氧气顶吹转炉炼钢
世界氧气顶吹转炉炼钢技术发展史
世界氧气顶吹转炉炼钢技术发展史氧气顶吹转炉炼钢(oxygen top blown converter steelmaking)由转炉顶部垂直插入的氧枪将工业纯氧吹入熔池,以氧化铁水中的碳、硅、锰、磷等元素,并发热提高熔池温度而冶炼成为钢水的转炉炼钢方法。
它所用的原料是铁水加部分废钢,为了脱除磷和硫,要加入石灰和萤石等造渣材料。
炉衬用镁砂或白云石等碱性耐火材料制作。
所用氧气纯度在99%以上,压力为0.81~1.22MPa(即8~12atm)。
简史空气底吹转炉和平炉是氧气转炉出现以前的主要炼钢设备。
炼钢是氧化熔炼过程,空气是自然界氧的主要来源。
然而空气中4/5的气体是氮气,空气吹炼时,这样多的氮气在炉内穿行而过,白白带走大量的热且有部分氮溶解在铁液中,成为恶化低碳钢品质的重要原因。
平炉中,氧在用于燃烧燃料之后,过剩的氧要通过渣层传入钢水,所以反应速率极慢,这也就增加了热损失。
因此,直接把氧气吹入熔池炼钢,成为许多冶金学家向往的目标。
早在19世纪,现代炼钢法的创始人贝塞麦(H.Bessemer)就有了纯氧炼钢的设想,但因没有大量氧气而未进行试验。
20世纪20年代后期,以空气液化和分馏为基础的林德一弗兰克(Linde—Frankel)制氧技术开发成功,能够生产可供工业使用的廉价氧气,氧气炼钢又为冶金界所注意。
从1929年开始,柏林工业大学的丢勒尔教授(R.Durrer)在实验室中研究吹氧炼钢,第二次世界大战开始后转到瑞士的冯•罗尔(V.Roll)公司继续进行研究。
1936~1939年勒莱普(O.Lellep)在奥伯豪森(Oberhausen)进行了底吹氧炼钢的试验,由于喷嘴常损坏未能成功。
1938年亚琛(Aachen)工业大学的施瓦茨(C.V.Schwarz)提出用超音速射流向下吹氧炼钢,并在实验室进行了试验,将托马斯生铁吹炼成低氮钢,但因熔池浅而损坏了炉底。
1948年丢勒尔(R.Durrer)等在冯•罗尔(VonRoll)公司建成2.5t的焦油白云石衬的试验转炉,以450的斜度将水冷喷嘴插入铁水吹氧炼钢,无论贝塞麦生铁或托马斯生铁都能成功炼成优质钢水,而且认识到喷嘴垂直向下时,最有利于喷嘴和炉衬的寿命。
氧气底吹转炉炼钢
[Mn]的氧化反应几乎达到平衡;
底吹转炉吹炼终点钢水残[Mn]比顶吹转炉高;
残[Mn]比顶吹转炉高的原因: 渣中(FeO)含量低于顶吹转炉,而且CO分压(约0.04MPa)低于顶吹转炉0.12MPa,顶吹转炉中的[O]活度高于底吹转炉2.5倍。 此外,底吹转炉喷嘴上部氧压高,Si氧化为SiO2并被石灰粉中CaO所固定,这样MnO的活度增大。
9.2 底吹氧气转炉炼钢法
氧气转炉炼钢车间
01
氧气转炉炼钢车间
单击此处添加文本具体内容,简明扼要的阐述您的观点,以便观者准确的理解您传达的思想。
氧气转炉炼钢车间
底吹转炉炼钢法的发展
酸性底吹空气转炉炼钢法 贝塞麦发明的酸性底吹空气转炉炼钢法只能脱碳,但不能脱磷、脱硫。
碱性底吹空气转炉 1878年,托马斯发明了碱性底吹空气转炉,用石灰造渣,能较好地进行脱磷,炉渣可做磷肥.
细金属管多孔塞式: 图4-12MHP供气元件 图4-13 MHP—D型 图4-14 新的类环缝管式 1—母体耐火材料; 金属砖结构 细金属管型供气元件 2—细金属管;3—集气箱; 4—进气箱
3
由于脱碳速度快,前期渣中氧化铁低,故脱磷是在脱碳基本结束后(即吹炼后期)进行的。脱硫主要是在吹炼后半期高碱度炉渣形成后进行的。
4
吹炼中期: 铁水中碳大量氧化,氧的脱碳利用率几乎是100 % 。而且铁矿石、铁皮分解出来的氧,也被脱碳反应消耗。这体现了底吹氧气转炉良好的熔池搅拌贯穿整个吹炼过程的特点。所以,渣中(FeO))含量低于LD转炉,铁合金收得率高。
”
将Pco取为一个大气压,则可简化为:
由于Kc随温度的变化不大,在炼钢温度范围内为一定值,用M代表则可写出: M =[%C]·[%O] (8—7) M称为碳氧浓度积,它具有化学反应平衡常数的性质,在一定温度和压力下应是一个常数。
《钢冶金学》_第6章 氧气底吹转炉和顶底复合吹炼转炉炼钢
钢冶金学重庆科技学院王宏丹◆氧气底吹转炉炼钢氧气底吹转炉炼钢OBM法和LWS法吹炼高磷铁水时的成分变化Q-BOP法吹炼过程中钢水和炉渣成分的变化Q-BOP法吹炼过程炉渣成分的变化吹炼终点[C]和[O]的关系图终点[C]和[Mn]的关系Q-BOP和LD炉内渣中(FeO)6.2.1 顶底复吹转炉炼钢工艺类型6.2 顶底复合吹炼转炉的冶金特点6.2.2 顶底复吹转炉的底吹供气和供气元件6.2.3 顶底复吹转炉内的冶金反应6.2.4 冶金效果氧气顶底复吹转炉炼钢在复吹转炉中,了解和掌握底吹气体的性质、冶金行为、合理地确定底吹气体比例,选择和控制底吹供气强度,是复吹转炉获得良好的技术经济指标的重要因素。
底吹气体的冶金行为主要表现在三个方面: 强化熔池搅拌,使钢水成分,温度均匀;加速炉内反应,使渣钢反应界面增大,元素间化学反应和传质过程更加趋于平衡;冷却保护供气元件,使供气元件使用寿命延长。
底吹气体底吹O:需用冷却介质来保护供气元件,会与熔2池中碳发生反应,产生较大的搅拌力。
:可不用冷却剂,会与熔池中碳发生反 底吹CO2应搅拌力较强的气体;会使熔池CO分压增加,不利于超低碳钢冶炼。
、Ar和CO:属中性或惰性气体,供入铁 底吹N2水中不参与熔池内的反应,只起搅拌作用。
底吹气体比例在复吹转炉中,底吹气体量的多少决定熔池内搅拌的强弱程度。
,其底吹 在冶炼超低碳钢种时,即使用底吹O2供气量也要达20%左右;对一些具有特殊功能的复吹工艺(如喷石灰粉、煤粉等),其底吹供气量可达40%。
就一般复吹转炉而言,为了保证脱硫、脱气和渣-钢间反应趋于平衡,在吹炼结束前,也要采用较大的底吹供气来搅拌熔池。
底吹供气强度获得最佳搅拌强度,使熔池混合最均匀。
大量实验研究表明,熔池的混匀程度与搅拌强度有关,而搅拌强度受供气量和底吹元件布置影响。
根据吹炼过程调节供气强度。
复吹转炉的特点是能有效地把熔池搅拌与炉渣氧化性有机统一起来,而实现手段就是控制底吹供气强度。
炼钢工艺简介(1)
氧气顶吹转炉炼钢法的特点
• 利于自动化生产和开展综合利用 • 氧气顶吹转炉炼钢冶炼时间短,生产率高
,其机械化程度较高,有利于实现生产过程 的自动化,也有利于开展综合利用,如回收 煤气、炉尘(做烧结矿原料)等。
炼钢工艺简介(1)
四、炼钢基本原理
炼钢基本原理
一、什么叫钢
一般把碳小于2.11%的铁碳合金称为钢。 二、什么叫炼钢
炼钢工艺简介(1)
氧气顶吹转炉炼钢法的特点
• 原料消耗少,热效率高、成本低 • 氧气顶吹转炉炼钢的金属消耗一般为1100~1140
公斤/吨钢,稍高于平炉(但在良好燥作情况下 ,金属消耗与平炉接近)。但由于顶吹转炉的热 源是利用铁水本身的物理热和化学热,热效率高 ,不需外加热源,因此在燃料和动力消耗方面均 较平炉、电炉低。由于氧气顶吹转炉炼钢法具有 高的生产率和低的消耗,所以钢的成本也较低。
四、一炼钢技术经济指标
一炼钢在今年前几个月与国内部分同类生产厂指标相比, 在钢铁料消耗、日历作业率上差别较大.而与全国平均水平相 比各项指标均好于同时期的全国平均水平。 ➢ 钢铁料消耗比莱钢高21kg/t,比全国平均低了7.4 kg/t ➢ 日历作业率上比南京低15.56%,比全国平均高2.64% ➢ 氧气消耗比莱钢高3.78m3/t,比全国平均低3.85m3/t。 ➢ 转炉冶炼周期比安阳多1.56min,比全国平均低6.9min。 ➢ 炉衬寿命比莱钢略低。 ➢ 具体对比数据见附表。
➢音频化渣技术:2000年转炉与上海工业大学合作开发的音 频化渣技术,该项技术能根据炉内反应的声音,分析炉渣 的性质,及时指导氧枪枪位控制,促进化渣
炼钢工艺简介(1)
➢ 转炉数据静态模拟控制:2001年,转炉与上海阿塞克自动 化公司合作,开发出转炉数据静态模拟控制系统,使小转炉 炼钢局部实现自动化,降低了劳动强度,改善了生产环境, 提高了转炉作业率及生产效率。
氧气顶吹转炉炼钢
氧气顶吹转炉炼钢氧气顶吹转炉炼钢(oxygen top blown converter steelmaking)由转炉顶部垂直插入的氧枪将工业纯氧吹入熔池,以氧化铁水中的碳、硅、锰、磷等元素,并发热提高熔池温度而冶炼成为钢水的转炉炼钢方法。
它所用的原料是铁水加部分废钢,为了脱除磷和硫,要加入石灰和萤石等造渣材料。
炉衬用镁砂或白云石等碱性耐火材料制作。
所用氧气纯度在99%以上,压力为0.81~1.22MPa(即8~12atm)。
简史空气底吹转炉和平炉是氧气转炉出现以前的主要炼钢设备。
