数理统计习题与解答(赵选民第二版)
概率论与数理统计第二版课后答案
概率论与数理统计第二版课后答案第一章:概率论的基本概念与性质1.1 概率的定义及其性质1.概率的定义:概率是对随机事件发生的可能性大小的度量。
在概率论中,我们将事件A的概率记为P(A),其中P(A)的值介于0和1之间。
2.概率的基本性质:–非负性:对于任何事件A,其概率满足P(A) ≥ 0。
–规范性:对于样本空间Ω中的全部事件,其概率之和为1,即P(Ω) = 1。
–可列可加性:对于互不相容的事件序列{Ai}(即Ai∩Aj = ∅,i ≠ j),有P(A1∪A2∪…) = P(A1) + P(A2) + …。
1.2 随机事件与随机变量1.随机事件:随机事件是指在一次试验中所发生的某种结果。
–基本事件:对于只包含一个样本点的事件,称为基本事件。
–复合事件:由一个或多个基本事件组成的事件称为复合事件。
2.随机变量:随机变量是将样本空间Ω上的每个样本点赋予一个实数的函数。
随机变量可以分为两种类型:–离散型随机变量:其取值只可能是有限个或可列无穷个实数。
–连续型随机变量:其取值在某个区间内的任意一个值。
1.3 事件的关系与运算1.事件的关系:事件A包含于事件B(记作A ⊆ B)指的是事件B发生时,事件A一定发生。
如果A ⊆ B且B ⊆ A,则A与B相等(记作A = B)。
–互不相容事件:指的是两个事件不能同时发生,即A∩B = ∅。
2.事件的运算:对于两个事件A和B,有以下几种运算:–并:事件A和事件B至少有一个发生,记作A∪B。
–交:事件A和事件B同时发生,记作A∩B。
–差:事件A发生而事件B不发生,记作A-B。
第二章:条件概率与独立性2.1 条件概率与乘法定理1.条件概率:在事件B发生的条件下,事件A发生的概率称为事件A在事件B发生的条件下的条件概率,记作P(A|B)。
–条件概率的计算公式:P(A|B) = P(A∩B) / P(B)。
2.乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A|B) * P(B) =P(B|A) * P(A)。
概率论与数理统计第二版参考答案
习题2参考答案2.1 X 23456789101112P1/36 1/18 1/12 1/95/36 1/6 5/36 1/91/12 1/18 1/362.2解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---eae。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=11220202111120202222220.70.30.40.60.70.30.40.60.70.30.40.60.3124CC C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628CC C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++=(2) P{0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+=2.5解:(1)P{X=2,4,6,…}=246211112222k +++ =11[1()]1441314kk lim →∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--=2.6解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,212341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719⨯⨯⨯=1123412342341234{1}{}{}{}{}2181716182171618182161817162322019181720191817201918172019181795P X P A A A A P A A A A P A A A A P A A A A ==+++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=12323{2}1{0}{1}1199595P X P X P X ==-=-==--=2.7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X CC ≥==+==+= (2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X CC C ≥==+=+==++=2.8 (1)X ~P(λ)=P(0.5×3)= P(1.5) 01.51.5{0}0!P X e-=== 1.5e -(2)X ~P(λ)=P(0.5×4)= P(2)122222{2}1{0}{1}1130!1!P X P X P X e ee---≥=-=-==--=-2.9解:设应配备m 名设备维修人员。
数理统计习题与解答-习题 1
⎪ ⎪⎩
y−6 24
,
2≤ y<6
解法二:根据题设可知 X1 与 X 2 的分布密度函数分别为:
f1 ( x1 )
=
⎧⎪ 1 ⎨6
,
−5
<
x1
<
1
⎪⎩0, 其它
f2
(
x2
)
=
⎧⎪ ⎨
1 4
,1
<
x
<
5
⎪⎩0, 其它
