

全称量词和存在量词乐乐课堂
(实用版)
目录
1.量词的分类
2.全称量词和存在量词的定义与区别
3.乐乐课堂的教学方法
4.乐乐课堂的优势
5.结论
正文
量词是表示事物数量的词语,可以分为全称量词和存在量词。

全称量词表示某一类别的全部个体,如“一群”、“一打”等;存在量词表示某一类别中至少有一个个体,如“一个”、“两个”等。

全称量词和存在量词在表达数量上有所不同。

全称量词用于表示某一类别的所有个体,强调整体概念;存在量词则表示某一类别中至少有一个个体,强调个体存在。

例如,“一群人”表示的是一个人群体,而“一个人”表示的是一个人。

在实际应用中,全称量词和存在量词往往结合使用,以表达更加精确的数量概念。

乐乐课堂是一种针对全称量词和存在量词的教学方法。

在乐乐课堂中,教师通过生动有趣的实例,帮助学生理解和掌握全称量词和存在量词的用法。

此外,乐乐课堂还采用游戏、竞赛等多种形式,激发学生的学习兴趣,提高学习效果。

乐乐课堂在教学全称量词和存在量词方面具有明显优势。

首先,乐乐课堂采用生活化的实例,使学生更容易理解和掌握全称量词和存在量词的用法;其次,乐乐课堂注重师生互动,激发学生的学习兴趣,提高学习效果;最后,乐乐课堂采用多种教学形式,如游戏、竞赛等,使学生在轻松
愉快的氛围中学习,提高了学习效果。

总之,乐乐课堂作为一种针对全称量词和存在量词的教学方法,在帮助学生掌握全称量词和存在量词的用法方面具有显著优势。

全称量词和存在量词举例

全称量词和存在量词举例

全称量词和存在量词举例
摘要:
1.量词的定义和分类
2.全称量词的定义和举例
3.存在量词的定义和举例
4.全称量词和存在量词的区别与联系
正文:
量词是表示事物数量的词语,它在汉语中起着非常重要的作用。

根据量词的含义和用法,我们可以将其分为全称量词和存在量词两大类。

全称量词是用来表示某类事物的全部个体的量词。

它可以用来描述一个群体、类别或集合的所有成员。

全称量词在句子中通常与名词连用,表示某个名词所指代的所有个体。

例如:“一只”、“所有的”、“全部的”等。

存在量词则是用来表示某类事物中至少有一个个体存在的量词。

它主要用来描述某个群体、类别或集合中至少有一个成员。

存在量词在句子中通常与动词连用,表示某个动作涉及到的个体数量。

例如:“有一只”、“有一个”、“有一部分”等。

全称量词和存在量词在用法上有明显的区别,但它们之间也存在一定的联系。

全称量词表示一个群体、类别或集合的所有成员,而存在量词表示这个群体、类别或集合中至少有一个成员。

因此,当我们在描述一个群体、类别或集合时,可以根据实际情况选择使用全称量词或存在量词。

总之,全称量词和存在量词是汉语中非常重要的量词类型,它们在描述事
物数量和表达语义方面起着关键作用。

专题05 全称量词与存在量词(讲)(解析版)

专题05 全称量词与存在量词(讲)(解析版)