炼钢是氧化熔炼过程,空气是自然界氧的主要来源。
然而空气中4/5的气体是氮气,空气吹炼时,这样多的氮气在炉内穿行而过,白白带走大量的热且有部分氮溶解在铁液中,成为恶化低碳钢品质的重要原因。
平炉中,氧在用于燃烧燃料之后,过剩的氧要通过渣层传入钢水,所以反应速率极慢,这也就增加了热损失。
因此,直接把氧气吹入熔池炼钢,成为许多冶金学家向往的目标。
早在19世纪,现代炼钢法的创始人贝塞麦(H.Bessemer)就有了纯氧炼钢的设想,但因没有大量氧气而未进行试验。
20世纪20年代后期,以空气液化和分馏为基础的林德一弗兰克(Linde—Frankel)制氧技术开发成功,能够生产可供工业使用的廉价氧气,氧气炼钢又为冶金界所注意。
从1929年开始,柏林工业大学的丢勒尔教授(R.Durrer)在实验室中研究吹氧炼钢,第二次世界大战开始后转到瑞士的冯•罗尔(V.Roll)公司继续进行研究。
1936~1939年勒莱普(O.Lellep)在奥伯豪森(Oberhausen)进行了底吹氧炼钢的试验,由于喷嘴常损坏未能成功。
1938年亚琛(Aachen)工业大学的施瓦茨(C.V.Schwarz)提出用超音速射流向下吹氧炼钢,并在实验室进行了试验,将托马斯生铁吹炼成低氮钢,但因熔池浅而损坏了炉底。
1948年丢勒尔(R.Durrer)等在冯•罗尔(VonRoll)公司建成2.5t的焦油白云石衬的试验转炉,以450的斜度将水冷喷嘴插入铁水吹氧炼钢,无论贝塞麦生铁或托马斯生铁都能成功炼成优质钢水,而且认识到喷嘴垂直向下时,最有利于喷嘴和炉衬的寿命。
氧气顶吹转炉炼钢工艺毕业论文
氧气顶吹转炉炼钢工艺毕业论文目录摘要 (4)ABSTRACT (5)引言 (6)1 氧气转炉炼钢工艺流程简介 (7)1.1氧气顶吹转炉炼钢工艺流程 (7)1.2氧气顶吹转炉炼钢的操作组成 (7)1.3氧气顶吹转炉炼钢的注意事项 (8)2 终点控制和出钢 (9)2.1终点 (9)2.2终点的条件 (9)2.3终点控制方法 (9)2.3.1一次拉碳 (9)2.4终点的判断 (9)2.4.1碳含量的判断 (9)2.4.2温度的判断 (10)2.5挡渣出钢 (10)2.5.1目的: (10)2.5.2方法: (10)3 脱氧及合金化制度 (11)3.1脱氧 (11)3.1.1脱氧方法 (11)3.1.2合金的加入原则 (11)3.2合金化 (12)3.2.1合金的加入量计算 (12)3.2.2合金元素收得率及其影响因素 (12)4 吹损与喷溅 (13)4.1吹损 (13)4.2喷溅控制与预防 (13)4.2.1喷溅产生的原因 (14)4.2.2预防喷溅产生的措施 (15)5 操作事故及处理 (16)5.1温度不合格 (16)5.1.1岀钢温度高 (16)5.1.2低温钢 (16)5.1.3易出现低温的情况 (16)5.2成分不合格 (16)5.2.1碳,锰含量不合格 (16)5.2.2硫含量出格 (17)5.2.3磷含量出格 (17)5.2.4回炉钢冶炼 (17)5.3氧枪粘钢及漏水 (18)5.3.1氧枪粘钢 (18)5.3.2氧枪漏水 (18)5.4穿炉 (18)5.4.1穿炉的原因 (18)5.4.2穿炉的处理 (18)5.4.3预防穿炉的措施 (19)5.5冻钢 (19)结论 (19)致谢 (20)参考文献 (21)1 氧气转炉炼钢工艺流程简介这种炼钢法使用的氧化剂是氧气。
把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。
在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉达到足够高的温度。
(工艺技术)氧气顶吹转炉炼钢工艺
第四章氧气顶吹转炉炼钢工艺内容提要一炉钢的吹炼过程装入制度供氧制度造渣制度温度制度终点控制和出钢脱氧合金化吹损与喷溅操作事故及处理转炉炼钢仿真操作训练§4—1 一炉钢的吹炼过程一.钢与铁的区别及炼钢的任务1.钢与铁的性能比较钢和铁都是铁碳合金,同属于黑色金属,但它们的性质有明显不同.生铁硬而脆,焊接性差.钢具有很好的物理化学性能与力学性能,可进行拉,压,轧,冲,拔等深加工,其用途十分广泛; 用途不同对钢的性能要求也不同,从而对钢的生产也提出了不同的要求.2.钢与铁性能差别的原因:碳和其它合金元素的含量不同.在钢中碳元素和铁元素形成Fe3C固熔体,随着碳含量的增加,其强度,硬度增加,而塑性和冲击韧性降低.钢和生铁含碳量的界限通常是:生铁: [C]=1.7~4.5%钢: [C]≤ 1.7%生铁和钢的化学成分材料化学成分%CSiMnPS炼钢生铁3.5~4.00.6~1.60.2~0.80.0~0.40.03~0.07碳素镇静钢0.06~1.500.1~0.370.25~0.80≤0.045≤0.05沸腾钢0.05~0.27≤0.070.25~0.70≤0.045≤0.053.炼钢的基本任务:⑴脱碳;将铁水中的碳大部分去除,同时随着脱碳的进行,产生大量CO气泡,在CO排出过程中,搅拌熔池促进化渣,同时脱除[H],[N]和夹杂.⑵去除杂质(去P,S和其它杂质);铁水中[P],[S]含量高,而钢中[P]会造成"冷脆",[S]造成"热脆".通常大多数钢种对P,S含量均有严格要求,炼钢必须脱除P,S等有害杂质.⑶去除气体及夹杂物;在炼钢过程中通过熔池沸腾(碳氧反应,底吹惰性气体搅拌)脱除H],[N]和非金属夹杂物.⑷脱氧合金化;在炼钢过程中因为脱碳反应的需要,要向钢液中供氧,就不可避免地使后期钢中含有较高的氧,氧无论是以液体形态还是以氧化物形态存在于钢中都会降低钢的质量,所以必须在冶炼后期或出钢过程中将多余的氧去除掉.在冶炼过程中,铁水中的Si, Mn大部分氧化掉了,为了保证成品钢中的规定成分,要向钢水中加入各种合金元素,这个过程与脱氧同时进行,称为合金化.⑸升温(保证合适的出钢温度).铁水温度一般在1250~1300℃,而钢水的出钢温度一般在1650℃以上,才能顺利浇注成铸坯,因此炼钢过程也是一个升温过程.3.完成炼钢各项任务的基本方法⑴氧化为了将铁水等炉料中的硅,锰,碳等元素氧化掉,可以采用"吹氧"方法,即直接喷吹氧气,或加入其它氧化剂,如铁矿石,铁皮等.⑵造渣为了去除炉料中的P,S等杂质,在炼钢过程中加入渣料(石灰,白云石,熔剂等),形成碱度合适,流动性良好,足够数量的炉渣,一方面完成脱除P,S的任务,同时减轻对炉衬对侵蚀.⑶升温转炉主要是依靠碳,硅,锰等元素氧化放出等热量,以及铁水的物理热实现升温.⑷加入脱氧剂和合金料通过向炉内或钢包内加入各种脱氧剂和合金料的方法,完成脱氧及合金化的任务.二.金属成分和炉渣成分的变化规律1.Si在吹炼前期(一般在3~4分钟内)即被基本氧化.在吹炼初期,铁水中的[Si]和氧的亲和力大,而且[Si]氧化反应为放热反应,低温下有利于此反应的进行,因此,[Si]在吹炼初期就大量氧化.[Si]+O2=(SiO2) (氧气直接氧化)[Si]+2[O]= (SiO2) (熔池内反应)[Si]+(FeO)=(SiO2)+2[Fe] (界面反应)2(FeO)+(SiO2)=(2FeO·SiO2)随着吹炼的进行石灰逐渐溶解,2FeO·SiO2转变为2CaO·SiO2,即SiO2与CaO牢固的结合为稳定的化合物,SiO2活度很低,在碱性渣中FeO的活度较高,这样不仅使[Si]被氧化到很低程度,而且在碳剧烈氧化时,也不会被还原,即使温度超过1530℃,[C]与[O]的亲和力也超过[Si]与[O]的亲和力,终因(CaO)与(SiO2)结合为稳定的2CaO.SiO2,[C]也不能还原(SiO2).硅的氧化对熔池温度,熔渣碱度和其他元素的氧化产生影响:[Si]氧化可使熔池温度升高;[Si]氧化后生成(SiO2),降低熔渣碱度,熔渣碱度影响脱磷,脱硫;熔池中[C]的氧化反应只有到[%Si]P0.⑵喷嘴前氧压P0:其选用应考虑以下因素:A.氧气流股出口速度要达到超音速(450~530cm∕s),即M=1.8~2.1.B. 出口的氧压应稍高于炉膛内气压.通常P0=0.784~1.176MPa.⑶出口氧压P:应稍高于或等于周围炉气的压力.通常P=0.118~0.125MPa.六.枪位及其控制所谓枪位,是指氧枪喷头端面距静止液面的距离,常用H表示,单位是m.目前,一炉钢吹炼中的氧枪操作有两种类型,一种是恒压变枪操作,一种是恒枪变压操作.比较而言,恒压变枪操作更为方便,准确,安全,因而国内钢厂普遍采用.1.枪位的变化范围和规律关于枪位的确定,目前的做法是经验公式计算,实践中修正.一炉钢冶炼中枪位的变化范围可据经验公式确定:H=(37~46)P×D出式中 P——供氧压力,MPa;D——喷头的出口直径,mm;H——枪位,mm.