盈亏问题试题及答案
小学四年级盈亏问题试题及答案【三篇】
小学四年级盈亏问题试题及答案【三篇】【第一篇】例1.某班学生去划船,如果增加一条船,那么每条船正好坐6人;如果减少一条船,那么每条船就要坐9人。
问:学生有多少人?分析:本题也是盈亏问题,为清楚起见,我们将题中条件加以转化。
假设船数固定不变,题目的条件"如果增加一条船……"表示"如果每船坐6人,那么有6人无船可坐";"如果减少一条船……"表示"如果每船坐9人,那么就空出一条船"。
这样,用盈亏问题来做,盈亏总额为6+9=15(人),两次分配的差为9--6=3(人)。
解:(6+9)÷(9--6)=5(条),6×5+6=36(人),答:有36名学生。
例2.少先队员植树,如果每人挖5个坑,那么还有3个坑无人挖;如果其中2人各挖4个坑,其余每人挖6个坑,那么恰好将坑挖完。
问:一共要挖几个坑?分析:我们将"其中2人各挖4个坑,其余每人挖6个坑"转化为"每人都挖6个坑,就多挖了4个坑"。
这样就变成了"典型"的盈亏问题。
盈亏总额为4+3=7(个)坑,两次分配数之差为6--5=1(个)坑。
解:[3+(6-4)×2]÷(6-5)=7(人),5×7+3=38(个)。
答:一共要挖38个坑。
例3.在桥上用绳子测桥离水面的高度。
若把绳子对折垂到水面,则余8米;若把绳子三折垂到水面,则余2米。
问:桥有多高?绳子有多长?解:因为把绳子对折余8米,所以是余了8×2=16(米);同样,把绳子三折余2米,就是余了3×2=6(米)。
两种方案都是"盈",故盈亏总额为16--6=10(米),两次分配数之差为3-2=1(折),所以桥高(8×2-2×3)÷(3-2)=10(米),绳子的长度为2×10+8×2=36(米)。
盈亏问题的经典例题
盈亏问题经典例题一、基础盈亏问题1. 幼儿园老师给小朋友分糖果,每人分5 颗,则多10 颗;每人分7 颗,则少8 颗。
问有多少个小朋友?多少颗糖果?-解析:根据盈亏问题公式,(盈+亏)÷两次分配之差=份数。
这里小朋友的人数为(10 + 8)÷(7 - 5)=9(个)。
糖果数为9×5 + 10 = 55(颗)。
2. 把一些书分给学生,如果每人分3 本,则余8 本;如果每人分5 本,则缺2 本。
问有多少学生?多少本书?-解析:(8 + 2)÷(5 - 3)=5(个)学生,书有5×3 + 8 = 23(本)。
3. 学校分配宿舍,每个房间住3 人,则多出20 人;每个房间住5 人,恰好住满。
问有多少间宿舍?有多少人?-解析:20÷(5 - 3)=10(间)宿舍,人数为10×5 = 50(人)。
二、复杂盈亏问题1. 少先队员去植树,如果每人挖5 个树坑,还有3 个树坑没人挖;如果其中两人各挖4 个树坑,其余每人挖 6 个树坑,就恰好挖完所有的树坑。
问共有多少少先队员?一共要挖多少个树坑?-解析:设少先队员有x 人。
5x + 3 = 2×4 + (x - 2)×6,解得x = 7。
树坑数为5×7 + 3 = 38(个)。
2. 用绳子测量井深,把绳子三折来量,井外余2 米;把绳子四折来量,还差1 米到井口。
求井深和绳长。
-解析:设井深为x 米。
3(x + 2) = 4(x - 1),解得x = 10。
绳长为3×(10 +3. 一些苹果分给若干人,每人5 个余10 个苹果;如果人数增加到3 倍还少5 人,那么每人分 2 个苹果还缺8 个。
问有多少苹果?多少人?-解析:设原来有x 人。
5x + 10 = (3x - 5)×2 - 8,解得x = 28。
苹果数为5×28 + 10 = 150(个)。
小学数学应用专题--- 盈亏问题(含答案)
小学数学应用题专题盈亏问题知识点复习:1、盈亏问题:把若干物体平均分给一定数量的对象,并不是每次都能正好分完。
如果物体不够分,少了,叫亏;如果物体还有剩余,就叫盈。
2、盈亏问题的解题方法:(1)公式法:前提人、房间、船或车的数量不变(盈+亏)+两次分差=份数;(大盈-小盈)+两次分差=份数;(大亏-小亏)+两次分差=份数(2)方程法:(最好的方法)根据被分的物体数量相等列方程,设分东西的(比如人,房间,船,车)为未知数。
盈亏问题复习试题时间:1小时总分:60分姓名:一、单选题(共5题;共10分)1.一次数学竞赛,共15道题,每做对一道题得8分,做错一道题倒扣4分,小平共得72分,他做对了()道题.A. 9B. 8C. 11D. 102.米奇专卖店以100元的单价卖出两套不同的童装,其中一套赚20%,另一套亏本20%,那么这个童装店卖这两套服装总体核算是()A. 亏本B. 赚钱C. 不亏也不赚D. 不能确定亏本或赚钱3.妈妈买来一箱桔子,若每天比计划多吃一个,则比计划少吃2天;若每天比计划少吃一个,则计划的时间过去后,还剩12个,那么这一箱桔子共()个.A. 50B. 60C. 70D. 804.有一批正方形砖,如拼成一个长与宽之比为5:4的大长方形,则余38块,如改拼成长与宽各增加1块的大长方形,则少53块,那么,这批砖共有()块.A. 1838B. 2038C. 1853D. 20535.有一个班的同学去划船.他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人.问:这个班共有________同学?A. 54B. 36C. 27D. 18二、填空题(共4题;共5分)6.有一批树苗,如果每组种3棵,则剩5棵;如果每组种4棵,则缺2棵.有________个组在种树?有________棵树?7.老师买回一些练习本,每人发5本,则缺6本;如果每人发3本,则多出8本.老师计划发给________个同学.8.幼儿园的老师给小朋友发苹果,每位小朋友4个,就多出12个,每个小朋友6个,就少12个,共有苹果________ 个.9.一盘草莓约20个左右,几位小朋友分.若每人分3个,则余下2个;若每人分4个,则差3个.这盘草莓有________ 个.三、应用题(共9题;共45分)10.有一筐苹果,分给幼儿园的小朋友,如果每人分3个就多出12个;如果每人分4个则少34个。
初中盈亏问题试题及答案
初中盈亏问题试题及答案1. 某商店购进一批商品,进价为每件50元,标价为每件80元。
如果全部售出,商店可以获得利润2000元,那么商店购进了多少件商品?答案:设商店购进了x件商品。
根据题意,每件商品的利润为标价减去进价,即80元 - 50元 = 30元。
总利润为2000元,因此可以列出方程:30x = 2000。
解方程得x = 66.67,由于商品数量必须是整数,所以商店购进了67件商品。
2. 某工厂生产一批零件,成本为每件10元,售价为每件15元。
如果全部售出,工厂可以获得利润3000元,那么工厂生产了多少件零件?答案:设工厂生产了y件零件。
根据题意,每件零件的利润为售价减去成本,即15元 - 10元 = 5元。
总利润为3000元,因此可以列出方程:5y = 3000。
解方程得y = 600,所以工厂生产了600件零件。
3. 某书店购进一批图书,进价为每本20元,标价为每本30元。
如果全部售出,书店可以获得利润1500元,那么书店购进了多少本图书?答案:设书店购进了z本图书。
根据题意,每本图书的利润为标价减去进价,即30元 - 20元 = 10元。
总利润为1500元,因此可以列出方程:10z = 1500。
解方程得z = 150,所以书店购进了150本图书。
4. 某服装店购进一批服装,进价为每件40元,标价为每件60元。
如果全部售出,服装店可以获得利润4800元,那么服装店购进了多少件服装?答案:设服装店购进了w件服装。
根据题意,每件服装的利润为标价减去进价,即60元 - 40元 = 20元。
总利润为4800元,因此可以列出方程:20w = 4800。
解方程得w = 240,所以服装店购进了240件服装。
盈亏问题应用题大全及讲解
盈亏问题应用题大全及讲解
盈亏问题是中考数学里面比较重要的一个知识点,能够考察学生们准确高效地使用运算符和操作,加强学生的逻辑思维能力和解决实际问题的能力。
盈亏问题主要有两种形式:完全盈亏和部分盈亏。
完全盈亏指物品的总量、单价和总价三者之间的关系;而部分盈亏指物品的只知其中的部分,需要用逻辑思维找出其余部分的方法。
应用题大全及讲解:
1、完全盈亏题:(1)某糖果店一次性购入10kg糖果,每kg售价3元,则共花费多少钱?