设 随 机 向 量 ( X1, X 2 ) 的 联 合 分 布 密 度 为 f (x1, x2 ) , 由 于 X1, X 2 相 互 独 立 , 故 有
−∞
+
z 0
− x+z−x
e θ dx
+
+∞ − x+ x− z
e θ dx]
z
=
1
−z
−z
[θ e θ + ze θ ] =
1
−z
eθ
(1 +
z)
4θ 2
4θ
θ
∫ ∫ ∫ (2)当
z
<
0
时,原式
=
1 4θ 2
z
[
−∞
− (− x)+ z− x
e θ dx
+
0 z
− − x+ x− z
e θ dx
+
P(
X Y
≤ z) =
x<z
+∞ yz
f (x, y)dxdy = (
00
+∞ yz
f (x, y)dx)dy = ( a2e−a(x+ y)dx)dy
概率论及数理统计及其应用第二版本课后标准答案.doc
第 1 章随机变量及其概率1,写出下列试验的样本空间:(1)连续投掷一颗骰子直至 6 个结果中有一个结果出现两次,记录投掷的次数。
(2)连续投掷一颗骰子直至 6 个结果中有一个结果接连出现两次,记录投掷的次数。
(3)连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
(4)抛一枚硬币,若出现 H 则再抛一次;若出现 T,则再抛一颗骰子,观察出现的各种结果。
解:(1)S{ 2,3,4,5,6,7} ;(2)S { 2,3,4, } ;(3)S { H ,TH ,TTH ,TTTH , } ;(4)S { HH , HT ,T1, T2, T3,T 4,T 5,T 6}。
2,设A, B是两个事件,已知P(A) 0.25, P(B) 0.5, P( AB) 0.125, ,求___ ___P( A B), P( AB), P( AB), P[( A B)( AB)] 。
解: P( A B) P( A) P(B) P( AB) 0.625 ,P( AB) P[( S A) B] P( B) P( AB) 0.375 ,___P( AB) 1 P( AB) 0.875 ,___P[( A B)( AB)] P[( A B)(S AB )] P( A B) P[( A B)( AB)] 0.625 P( AB) 0.53,在 100,101,, 999 这 900 个 3 位数中,任取一个 3 位数,求不包含数字 1 个概率。
解:在 100,101,,999 这 900 个 3 位数中不包含数字 1 的 3 位数的个数为 8 9 9648 ,所以所求得概率为6489000.724,在仅由数字 0,1,2,3,4,5 组成且每个数字之多出现一次的全体三位数中,任取一个三位数。
(1)求该数是奇数的概率;(2)求该数大于 330 的概率。
解:仅由数字 0,1,2,3,4,5 组成且每个数字之多出现一次的全体三位数的个数有 5 5 4100 个。
数理统计教程第二章课后习题答案
数理统计第二章习题解答1.设n ξξ,,1 是来自二点分布的一个子样,试求成功概率p 的矩法估计量.解: p E =ξ ξ=∴pˆ 2. 已知母体ξ均匀分布于()βα,之间,试求βα,的矩法估计量.解: 2βαξ+=E ,()122αβξ-=D 。
令()⎪⎪⎩⎪⎪⎨⎧=-=+22122n S αβξβα得 n S 3ˆ-=ξα,.3ˆnS +=ξβ 3. 对容量为n 的子样,求密度函数 ()()⎪⎩⎪⎨⎧<<-=其它,00,2;2ax x a a a x f 中参数a 的矩法估计量.解: ()322adx x a a x E a=-=⎰ξ 令ξ=3a 得ξ3ˆ=a . 4. 在密度函数 ()()10,1<<+=x x a x f a 中参数a 的极大似然估计量是什么? 矩法估计量是什么? 解: (1) ()()()∏∏==+=+=ni i ni nni x x L 111ααααα ()i ix∀<<1∴()().ln 1ln ln 1⎪⎪⎭⎫ ⎝⎛⋅++=∏=n i i x n L ααα 令()0ln 1ln 1=++=∂∂∑=i ni x nL ααα,得 ∑=--=ni iL xn1ln 1ˆα。
由于 ()01ln 222<+-=∂∂ααnL 故∑=--=ni iL xn1ln 1ˆα是α极大似然估计.(2) 由211+-=αξE 令ξα=+-211 得 .112ˆξξα--=5.用极大似然法估计几何分布 ()(),2,1,11=-==-k p p k P k ξ中的未知参数p .解:()()n x ni p p p L -∑-=1,令 ()01ln =---=∂∂∑pn x p n p p L i 得x p1ˆ=而01ln 2ˆ2<--=∂∂=x x n p Lpp ξ1ˆ=∴p是P 的极大似然估计. 6. 设随机变量ξ的密度函数为()0,,21>∞<<-∞=-σσσx e x f x,n ξξ,,1 是ξ的容量为n 的子样,试求σ的极大似然值. 解: ()()∑=--ix neL σσσ12,()01ln 2=+-=∂∂∑i x n L σσσσ。
概率论与数理统计第二版-课后答案-科学出版社-参考答案-最新
概率论与数理统计第二版-课后答案-科学出版社-参考答案-最新习题2参考答案2.12.3解:用X表示甲在两次投篮中所投中的次数,X~B(2,0.7)用丫表示乙在两次投篮中所投中的次数,Y~B(2,0.4)(1)两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=C:0.7°0.32C:°.400.62C20.710.3; C;%。