具体操作中,枪位控制通常遵循"高-低-高-低"的原则:⑴前期高枪位化渣但应防喷溅.吹炼前期,铁水中的硅迅速氧化,渣中的(SiO2)较高而熔池的温度尚低,为了加速头批渣料的熔化(尽早去P并减轻炉衬侵蚀),除加适量萤石或氧化铁皮助熔外应采用较高的枪位,保证渣中的(FeO)达到并维持在25~30%的水平;否则,石灰表面生成C2S 外壳,阻碍石灰溶解.当然,枪位亦不可过高,以防发生喷溅,合适的枪位是使液面到达炉口而又不溢出.⑵中期低枪位脱碳但应防返干.吹炼中期,主要是脱碳,枪位应低些.但此时不仅吹入的氧几乎全部用于碳的氧化,而且渣中的(FeO)也被大量消耗,易出现"返干"现象而影响S,P的去除,故不应太低,使渣中的(FeO)保持在10~15%以上.⑶后期提枪调渣控终点.吹炼后期,C-O反应已弱,产生喷溅的可能性不大,此时的基本任务是调好炉渣的氧化性和流动性继续去除硫磷,并准确控制终点碳(较低),因此枪位应适当高些.⑷终点前降枪点吹破坏泡沫渣.接近终点时,降枪点吹一下,均匀钢液的成分和温度,同时降低炉渣的氧化铁含量并破坏泡沫渣,以提高金属和合金的收得率.2.枪位的调节⑴开吹前必须了解的情况A.喷嘴的结构特点及氧气总管氧压情况;B.铁水成分,主要是Si,P,S的含量;C.铁水温度,包括铁水罐,混铁炉或混铁车内存铁情况及铁水包的情况;D.炉役期为多少,是否补炉,相应的装入量是多少,上炉钢水是否出净,是否有残渣;E.吹炼钢种及其对造渣和温度控制的要求;F.上一班操作情况,并测量熔池液面高度.⑵枪位的调节生产条件千变万化,因此具体操作中还应根据实际情况对枪位进行适当的调节.A.铁水温度:若遇铁水温度偏低,应先压枪提温,而后再提枪化渣,以防渣中(FeO)积聚引发大喷,即采用低-高-低枪位操作.铁水温度高时,碳氧反应会提前到来,渣中∑(FeO)降低,枪位可稍高些,以利成渣.B.铁水成分:铁水硅,磷高时,若采用双渣操作,可先低枪位脱硅,磷,倒掉酸性渣;若单渣操作,由于石灰加入量大,应较高枪位化渣.铁水含锰高时,有利于化渣,枪位则可适当低些.C.装入量变化:炉内超装时,熔池液面高,枪位应相应提高,否则,不仅化渣困难而且易烧坏氧枪.D.炉内留渣:采用双渣留渣法时,由于渣中(FeO)高,有利于石灰熔化,因此吹炼前期的枪位适当低些,以防渣中(FeO)过高引发泡沫喷溅.E.供氧压力:高氧压与低枪位的作用相同,故氧压高时,枪位应高些.F.废钢中生铁块多导热性差,不易熔化,应降低枪位,以防吹炼后期没有完全熔化.G.炉龄a 开新炉,炉温低,应适当降低枪位;b 炉役前期液面高,可适当提高枪位;c 炉役后期装入量增加,熔池面积增大,不易化渣,可在短时间内采用高低枪位交替操作以加强熔池搅拌,利于化渣.H.渣料a 石灰质量差和加入量多,则渣量大,枪位应相应提高;b 使用活性石灰成渣快,整个过程枪位都可以稍低些;c 铁矿石,氧化铁皮和萤石用量多时,熔渣容易形成,同时流动性较好,枪位可适当低一些. I.钢种炼高碳钢时,由于脱磷困难,应采用较高的枪位,特别是在吹炼后期.同理,在吹炼含磷很低的钢种时,应采用较高枪位.七.恒压变枪操作的几种模式由于各厂的转炉吨位,喷嘴结构,原材料条件及所炼钢种等情况不同,氧枪操作也不完全一样.现介绍如下几种氧枪操作方式.1.高—低—高的六段式操作开吹枪位较高,及早形成初期渣;二批料加入后适时降枪,吹炼中期炉渣返干时又提枪化渣;吹炼后期先提枪化渣后降枪;终点拉碳出钢.2.高—低—高的五段式操作五段式操作的前期与六段式操作基本一致,熔渣返干时可加入适量助熔剂调整熔渣流动性,以缩短吹炼时间,见下图.3.高一低一高一低的四段式操作在铁水温度较高或渣料集中在吹炼前期加入时可采用这种枪位操作.开吹时采用高枪位化渣,使渣中含(FeO)量达25~30%,促进石灰熔化,尽快形成具有一定碱度的炉渣,增大前期脱磷和脱硫效率,同时也避免酸性渣对炉衬的侵蚀.在炉渣化好后降枪脱高—低—高五段式操作示意图碳,为避免在碳氧化剧烈反应期出现返干现象,适时提高枪位,使渣中(FeO)保持在10~15%,以利磷,硫继续去除.在接近终点时再降枪加强熔池搅拌,继续脱碳和均匀熔池成分和温度,降低终渣(FeO)含量.例:马钢一钢厂95T转炉氧枪操作A.全程枪位:高—低—高式或高—高—低式过程枪位:要力求稳定,尽量少波动,每次动枪波动范围≯200mm.补吹枪位:必须按最低枪位控制(1.1m).B.高枪位:1.7~2.0m;基本吹炼枪位:1.4~1.7m;拉碳枪位:1.2~1.4m;吹炼中,高碳钢拉碳枪位应提高0.1~0.2m.例:马钢一钢厂95T转炉开吹枪位的确定(a)铁水Si>0.70%时渣量大,易喷溅,枪位应比正常情况下低0.1~0.2m;铁水Si ,P含量低,特别是Si1%),P,S较高,或生产优质钢时采用.倒渣时机:这是双渣法操作的关键.选择在渣中含P量最高,含铁量最低的时刻,以获得高脱磷率和低铁损的效果.同时,应在Si已氧化完毕,炉渣已基本化好,P在渣钢之间的分配已接近平衡时进行.生产实践证明,顶吹转炉在吹炼时间25%左右,复吹转炉为30%左右时倒渣脱磷率最高;若是因铁水硫高而采用双渣法,则应在吹炼10min左右倒渣.注意:倒渣前1分钟适当提枪或加些熔剂改善炉渣的流动性,以便于倒渣操作.3.双渣留渣法定义:将上一炉的终渣(高碱度,高温度和较高(FeO)含量)部分地留在炉内,并在吹炼中途倒出部分炉渣再造新渣的操作方法.特点:初渣早成而前期的去硫及去磷效率高,总去硫率可达60%~70%,总去磷率更是高达95%,适合于吹炼中,高磷铁水.注意:装料时应先加一批石灰稠化所留炉渣,而且兑铁水时要缓慢进行,以防发生爆发性碳氧反应而引起喷溅.若上一炉钢终点碳过低,不宜进行留渣操作.应当指出,顶吹转炉虽能将高磷铁水炼成合格的钢,但技术经济指标较差,与吹炼中,低磷铁水相比,每吨钢的金属料消耗高30~100kg,石灰多用40~100kg,炉龄大幅降低;产量也仅为吹炼低磷铁水时的70%~80%;另外,单渣法生产稳定,操作简单,便于实行计算机控制.因此,对于含硅,磷及硫较高的铁水,入炉前进行预处理使之达到单渣法操作的要求,不仅技术上可行而且工艺上经济合理.七.渣料的加入方法关于渣料的加入,关键是要注意渣料的分批和把握加入的时间.1. 渣料分批加入目的:渣料应分批加入以加速石灰的熔化(否则,会造成熔池温度下降过多,导致渣料结团且石灰块表面形成一层金属凝壳而推迟成渣).批次:单渣操作时,渣料通常分成两批:第一批1/2~2/3及白云石全部(冶炼初期炉衬侵蚀最严重);第二批1/2~1/3.2. 加料时间⑴第一批渣料在开吹的同时加入.⑵第二批渣料,一般是在硅及锰的氧化基本结束,头批渣料已经化好,碳焰初起的时候(30吨的转炉开吹6 min左右)加入(如果加入过早,炉内温度还低且头批渣料尚未化好又加冷料,势必造成渣料结团难化;反之,如果加入过晚,正值碳的激烈氧化时期,渣中的(∑FeO)较低渣料亦难化.问题的关键是正确判断炉况,头批渣料化好的标志是:火焰软且稳定,炉内发出柔和的嗡嗡声,喷出物为片状,落在炉壳上不粘贴;未化好的情况是:炉口的火焰发散且不稳定,炉内发出尖锐的吱吱声,喷出物是金属火花和石灰粒).有的厂二批料分小批多次加入以利熔化,但最后一小批料必须在终点前3~4分钟加入八.石灰,白云石加入量的确定加入炉内的渣料主要是石灰和白云石,还有少量的萤石或氧化铁皮等熔剂.1. 石灰加入量的确定⑴首先根据铁水的硅,磷含量和炉渣碱度计算A.铁水含磷较低([P]<0.3%)时,(kg∕t铁)%CaO有效—石灰中的有效CaO,%CaO有效=(%CaO)石灰-R×(%SiO2)石灰废钢,生铁块也应根据上式计算需补加的石灰量.例:B. 铁水含磷较高([P]≥0.3%)时,(kg∕t铁)⑵其次,当加入含(%SiO2)的辅助原料时(如:矿石,白云石萤石,菱镁矿等),应补加石灰. 例: 铁矿石中SiO2的含量为8%,碱度按3.0控制,石灰的有效氧化钙为80%,则每kg矿石补加石灰量 = 8×3.0/80 = 0.3(kg)⑶石灰加入总量废钢中含有一定量的Si,但成分通常不知,一般按每吨废钢补加石灰15~20kg.2.白云石用量的确定白云石的加入量应根据炉渣要求的饱和MgO含量来确定.通常渣中MgO含量控制在8%~10%,除了加入的白云石含有MgO外,石灰和炉衬也会带入一部分.理论用量W(kg/t)=实际加入量W/=W-W灰-W衬3.熔剂的用量萤石用量:尽量少用或不用,部标要求≤4kg/t.矿石用量:铁矿石及氧化铁皮也具有较强的化渣能力,但同时对熔池产生较大的冷却效应,其用量应视炉内温度的高低,一般为装入量的2~5%.4.