答案:花费30元,计算公式:10kg * 3元/kg = 30元。
(2)小王以125元买了书籍12本,每本书的单价为20元,则小王有多少元剩余?
答案:小王剩余5元,计算公式:125元 - 12 * 20元 = 5元。
2、部分盈亏题:(1)一公斤橘子,售价5元,3斤4两半就售出50元,求单价?
答案:单价3.3元,计算公式:50÷(3斤4两半)= 3.3元/1斤;或将3斤4两半换算成1斤,即6斤8两,50÷6.8=7.35元/1斤,而一斤橘子售价5元,因此7.35-5=3.35元,即3.3元。
(2)A、B两人所买的图书合计共3斤4两,A买了2斤,比B多买了1斤,若A的价钱与B的价钱相等,每斤的单价是多少?
答案:每斤的单价为17.5元,计算公式:A和B共3斤4两,即6斤8两,若A的价钱与B的价钱相等,则A和B所买的书籍总价应相同,即A和B的价格总和为17.5×6.8=119元,即A和B每斤各
119/6.8=17.5元。
以上就是盈亏问题涉及到的知识点和应用题讲解,要想在数学考试中取得好成绩,需要学生把相关知识点和题型熟练掌握,勤加练习,熟练掌握解题技巧和方法。
小学数学盈亏问题练习题及答案
小学数学盈亏问题练习题1、老师拿来一批树苗,分给一些同学去栽,每人每次分给一棵,一轮一轮往下分,当分剩下12棵时不够每人分一棵了,如果再拿来8棵,那么每个同学正好栽10棵。
问参加栽树的有多少名同学?原有树苗多少棵?2、少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中两人各挖4个树坑,其余每人挖6个树坑,就恰好挖完所有的树坑。
请问,共有多少名少先队员?共挖了多少树坑?3、学校安排学生到会议室听报告。
如果每3人坐一条长椅,那么剩下48人没有坐;若每5人坐一条长椅,则刚好空出两条长椅。
问听报告的学生有多少人?4、钢笔与圆珠笔每支相差1元2角,小明带的钱买5支钢笔差1元5角,买8支圆珠笔多6角。
问小明带了多少钱?5、幼儿园将一筐苹果分给小朋友。
如果分给大班的小朋友每人5个则余10个;如果分给小班的小朋友每人8个则缺2个。
已知大班比小班多3个小朋友,问这筐苹果共有多少个?6、某校到了一批新生,如果每个寝室安排8个人,要用33个寝室;如果每个寝室少安排2个人,寝室就要增加10个,问这批学生可能有多少人?7、幼儿园老师给小朋友分糖果。
若每人分8块,还剩10块;若每人分9块,最后一人分不到9块,但至少可分到一块。
那么糖果最多有多少块?8、有48本书分给两组小朋友,已知第二组比第一组多5人。
如果把书全部分给第一组,那么每人4本,有剩余;每人5本,书不够。
如果把书全分给第二组,那么每人3本,有剩余;每人4本,书不够。
问第二组有多少人?9、在若干盒卡片,每盒中卡片数一样多。
把这些卡片分给一些小朋友,如果只分一盒,每人均至少可得7张,但若都分8张则还缺少5张。
现在把所有卡片都分完,每人都分到60张,而且还多出4张。
问共有小朋友多少人?10、用绳测井深,把绳三折,井外余2米,把绳四折,还差1米不到井口,那么井深多少米?绳长多少米?11、有两根同样长的绳子,第一根平均剪成5段,第二根平均剪成7段,第一根剪成的每段比第二根剪成的每段长2米。
小学数学《盈亏问题》练习题(含答案)
小学数学《盈亏问题》练习题(含答案)盈亏问题是一类生活中很常见的问题.按不同的方法分配物品时,经常发生不能均分的情况.如果有物品剩余就叫盈,如果物品不够就叫亏,这就是盈亏问题的含义.解盈亏问题的窍门可以用下面的公式来概括:(盈+亏)÷两次分得之差=人数或单位数;(盈-盈)÷两次分得之差=人数或单位数;(亏-亏)÷两次分得之差=人数或单位数.上面的公式不能盲目套用,在真正掌握其内涵以后再运用公式解题将会使你面临盈亏问题时而游刃有余,不可盲目套用公式.(一)直接计算型【例1】猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?分析:猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是11-10=1(条),由盈亏问题公式得,有小猫:8÷1=8(只),猫妈妈有8×10+8=88(条)鱼.[巩固]学而思学校三年级基础班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位同学分多少粒糖果?分析:第一种分配方案盈9粒糖,第二种方案不盈不亏,所以盈亏总和是9粒,两次分配之差是5-4=1(粒),由盈亏问题公式得,参与分糖的同学有:9÷1=9(人),有糖果9×5=45(粒).【例2】学而思学校买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,朝阳小学一共有多少个班?买来多少个足球?分析:第一种分配方案亏66个球,第二种方案不盈不亏,所以盈亏总和是66个,两次分配之差是4-2=2(个),由盈亏问题公式得,朝阳小学有:66÷2=33(个)班,买来足球33×2=66(个).[巩固]学而思学校三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?分析:第一种分配方案亏9个小玩具,第二种方案不盈不亏,所以盈亏总和是9个,两次分配之差是4-3=1(个),由盈亏问题公式得,参与分玩具的同学有:9÷1=9(人),有小玩具9×3=27(个).【例3】学而思学校新近一批书,将它们分给几位老师,如果每人发10本,还差9本,每人发9本,还差2本,请问有多少老师?多少本书?分析:“差9本”和“差2本”两者相差9-2=7(本),每个人要多发10-9=1(本),因此就知道,共有老师7÷1=7(人),书有7×10-9=61(本).[巩固]王老师去琴行买儿童小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还差30元,问儿童小提琴多少钱一把?王老师一共带了多少钱?分析:本题购物的两个方案,每一个方案都出现钱不足的情况,买7把差110元,买5把还差30元,从买7把变成买5把,少买了7-5=2(把),而钱的差额减少了110-30=80(元),即80元可以买2把小提琴,可见小提琴的单价是每把40元,王老师一共带了40×7-110=170(元).【例4】明明过生日,同学们去给他买蛋糕,如果每人出8元,就多出了8元;每人出7元,就多出了4元.那么有多少个同学去买蛋糕?这个蛋糕的价钱是多少?分析:“多8元”与“多4元”两者相差8-4=4(元),每个人要多出 8-7=1(元),因此就知道,共有4÷1=4(人),蛋糕价钱是8×4-8=24(元).[巩固]老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,那么一共有多少只小猴子?