.©C20.720.30C20.420.60 0.3124 (2)甲比乙投中的次数多P{X>Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=1 1 1 0 02 2 2 0 0 0 2 2 2 0 IllC20.710.31C 20.400.62C20.720.30C2°.400.62C2°.720.300.562812 3 22.4解:(1) P{1 < X< 3}= P{X=1}+ P{X=2}+ P{X=3}=(2) P{0.5<X<2.5}=P{X=1}+ P{X=2}=15 15 15 52.5 解:1 1(D P{X=2,4,6,…}=* 2 22k=lim1[i (泸(2) P{X>3} =1 -P{X<3} =1 -P{X=l}- P{X=2} = l-i-i = -2 4 4 2.6解:设心表示第i 次取出的是次品,X 的所有可能取值为0, 1, 2P{X = 0} = P{A, A 2 A 3A 4} = P(A i )P(A 2\ 4叫 14 A 2)P (4 14心尸18 17 16 15 12—X — X — X —=—20 19 18 17 19P{X = 1J = P{4瓦瓦石} + P {瓦4,入石} + P{N 忑4石} + P{瓦石入儿}2 18 17 1618 2 17 1618 18 2 16 18 17 162 =——X — X — X ------- 1 ---- X — X — X ------ 1 ---- X — X — X — + ——X — X — X —=20 19 18 17 20 19 18 17 20 19 18 17 20 19 18 1712 323 P{X = 2} = \-P{X = 0}-P{X = \} = } - - =—19 95 952. 7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)P(X >3) = P(X = 3)4-P(X = 4) = C :0.4'0.6i + C :0.4°0.6° =0.1792(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5, 0. 4)P(X^3) = P(X = 3) + P(X = 4) + P(% = 5) = (7J 0.430.62 + C"0.440.6' + C ;0.羊0.6。
概率论与数理统计(第二版)课后答案
各章大体题详解习题一一、选择题1. (A )A B A B B ⊂−−→=;(B )B A A B A B B ⊂−−→⊂−−→=; (C )AB A B A B B φ=−−→⊂−−→=;(D )AB B A φ=−−→⊂ 不必然能推出A B B =(除非A B =)所以 选(D )2. ()()()()()()()P A B P AB P AB P A P B P A P B -==--++ ()()()P A P B P AB =+-所以 选(C )3. )()()()()()()()|(A P B P A P B P A P B P AB P B A P B A ≥−→−==−→−⊂所以 选(B )4. 1)(0)()()()()(==−→−==B P A P B P A P AB P A P 或 所以 选(B )5. (A )若B A =,则φ=AB ,且φ==A A B A ,即B A ,不相容(B )若φ≠⊃B A ,且Ω≠A ,则φ≠AB ,且φ≠=A B A ,即B A ,相容 (C )若φφ≠=B A ,,则φ=AB ,且φ≠=B B A ,即B A ,相容 (D )若φ≠AB ,不必然能推出φ=B A 所以 选(D )6. (A )若φ≠AB ,不必然能推出)()()(B P A P AB P =(B )若1)(=A P ,且φ≠⊃B A ,则)()()()(B P A P B P AB P ==,即A,B 独立(C )若φ=AB ,1)(0<<A P ,1)(0<<B P ,则)()()(B P A P AB P ≠ (D )若1)(=A P ,则A 与任何事件都彼此独立 所以 选(B )7. 射击n 次才命中k 次,即前1-n 次射击恰好命中1-k 次,且第n 次射击时命中目标,所以 选(C )二、填空题8. C A C A C A A C A C A C A C A )())((= C C C C A A C C A C A C ==== ))(()()( 所以 C B =9. 共有44⨯种大体事件,向后两个邮筒投信有22⨯种大体事件,故所求概率为414422=⨯⨯ 10. 设事件A 表示两数之和大于21,则 样本空间}10,10|),{(<<<<=Ωy x y x ,}10,10,21|),{(<<<<>+=y x y x y x A 872121211=⋅⋅-==ΩS S P A 11. 由1.0)(,8.0)(=-=B A P A P ,得7.0)(=AB P ,故3.0)(=AB P 12. 由4.0)(,3.0)(,2.0)(===B A P B P A P ,得1.0)(=AB P ,故2.0)()()(=-=AB P B P A B P 13. 