计算举例例题1:1t金属料中铁水占85%,废钢占10%,生铁块占5%,每T金属料加矿石5kg,萤石3kg,铁水带渣比为0.5%,石灰熔化率为85%,各原材料成分列在下表中.炉渣碱度为3.5.计算:1t金属料所需石灰加入量为多少原料成分铁水废钢生铁块铁水带渣石灰矿石萤石[%Si]0.500.101.40%CaO37.583%SiO2362.56.05.0解:石灰加入量铁水带渣量为:1000×85%×0.5% = 4.25 (kg)铁水带渣带入的SiO2应考虑铁水渣中CaO相当的SiO2量:辅助原料及铁水带渣需补加石灰量(kg))例题2:用轻烧白云石作为调渣剂其成分如下表:原料成分石灰轻烧白云石炉衬%CaO%SiO2%MgO832.54.09502.03777计算条件:终渣成分要求(MgO)=9.66%,渣量为金属装入量的8.2%,炉衬侵蚀量是装入量的0.05%,其它条件同上述例题.解题思路:终渣(MgO)来源:A. 加入的轻烧白云石.B.石灰中的MgO.C.炉衬被侵蚀下来的MgO.⑴计算轻烧白云石加入量由例题1计算的结果是不加轻烧白云石时石灰加入量为68.39kg∕t.石灰带入MgO量:68.39×4.09% =2.80 (kg)炉衬蚀损带入MgO量:1000×0.05%×77%=0.385 (kg)根据1t装入量计算终渣MgO量:1000×8.2%×9.66%=7.92 (kg∕t)⑵计算轻烧白云石需补加石灰量⑶计算轻烧白云石相当的石灰量石灰加入总量= 68.39 - 8.62 + 1.21= 60.98 (kg)例题3:某转炉铁水装入量为100t,铁水含Si:0.4%,P:0.1%.采用单渣法造渣,终渣碱度为3.5,每炉加矿石3000kg,为保证渣中MgO,每炉加轻烧白云石2500kg.已知:石灰:CaO: 91.6% SiO2: 1.6%矿石:SiO2: 8%轻烧白云石:MgO:35% CaO:55% SiO2: 2%计算石灰加入量(单位kg,保留整数).解:⑴计算未加白云石时石灰加入量⑵计算轻烧白云石需补加石灰量⑶计算轻烧白云石相当的石灰量⑷计算石灰加入总量石灰加入总量= 5454+203-1599 = 4085 (kg)九.渣量计算渣量可以用元素平衡法计算.由铁水炼成钢,各元素一部分被氧化,一部分残留在钢中.如果知道某一元素在钢中的数量,该元素其余部分全部进入了熔渣,则通过这个元素在渣中的百分含量,就可以计算出熔渣的数量.Mn和 P两元素,从渣料及炉衬中的来源很少,其数量可以忽略不计.因而可以用Mn或 P的平衡来计算渣量.例:渣量计算(单渣法)装入量 Mn P Fe装 (kg) % kg % kg % kg入铁水28000 0.40 112 0.20 56料废钢4000 0.50 20 0.02 0.8数铁矿石1000 0.30 3 0.10 1.0 56.0 560据小计 135 57.8 560(MnO)% [%Mn] (P2O5)% [%P]终点钢水 0.12 0.03数炉渣 3.30 2.56 2.86 1.25据金属装入量 28000+4000+560=32560kg出钢量(按装入量的90%计算)32560×90%=29304kg钢水中Mn 量 29304×0.12%=35.16kg钢水中P量 29304×0.03%= 8.79kg进入渣中Mn 量 135-35.16=99.84kg进入渣中P量 57.8 - 8.79=49.01kg用Mn 平衡法熔渣占装入量的百分比用P平衡法熔渣占装入量的百分比习题:1名词解释:泡沫渣,单渣法双渣法双渣留渣法2造渣方法如何选择采用双渣法操作时,倒渣的时间应如何掌握3石灰加入量如何计算渣料如何加入4影响石灰溶解的因素有哪些5炉渣严重泡沫化的原因是什么如何控制泡沫渣6.吹炼过程中为什么会出现炉渣"返干"现象§4—5 温度制度氧气转炉的温度制度包括两方面的内容:一是准确控制终点温度,二是恰当控制冶炼过程温度.温度对于转炉吹炼过程既是重要的热力学参数,又是重要的动力学参数.它既对各个化学反应的反应方向,反应程度和各元素之间的相对反应速度有重大影响,又对熔池的传质和传热速度有重大影响.因此,为了快而多地去除钢中的有害杂质,保护或提取某些有益元素,加快吹炼过程成渣速度,加快废钢熔化,减少喷溅,提高炉龄等,都必须控制好吹炼过程温度.此外,对各钢种都有其要求的出钢温度.出钢温度过低会造成回炉,短锭,包底凝钢及钢锭的各种低温缺陷和废品;过高则会造成跑漏钢,钢锭上涨,粘模及钢锭的各种高温缺陷和废品,并影响炉衬和氧枪的寿命.一.转炉温度控制的目标及温度控制内容1.目标希望吹炼过程中均衡升温,吹炼终点时钢水的温度和化学成分同时命中钢种要求的范围.2.内容⑴确定合适的钢种出钢温度;⑵确定熔池富裕热量的数值,选择冷却剂并确定其冷却效果和加入量;⑶掌握影响熔池温度变化的因素,及进行温度控制操作.二.热量来源与热量支出1.热量来源氧气转炉炼钢的热量来源主要是铁水的物理热和化学热.物理热是指铁水带入的热量,它与铁水温度有直接关系,化学热是铁水中各元素氧化后放出的热量,它与铁水化学成分直接相关. 在炼钢温度下,各元素氧化放出的热量各异,它可以通过各元素氧化放出的热效应来计算确定.例如铁水温度1200℃,吹入的氧气25℃,碳氧反应生成CO时:[C]1473+{O2}298={CO}1473 ΔH1473K= -137520 J/mol则1kg[C]氧化生成CO时放出的热量为137520/12≈11300kJ/kg.现以100kg金属料为例,计算各元素的氧化热能使熔池升温多少.设炉渣量为装入金属料的15%,炉衬吸热为装入金属料的10%,计算热平衡公式如下:Q=∑MCT式中 Q—1kg元素氧化放出的热量,kJ/kg;M——受热金属液,炉衬和炉渣重量,kg;C——各物质比热,已知钢液CL为0.84~1.0kJ/kg·℃,炉渣和炉衬的CS为1.23kJ/ kg·℃. 计算在1200℃时C—O反应生成CO时,氧化1kg碳可使熔池温度升高数为:℃1kg元素是100kg金属料的1%,因此,根据同样道理和假设条件,可以计算出其它元素氧化1%时使熔池的升温数.碳完全燃烧生成CO2时其发热量最高,使熔池升温数最大,其次是磷和硅.但是碳大部分没有完全燃烧,因此,在氧气转炉吹炼中采用双流氧枪,可有助于CO进一步燃烧生成CO2,使转炉热效率提高.哪些元素是转炉炼钢的主要热源,不仅要看其热效应大小,还要视其氧化总量的多少而定.例如,在1400℃时,硅氧化0.5%,碳氧化3%,则分别使熔池升温数为71℃和249℃,可见碳氧化产生的总热量要比硅的总热量多得多.2.热量支出热量支出主要包括:钢水物理热;炉渣物理热;炉气物理热;烟尘物理热;渣中金属铁珠物理热;喷溅金属物理热;矿石分解热;废钢物理热(见热平衡表).其中,钢水的物理热约占70%,这是一项主要的支出,熔渣带走的热量大约占10%,它与渣量的多少有关.因此在保证去除P,S的条件下,采用最小的渣量.渣量过大不仅增加渣料的消耗,也增加热量的损失,所以要求铁水进行预处理,这样既可实现少渣操作;同时在吹炼过程中也可减少喷溅,缩短吹炼时间,减少炉与炉的间隔时间,减少热损失,提高转炉的热效率.转炉热效率提高以后,可以提高废钢比.3.转炉炼钢的热平衡指炼钢过程的热量来源与支出之间的平衡关系(见热平衡表).为了准确的控制转炉的吹炼温度,需要知道铁水中各成分氧化反应放出的总热量;这些热量除了把熔池加热到出钢温度外,富余多少热量需要加多少冷却剂这要经过热平衡计算才能得出,具体物料平衡,热平衡计算参看教材中物料平衡与热平衡计算内容.热平衡表的分析:根据转炉吹炼过程中热量的收入与支出,作出热平衡计算列出热平衡表,得出氧气转炉热工特点如下:⑴热量收入主要是铁水的物理热和化学热;⑵尚有大量的富余热量,必须加入冷却剂;⑶元素氧化放热中,C,Si,P都是重要的发热元素,其中碳占有主要地位(占氧化总放热的一半以上).⑷转炉热效率为60~70%左右.转炉总热效率计算公式如下:总热效率=×100%在转炉炼钢过程中,真正有用的热量占整个热量收入的70%左右,在热量的利用上还是有一定潜力的,应努力提高热效率.三.出钢温度的确定出钢温度的高低受钢种,锭型和浇注方法的影响.1.出钢温度的确定依据:⑴保证浇注温度高于所炼钢种凝固温度20~30℃(小炉子偏上限,大炉子偏下限).⑵考虑出钢过程和钢水运输,镇静时间,钢液吹氩时的降温,一般为80~120℃.⑶考虑浇注方法和浇注锭型大小所用时间的降温.2.确定出钢温度T出钢T出钢 =T凝 +△t过热+△T总式中 T凝——钢液的熔点即液相线温度,根据钢种的化学成分而定.T凝=1539-∑△ti×[%i]-7 ℃;△t过热—钢水过热度,℃.即高于熔点的温度值,与钢种,坯型有关.