老猴子一共有多少个桃子?分析:老猴子的第一种方案盈9个桃子,第二种方案盈2个,所以盈亏总和是9-2=7(个),两次分配之差是11-10=1(个),由盈亏问题公式得,有小猴子:7÷1=7(只),老猴子有7×10+9=79(个)桃子.【例5】点点妈妈买回一筐苹果,按计划吃的天数算了一下,如果每天吃4个,要多出48个苹果;如果每天吃6个,则又少8个苹果.那么妈妈买回的苹果有多少个?计划吃多少天?分析:题中告诉我们每天吃4个,多出48个苹果;每天吃6个,少8个苹果.观察每天吃的个数与苹果剩余个数的变化就能看出,由每天吃4个变为每天吃6个,也就是每天多吃2个时,苹果从多出48个到少8个,也就是所需的苹果总数要相差48+8=56(个),从这个对应的变化中可以看出,只要求56里面含有多少个2,就是所求的计划吃的天数;有了计划吃的天数,就不难求出共有多少个苹果了.吃的天数是(48+8)÷(6-4)=56÷2=28(天),苹果数是6×28-8=160(个)或 4×28+48=160(个).[巩固]学而思学校三年级基础班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒则少6粒,问:有多少位同学分多少粒糖果?分析:由题目条件知道,同学的人数与糖果的粒数不变,比较两种分配方案,第一种每人分4粒就多9粒,第二种每人分5粒则少6粒,两种不同方案一多一少差9+6=15(粒),相差原因在于两种方案分配数不同,两次分配数之差为:5-4=1(粒),每人相差一粒,15人相差15粒,所以参与分糖果的同学的人数是15÷1=15(位),糖果的粒数为:4×15+9=69(粒).[总结] 以上是最基本的盈亏问题题目,要求老师在教学过程中引导学生理解掌握其解法并能让学生熟练运用公式,这是解答后面其他类型盈亏问题的基础.(二)条件转化型【例6】猪妈妈带着孩子去野餐,如果每张餐布周围坐4只小猪就有6只小猪没地方坐,如果每张餐布周围多坐一只小猪就会余出4个空位子,问:一共有多少只小猪,猪妈妈一共带了多少张餐布?分析:这种类型的题目不能直接计算,要将其中的一个条件转化,使之转化为为基本的盈亏问题.已知每张餐布周围多坐一只小猪就是坐5只小猪,余出4个空位子就是少4只小猪,所以原问题可以转化为:如果每张餐布周围坐4只小猪,则多出6只没处坐;如果每张餐布周围坐5只,还少4只,求有多少只小猪多少张餐布?所以餐布数是:(6+4)÷1=10(张),有小猪:10×4+6=46(只).[巩固]中关村一小学生乘汽车到香山春游.如果每车坐65人,则有5人不能乘上车;如果每车多坐5人,恰多余了一辆车,问一共有几辆汽车,有多少学生?分析:每车多坐5人,实际是每车可坐5+65=70(人),恰好多余了一辆车,也就是还差一辆汽车的人,即70人.因而原问题转化为:如果每车坐65人,则多出5人无车乘坐;如果每车坐70人,还少70人,求有多少人和多少辆车?车数是(5+5+65)÷5=15(辆),人数是65×15+5=980(人)或(5+65)×(15-1)=980(人).【例7】国庆节快到了,学而思学校的少先队员去摆花盆.如果每人摆5盆花,还有3盆没人摆;如果其中2人各摆4盆,其余的人各摆6盆,这些花盆正好摆完.问有多少少先队员参加摆花盆活动,一共摆多少花盆?分析:这是一道有难度的盈亏问题,主要难在对第二个已知条件的理解上:如果其中2人各摆4盆,其余的人各摆6盆,这些花盆正好摆完,这组条件中包含着两种摆花盆的情况——2人各摆4盆,其余的人各摆6盆.如果我们把它统一成一种情况,让每人都摆6盆,那么,就可以多摆(6-4)×2=4(盆).因此,原问题就转化为:如果每人各摆5盆花,还有3盆没人摆;如果每人摆6盆花,还缺4盆.问有多少少先队员,一共摆多少花盆?人数: [3+(6-4)×2]÷(6-5)=7(人),盆数:5×7+3=38(盆)或6×7-4=38(盆).[拓展]兔子妈妈分白菜:如果其中2只小兔子每只分4棵,其余每只分2棵,则多4棵白菜;如果其中一只小兔子分6棵,其余每只分4棵,则差12棵白菜,问:一共有多少只小兔子?一共有多少棵白菜?分析:由已知条件,第一种分配:其中2只每只分4棵,其余每只分2棵,则多4棵白菜,我们假设,如果所有的小兔子每只都分2棵,就会多出2×2=4(棵),这样将条件转化为:每只分2棵,则多出4+2×2=8(棵);第一种分配,如果假设每只小兔子分4棵,就会多出6-4=2(棵),这样将条件转化为:每只分4棵,则差12-2=10(棵),第一次与第二次分配相差8+10=18(棵),两次分配每只小兔子相差4-2=2(只),所以小兔子的总数为:18÷2=9(只),一共有白菜:2×9+8=26(棵).【例8】王海从家到实验一小,如果每分钟走50米,上课就要迟到3分钟;如果每分钟60米,就可以比上课时间提前2分钟到校,那么王海的家距离学校多远?分析:根据题意,每分钟走50米,上课就要迟到3分钟,就是还差50×3=150(米)到校;如果每分钟60米,就可以比上课时间提前2分钟到校,即到校后还可以多走60×2=120(米),第一种情况比第二种情况每分钟多走60-50=10(米),就可以多走150+120=270(米),王海从家到学校所用时间是:270÷10=27(分钟),家到学校的距离是:50×(27+3)=50×30=1500(米).[拓展]学校规定上午8时到校,小明去上学,如果每分种走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,求小明几时几分离家刚好8时到校?由家到学校的路程是多少?分析:小明每分钟走60米,可提早10分钟到校,即到校后还可多走60×10=600(米);如果每分钟走50米,可提早8分钟到校,即到校后还可多走50×8=400(米),第一种情况比第二种情况每分钟多走60-50=10(米),就可以多走600-400=200(米),从而可以求出小明由家到校所需时间.(1)10分种走多少米?60×10=600(米),(2)8分种走多少米?50×8=400(米),(3)需要时间:(600-400)÷(60-50)=20(分钟),所以小明7时40分离家刚好8时到校.(4)由家到校的路程: 60×(20-10)=600(米)或:50×(20-8)=600(米).【例9】有一个班的同学去划船.他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人.问:这个班共有多少同学?分析:先增加一条船,那么正好每条船坐6人.然后去掉两条船,就会余下6×2=12(名)同学.改为每条船9人,也就是说,每条船增加9-6=3(人),正好可以把余下的12名同学全部安排上去,所以现在还有12÷3=4(条)船,而全班同学的人数是9×4=36(人).