2.0)|()()(==A B P A P AB P ,故8.0)|()()(==B A P AB P B P14. )()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P +---++=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++=2719=15. 由于A,B 彼此独立,可得91)()()(==B P A P B A P ,)()(B A P B A P =,于是31)()(==B P A P ,故32)(=B P 三、计算题16.(1))},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(T T T H T T T H T H H T T T H H T H T H H H H H =Ω;(2)}3,2,1,0{=Ω;(3)}1|),{(22≤+=Ωy x y x ;(4)}5:0,5:1,5:2,5:3,5:4,4:5,3:5,2:5,1:5,0:5{=Ω 17.(1)C B A ; (2))(C B A ; (3)C B A C B A C B A ; (4)AC BC AB ; (5)C B A ; (6)C B A ; (7)ABC18. 法一,由古典概率可知,所求概率为:2016420109⋅C ;法二,由伯努利定理可知,所求概率为:1644209.01.0⋅⋅C19. 只有唯一的一个六位数号码开能打开锁。
概率论与数理统计第二版_课后答案_科学出版社_参考答案_最新
习题2参考答案2.1 X 23456789101112P1/36 1/18 1/12 1/95/36 1/65/36 1/9 1/12 1/18 1/362.2解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---eae 。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=11220202111120202222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P{0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++ =11[1()]1441314k k lim →∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--=2.6解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,212341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719⨯⨯⨯= 1123412342341234{1}{}{}{}{}2181716182171618182161817162322019181720191817201918172019181795P X P A A A A P A A A A P A A A A P A A A A ==+++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯= 12323{2}1{0}{1}1199595P X P X P X ==-=-==--=2.7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.8 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e - (2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-2.9解:设应配备m 名设备维修人员。
江苏大学课后答案考试试题全免费下载
江苏大学各专业课后答案真正免费免积分下载!(更新中)PART 121世纪大学英语读写教程(第四册1-4)课后答案免费下载/thread-4531-1-2.html微积分(第二版)同济大学应用数学系编高等教育出版社_课后习题答案下载/thread-4536-1-2.html南京大学物理化学(第四版)卢荣__课后习题答案免费下载/thread-4535-1-2.html《大学物理学》赵近芳_北京邮电大学课后答案免费下载/thread-4533-1-2.html微机原理及应用第三版 (晏寄夫著) 西南交通大学出版社课后答案免费下载/thread-5429-1-1.html数学分析_第三版_上册_(欧阳光中_朱学研_著)_高等教育出版社课后答案免费下载/thread-5412-1-1.html复变函数与积分变换_(王忠仁_著)课后答案免费下载/thread-5411-1-1.html复变函数第四版 (余家荣著) 高等教育出版社课后答案免费下载/thread-5409-1-1.html线性代数 (惠淑荣张京李修清著) 东北大学出版社8090珊瑚论坛课后答案免费下载/thread-5406-1-1.html数理统计第二版 (赵选民徐伟师义民秦超英著) 科学出版社课后答案免费下载/thread-5404-1-1.html随机过程 (汪荣鑫著) 西安交通大学出版社课后答案免费下载/thread-5402-1-1.html当代世界经济与政治第三版,人民大学出版社课后答案下载/thread-5401-1-1.html全新版大学英语第三册综合教程练习课后答案下载/thread-5398-1-1.html线性代数简明教程第二版(陈维新著课后答案免费下载/thread-5397-1-1.html思想道德修养与法律基础 