△T总—从出钢→精炼→浇注过程中的温降值.△T总=△t1+△t2+△t3+△t4+△t5△t1—出钢过程温降,℃.△t2—出钢毕至精炼开始之前的温降,℃.△t3—钢水精炼过程温降,℃.△t4—钢水精炼完毕至开浇前的温降,℃.△t5—钢水从钢包至中间包的温降,℃.四.确定冷却剂用量1.冷却剂及其特点转炉炼钢的冷却剂主要是废钢和矿石.比较而言,废钢的冷却效应稳定,而且硅磷含量也低,渣料消耗少,可降低生产成本;但是,矿石可在不停吹的条件下加入,而且具有化渣和氧化的能力.因此,目前一般是矿石,废钢配合冷却,而且是以废钢为主,且装料时加入;矿石在冶炼中视炉温的高低随石灰适量加入.另外,冶炼终点钢液温度偏高时,通常加适量石灰或白云石降温(前两种均不能用).2.各冷却剂的冷却效应冷却效应是指每kg冷却剂加入转炉后所消耗的热量,常用q表示,单位是kJ/kg.⑴矿石的冷却效应:矿石冷却主要靠Fe2O3的分解吸热,因此其冷却效应随铁矿的成分不同而变化,含Fe2O370%,FeO10%时铁矿石的冷却效应为:q矿=1×C矿×△t+λ矿+1×(Fe2O3%×112/160×6456+FeO%×56/72×4247)=1×1.02×(1650-25)+209+1×(0.7×112/160×6456+0.1×56/72×4247)=5360 kJ/kg⑵废钢的冷却效应:废钢主要依靠升温吸热来冷却熔池,由于不知准确成分,其熔点通常按低碳钢的1500℃考虑,入炉温度按25℃计算,于是废钢的冷却效应为:q废=1×[C固(t熔-25)+λ废+ C液(t出-t熔)]=1×[0.7×(1500-25)+272+0.837(1650-1500)]=1430 kJ/kg⑶氧化铁皮的冷却效应:计算方法同矿石,对于50%FeO,40%Fe2O3 的氧化铁皮,其冷却热效应为:q皮=5311 kJ/kg以废钢的冷却效应为标准1,则各种冷却剂的相对冷却能力见教材(表4—9).3.冷却剂用量的确定:关于冷却剂加入量的确定,有两种方案.一种是定废钢,调矿石(废钢:开吹前加入.铁矿石(铁皮):随造渣剂加入,采用分批加入方式.其中关键是选好二批料加入时间,即必须在初期渣已化好,温度适当时加入.) ;另一种是定矿石,调废钢.现以第一种方案为例说明冷却剂用量的确定:国内目前的平均水平是,废钢的加入量为铁水量的8~12%,取10%.则矿石用量为:。
氧气转炉炼钢特点
氧气转炉炼钢特点研究了这么久氧气转炉炼钢的特点,总算发现了一些门道。
首先啊,我发现氧气转炉炼钢速度特别快。
就好比你煮个面,普通的锅小火慢慢煮得好久,但是这个氧气转炉炼钢,就像开了大火猛煮一样。
我听说有的大的氧气转炉,一次炼一炉钢可能几十分钟或者一两个小时就搞定了。
然后呢,这个炼钢过程里,氧气可是个超级重要的角色。
我开始就很疑惑,为什么叫氧气转炉炼钢呢?后来我明白了,氧气就像一个超级大力士,它吹进转炉的铁水里面,能把铁水里那些杂质,像磷啊、硫啊这些不太好的东西,给快速地带走。
就像是一阵大风,把灰尘垃圾啥的都吹得干干净净。
比如说啊,铁水里面如果有多余的碳,氧气进去后就和碳发生反应,就把碳这个调皮捣蛋的家伙给弄走,达到我们想要的含碳量,这样钢的质量才好呢。
还有哦,这氧气转炉炼钢对原料的适应能力还挺强。
不像有些炼钢方式那么挑。
比如说有各种不同品质的铁水吧,哪怕这铁水不是特别纯,这个方法也能炼出钢来。
我就在想啊,这是不是说明它比较“好养活”呢。
但是这里面也有很多我不懂的地方。
像这个转炉里面具体的温度控制啥的,我就不是很明白,感觉应该挺难的。
不过我能理解它为啥得按照一定的温度曲线走,就像我们做饭,什么时候大火什么时候小火是有讲究的,这个温度估计也是得很准确才行。
还有一个,这个氧气转炉炼钢的机械化、自动化程度比较高。
感觉就像是一个自动化的工厂车间。
操作人员只要负责一些关键的操作和监视工作就行。
比如说就像我们开车,如果是手动挡的车,司机得一直操作离合、换挡啥的,但如果是自动挡,比较省心。
这氧气转炉炼钢就有点类似自动挡开车一样,自动化节省了好多人力呢。
另外呢,我发现这个炼钢出来的钢质量很稳定。
比如说建筑上用的钢材啦,都是有严格的强度等指标要求的。
氧气转炉炼出来的钢,只要工艺操作正确,那生产出来的钢的强度、韧性等性能都能比较稳定地符合要求。
就好像是同一个模子刻出来一样,当然不是真的是一个模子啦,就是说很稳定很标准。
10氧气转炉炼钢
10 氧气转炉炼钢10.1 氧气顶吹转炉炼钢氧气顶吹转炉于1952年和1953年在奥地利的林茨(Linz)城和多纳维茨(Donawitz)城先后建成并投入生产,故又称为LD法。
由于它具有原材料适应性强、生产率高、成本低、可炼品种多、钢质量好、投资省、建厂速度快等一系列优点,因而在世界范围内得到迅速发展,一跃成为现代主要炼钢方法之一。
10.1.1 氧气顶吹转炉炼钢车间的特点现代钢铁生产,从铁矿石冶炼到加工成钢材,一般是组成钢铁联合企业集中进行的。
炼钢在钢铁联合企业内是一个中间环节,它联系着前面的炼铁等原料供应系统和后面的轧钢等成品生产。
炼钢车间的生产对整个联合企业有重大影响。
由于氧气顶吹转炉吹氧时间短和炉子容量的大型化,使顶吹转炉车间具有以下特点:l)吹炼周期短、生产率高,因此,每昼夜出钢炉数多,兑铁、加料、倒渣、出钢、浇注等操作频繁,原材料、钢水、炉渣等的吞吐量大。
2)运输复杂,数量大。
其数量相当于钢产量的3~5倍,而且批量小、批次多、运输品种多。
因此,各种货流不得不尽量避免交叉而设置专业化线路,并采用多层平面运输。
3)温度高、烟尘大,需配置高效能的通风除尘设备。
4)因吹炼速度快,要求有准确、可靠的计量通讯设备。
为了保证转炉正常地进行连续生产,各种原材料的供应以及钢水、炉渣的处理必须有足够的设备,而且工作可靠。
这些设备的布置和车间内各物料的运输流程必须合理。
同时,车间内转炉座数也不宜过多,以免各种设备在操作时互相干扰。
世界上大多数转炉车间,目前均采用以下两种布置方案:两座转炉经常保持一座吹炼(简称二吹一);三座转炉经常保持两座吹炼(简称三吹二)。
炼钢生产有冶炼和浇注两个基本环节。
为保证冶炼和浇注的正常进行,氧气顶吹转炉车间主要包括原料系统,加料、冶炼和浇注系统,以及采用模铸时的钢模准备系统。
因此,顶吹转炉车间主厂房多改为三跨间:1)原料跨:主要组织铁水和废钢的供应,炉渣及垃圾的运出。
2)转炉跨:主要布置转炉及其倾动机构。
转炉炼钢工艺
转炉炼钢工艺转炉炼钢工艺绪论1、转炉炼钢法的分类转炉是以铁水为主要原料的现代炼钢方法。
该种炼钢炉由圆台型炉帽、圆柱型炉身和球缺型炉底组成。
炉身设有可绕之旋转的耳轴,以满足装料和出钢、倒渣操作,故而得名。
酸性空气底吹转炉——贝塞麦炉〔英国1856年〕空气转炉{ 碱性空气底吹转炉——托马斯炉〔德国1878年〕碱性空气侧吹转炉〔中国1952年〕转炉{ 氧气顶吹转炉——LD〔奥地利1952年〕氧气转炉{ 氧气底吹转炉——OBM〔德国1967年〕顶底复吹转炉〔法国1975年〕2、氧气顶吹转炉炼钢法简介(1) 诞生的布景及简称现代炼钢出产首先是一个氧化精炼过程,最初的贝氏炉和托马斯炉之所以采用空气吹炼正是操纵此中的氧。
二次世界大战以后,工业制氧机在美国问世,使操纵纯氧炼钢成为可能,但本来的底吹方式炉底及喷枪极易烧坏。
美国联合碳化物公司于1947年在尝试室进行氧气顶吹转炉的尝试并获成功,定名为BOF。
奥地利闻之即派有关专家前往参不雅学习,回来后于1949年在2吨的转炉长进行半工业性尝试并获成功,1952年、1953年30吨氧气顶吹转炉别离在Linz和Donawitz建成投产,故常简称LD。
1967年12月德国与加拿大合作缔造了氧气底吹转炉,使用双层套管喷嘴并通以气态碳氢化合物进行冷却。
1975年法国研发了顶底复吹转炉,综合了LD和OBM的长处,77年在世界年会上颁发。
(2) 氧气顶吹转炉的特点1〕长处氧气顶吹转炉一经问世就显示出了极大的优越性,世界各国竟相开展,目前成为最主要的炼钢法。
其长处主要暗示在:〔1〕熔炼速度快,出产率高〔一炉钢只需20分钟〕;〔2〕热效率高,冶炼中不需外来热源,且可配用10%~30%的废钢;〔3〕钢的品种多,质量好〔上下碳钢都能炼,S、P、H、N、O及夹杂含量低〕;〔4〕便于开展综合操纵和实现出产过程计算机控制。
2〕错误谬误当然,LD尚存在一些问题,如吹损较高〔10%,〕、所炼钢种仍受必然限制〔冶炼含大量难熔元素和易氧化元素的高合金钢有必然的困难〕等。
第4章 氧气顶吹转炉
控制:取决于铁水P含量:脱磷任务
通常:0.40 ~ 0.80% (目前有降低的趋势) 非正常:2%Si
P:来源于矿石
影响:氧化放热:被动因素