[巩固]有一个班的学生去公园划船,如果增加两条船,正好每条船坐6人;如果减少两条船,正好每条船坐9人,问:这个班一共有多少人?分析:增加两条船,正好每条船坐6人,然后去掉四条船,就会余下6×4=24(人),改为每只船9人,即每条船增加9-6=3(人),正好可以把余下的24人全部安排上去,所以现在船数为:24÷3=8(条),这个班的人数为:9×8=72(人).[总结] 这部分的题目不能直接运用公式计算,首先需要将一定的条件转化,使之成为跟第一部分相类似的题型,在运用公式计算.【例10】幼儿园阿姨将一些糖果分给若干个小朋友,每个小朋友分5个还余10个糖果,如果小朋友数增加到3倍,那么每小朋友分2个糖果还缺少8个,问有糖果多少个?分析:考虑小朋友数增加3倍后,相当于按原来小朋友数分给每小朋友2×3=6(个)糖果,每个小朋友给5个与给6个,总数相差10+8=18 (个),所以原有小朋友数 18÷(6-5)=18(小朋友),糖果总数是 5×18+10=100(个).[拓展]一些桔子分给若干个人,每人5个还多余10个桔子,如果人数增加到3倍还少5个人,那么每人分2个桔子还缺少8个,问有桔子多少个?分析:使人感到困难的是条件“3倍还少5人”.先要转化这一条件,假设还有 10个桔子,10=2×5,就可以多有 5个人,把“少5人”这一条件暂时搁置一边,只考虑3倍人数,也相当于按原人数每人给2×3=6(个),每人给5个与给6个,总数相差10+10+8=28 (个),所以原有人数 28÷(6-5)=28(人),桔子总数是 5×28+10=150(个).【例11】军队分配宿舍,如果每间住3人,则多出20人;如果每间住6人,余下2人可以每人各住一个房间,现在每间住10人,可以空出多少个房间?分析:每间住6人,余下2人可以每人各住一个房间,说明多出两个房间,同时多出两个人,即两次分配方案人数相差20+6×2-2=30(人),每间房间相差:6-3=3(人),所以共有房间:30÷3=10(间),一共有:3×10+20=50(人),即可以空出10-50÷10=5(间)房间.【例12】在桥上用绳子测桥离水面的高度.若把绳子对折垂到水面,则余8米;若把绳子三折垂到水面,则余2米.问:桥有多高?绳子有多长?分析:因为把绳子对折余8米,所以是余了8×2=16(米);同样,把绳子三折余2米,就是余了3×2=6(米).两种方案都是“盈”,故盈亏总额为16-6=10(米),两次分配数之差为3-2=1(折).所以,桥高(8×2-2×3)÷(3-2)=10(米),绳子的长度为2×10+8×2=36(米).[拓展]用一根绳子测井台到井水面的深度,把绳对折后垂到井水面,绳子超过井台9米;把绳子三折后垂到井水面,绳子超过井台2米.求绳长和井深.分析:把绳对折后垂到井水面,绳子超过井台9米,说明绳子余9×2=18(米),把绳子三折后垂到井水面,绳子超过井台2米,说明绳子余2×3=6(米),所以,井深:(18-6)÷(3-2)=12(米),绳子长:12×2+9×2=42(米).1.(例4)某校同学排队上操.如果每行站9人,则多69人;如果每行站12人,则多15人.一共有多少学生?分析:一共有(69-15)÷(12-9)=18(行),一共有学生9×18+69=231(人)2.(例5)小波到商店去买罐装可乐,她付给售货员的钱买3罐多1元,买5罐又差5元.每罐“可乐多少元?分析:“多1元”与“差5元”两者相差1+5=6(元),买的罐数相差5-3=2(罐),因此就知道每罐可乐(5+1)÷(5-3)=3(元)3.(例6)学校为新生分配宿舍.每个房间住3人,则多出23人;每个房间住5人,则空出3个房间.问宿舍有多少间?新生有多少人?分析: 每个房间住3人,则多出23人,每个房间住5人,就空出3个房间,这3个房间如果住满人应该是5×3=15(人),由此可见,每一个房间增加5-3=2(人).两次安排人数总共相差23+15=38(人),因此,房间总数是:38÷2=19(间),学生总数是:3×19+23=80(人),或者5×19-5×3=80(人).3、(例7)学校进行大扫除,分配若干人擦玻璃,其中两人各擦4块,其余各擦5块,则余12块;若每人擦6块,则正好擦完,求擦玻璃的人数及玻璃的块数?分析:由其中两人各擦4块、其余各擦5块则余12块,可知,若每人都擦5块,则余12-(5-4)×2=10块,而每人擦6块则正好.可见每人多擦一块可把余下的10块擦完.则擦玻璃人数是[12-(5-4)×2]÷(6-5)=10(人),玻璃的块数是6×10=60(块).4、(例6)王老师由家里到学校,如果每分钟骑车500米,上课就要迟到3分钟;如果每分钟骑车600米,就可以比上课时间提前2分钟到校.王老师家到学校的路程是多少米?分析:迟到3分钟转化成米数:500×3=1500(米),提前两分钟到校转化成米数:600×2=1200(米),(1500+1200)÷(60-50)=270(分钟),500×(270+3)=136500(米)5、(例8)有若干个苹果和梨,苹果的个数是梨的个数的3倍,如果每天吃2个梨和5个苹果,那么梨吃完时还剩20个苹果.问:有多少个梨?分析:苹果的个数是梨的3倍,如果每天吃2个梨和3个苹果,相当于每天吃2×3=6(个)苹果,那么刚好吃完,这样总盈亏数是20,所以吃的天数是20÷(6-5)=20天,这样梨的个数是2×20=40(个).。
小学数学盈亏问题练习题及答案
小学数学盈亏问题练习题及答案1、假设有x名同学参加栽树,原有树苗y棵。
根据题意,有以下方程组:x * (x+1) / 2 = yy-12+8) / x = 102、假设有x名少先队员,共挖了y个树坑。
根据题意,有以下方程组:x * 5 + 3 = y2 * 4 + (x-2) * 6 = y3、假设有x名学生听报告。
根据题意,有以下方程组:x % 3 = 0,x。
48x % 5 = 34、假设___带了x元钱。
根据题意,有以下方程组:5 * (x-1.5) = 8 * (x-0.6)5、假设这筐苹果共有x个。
根据题意,有以下方程组:x % (a+3) = 10,x % (a+8) = 6a + 3 = a + 8 - 3x6、假设有x名学生。
根据题意,有以下方程组:8 * 33 = x * y6 * (33+10) = x * (y+10)7、假设有x块糖果。
根据题意,有以下方程组:x % 8 = 10,x % 9 = 18、假设第二组有x名小朋友。
根据题意,有以下方程组:48 = 4 * (x-5),48 = 3 * (x+5)9、假设有x个卡片。
根据题意,有以下方程组:x % n = 7,x % n + 5 = 8x = 60 * y + 4,n * y = x10、假设绳长为x米,井深为y米。