专题05全称量词与存在量词(讲)1.全称量词与全称命题(1)短语“对所有的”、“对任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示,含有全称量词的命题,叫做全称命题.(2)全称命题的表述形式:对M中任意一个x,有p(x)成立,可简记为:∀x∈M,p(x).(3)常用的全称量词还有“所有”、“每一个”、“任何”、“任意”、“一切”、“任给”、“全部”,表示整体或全部的含义.3.存在量词与特称命题(1)短语“存在一个”、“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示,含有存在量词的命题,叫做特称命题.(2)特称命题的表述形式:存在M中的一个x0,使p(x0)成立,可简记为,∃x0∈M,p(x0).(3)存在量词:“有些”、“有一个”、“存在”、“某个”、“有的”,表示个别或一部分的含义.4.命题的否定(1)全称命题p:∀x∈M,p(x),它的否定¬p:∃x0∈M,¬p(x0),全称命题的否定是特称命题.(2)特称命题p:∃x0∈M,p(x0),它的否定¬p:∀x∈M,¬p(x),特称命题的否定是全称命题.5.常见的命题的否定形式有:1.命题“对任意x∈R,都有221+<”的否定是()x xA.对任意x∈R,都有221+≥x x+>B.对任意x∈R,都有221x xC.存在x∈R,使得221+≥x xx x+>D.存在x∈R,使得221【答案】D【解析】解:命题“对任意x∈R,都有221+≥.x xx x+<”的否定是存在x∈R,使得221故选:D.2.命题“有些实数的绝对值是正数”的否定是()A . x R ∀∈,0x >B . x R ∃∈,0x >C .x R ∀∈,0x ≤D .x R ∃∈,0x ≤【答案】C 【解析】命题“有些实数的绝对值是正数”的否定应该是“所有实数的绝对值都不是正数”,所以正确选项为C. 3.下列命题含有全称量词的是 ( ) A .某些函数图象不过原点 B .实数的平方为正数 C .方程2250x x ++=有实数解 D .素数中只有一个偶数【答案】B 【解析】“某些函数图象不过原点”即“存在函数,其图象不过原点”;“方程2250x x ++=有实数解”即“存在实数x ,使2250x x ++=”;“素数中只有一个偶数”即“存在一个素数,它是偶数”,这三个命题都是存在量词命题,“实数的平方为正数”即“所有的实数,它的平方为正数”,是全称量词命题,其省略了全称量词“所有的”,所以正确选项为B.4.下列四个命题中,既是特称命题又是真命题的是( ) A .斜三角形的内角是锐角或钝角 B .至少有一个实数x ,使30x > C .任一无理数的平方必是无理数 D .存在一个负数x ,使12x> 【答案】B【解析】选项A ,C 中的命题是全称命题,选项D 中的命题是特称命题,但是假命题.只有B 既是特称命题又是真命题,选B.5.若命题“x R ∃∈,使21()10x a x <+-+”是假命题,则实数a 的取值范围为( )A .13a ≤≤B .13a ≤≤-C .33a ≤≤-D .11a ≤≤-【答案】B【解析】由题得,原命题的否命题是“x R ∀∈,使21()10x a x ≥+-+”,即2(1)40a ∆=--≤,解得13a ≤≤-.选B.重要考点一:全称命题与特称命题的判定【典型例题】判断下列命题是全称命题还是特称命题,并判断真假. (1)对所有的实数a ,b ,关于x 的方程ax +b =0恰有唯一解. (2)存在实数x ,使得213234x x =-+ . 【答案】(1)假命题; (2)假命题.【解析】(1)该命题是全称命题.当a =0,b≠0时方程无解,故该命题为假命题. (2)该命题是特称命题.∵x 2-2x +3=(x -1)2+2≥2,∴21132324x x ≤<-+. 故该命题是假命题.【题型强化】把下列定理表示的命题写成含有量词的命题: (1)勾股定理; (2)三角形内角和定理.【答案】(1)任意一个直角三角形,它的斜边的平方都等于两直角边的平方和; (2)所有三角形的内角和都是180°. 【解析】(1)任意一个直角三角形,它的斜边的平方都等于两直角边的平方和; (2)所有三角形的内角和都是180°.【收官验收】用符号“∀”与“∃”表示下列含有量词的命题,并判断真假: (1)任意实数的平方大于或等于0;(2)对任意实数a ,二次函数2y x a =+的图象关于y 轴对称; (3)存在整数x ,y ,使得243x y +=; (4)存在一个无理数,它的立方是有理数. 【答案】(1)2,0x R x∀∈.真命题;(2)a ∀∈R ,二次函数2y x a =+的图象关于y 轴对称,真命题; (3),,243x Z y Z x y ∃∈∈+=假命题;(4)3,R x Q x Q ∃∈∈,真命题.