增加石灰消耗:需要大渣量 延长冶炼周期:多次拉碳 导致严重后吹:多次拉碳
范围:生产中不作规定
省内: 0.050 ~ 0.120 %
控制:减少矿石含P量:炼铁厂
终点C:终点C低,氧化量大
三.炉渣成分变化
(CaO):石灰熔化,逐渐升高,最终50%左右 (SiO2):与石灰熔化相关
前期:Si氧化导致SiO2上升 中期及后期:石灰不断熔化,导致持续下降
终渣含量:10~20%
(MnO):与石灰熔化相关
前期:Mn氧化MnO含量高 中期及后期:石灰熔化,导致MnO含量持续下降
结束供氧
氧枪升起 自动关闭供氧
吹炼结束
拉碳:根据操作因素和钢种要求,确定吹炼终点,提起
氧枪停止吹O2,倒炉、测温、取样化验钢水成分 倒炉:炉体向加料跨倾动,方便测温、取样 测温:测温枪 + 热电偶,由炉口插入钢水 钢水取样
目的:化验钢水成分
方法:♣ 样勺:钢水倒入样模,钢水凝固放出钢花
减少喷煤S含量 减少烧结用煤S含量
提高高炉炉温
铁水预处理:普遍应用 用于高附加值钢种
(二)废钢
用量:< 30%
前提条件:必须满足终点温度要求 影响因素:实际生产中影响因素很多
钢种:高碳钢用量少 铁水温度:温度低用量少 浇注条件:开浇炉次用量少 铁水包容量:限制铁水用量 废钢供应:废钢短缺 原料条件:生烧石灰用量少 铁水成分:Si低时用量少 ★废钢熔化吸热
二.熔池内成分变化
[Si]
开始氧化时间:供氧后,最先氧化
氧气顶底复吹转炉炼钢
4铁水的含锰量
铁水中的锰是一种有益元素;主要体现在锰氧化 后生成的氧化锰能促使石灰溶解,有利于提高炉 龄和减轻氧枪粘钢;
我国铁水含锰量都不高,多为0 2%~04%。可 向高炉的原料中配加锰矿石,但这将会焦比升高 和高炉的生产率下降。
(5)铁水的含碳量
碳也是转炉炼钢的主要发热元素,≥35%的含 碳量即可满足冶炼要求,而通常铁水含碳4%左右
≤002
Байду номын сангаас
>002~003
>003~005
>005~007
表12 我国一些钢厂用铁水成分
厂家
首钢
鞍钢三 炼 武钢二 炼 包钢
Si 020~
040 052
067
072
化 学 成 分 ω/%
Mn
P
S
040~ 050
≤010
<0050
045 (≤010)① 0013
≤030 ≤0015 0024
173 0580 0047
由于散装料及铁合金消耗量减少,少渣精炼时
钢水和炉渣的氢含量明显减少,可以稳定地得到 终点ωH%<20×106的钢水。 (3) 铁损明显减少
由于渣量减少,渣带走的铁损少。但渣层薄,
烟气带走的烟尘量增多。
9 44 铁水预处理技术 定义:铁水在兑入转炉之 前进行的脱硫 脱磷或脱硅 操作叫做铁水预处理; 目的:减轻高炉、转炉的 负担;提高生产率。
5 钢水中的磷
从炉底吹入氧气; 可与金属液反应生成 FeO,FeO与P反应, 氧也有可能直接氧化 [P]生成P2O5; 从反应 的动力学看,强有力的 搅拌有利脱磷,在吹炼 初期脱磷率可达40 %~60%,以后保持平 稳,吹炼后期脱磷加快。 复吹磷的分配系数相当 于底吹,而比顶吹高。
3 氧气顶吹转炉炼钢工艺
3 氧气顶吹转炉炼钢工艺3.1 一炉钢的操作过程要想找出在吹炼过程中金属成分和炉渣成分的变化规律,首先就必须熟悉一炉钢的操作、工艺过程。
在下面的图3-1中示出了氧气顶吹转炉吹炼一炉钢的操作过程与相应的工艺制度。
由图可以清楚地看出,氧气顶吹转炉炼钢的工艺操作过程可分以下几步进行:1)上炉钢出完并倒完炉渣后,迅速检查炉体,必要时进行补炉,然后堵好出钢口,及时加料。
2)在装入废钢和兑入铁水后,把炉体摇正。
在下降氧枪的同时,由炉口上方的辅助材料溜槽,向炉中加入第一批渣料(石灰、萤石、氧化铁皮、铁矿石),其量约为总量的2/3~1/2。
当氧枪降至规定的枪位时,吹炼过程正式开始。
当氧气流与溶池面接触时,碳、硅、锰开始氧化,称为点火。
点火后约几分钟,炉渣形成覆盖于熔池面上,随着Si 、Mn 、C 、P 的氧化,熔池温度升高,火焰亮度增加,炉渣起泡,并有小铁粒从炉口喷溅出来,此时应当适当降低氧枪高度。
3)吹炼中期脱碳反应剧烈,渣中氧化铁降低,致使炉渣的熔点增高和粘度增大,并可能出现稠渣(即“返干”)现象。
此时,应适当提高氧枪枪位,并可分批加入铁矿石和第二批造渣材料(其余的1/3),以提高炉渣中的氧化铁含量及调整炉渣。
第三批造渣料为萤石,用以调整炉渣的流动性,但是否加第三批造渣材料,其加入量如何,要视各厂生产的情况而定。
4)吹炼末期,由于熔池金属中含碳量大大降低,则使脱碳反应减弱,炉内火焰变得短而透明,最后根据火焰状况,供氧数量和吹炼时间等因素,按所炼钢种的成分和温度要求,图3-1 顶吹转炉吹炼操作实例l —上炉排渣;2—装料;3—吹炼;4—出钢准备;5—出钢;6—排渣;7—下炉装料;8—废钢15000kg ;9—铁水72500kg ;10—石灰石4200kgl ;11一铁皮700kg ;12—萤石180kg ;13—铁矿石600kg ;14—铁矿石200kg ×7次; 15—石灰200kg ×5次;16—锰铁;17—取样;18—测温;19—锰铁、铝确定吹炼终点,并且提高氧枪停止供氧(称之为拉碳)、倒炉、测温、取样。
第三章转炉炼钢工艺1
8
氧气顶吹转炉炼钢工艺简介
温度变化:
吹炼过程中金属升温大致分三阶段: 第一阶段升温速度很快,第二阶段升温速度趋于缓
慢,第三阶段升温速度又加快。 出钢温度约1650~1680℃。
根据熔体成分和温度的变化,吹炼过程可分为三期: 硅锰氧化期(吹炼前期)、碳氧化期(吹炼中 期)、碳氧化末期(吹炼末期)。
①(一次反应区)主要是直接氧化反应:
23
[C]+ 1/2{O2} = {CO} {CO}+1/2{O2} = {CO2} [Si]+ 1/2{O2 } = {SiO} {SiO} + 1/2{O2 } =(SiO2) [Mn]+ 1/2{O2 } =(MnO) {Mn}+ 1/2{O2 } =(MnO) [P]+ 1/2{O2 } ={PO} 2{PO}+3/2{O2}=(P2O5) [Fe]+ 1/2{O2 } =(FeO)
LD的传氧机理:是以间接氧化为主。
27
转炉炼钢供氧制度
C-O反应速度: 转炉炼钢C-O反
应消耗 O2>70%,贯 穿于炼钢过程 的始终。
有效控制C-O反 应是冶炼的关 键。
28
转炉炼钢供氧制度
二.乳化和泡沫现象
由于氧射流对熔池的强烈冲击和C-O 反应产物CO气 泡的沸腾作用,使熔池上部金属、熔渣和气体三 相剧烈混合,形成了转炉内发达的乳化和泡沫状 态。
供氧制度:是指根据生产条件确定恰当的供氧强 度,选择和确定喷头结构、类型和尺寸,制定 合 理的氧枪操作方法。
当氧枪的结构、类型和尺寸确定后,吹炼过程中 能调节的供氧参数是枪 位和工作氧压。
36
转炉炼钢供氧制度
1.供氧压力
氧气顶吹转炉炼钢工艺及设备
第二章氧气顶吹转炉炼钢工艺及设备2.1炼钢用原材料2.1.1.1铁水1.对铁水化学成分的要求:w[C]%=4.00%,w[Si]%=0.3%~0.6%;Mn/Si=0.80~1.00;w[P]%≤0.20%;w[S]% ≤0.05%。
2.对铁水温度的要求:1250~1300℃。
3.铁水预处理:“三脱”—脱S、脱P、脱Si。
2.1.1.2废钢:1).外形尺寸、块度适当;2).不得混有铁合金且无中空封闭器皿及易燃易爆物;3).清洁干燥;4).不同性质的废钢分类堆放,避免冶炼困难及贵金属浪费。
2.1.1.3铁合金杭钢转炉:Si-Ca;Si-Ca-Ba;Al-Ca;Mn-Fe。
2.1.2非金属材料2.1.2.1造渣剂1.石灰(CaO):主要造渣材料。
石灰的作用:1).造高碱度炉渣,对碱性炉衬起保护作用;2).促进S、P的去除。
活性石灰:在900~1200℃范围内加回转窑或其他先进炉窑中焙烧成的石灰。
其特点:气孔率高,呈海绵状,体积密度小,比表面积大,石灰晶粒小,化学成分好。
2.萤石(CaF2):熔点:930℃。
助熔3.生白云石(CaCO3·MgCO3):减少萤石和石灰的用量,增加渣中MgO的成分。
2.1.2.3冷却剂2.1.2.4其他材料1.增碳剂:固定碳高,灰分、挥发分和S、P、N等杂质含量低且干燥、干净、粒度适中。
2.氧化剂2.2氧气顶吹转炉炼钢工艺2.2.1一炉钢的吹炼过程1.工艺:1).装料;2).吹炼(前、中、后);3.)出钢;4).溅渣护炉;5).倒渣。
2.前、中、后三个时期的任务:1).吹炼前期任务:早化渣,多去磷,保护炉衬。
(高枪位)2).吹炼中期任务:保证炉渣不“返干”,不喷溅,快速脱C、S,均匀升温。