2010版 (罗国杰夏伟东著) 高等教育出版社课后答案下载/thread-5396-1-1.html统计学高教第三版课后习题答案8090珊瑚论坛.pdf/thread-5395-1-1.html概率论与数理统计教程_(茆诗松_程依明_濮晓龙_著)_高等教育出版社课后答案免费下载/thread-5381-1-1.html线性代数简明教程第二版(陈维新著)8090珊瑚论坛.pdf/thread-5380-1-1.html微分几何初步 (陈维桓著) 北京大学出版社课后答案免费下载/thread-5379-1-2.html复变函数习题全解及导学课后答案免费下载.pdf/thread-5378-1-2.html临床医学英语 (高艳陈迎著) 中国海洋大学出版社课后答案.zip/thread-5353-1-2.html普通物理学第三册第五版 (程守洙胡盘新著) 高等教育出版社/thread-5352-1-2.html马克思主义基本原理概论第四版 (本书编写组著) 高等教育出版社免费下载/thread-5351-1-2.html电磁场与电磁波第二版 (周克定翻译著著)课后答案免费下载/thread-5350-1-2.html大学语文第九版 (徐中玉齐森华著) 华东师范大学出版社/thread-5348-1-2.html人大版《会计学基础》课后答案免费免积分下载/thread-4438-1-2.html机电传动控制邓星钟第四版课后答案免费免积分下载/thread-4436-1-2.html现代控制理论第3版刘豹唐万生课后全部答案机械工业出版社免费免积分下载地址/thread-4382-1-2.html《模拟电子技术基础》(第四版)童诗白,华成英_高等教育出版社_课后习题答案下载/thread-4432-1-2.html《自动控制原理》胡寿松_第四版科学出版社课后答案免费免积分下载/thread-4435-1-2.html工程力学_静力学与材料力学_(单辉祖_谢传锋_著)_高等教育出版社_课后答案免费下载/thread-4442-1-3.html工程材料及成形技术_林建榕_高教版课后习题参考答案免费免积分下载/thread-4440-1-3.html《电机及拖动基础》顾绳谷_第四版_机械工业出版社_课后答案免费免积分下载/thread-4434-1-3.html《电工学》秦曾煌第六版上下册课后答案免费免积分下载/thread-4430-1-3.html《数字信号处理(第三版)西安电子科技大学出版社(丁玉美)课后答案/thread-4429-1-3.html《通信原理教程》_樊昌信_最新版电子工业出版社课后答案免费免积分下载/thread-4426-1-3.html《信号与系统》第二版课后答案完整版_郑君里免费免积分下载/thread-4424-1-3.html最全数据结构课后习题答案(耿国华版[1]免费免积分下载/thread-4423-1-3.htmlMATLAB程序设计与应用_刘卫国主编_高等教育出版社课后答案免费免积分下载/thread-4422-1-3.html电磁场与电磁波_第四版_(谢处方_饶克谨_著)课后答案免费免积分下载/thread-4421-1-3.html传感器原理及工程应用_第三版__课后答案免费免积分下载电工学_第七版_秦曾煌_课后习题答案免费免积分下载/thread-4389-1-3.html电力电子技术王兆安第五版课后习题答案免费免积分下载/thread-4387-1-3.html电路_第五版_邱关源_高等教育出版社_课后答案详细版免费免积分下载/thread-4386-1-3.html电路分析_第二版_课后答案_胡翔骏_高等教育出版社免费免积分下载/thread-4385-1-3.html离散数学课后答案(清华版)免费免积分下载/thread-4384-1-3.html通信原理_(周炯盘_著)_北京邮电大学出版社_课后答案免费免积分下载/thread-4383-1-3.html信息论与编码-曹雪虹-课后习题答案免费免积分下载地址/thread-4381-1-3.html移动通信_第三版_(郭梯云__李建东_著)课后答案免费免积分下载/thread-4380-1-3.html自动控制理论(第二版)夏德钤_课后答案免费免积分下载《新视野大学英语读写教程(第二版)》【第一册】课后答案免费下载,免积分下载/thread-4335-1-4.html《线性代数》(同济第四版)课后习题答案(完整版)免费免积分下载/thread-4334-1-4.html《概率论与数理统计教程》课后答案(完整版,魏宗舒版)免费免积分下载/thread-4331-1-4.html曼昆宏观经济学课后答案(第五版)免费免积分下载/thread-4330-1-4.html《中国近代史纲要》完整课后习题答案免费下载/thread-4316-1-4.html机械设计_濮良贵、纪名刚_第八版_第五章课后习题答案免费下载/thread-4313-1-4.html21世纪大学英语读写教程第一册.课后答案免费下载免积分下载/thread-4312-1-4.html21世纪大学英语读写教程(第一二三册)课后翻译答案免费下载/thread-4310-1-4.html大学英语精读第三册课后答案免费免积分下载c语言程序设计第三版谭浩强课后答案免费免积分下载/thread-4307-1-4.html复变函数论第三版高教出版社课后习题答案免费下载/thread-4028-1-4.html专为江苏大学学生整理,真正免积分,只有花几秒钟注册一下就可以任意下载海量资源了~~收藏哦~~留着有用。