【解析】 (1)2,0x R x ∀∈≥,是真命题;(2)a ∀∈R ,二次函数2y x a =+的图象关于y 轴对称,真命题,;(3),,243x Z y Z x y ∃∈∈+=假命题,因为242(2)x y x y +=+必为偶数;(4)3,R x Q x Q ∃∈∈.真命题,例如32x x Q ==∈.【名师点睛】1.判断一个语句是全称命题还是特称命题的步骤:(1)首先判定语句是否为命题,若不是命题,就当然不是全称命题或特称命题.(2)若是命题,再分析命题中所含的量词,含有全称量词的命题是全称命题,含有存在量词的命题是特称命题.2.当命题中不含量词时,要注意理解命题含义的实质.3.一个全称(或特称)命题往往有多种不同的表述方法,有时可能会省略全称(存在)量词,应结合具体问题多加体会.重要考点二:全称命题与特称命题的真假判断【典型例题】写出下列命题的否定,并判断所得命题的真假: (1)任意实数都存在倒数;(2)存在一个平行四边形,它的对角线不相等; (3){|x x x ∀∈是三角形},x 的内角和是180︒. 【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)存在一个实数不存在倒数,例如:实数0,故此命题为真命题;(2)所有平行四边形的对角线相等,例如:边长为1,一个内角为60的菱形,其对角线分别为,故此命题为假命题;(3){|x x x ∃∈是三角形},x 的内角和不是180︒,由三角形的内角和定理知,任意三角形内角和均为180︒,故此命题为假命题.【题型强化】判断下列存在量词命题的真假:(1)存在一个四边形,它的两条对角线互相垂直; (2)至少有一个整数n ,使得2n n +为奇数;(3){|x y y ∃∈是无理数},2x 是无理数. 【答案】(1)真命题;(2)假命题;(3)真命题【解析】(1)真命题,因为正方形的两条对角线互相垂直; (2)假命题,因为若n 为整数,则(1)n n +必为偶数; (3)真命题,因为π是无理数,2π是无理数. 【收官验收】判断下列全称量词命题的真假: (1)每个四边形的内角和都是360°; (2)任何实数都有算术平方根;(3){|x y y ∀∈是无理数},3x 是无理数. 【答案】(1)真命题;(2)假命题;(3)假命题【解析】(1)真命题.连接一条对角线,将一个四边形分成两个三角形, 而一个三角形的内角和180°,所以四边形的内角和都是360°是真命题;(2)假命题.因为负数没有算术平方根,所以任何实数都有算术平方根是假命题;(3)假命题,因为x =3x 2=是有理数,所以{|x y y ∀∈是无理数},3x 是无理数是假命题. 【名师点睛】 1.全称命题的真假判断要判定一个全称命题是真命题,必须对限定集合M 中的每个元素x 验证p (x )成立;但要判定全称命题是假命题,只要能举出集合M 中的一个x =x 0,使得p (x 0)不成立即可. 2.特称命题的真假判断要判定一个特称命题是真命题,只要在限定集合M 中,找到一个x =x 0,使p (x 0)成立即可;否则,这一特称命题就是假命题.重要考点三:利用全称命题和特称命题的真假求参数范围【典型例题】若命题“2,10x R x ax ∃∈-+≤”是真命题,则实数a 的取值范围是( ).A .2{|}2a a -≤≤B .2{2}|a a a ≤-≥或C .2{|2}a a -<<D .2{}2|a a a <->或 【答案】B【解析】命题“2,10x R x ax ∃∈-+≤”是真命题,则需满足240a ∆=-≥,解得2a ≥或2a ≤-.故选:B .【题型强化】若“x ∃∈R ,220x x a +-<”是真命题,则实数a 的取值范围是____. 【答案】{|1}a a【解析】若“∃x ∈R ,x 2+2x ﹣a <0”是真命题,则△>0,即4+4a >0,解得a >﹣1. 故答案为{}1a a -【收官验收】已知命题:p x R ∀∈,2210ax x ++≠,:q x R ∃∈,210ax ax ++.若p 与q 均为假命题,求实数a 的取值范围. 【答案】[0,1] 【解析】:p x R ∀∈,2210ax x ++≠,:q x R ∃∈,210ax ax ++,:p x R ∴⌝∃∈,2210ax x ++=,:q x R ⌝∀∈,210ax ax ++>.因为p 与q 均为假命题,所以p ⌝与q ⌝都是真命题.由p ⌝为真命题得0a =或0,440,a a ≠⎧⎨-≥⎩,故1a ≤.由q ⌝为真命题得0a =或20,40,a a a >⎧⎨-<⎩,故04a ≤<.1,04,a a ⎧∴⎨<⎩解得01a ≤≤. 故实数a 的取值范围是[0,1].重要考点四:全称命题、特称命题的否定【典型例题】命题“0x ∀>,20x >”的否定是( ) A .20,0x x ∀>≤ B .20,0x x ∃>≤ C .20,0x x ∀≤≤ D .20,0x x ∃≤≤【答案】B【解析】命题“0x ∀>,20x >”的否定是: 20,0x x ∃>≤,故选B【题型强化】命题:x R ∃∈,210x x -+=的否定是______.