根据题意,有以下方程组:3 * (x/8) + 2 = y4 * (x/16) + 1 = y11、假设每根绳子长x米。
根据题意,有以下方程组:x / 5 - 2 = x / 7x = 2 * (x/5 - 2)12、假设这个班共有x名同学。
根据题意,有以下方程组:x+1) / y = 6x-1) / (y+1) = 913、假设上课时间为x小时y分钟。
根据题意,有以下方程组:7*60+20-x*60-y) / (x*60+y) = 507*60+20-x*60-y) / (x*60+y) = 35解得x=8,y=30.因此,学校的上课时间为8小时30分钟。
盈亏问题经典例题
一、选择题1.小明去商店买铅笔,如果买5支则多出3元,如果买7支则还差1元。
每支铅笔的价格是多少元?A.1元B. 1.5元C. 2元D. 2.5元(答案)2.幼儿园老师给小朋友分糖果,如果每人分3颗则多出8颗,如果每人分5颗则还差14颗。
请问有多少位小朋友?A.8位B. 9位C. 10位D. 11位(答案)3.某校安排学生宿舍,如果每间住6人则多出34人,如果每间住8人则还有一间宿舍不空也不满。
问该校有多少间宿舍?可安排多少位学生?对于不空也不满的宿舍,住了多少人?(设宿舍间数为x)A.宿舍19间,学生150人,不空也不满的宿舍住了6人B.宿舍19间,学生150人,不空也不满的宿舍住了7人(答案)C.宿舍20间,学生150人,不空也不满的宿舍住了6人D.宿舍20间,学生154人,不空也不满的宿舍住了7人4.学校给参加夏令营的同学租了几辆大轿车,若每辆车乘28人则有13名同学上不了车,若每辆车乘32人则还有3个空座。
那么有多少名同学?A.121名B. 125名C. 129名D. 133名(答案)5.小红把自己的一些连环画借给她的几个同学。
若每人借5本,则差17本;若每人借3本,则差3本。
问小红的同学有几人?她一共有多少本连环画?A.同学7人,连环画32本B.同学7人,连环画38本(答案)C.同学8人,连环画32本D.同学8人,连环画38本6.将一些练习本分给若干名同学。
如果每人分4本,则多9本;如果每人分5本,则有一个同学无练习本。
问一共有多少个同学?有多少本练习本?A.同学6人,练习本21本B.同学7人,练习本37本(答案)C.同学8人,练习本29本D.同学9人,练习本36本7.猴王带领一群猴子去摘桃。
下午收工后,猴王开始分配。
若大猴分5个,小猴分3个,猴王可留10个。
若大、小猴都分4个,猴王能留下20个。
在这群猴子中,大猴(不包括猴王)比小猴多几只?A.3只B. 4只C. 5只D. 6只(答案)8.某校安排学生宿舍,如果每间4人,则有6人没有床位;如果每间6人,则空出2间宿舍。
【小学四年级盈亏问题试题及答案【三篇】】小学四年级盈亏问题
【小学四年级盈亏问题试题及答案【三篇】】小学四年级盈亏问题【导语】成功根本没有秘诀可言,如果有的话,就有两个:第一个就是坚持到底,永不言弃;第二个就是当你想放弃的时候,回过头来看看第一个秘诀,坚持到底,永不言弃,学习也是一样需要多做练习。
以下是大为大家的《小学四年级盈亏问题试题及答案【三篇】》供您查阅。
例1.某班学生去划船,如果增加一条船,那么每条船正好坐6人;如果减少一条船,那么每条船就要坐9人。
问:学生有多少人?分析:本题也是盈亏问题,为清楚起见,我们将题中条件加以转化。
假设船数固定不变,题目的条件"如果增加一条船……"表示"如果每船坐6人,那么有6人无船可坐";"如果减少一条船……"表示"如果每船坐9人,那么就空出一条船"。
这样,用盈亏问题来做,盈亏总额为6+9=15(人),两次分配的差为9--6=3(人)。
解:(6+9)÷(9--6)=5(条),6×5+6=36(人),答:有36名学生。
例2.少先队员植树,如果每人挖5个坑,那么还有3个坑无人挖;如果其中2人各挖4个坑,其余每人挖6个坑,那么恰好将坑挖完。
问:一共要挖几个坑?分析:我们将"其中2人各挖4个坑,其余每人挖6个坑"转化为"每人都挖6个坑,就多挖了4个坑"。
这样就变成了"典型"的盈亏问题。
盈亏总额为4+3=7(个)坑,两次分配数之差为6--5=1(个)坑。
解:[3+(6-4)×2]÷(6-5)=7(人),5×7+3=38(个)。
答:一共要挖38个坑。
例3.在桥上用绳子测桥离水面的高度。
若把绳子对折垂到水面,则余8米;若把绳子三折垂到水面,则余2米。
问:桥有多高?绳子有多长?解:因为把绳子对折余8米,所以是余了8×2=16(米);同样,把绳子三折余2米,就是余了3×2=6(米)。
小学数学《盈亏问题》练习题(含答案)
小学数学《盈亏问题》练习题(含答案)盈亏问题是一类常见的生活问题。
在分配物品时,经常会出现不能均分的情况,如果有物品剩余则称为盈,如果物品不够则称为亏。
解决盈亏问题的方法可以用下面的公式来概括:盈+亏) ÷两次分配之差 = 人数或单位数;盈-盈) ÷两次分配之差 = 人数或单位数;亏-亏) ÷两次分配之差 = 人数或单位数。
需要注意的是,这些公式不能盲目套用,必须真正理解其内涵后再运用公式解题。
一、直接计算型例1:猫妈妈给小猫分鱼,每只小猫分10条鱼,就多出8条鱼,每只小猫分11条鱼则正好分完,那么一共有多少只小猫?猫妈妈一共有多少条鱼?分析:猫妈妈的第一种方案盈8条鱼,第二种方案不盈不亏,所以盈亏总和是8条,两次分配之差是11-10=1(条),由盈亏问题公式得,有小猫:8÷1=8(只),猫妈妈有8×10+8=88(条)鱼。
巩固练:XXX三年级基础班的一部分同学分糖果,如果每人分4粒就多9粒,如果每人分5粒正好分完,问:有多少位同学分多少粒糖果?分析:第一种分配方案盈9粒糖,第二种方案不盈不亏,所以盈亏总和是9粒,两次分配之差是5-4=1(粒),由盈亏问题公式得,参与分糖的同学有:9÷1=9(人),有糖果9×5=45(粒)。
例2:XXX买来一批小足球分给各班:如果每班分4个,就差66个,如果每班分2个,则正好分完,XXX一共有多少个班?买来多少个足球?分析:第一种分配方案亏66个球,第二种方案不盈不亏,所以盈亏总和是66个,两次分配之差是4-2=2(个),由盈亏问题公式得,朝阳小学有:66÷2=33(个)班,买来足球33×2=66(个)。
巩固练:XXX三年级基础班的一部分同学分小玩具,如果每人分4个就少9个,如果每人分3个正好分完,问:有多少位同学分多少个小玩具?分析:第一种分配方案亏9个小玩具,第二种方案不盈不亏,所以盈亏总和是9个,两次分配之差是4-3=1(个),由盈亏问题公式得,参与分玩具的同学有:9÷1=9(人),有小玩具9×3=27(个)。
小学四年级盈亏问题试题及答案【三篇】