数理统计课后题标准答案
(2)n=64时,求 P{ x 40 1}
解:
x:
52 N (40, )
64
P{ x 40 1} P{ x 40 1 } p{U 8}
5/8 5/8
5
2(8) 1 0.8904 5
第二章
参数估计
1.设母体X具有负指数分布,它的分布密度
为
ex , x 0
f(x)=
0, x 0
解:E^1
E(2 3
x1
1 3
x2 )
2 3
Ex1
1 3
Ex2
2 3
1 3
同理:^2和^3都是 的无偏估计。
D^1
( 2 )2 3
(1)2 3
5 9
,
D^2
(1)2 4
( 3)2 4
5 8
,
D^3
(1)2 2
(1)2 2
1 2
^3 方差最小为有效
对形如^
n
xi xi ,且
xi
1时,
E
,以
e(x ) , x
f(x)=
0, x 0
试求 的最大似然估计。
解:
e(x ) , x
X : f (x)
0, x 0
似然函数 n
n
L
f (xi ) e(xi )
i1
ln L ( xi
为了使L达到最大i, 尽可能大,而^
i
i 1
n
),
d
xi n
ln L 0无解
d0,尽可能小,
2
12
用
得
X
X和@aS22b分别估计EX^a和 XDX
3S
S 2 @(b a)2
《数理统计学(第2版)》习题答案及解题步骤
"+ !,0)0!"+
!"0,"+(6!>"))0!#!>"">(6!?"06!>/">"),0)0!#!?"
"?(!06!?/"?")
6!!"连续#当 ">,%#"?,%时#有6!>/">",6!>"#6!?/"?",6!?"
2#),!>#?"(:";><,%7!!!)"+!>/"">>",#!"!,?"+!?#?/"?"" "?,%
##!!)"+!>#>/">)##!!,"+!?#?/"?)
即有)0!个观测值小于等于>#一个落入区间 !>#>/">"#,0)0!个落入区间
!>/">#?)#一个落入区间 !?#?/"?)#余下"0,个大于?/"?$
27!!!)"+!>#>/">"#!!,"+!?#?/"?""
(!)0!"+ !+
(!)0!"+
"+ !,0)0!"+
!"0,"+(6!>"))0!(6!?"06!>"),0)0!
概率论与数理统计第二版_课后答案_科学出版社_参考答案_最新
习题2参考答案2.1 X 23456789101112P1/36 1/18 1/12 1/95/36 1/65/36 1/9 1/12 1/18 1/362.2解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---eae 。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=11220202111120202222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P{0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++ =11[1()]1441314k k lim →∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--=2.6解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,212341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719⨯⨯⨯= 1123412342341234{1}{}{}{}{}2181716182171618182161817162322019181720191817201918172019181795P X P A A A A P A A A A P A A A A P A A A A ==+++=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯+⨯⨯⨯= 12323{2}1{0}{1}1199595P X P X P X ==-=-==--=2.7解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.8 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e - (2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-2.9解:设应配备m 名设备维修人员。
数理统计习题与解答(赵选民版)2 - 副本
( ) f
X (1)
(
x)
=
⎧⎪2n ⎨ ⎪⎩
1− x2 0,
n−1
x,
0< x<1 其它
f
X(n)
(
x)
=
⎧2nx2n−1, ⎨ ⎩ 0,
0
<x<
其它
1
( ) ( ) ⎧
n!
f
X(k
)
(
x)
=
⎪ ⎨ ⎪⎩
(
k
−
1)!(
n
−
k
)!
x2 k −1 0,
1− x2
n−k
2x,
0< x <1
其它
习题三
1.设体 X 服从正态分布 N (μ,σ 2 ) , ( X1, X 2 ,…, X n )T 是其样本,
习题一
1.设总体 X 服从泊松分布,即 X 的分布律为
P{X = k} = λ k e−λ , k = 0,1, 2 , λ > 0,
k!