(适当降低枪位)3).吹炼后期任务:成分、温度均匀,加强搅拌,稳定火焰,便于判断终点,同时降低渣中Fe含量,减少铁损达到溅渣要求。
(降枪)2.2.2温度的变化规律:2.2.3装入操作1).定量装入;2).定深装入;3).分阶段定量装入。
浅析氧气顶吹转炉炼钢设备
浅析氧气顶吹转炉炼钢设备摘要:我国是世界上最早生产钢的国家之一。
考古工作者曾在长沙杨家山春秋晚期墓葬中发掘出一把铜格“铁剑”,经研究证明是钢制的。
这是我们所见到的中国最早的钢制实物,说明炼钢生产在中国距今已有2500多年历史。
20世纪50年代中期,我国科学家叶渚沛率先提倡发展氧气转炉炼钢。
本文将从各个方面详细介绍现代炼钢设备----炼钢转炉设备的应用。
关键词:氧气;转炉;炼钢;设备前言:氧气顶吹转炉炼钢是利用纯氧从转炉顶部吹炼铁从而炼制成钢的转炉炼钢法。
自从50年代初投入工业生产以来,在世界范围内得到迅速推广应用,并逐步取代空气转炉法及平炉炼钢法,成为现代炼钢的主要方法。
氧气顶吹转炉炼钢法最早建于奥地利的林茨(Linz)和多纳维茨(Donawiz),因此亦称LD法。
炼钢方法炼钢的方法主要有转炉、电炉和平炉三种。
转炉炼钢主要是以铁水、废钢、铁合金作为原材料,不必借助外加能源,只依靠铁液本身物理热和铁液组分间的化学反应所产生的热量从而完成炼钢过程。
1.1转炉炼钢的分类转炉炼钢主要适用于生产碳钢、合金钢及铜和镍的冶炼。
按其气体种类为分空气转炉和氧气转炉;按其气体吹入炉内的部位分类有顶吹、底吹和侧吹;按其耐火材料可以分为酸性和碱性。
碱性氧气顶吹炼钢和顶底复吹转炉炼钢因为其生产速度快、产量大,单炉产量高、成本低且投资少,是目前炼钢中所使用的最为普遍的设备。
2转炉炼钢设备2.1转炉炉体由炉壳及其支撑系统(托圈、耳轴、联接装置和耳轴轴承等)组成。
炉体的外面是炉壳,是用钢板焊接而成,炉壳里面是炉衬,砌筑的耐火砖。
转炉炉体断面构造详见下图:2.2转炉炉体各部分作用a.炉壳作用:保证转炉炼钢具有固定形状与足够强度,能够承受大力的倾动力矩、耐火材料及炉料的重量,以及炉壳钢板等温度梯度所产生的热应力、炉衬膨胀应力等。
b.托圈和耳轴作用:支撑炉体并且传据转矩等。
托圈:选用优质钢板焊接而成,断面呈矩形中空圆环,内部以通水冷却,降低其热应力。
2氧气转炉炼钢的基本原理
2氧气转炉炼钢的基本原理2.1 炼钢的基本任务从化学成分来看,钢和生铁都是铁碳合金,并还含有Si、Mn、P、S等元素,由于碳和其他元素含量不同,所形成的组织不同,因而性能也不一样。
根据Fe—C相图,碳含量在0.0218%~2.11%之间的铁碳合金为钢;碳含量在2.11%以上的铁碳合金是生铁(根据国家标准和国际标准规定以碳含量2%为钢和铸铁的分界点);碳含量在0.0218%以下的铁碳合金称为工业纯铁。
冶标规定碳含量在0.04%以下为工业纯铁。
若以生铁为原料炼钢,需氧化脱碳;钢中P、S含量过高分别造成钢的“冷脆“性和“热脆”性,炼钢过程应脱除P、S;钢中的氧含量超过限度后会加剧钢的热脆性,并形成大量氧化物夹杂,因而要脱氧;钢中含有氢、氮会分别造成钢的氢脆和时效性,应该降低钢中有害气体含量;夹杂物的存在会破坏钢基体的连续性,从而降低钢的力学性能,也应该去除;炼钢过程应设法提高温度达到出钢要求,同时还要加入一定种类和数量的合金,使钢的成分达到所炼钢种的规格。
综上所述,炼钢的基本任务包括:脱碳、脱磷、脱硫、脱氧;去除有害气体和夹杂;提高温度;调整成分。
炼钢过程通过供氧、造渣、加合金、搅拌、升温等手段完成炼钢基本任务。
氧气顶吹转炉炼钢过程,主要是降碳、升温、脱磷、脱硫以及脱氧和合金化等高温物理化学反应的过程,其工艺操作则是控制供氧、造渣、温度及加入合金材料等,以获得所要求的钢液,并浇成合格钢钢锭或铸坯。
2.2 气体射流与熔池的相互作用顶吹氧气转炉是将高压、高纯度(含O2 99.5%以上)的氧气通过水冷氧枪,以一定距离(喷头到熔池面的距离约为1~3米)从熔池上面吹入的。
为了使氧流有足够的能力穿入熔池,使用出口为拉瓦尔型的多孔喷头,氧气的使用压力为10~15×105Pa,氧流出口速度可达450~500m•s-1。
2.2.1 转炉炉膛内氧气射流的特征转炉炉膛是一个复杂的高温多相体系,喷吹入炉内的氧气射流离开喷头后,由于炉内周围环境性质变化,使射流的特性也变得有些不能确定了。
80t氧气转炉炼钢设备(第一篇)
80t氧气转炉炼钢设备(第一篇)炼钢机械设备1 概述1.1 氧气顶吹转炉炼钢特点氧气顶吹转炉炼钢又称 LD 炼钢法,通过近几十年的发展,目前已完全取代了平炉炼钢,其之所以能够迅速发展的原因,主要在于与其它炼钢方法相比,它具有一系列的优越性,较为更突出的几点如下: 1.生产效率高一座容量为 80 吨的氧气顶吹转炉连续生产 24 小时,钢产量可达到日产3000 ― 4000 吨,而一座 100 吨的平炉一昼夜只能炼钢300 ― 400 吨钢,平均小时产量相差甚远,而且从冶炼周期上看,转炉比平炉、电炉的冶炼周期要短得多。
2.投资少,成本低建氧气顶吹转炉所需的基本建设的单位投资,比同规模的平炉节约 30% 左右,另外投产后的经营管理费用,转炉比平炉要节省,而且随着转炉煤气回收技术的广泛推广和应用,利用转炉余热锅炉产生蒸气及转炉煤气发电,使转炉逐步走向“负能”炼钢。
3.原料适应性强氧气顶吹转炉对原料情况的要求,与空气转炉相比并不那么严格,可以和平炉、电弧炉一样熔炼各种成分的铁水。
4.冶炼的钢质量好,品种多氧气顶吹转炉所冶炼的钢种不但包括全部平炉钢,而且还包括相当大的一部分电弧炉钢,其质量与平炉钢基本相同甚至更优,氧气顶吹转炉钢的深冲性能和延展性好,适宜轧制板、管、丝、带等钢材。
21 炼钢篇5.适于高度机械化和自动化生产由于冶炼时间短,生产效率高,再加转炉容量不断扩大,为准确控制冶炼过程,保证获得合格钢水成分和出钢温度,必须进行自动控制和检测,实现生产过程自动化。
另外,在这种要求下,也只有实现高度机械化和自动化,才能减轻工人的劳动强度,改善劳动条件。
1.2 转炉炼钢机械设备系统氧气顶吹转炉炼钢法,是将高压纯氧[压力为 0.5~1.5MPa ,纯度99.5% 以上,(我厂为 99.99% )],借助氧枪从转炉顶部插入炉内向熔池吹氧,将铁水吹炼成钢。
氧气顶吹转炉的主要设备有: 1.转炉本体系统:包括转炉炉体及其支承系统――托圈、耳轴、耳轴轴承和支承座,以及倾动装置,其中倾动装置由电动机、一次减速机,二次减速机、扭矩缓冲平衡装置等组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R.D.佩尔克等著,邵象华、楼盛赫等译校:《氧气顶吹转炉炼钢》,冶金工业出版社,北京,(上册)1980,(下册)1982。
(R.D.Pehlke,ed., BOF Steelmaking,AIME,1974~1977.)氧气顶吹转炉炼钢责任编辑:苏方来源:成都钢铁网2008年06月20日氧气顶吹转炉炼钢(oxygen top blown converter steelmaking)由转炉顶部垂直插入的氧枪将工业纯氧吹入熔池,以氧化铁水中的碳、硅、锰、磷等元素,并发热提高熔池温度而冶炼成为钢水的转炉炼钢方法。
它所用的原料是铁水加部分废钢,为了脱除磷和硫,要加入石灰和萤石等造渣材料。
炉衬用镁砂或白云石等碱性耐火材料制作。
所用氧气纯度在99%以上,压力为0.81~1.22MPa(即8~12atm)。
简史空气底吹转炉和平炉是氧气转炉出现以前的主要炼钢设备。
炼钢是氧化熔炼过程,空气是自然界氧的主要来源。
然而空气中4/5的气体是氮气,空气吹炼时,这样多的氮气在炉内穿行而过,白白带走大量的热且有部分氮溶解在铁液中,成为恶化低碳钢品质的重要原因。
平炉中,氧在用于燃烧燃料之后,过剩的氧要通过渣层传入钢水,所以反应速率极慢,这也就增加了热损失。
因此,直接把氧气吹入熔池炼钢,成为许多冶金学家向往的目标。
早在19世纪,现代炼钢法的创始人贝塞麦(H.Bessemer)就有了纯氧炼钢的设想,但因没有大量氧气而未进行试验。
20世纪20年代后期,以空气液化和分馏为基础的林德一弗兰克(Linde —Frankel)制氧技术开发成功,能够生产可供工业使用的廉价氧气,氧气炼钢又为冶金界所注意。
从1929年开始,柏林工业大学的丢勒尔教授(R.Durrer)在实验室中研究吹氧炼钢,第二次世界大战开始后转到瑞士的冯•罗尔(V.Roll)公司继续进行研究。
1936~1939年勒莱普(O.Lellep)在奥伯豪森(Oberhausen)进行了底吹氧炼钢的试验,由于喷嘴常损坏未能成功。
1938年亚琛(Aachen)工业大学的施瓦茨(C.V.Schwarz)提出用超音速射流向下吹氧炼钢,并在实验室进行了试验,将托马斯生铁吹炼成低氮钢,但因熔池浅而损坏了炉底。