小学四年级盈亏问题试题及答案【三篇】【第一篇】例1.某班学生去划船,如果增加一条船,那么每条船正好坐6人;如果减少一条船,那么每条船就要坐9人。
问:学生有多少人?分析:本题也是盈亏问题,为清楚起见,我们将题中条件加以转化。
假设船数固定不变,题目的条件"如果增加一条船……"表示"如果每船坐6人,那么有6人无船可坐";"如果减少一条船……"表示"如果每船坐9人,那么就空出一条船"。
这样,用盈亏问题来做,盈亏总额为6+9=15(人),两次分配的差为9--6=3(人)。
解:(6+9)÷(9--6)=5(条),6×5+6=36(人),答:有36名学生。
例2.少先队员植树,如果每人挖5个坑,那么还有3个坑无人挖;如果其中2人各挖4个坑,其余每人挖6个坑,那么恰好将坑挖完。
问:一共要挖几个坑?分析:我们将"其中2人各挖4个坑,其余每人挖6个坑"转化为"每人都挖6个坑,就多挖了4个坑"。
这样就变成了"典型"的盈亏问题。
盈亏总额为4+3=7(个)坑,两次分配数之差为6--5=1(个)坑。
解:[3+(6-4)×2]÷(6-5)=7(人),5×7+3=38(个)。
答:一共要挖38个坑。
例3.在桥上用绳子测桥离水面的高度。
若把绳子对折垂到水面,则余8米;若把绳子三折垂到水面,则余2米。
问:桥有多高?绳子有多长?解:因为把绳子对折余8米,所以是余了8×2=16(米);同样,把绳子三折余2米,就是余了3×2=6(米)。
两种方案都是"盈",故盈亏总额为16--6=10(米),两次分配数之差为3-2=1(折),所以桥高(8×2-2×3)÷(3-2)=10(米),绳子的长度为2×10+8×2=36(米)。
初中盈亏问题试题及答案
初中盈亏问题试题及答案一、选择题1. 某商店购进一批商品,进价为每件100元,标价为每件150元,若打8折销售,则每件商品的利润率为:A. 20%B. 30%C. 40%D. 50%答案:B2. 某工厂生产一批零件,计划成本为100万元,实际成本为90万元,那么该工厂的成本节约率为:A. 10%B. 5%C. 20%D. 50%答案:A二、填空题3. 小明购买了一件衣服,标价为200元,经过讨价还价后,以180元的价格成交。
小明实际支付的价格比标价低了____%。
答案:10%4. 一家公司计划投资100万元,实际投资为120万元,实际投资额比计划投资额高了____万元。
答案:20万元三、解答题5. 某书店购进一批图书,每本图书的进价为20元,标价为30元。
书店为了促销,决定每本图书打8折销售。
求书店每本图书的利润及利润率。
答案:每本图书的利润为2元,利润率为10%。
6. 某工厂计划生产一批产品,预计总成本为500万元,实际生产过程中,由于采用了新技术,总成本降低到了450万元。
求该工厂的成本节约额及节约率。
答案:成本节约额为50万元,节约率为10%。
四、应用题7. 某超市购进一批水果,进价为每公斤5元,标价为每公斤10元。
为了促销,超市决定每公斤水果打7折销售。
求超市每公斤水果的利润及利润率。
答案:每公斤水果的利润为1.5元,利润率为30%。
8. 某公司计划开发一项新产品,预计研发成本为200万元,实际研发过程中,由于优化了研发流程,实际研发成本为150万元。
求该公司的研发成本节约额及节约率。
答案:研发成本节约额为50万元,节约率为25%。
盈亏问题试题及答案
盈亏问题试题及答案1. 某商品的成本价为每件100元,标价为每件200元。
如果商店以标价的80%出售,求每件商品的利润和利润率。
2. 某公司生产一批产品,成本为每件200元,计划以每件300元的价格销售。
如果实际销售时打了8折,求公司每件产品的实际利润和利润率。
3. 某商店购进一批玩具,进价为每件50元,标价为每件100元。
如果商店以标价的70%出售,求商店每件玩具的盈亏情况。
4. 某商品的标价为每件500元,成本为每件300元。
如果商店以标价的90%出售,求商店每件商品的盈亏情况。
5. 某公司生产一批产品,成本为每件400元,计划以每件600元的价格销售。
如果实际销售时打了9折,求公司每件产品的实际利润和利润率。
答案1. 利润 = 销售价格 - 成本价 = 200 * 80% - 100 = 160 - 100 = 60元利润率 = (利润 / 成本价) * 100% = (60 / 100) * 100% = 60%2. 实际销售价格 = 300 * 80% = 240元利润 = 实际销售价格 - 成本价 = 240 - 200 = 40元利润率 = (利润 / 成本价) * 100% = (40 / 200) * 100% = 20%3. 销售价格 = 100 * 70% = 70元亏损 = 成本价 - 销售价格 = 50 - 70 = -20元(亏损20元)4. 销售价格 = 500 * 90% = 450元利润 = 销售价格 - 成本价 = 450 - 300 = 150元5. 实际销售价格 = 600 * 90% = 540元利润 = 实际销售价格 - 成本价 = 540 - 400 = 140元利润率 = (利润 / 成本价) * 100% = (140 / 400) * 100% = 35% 结束语通过以上试题及答案,我们可以看到盈亏问题的计算涉及到成本、销售价格和利润之间的关系。
关于盈亏问题的数学题
关于盈亏问题的数学题一、某水果店购进一批苹果,进价每千克1.5元,售价每千克2元。
当卖到还剩100千克时,除了成本外,还获利100元。
问这批苹果原来有多少千克?A. 500千克B. 600千克C. 700千克D. 800千克(答案:B)二、某商场购进一批商品,按照期望获得50%的利润来定价。
结果只销售了70%的商品,为尽早销售掉剩下的商品,商场决定按定价打折出售。
这样所获得的全部利润,是原来期望利润的82%。
问打了多少折?A. 六折B. 七折C. 八折D. 九折(答案:C)三、某商店以每双6.5元的价格购进一批拖鞋,售价为7.4元。
卖到还剩5双时,已获利44元。
问这批拖鞋共有多少双?A. 50双B. 60双C. 70双D. 80双(答案:C)四、某商店以每支10元的价格购进一批钢笔,加上40%的利润以后定价出售,当还剩这批钢笔的1/4时就已经获利240元。
问这批钢笔共有多少支?A. 40支B. 60支C. 80支D. 100支(答案:C)五、小明早晨7点上学,如果每分钟走60米,则迟到5分钟。
如果每分钟走75米,则可提前2分钟到达学校。
小明家离学校有多少米?A. 2100米B. 2550米C. 2700米D. 3150米(答案:A)六、某校安排学生宿舍,如果每间住5人,则有14人没有床位;如果每间住7人,则多出4个床位。