X1, X 2 ,…, X n 是来自总体 X 的样本,试求:
(1) ( X1, X 2 ,…, X n )T 的联合分布律;(2) EX,DX,ESn2 , ESn*2. 解:(1) X1, X 2 ,…, X n 是来自总体 X 的样本, X 服从泊松分布
, Xn
⎪⎩ 0, x ≤ 0,
为来自总体 X 的样本,证明样本均值 X 是参数θ 的充分完备统计量。
解:样本(X1, X 2 ,
,
X
)T 的联合分布密度为
n
n
∑ xi
(L x1,
x2 ,…,
xn ;θ)=
数理统计课后习题答案第二章
30.解:由题意用U统计量
计算得置信区间为
把
代入计算得置信区间
31.解:由题意, 未知,则
则
经计算得
解得 的置信区间为
查表:
带入计算得 的置信区间为: 。
32.
解: 未知,则 即:
有: 则单侧置信下限为:
将 带入计算得
即钢索所能承受平均张力在概率为 的置信度下的置信下限为 。
33.解:总体服从(0,1)分布且样本容量n=100为大子样。
令 为样本均值,由中心极限定理
又因为 所以
则相应的单侧置信区间为 ,
将 =0.06
代入计算得所求置信上限为0.0991
即为这批货物次品率在置信概率为95%情况下置信上限为0.0991。
34.解:由题意:
解得 的单侧置信上限为
其中n=10, =45,查表 3.325
。一元回归的线性模型为 试求 , 的最小二乘估计。
8.对于自变量和因变量都分组的情形,经验回归直线的配置方法如下:对 和 作 次试验得 对试验值,把自变量的试验值分成 组,组中值记为 ,各组以组中值为代表;把因变量的试验值分为 组,组中值记为 ,同样地各组以组中值为代表。如果 取 有 对, , ;而 。用最小二乘法配直线 ,试求 的估计量23
77
7
9.4
44
46
81
8
10.1
31
117
93
9
11.6
29
173
93
10
12.6
58
112
51
11
10.9
37
111
76
12
数理统计第二章课后习题答案
第二章 参数估计2.2 对容量为n 的子样,对密度函数其22(),0(;)0,0x x f x x x ααααα⎧-⎪=⎨⎪≤≥⎩ 中参数α的矩法估计。
解:1202()()a E x x x dx ααα==-⎰22022()x x dx ααα=-⎰2321221333ααααααα=-=-= 所以 133a x α∧== 其中121,21(),,,n n x x x x x x x n =+++ 为n 个样本的观察值。
2.6 设总体X 的密度函数为12(;),,,,n f x X X X θ 为其样本,求下列情况下θ∧的MLE 。
(ii)1,01(;)0,x x f x αθθ-⎧=⎨⎩ 其它 0θ (v )1,0(;)0,x e x f x θθθ-⎧≥⎪=⎨⎪⎩其它 0θ 解:(ii)1111()n n n i i i i L x x θθθθθ--====∏∏1ln ()ln (1)ln n i i L n x θθθ==+-∑11111ln ()ln 01(ln )(ln )n i i n n i i i i d L n x d n x x n θθθθ=∧--===+==-=-∑∑∑ (v)111()n i i x n L e θθθ=-∑= 11ln ()ln()nii L n x θθθ==--∑211ln ()101,n i i n i i d L n X d x x X n θθθθθ=∧==-+===∑∑2.10 设总体123(,1),,,X N X X X μ 为一样本,试证明下述三个估计变量11232123312313151021153412111362X X X X X X X X X μμμ=++=++=++ 都是μ的无偏估计量,并求出每一估计量的方差,问哪一个最小? 证:1123131()()()()5102E E X E X E X μ=++131()5102μμ=++= 同理:2123115()()()()3412E E X E X E X μ=++ 115()3412μμ=++= 3123111()()()()362E E X E X E X μ=++ 111()362μμ=++= ∴12,,μμμ是μ的无偏估计量。
概率论与数理统计课后习题详解_宗旭平版.pdf
概率论与数理统计第二章随机变量及其分布课后习题详解2-1((P27P27))习题2-11.什么是随机变量?随机变量与普通变量有什么区别?设Ω为某一随机试验的样本空间,如果对于每一个样本点ω∈Ω,有一个实数X(ω)与之对应,这样就定义了一个Ω上的实值函数X=X(ω),称之为随机变量。
随机变量的定义域是样本空间,也就是说,当一个随机试验的结果确定时,随机变量的值也确定下来。
因此,如不与某次试验联系,就不能确定随机变量的值。