1948年丢勒尔(R.Durrer)等在冯•罗尔(V onRoll)公司建成2.5t的焦油白云石衬的试验转炉,以450的斜度将水冷喷嘴插入铁水吹氧炼钢,无论贝塞麦生铁或托马斯生铁都能成功炼成优质钢水,而且认识到喷嘴垂直向下时,最有利于喷嘴和炉衬的寿命。
这样就最后完成了转炉吹氧炼钢的实验室试验。
从实验室研究向工业化试验的进一步发展是由奥地利的沃埃施特(VOEST)公司完成的。
第二次世界大战后奥地利面临重建钢铁工业的需要,该国缺少废钢使得平炉或电炉炼钢法缺乏竞争力。
沃埃施特公司注意到丢勒尔的试验,决心开发一个具有竞争力的新的炼钢方法。
1949年5月在奥地利累欧本(Leoben)开了一次氧气炼钢的讨论会,决定冯•罗尔、曼内斯曼(Mannesmann)、阿尔派(ALPINE)和沃埃施特4个公司协作,在沃埃施特的林茨(Linz)钢厂作进一步的试验。
1949年6月在林茨建成2t顶吹氧试验转炉,由苏埃斯(T.Suess)和豪特曼(H.Hauttmann)负责,在丢勒尔参与下,成功地解决了合适的氧气压力、流量和喷嘴与熔池面距离等工艺操作问题。
之后迅速建立15t试验转炉,广泛研究新方法所冶炼钢的品质。
由于钢的质量很好而且炼钢工艺的效率很高,1949年末该公司决定在林茨投资建设世界第一个氧气顶吹转炉工厂。
并命名该炼钢法为LD法。
林茨的30tLD转炉工厂于1952年11月投产。
翌年春季第2个30tLD转炉工厂在奥地利多纳维兹([)onawitz)建成投产。
1950年由苏埃斯申请得到专利权。
推动炼钢工业再次大变革的氧气顶吹转炉炼钢法登上了历史舞台。
该法问世后,数十年内迅速取代了平炉炼钢而成为世界上最主要的炼钢方法。
在北美,美国是平炉炼钢大国,有平炉熔池吹氧的经验。
美国又是第二次世界大战的最大战胜国,工业基础雄厚。
在得知转炉氧气炼钢的信息后,美国麦克劳斯(McLouth)公司和加拿大多法斯柯(DOFASCO)公司于1954年各迅速建成一个35t氧气顶吹转炉车间并投产。
随后1957年琼斯一拉弗林(Jones—Laughlin)公司阿里奎帕(Aliquippa)厂建成当时世界最大的(80t 级)顶吹氧气转炉。
美国人没有购买奥地利的专利,由此发生了关于氧气顶吹转炉炼钢专利权的纠纷,最终美国方面胜诉。
BOF法(Basic oxygen Furnace的第一个字母构成)成为北美对氧气顶吹转炉炼钢的习惯称呼。
但美国矿冶工程师协会(AIME)主持编写的权威著作《BOF Steelmaking》中明确承认丢勒尔(Durrer)在开发氧气转炉炼钢上的贡献。
日本对于发展氧气转炉炼钢非常关注,先经过多次考察,在1951年用5t钢包改造的试验装置进行试验(包括空气侧吹的试验)后,决心向沃埃施特和阿尔派(现已合并为奥钢联V AI)购买专利特许权,于1957年在八幡建设第一个LD车间,到1963年其LD钢产662量即超过平炉钢,1978年关闭所有的平炉,前后仅历20年。
日本对顶吹转炉炼钢理论研究、扩大炼钢品种、改进炉衬耐火材料和提高炉龄、炉气回收技术、用副枪测取冶炼信息和计算机自动控制、分解炼钢操作功能使转炉冶炼更加简化、配合连铸机实现全连铸炼钢生产等方面,均进行了深入研究和技术创新。
日本已成为氧气转炉炼钢技术最发达的国家。
20世纪50年代中期,中国有远见的科学家叶渚沛大力提倡发展氧气转炉炼钢,北京钢铁研究总院、中国科学院化工冶金研究所、北京钢铁学院(北京科技大学前身)等也进行了实验室规模的氧气转炉炼钢试验。
然而对于中国发展氧气转炉炼钢的可行性,冶金界没有统一认识。
当时以美国为首的西方国家对中国实行经济封锁,只有前苏联可以提供平炉炼钢成套设备;中国的制氧机制造工业还十分薄弱;由于这些客观情况,加上一些主观上的原因,中国氧气转炉炼钢发展比较缓慢。
1964年中国的第一座30t氧气顶吹转炉车间才在石景山钢铁厂(首都钢铁公司前身)建成投产。
到70年代一些地方钢铁厂相继建设了氧气顶吹转炉和把空气侧吹转炉改建为氧气顶吹转炉,在攀枝花、本溪钢铁公司建成120t级的氧气顶吹转炉车间。
1979年全国氧气转炉钢产量超过了平炉钢,1978~1985年建设了宝山钢铁总厂300t氧气顶吹转炉,转炉炼钢技术方达到国际水平。
1986年氧气转炉钢产量超过总产钢量的50%。
中国在氧气转炉炼钢的基本操作制度、可压缩性氧气射流结构和多孔喷枪的设计、含钒生铁吹炼工艺、创造不烘炉炼钢操作、改进白云石炉衬质量和研究白云石造渣工艺以提高转炉炉龄等方面,也进行了许多研究和开发工作。
然而有部分转炉还存在装备水平落后、炼出的钢质量差、产品深加工水平和专业化水平低等问题,影响着转炉炼钢生产的竞争力。
吹炼过程前一炉钢出完钢后,倒净炉渣,如炉体正常,即堵出钢口,加废钢,兑入铁水,将炉体转到直立位置,边降枪边供氧;降到规定枪位后,按设定的供氧强度开始吹炼。
在供氧开吹的同时,加入第1批渣料,一般相当于全炉渣料总量的2/3。
在开吹后4~6min,第1批渣料熔化好,再加入第2批渣料,相当于全炉渣料总加入量的1/3。
如炉内化渣良好,就不再加第3批渣料(萤石);必要时可在开吹后的第10~12min加入炉内。
吹炼过程氧压在0.8~1.2MPa,一般根据设计采取恒定氧压操作,而根据吹炼要求变化氧枪高度(喷嘴出口到熔池面距离)。
开吹时氧枪高度约为1.5m,吹炼过程中约为1.2m,终点前1min 枪位降到1m左右。
也可以在吹炼过程中采用调节氧压操作。
当吹炼达到所炼钢种要求的终点碳范围时,即停止吹氧,倒炉取样和测定钢水温度。
吹炼低碳钢时,炼钢工可目测钢样含碳量是否合格。
吹炼中、高碳钢时,则需送样快速分析[%C]或用凝固定碳法快速测定含碳量。
当钢水成分和温度合乎要求时,即可倾动转炉出钢。
当钢水流出总量的1/4时,向钢包加脱氧剂和合金,进行钢水脱氧和合金化,至此一炉钢冶炼完毕。
(见彩图插页第12页)图1为装料、吹氧和出钢时转炉位置的变化和一炉钢吹炼过程的各期时间的概况。
图2为吹炼过程中钢中各元素的变化情况。
可以看出,在吹炼初期硅、锰迅速氧化,然后碳激烈氧化。
磷的去除和脱碳反应同步进行。
吹炼后期温度升高时,有锰还原的现象,有时磷也可能被还原而重新回到钢中。
热源及温度控制铁水中的硅、锰、碳、铁等元素被吹入的氧所氧化时,能释放出大量的热。
由于反应速率快以及转炉比较封闭,热损失少,所以转炉炼钢不需增加外来的热源,炼钢的热源是铁水的物理热和化学热。
根据热平衡计算,氧化反映所放出的热除了保证铁水温度(约1300℃)升高到钢水所要求的温度(约1600℃)外,还有一定的富余量,因此可以熔化一些废钢,这些废钢可以看作是冷却剂。
除废钢外,加入的铁矿石、石灰、石灰石也有冷却效果,因为铁矿石或石灰石吸热分解作用,它们的冷却效果大约为废钢或石灰的3倍。
各元素的氧化发热能力也有所不同。
表1为不同温度下每氧化1kg元素时给予熔池的热量和氧化1%元素使熔池升高温度(℃)的比较。
这是根据各个化学反应的热效应和1mol元素的质量计算出来的。
可以看出,硅和磷的发热量均很大;碳随其氧化程度不同,发热量有所不同,完全燃烧(生成CO2)的碳发热量比硅、磷还大,但不完全燃烧的碳(生成CO)发热量则小得多。
在转炉炼钢时,只有10%~15%的碳能完全燃烧。
然而炼钢过程中碳被氧化的数量大(约4%),所以主要的化学热热源仍然是碳。
铁水硅的含量和高炉炼铁操作因素有关,每增加(或减少)O.1%si可使钢水温度增加(或减少)约15℃,为了保持转炉炼钢的稳定,必须要求铁水含Si量保持稳定。
在实际炼钢操作中,要根据炼钢过程热平衡计算和测定的结果,计算在本厂条件下每氧化0.1%的元素引起温度升高数,和各种冷却剂的降温数,以及一些操作因素(如金属装入量的增减,空炉等待时间的长短)对熔池温度升降的影响值,求得足够准确的结果。
应用这些数据控制炼钢温度,并定期修正这些数据。
日常生产要尽量保持原材料条件和操作条件稳定,以有利于炼钢温度控制的稳定。
而炼钢温度又和炉渣的形成及冶金反应的进行方向有密切关系,所以准确而稳定的温度控制,是转炉炼钢操作正常进行的前提。
金属装入量在吹炼开始前装入转炉的铁水和废钢的总量。
由所设计的炉子容量所决定。
在装入前必须分别对铁水和废钢进行称量,才能保证装入量准确。
称量废钢比较容易,而铁水是高温液体,称量起来较困难,现在多在吊车上安装电子秤,一边吊运一边称量出铁水的重量。
准确称量金属料装入量对转炉操作非常重要,一方面因为配加的各种造渣剂、冷却剂、合金料的重量都是根据金属料的重量计算的;另一方面因为装入量不同,形成的熔池深度也不同,而熔池深度和吹氧操作有密切关系。