问宿舍多少间?住宿生多少人?A. 宿舍9间,住宿生59人B. 宿舍12间,住宿生74人C. 宿舍15间,住宿生89人D. 宿舍18间,住宿生104人(答案:C)七、学校给新生分配宿舍,每个房间住3人,则多出20人;每个房间住5人,则余下2个房间,问宿舍有多少间?新生有多少人?A. 宿舍12间,新生56人B. 宿舍15间,新生65人C. 宿舍18间,新生74人D. 宿舍21间,新生83人(答案:B)八、学校组织新年游艺晚会,用于奖品的铅笔、圆珠笔和钢笔共232支,共花了300元。
其中铅笔的数量是圆珠笔的4倍。
小学四年级数学盈亏问题及答案(10篇)
小学四年级数学盈亏问题及答案(10篇)1.四年级数学盈亏问题及答案篇一1,幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个。
幼儿园有多少个小朋友?一共有多少个积木?2,某校安排宿舍,如果每间6人,则16人没有床位;如果每间8人,则多出10个床位。
问宿舍多少间?学生多少人?3,有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人。
问:这个班共有多少学生?【答案】:1.小朋友人数:(20+40)÷(3-2)=60(人)积木数量:2×60+20=140(个)2.宿舍:(10+16)÷(8-6)=13(间)学生:13×6+16=94(人)3.(6+9)÷(9-6)=5(条)6×(5+1)=36(人)2.四年级数学盈亏问题及答案篇二1、阳光小学学生乘汽车去春游,如果每辆车坐56人,有12人不能乘车;如果每辆车多坐4人,恰好多一辆车。
一共有多少辆汽车?有多少个学生?(12+56+4)÷4=18(辆)56×18+12=1020(个)2、少先队员去植树。
如果张明和李平两人每人挖4个树坑,其余每人挖2个树坑,还有4个树坑没人挖;如果张明一人挖6个树坑,其余每人各挖4个树坑,又多出12个坑。
这批少先队员一共有多少人?一共要挖多少个树坑?少先队员共有:[4+(4-2)×2+12-(6-4)]÷(4-2)=9(人)树坑数:4×2+(9-2)×2+4=26(个)3.四年级数学盈亏问题及答案篇三1、王师傅加工一批零件,如果每天做50个,要比原计划晚10天完成;如果每天做60个,就可以提前6天完成。
原计划多少天完成任务?这批零件共有多少个?(1)原计划的天数:(50×10+60×6)÷(60-50)=86(天)(2)零件总数:50×86+50×10=4800(个)或60×86-60×6=4800(个)3、某学校有学生住宿,如果每间宿舍住5人,则多出27人;如果每间住8人,则刚好多3间宿舍。
六年级下册数学《盈亏问题》公式及练习题附答案
六年级下册数学《盈亏问题》公式及练习题附答案一、盈亏问题的数量关系是:①(盈+亏)÷两次分配差=份数(大盈-小盈)÷两次分配差=份数(大亏-小亏)÷两次分配差=份数②每次分得的数量×份数+盈=总数量每次分得的数量×份数-亏=总数量二、练习题及答案1.将月季花插入一些花瓶中。
如果每瓶插8朵,则缺少15朵;如果每瓶改为插6朵,则缺少1朵。
求花瓶的只数和月季花的朵数。
花瓶数:(15-1)÷(8-6)=7(只)月季花数:8×7-15=41(朵)2.某校安排宿舍,如果每间6人,则16人没有床位;如果每间8人,则多出10个床位。
问宿舍多少间?学生多少人?宿舍:(10+16)÷(8-6)=13(间)学生:13×6+16=94(人)3.有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人。
问:这个班共有多少学生?(6+9)÷(9-6)=5(条),6×(5+1)=36(人)4.幼儿园把一些积木分给小朋友,如果每人分2个,则剩下20个;如果每人分3个,则差40个。
幼儿园有多少个小朋友?一共有多少个积木?小朋友人数:(20+40)÷(3-2)=60(人)积木数量:2×60+20=140(个)5.王老师给美术兴趣小组的同学分发图画纸。
如果每人发5张,则少32张;如果每人发3张,则少2张。
美术兴趣小组有多少名同学?王老师一共有多少张图画纸?学生人数:(32-2)÷(5-3)=15(名)图画纸:15×5-32=43(张)6.老师将一些练习本发给班上的学生。
如果每人发10本,则有两个学生没分到;如果每人发8本,则正好发完。
有多少个学生?多少本练习本?学生人数:10×2÷(10-8)=10(名)练习本:8×10=80(本)7.小虎在敌人窗外听里边在分子弹:一人说每人背45发还多260发;另一人说每人背50发还多200发。
小学奥数盈亏经典题库120道及答案
小学奥数盈亏经典题库120道及答案1. 幼儿园给小朋友分苹果,如果每人分3 个,多16 个苹果;如果每人分5 个,那么就差4 个苹果。
问有多少个小朋友?有多少个苹果?-答案:10 个小朋友,46 个苹果。
-解题思路:两次分配的苹果总数相差16 + 4 = 20 个,每人分配相差5 - 3 = 2 个,所以小朋友人数为20÷2 = 10 人。
苹果数= 3×10 + 16 = 46 个。
2. 学校给参加夏令营的同学租了几辆大客车,如果每辆车乘28 人则有13 名同学上不了车;如果每辆车乘32 人,则还有3 个空座。
问有多少名同学?多少辆车?-答案:125 名同学,4 辆车。
-解题思路:两次乘车人数相差13 + 3 = 16 人,每辆车乘坐人数相差32 - 28 = 4 人,所以车的数量为16÷4 = 4 辆。
同学人数= 28×4 + 13 = 125 人。
3. 一包糖分给小朋友,如果每人分8 颗,剩28 颗;如果每人分10 颗,刚好分完。
问有多少个小朋友?这包糖有多少颗?-答案:14 个小朋友,140 颗糖。
-解题思路:每人分10 颗刚好分完,每人分8 颗多28 颗,多出的28 颗是因为每人少分了10 - 8 = 2 颗,所以小朋友人数为28÷2 = 14 人,糖的数量= 10×14 = 140 颗。
4. 学校将一批铅笔奖给三好学生。
如果每人奖9 支,则缺45 支;如果每人奖7 支,则缺7 支。
三好学生有多少人?铅笔有多少支?-答案:19 人,126 支。
-解题思路:两次分配铅笔数量相差45 - 7 = 38 支,每人得到的铅笔数量相差9 - 7 = 2 支,所以三好学生人数为38÷2 = 19 人。
铅笔数量= 9×19 - 45 = 126 支。
5. 把一筐苹果分给小朋友,如果每人分6 个,多10 个;如果每人分8 个,少12 个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1:一个植树小组去栽树,如果每人栽3棵,还剩下15棵树苗;如果每人栽5棵,就缺少9棵树苗。
求这个小组有多少人?一共有多少棵树苗?