【答案】2,10x R x x ∀∈-+≠【解析】根据特称命题的否定为全称命题,可知命题“x R ∃∈,210x x -+=”的否定是“”.【收官验收】写出下列命题的否定:(1)分数是有理数;(2)三角形的内角和是180°. 【答案】(1)存在一个分数不是有理数;(2)有些三角形的内角和不是180°. 【解析】(1)原命题省略了全称量词“所有",所以该命题的否定:存在一个分数不是有理数. (2)原命题省略了全称量词“任何一个”,所以该命题的否定:有些三角形的内角和不是180°. 【名师点睛】1.一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论.2.对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.重要考点五:利用全称命题与特称命题求参数的取值范围【典型例题】已知命题p :“至少存在一个实数[1,2]x ∈,使不等式2220x ax a ++->成立”的否定为假命题,试求实数a 的取值范围. 【答案】(3,)-+∞【解析】由题意知,命题p 为真命题,即2220x ax a ++->在[1,2]上有解,令222y x a a x ++=-,所以max 0y >,又因为最大值在1x =或2x =时取到,∴只需1x =或2x =时,0y >即可,∴1220a a ++->或4420a a ++->,解得3a >-或2a >-, 即3a >-.故实数a 的取值范围为(3,)-+∞.【题型强化】若命题“12x ∀≤≤,一次函数y x m =+的图象在x 轴上方”为真命题,求实数m 的取值范围. 【答案】{}1m m >-【解析】当12x ≤≤时,12m x m m +≤+≤+.因为一次函数y x m =+的图象在x 轴上方,所以10m +>,即1m >-, 所以实数m 的取值范围是{}1m m >-.故得解.【收官验收】已知命题:p 存在实数x ∈R ,使210x ax -+≤成立. (1)若命题P 为真命题,求实数a 的取值范围;(2)命题:q 任意实数[]1,2x ∈,使2210x ax -+≤恒成立.如果p ,q 都是假命题,求实数a 的取值范围.【答案】(1)(][),22,-∞-+∞;(2)52,4⎛⎫- ⎪⎝⎭.【解析】解:(1):p 存在实数x ∈R ,使210x ax -+≤成立2402a a ≥⇔=-⇔≤∆-或2a ≥,∴实数a 的取值范围为(][),22,-∞-+∞;(2):q 任意实数[]1,2x ∈,使12a x x ≥+恒成立,[]1,2x ∈,1522x x ∴≤+≤,55224a a ≥∴⇒≥, 由题p ,q 都是假命题,那它们的补集取交集()552,2,2,44⎛⎫⎛⎫--∞=- ⎪ ⎪⎝⎭⎝⎭,∴实数a 的取值范围52,4⎛⎫- ⎪⎝⎭.【名师点睛】(1)利用全称命题、特称命题求参数的取值范围或值是一类综合性较强、难度较大的问题.主要考查两种命题的定义及其否定.(2)全称命题为真,意味着对限定集合中的每一个元素都具有某种性质,使所给语句为真.因此,当给出限定集合中的任一个特殊的元素时,自然应导出“这个特殊元素具有这个性质”(这类似于“代入”思想).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全称量词和存在量词
短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.含有全称量词的命题,叫做全称量词命题.
通常,将含有变量X的语句用P(x),q(x)等表示,变量X的取值范围用M表示,那么全称量词命题“对M中任意一个X,P(x)成立”可用符号简记为
∀x∈M,p(x).
短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.含有存在量词的命题,叫做存在量词命题.
存在量词命题“存在M中的元素X,P(x)成立”可用符号简记为
∃x∈M,p(x).
全称量词命题和存在量词命题的否定.
一般地,对一个命题进行否定,就可以得到一个新的命题,这一命题称为原命题的否定.
一般来说,对含有一个量词的全称量词命题进行否定,我们只需把“所有的”“任意一个”等全称量词变成“并非所有的”“并非任意一个”等短语即可.也就是说,对于含有一个量词的全称量词命题的否定,有下面的结论:
全称量词命题:
∀x∈M,p(x)
它的否定:
∃x∈M,¬p(x)
也就是说,全称量词的命题的否定是存在量词命题.
一般来说,对含有一个量词的存在量词命题进行否定,我们只需把“”存在一个“”至少有一个“”有些等存在量词,变成“”不存在一个“”没有一个等短语即可.
也就是说,对含有一个量词的存在量词命题的否定,有下面的结论:
全称量词命题:
∃x∈M,p(x).
它的否定:∀x∈M,¬p(x).
也就是说,全称量词的命题的否定是存在量词命题.。

相关文档
最新文档