例2:悦悦每天早晨7点30分从家出发上学去,如果每分钟走45米,则迟到4分钟到校;如果每分钟走75米,则可以提前4分钟到校。
求从家出发需要走多少分钟才能准时到校?悦悦的家离学校有多少米?
例3:晶晶读一本故事书,原计划若干天读完。
如果每天读11页,可以比原计划提前2天读完;如果每天读13页,可以比原计划提前4天读完。
求原计划多少天读完?这本书共有多少页?
1、幼儿园把一箱苹果分给一批小朋友,如果每人2个,则多18个,如果每人3个,则少12个。
问幼儿园有多少个小朋友?一共有多少个苹果?
2、一堆桃子分给一群猴子,如果每只猴子分10个桃子,则有两只猴子没有分到;如果每只猴子分8个桃子,则刚好分完。
求有多少只猴子?多少个桃子?
3、实验小学学生乘车春游,如果每车坐60人,则有15人上不了车;如果每车坐65人,恰好多出一辆车。
问一共有几辆车?有多少个学生?
4、学生分练习本,如果每人分4本,则多8本;如果有1人分10本,其余每人分6本,则缺18本。
学生有多少人?练习本有多少本?
5、小强从家到学校,如果每分走50米,上课就要迟到3分;如果每分走60米,就可以比上课时间提前2分到校。
小强家到学校的路程是多少千米?
6、张华离家到县城去上学,他以每分50米的速度走了2分后,发现按这个速度走下去就要迟到8分。
于是他加快了速度,每分多走10米,结果到校时,离上课还有5分。
张华家到学校的路程是多少?
7、一组学生植树,每人栽6棵还剩4棵;如果其中3人各栽5棵,其余每人各栽7棵,正好栽完。
这一组学生有多少人?一共栽多少棵?
8、小红的爷爷买回一筐梨,分给全家人。
如果小红和小妹两人每人分4个,其余每人分两个,还多出4个;如果小红一人分6个,其余每人分4个,又差12个。
小红家有多少人?这筐梨有多少个?
9、学校有一批树苗,交给若干少先队员去栽,一次一次往下分,每次分一棵,最后剩下12棵不够分了;如果再拿来8棵树苗,那么每个少先队员正好栽10棵。
参加栽树的少先队员有多少人?原有树苗多少棵?
10、有一批正方形的砖,排成一个大正方形,余下32块;如果将它们改排成每边比原来多一块砖的正方形,就要差49块。
这批砖原有多少块?
11、某年级同学春游时租船游湖,若每只船乘10人,还多2个座位;若每只船多坐2人,可少租一条船,这时每人可节省5角钱。
租一只船需要多少钱?
12、小李到市场去买肉,如果买牛肉18千克,则差4元;如果买猪肉20千克,则多2元。
已知牛肉比猪肉每千克贵8角。
牛肉、猪肉各多少钱一千克?
13、学校买来一批篮球与排球分给各班,排球是篮球的2倍,若篮球每班分2个,多4个;若排球每班分5个,少2个。
学校有几个班?篮球与排球各买了几个?
例1:一个植树小组去栽树,如果每人栽3棵,还剩下15棵树苗;如果每人栽5棵,就缺少9棵树苗。
求这个小组有多少人?一共有多少棵树苗?
分析:已知如果每人栽3棵,还剩下15棵树苗,也就是说还有15棵树苗没有栽上,树苗余下了;又知如果每人栽5棵,就缺少9棵树苗,这就是说,树苗不够了。
按照第一种方案去栽,树苗余下了,若按照第二种方案去栽,树苗不足了。
一个是余下一个是不足,这两个方案之间相差多少棵呢?相差(15+9=)24棵,也就是说,如果按照第二种方案去栽的话,可以比第一种方案多栽24棵树。
为什么能多栽24棵树呢?因为每个人多栽(5-3=)2棵。
由于每一个人多栽2棵树,一共多栽24棵树,即“2棵树”对应于“1个人”。
这样,小组的人数可以求得。
随之,树苗的棵数也可以求得。
计算:(1)小组的人数:
(15+9)÷(5-3)
=24÷2
=12(人)
(2)树苗的棵数:
3×12+15=51(棵)
答:这个小组有12人,一共有51棵树苗。
在解题时,常常要找两个“差”。
一个是总棵数之差,即第一种方案同第二种方案所栽树苗的总差数;另一个是单量之差,即每个人所栽树苗的差。
有了这两个差即可求出结果。
因此,这种解题的思路也可以称作“根据两个差求未知数”。
例2:悦悦每天早晨7点30分从家出发上学去,如果每分钟走45米,则迟到4分钟到校;如果每分钟走75米,则可以提前4分钟到校。
求从家出发需要走多少分钟才能准时到校?悦悦的家离学校有多少米?
分析:已知如果悦悦每分钟走45米,则迟到4分钟,这就是说,按照规定到
则可以提前4分钟到校,这就是说,到校之后还可以多走出(75×4=)300米的路。
这样,一个慢一个快,在同样时间之内,速度快要比速度慢多走出(180+300=)480米的路。
又知每分钟多走(75-45=)30米。
总之,由于每分钟多走30米,一共多走出480米;因此,从家到学校所需要的时间就可以求出来了,随之,悦悦的家距离学校的米数也可以求出来了。
计算:
(1)准时到校需要多少分钟?
(45×4+75×4)÷(75-45)
=480÷30
=16(分钟)
(2)悦悦家与学校距离多少米?
45×16+45×4
=720+180
=900(米)
答:准时到校需要16分钟,悦悦家离学校900米。
例3:晶晶读一本故事书,原计划若干天读完。
如果每天读11页,可以比原计划提前2天读完;如果每天读13页,可以比原计划提前4天读完。
求原计划多少天读完?这本书共有多少页?
分析:已知如果每天读11页,可以比原计划提前2天读完,这就是说,如果继续读2天的话,还可以多读(11×2=)22页;又知如果每天读13页,可以比原计划提前4天读完,这就是说,如果继续读4天的话,还可以多读(13×4=)52页。
两种情况,虽然都可以多读,但是它们之间有差别。
就是说,在一定的日期之内,第二种方法比第一种方法多读(52-22=)30页。
为什么能多读30页呢?就是因为每天多读(13-11=)2页。
由于每天多读2页,结果一共可以多读30页。
这
计算:(1)原计划多少天读完这本书?(13×4-11×2)÷(13-11)
=(52-22)÷2
=30÷2=15(天)
(2)这本书共有多少页?
11×(15-2)
=11×13=143(页)。