所谓随机变量,实际上是用变量对试验结果的一种刻画,是试验结果(即样本点)和实数之间的一个对应关系,不过在函数概念中,函数f(x)的自变量是实数x,而在随机变量的概念中,随机变量的自变量是试验结果(即样本点)。
随机变量的取值随试验结果而定。
2.一箱产品共10件,其中9件正品1件次品,一件一件无放回的抽取,直到取到次品为止,设取得次品时已取出的正品件数为X,试用X的值表示下列事件。
(1)第一次就取得次品;(2)最后一次才取得次品;(3)前五次都未取得次品;(4)最迟在第三次取得次品。
解:(1)第一次取得次品,即:取出0件正品,可表示为{X=0}(2)最后一次取得正品就是已取出9件正品,即{X=9}(3)前五次都未取得次品,就是至少已取出5件正品,即{X ≥5}(4)最迟在第三次取得次品,就是最多取得两件正品,即{X ≤2}习题2-22-2((P31P31))3.袋中装有5只乒乓球,编号为1、2、3、4、5,从中任取3只,以X 表示取出的3只球中的最大号码,求随机变量X 的概率分布。
解:P(X=1)=0P(X=2)=0P(X=3)=351C =0.1P(X=4)=352311C C C =0.3P(X=5)=352411C C C =0.6∴随机变量X 的概率分布为:6.03.01.0543X P4.设随机变量X 的概率分布为P{X=k}=18ak(k=1,2,…..9)(1)求常数a(2)求概率P{X=1或X=4}(3)求概率P{-1≤X<72}解:(1)∵1k kp =∑(123456789118a∴++++++++=)25a ∴=则P {X=k}=45k (2)P {X=1或X=4}=P {X=1}+P {X=4}=145+445=19(3)P{-1≤X<72}=P{X=1}+P {X=2}+P{X=3}=123454545++=2155.一箱产品中装有3个次品,5个正品,某人从箱中任意摸出4个产品,求摸得的正品个数X 的概率分布。
数理统计课后习题答案
习题一、基本概念1.解: 设12345,,,,X X X X X 为总体的样本1)51151~(1,) (,,)(1)i ix x i X B p f x x p p -==-∏555(1)11(1),5x x i i p p x x -==-=∑2)λλλλλ55155151!!),,( )(~-==-∏∏==e x ex x x f P X i ixi i xi3)5155111~(,) (,,),,1,...,5()i X U a b f x x a xi b i b a b a ===≤≤=--∏所以5151,,1,...,5()(,,)0,a xi b i b a f x x ⎧≤≤=⎪-=⎨⎪⎩其他4)()⎪⎭⎫ ⎝⎛-==∑∏=-=-5122/55125121exp 221),,( )1,(~2i i i x x e x x f N X i ππμ2.解: 由题意得:因为0110,(),1,n k k k x x k F x x x x n x x ++<⎧⎪⎪≤<⎨⎪≥⎪⎩,所以40,00.3,010.65,12()0.8,230.9,341,4x x x F x x x x <⎧⎪≤<⎪⎪≤<⎨≤<⎪⎪≤<⎪≥⎩3.解:它近似服从均值为172,方差为5.64的正态分布,即(172,5.64)N 4.解:()55-5 510/2- -⎪⎪⎭⎫ ⎝⎛<<-=⎪⎪⎭⎫ ⎝⎛<=<k X k P k X P k X P μμμ 因k 较大()()()()()()()-555(15)2510.950.95P X k k k k k k k μ<≈Φ-Φ-=Φ--Φ=Φ-=Φ=,5 1.65,0.33k k ==查表5.解:()-5250.853.8 1.1429 1.7143(1.7143)( 1.14296.3/6X P X P ⎛⎫<<=-<<=Φ-Φ- ⎪⎝⎭)0.9564(10.8729)0.8293=--=6.解:()()()~(20,0.3),~(20,0.2),~(0,0.5),0.3 0.30.3Y N Z N Y Z Y Z N P Y Z P Y Z P Y Z -->=->+-<-设与相互独立,0.42430.42431(0.4243)(1(0.4243))22(0.4243)P P ⎫⎫=>=+<-⎪⎪⎭⎭=-Φ+-Φ=-Φ220.66280.6744=-⨯= 7.解:101010222111~(0,4),~(0,1),2111 10.05,0.95444444ii i i i i i i X X N N c c c P X P X P X ===⎛⎫⎛⎫⎛⎫>=-≤=≤= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑则查卡方分位数表 c/4=18.31,c=73.24 8.解:由已知条件得:(1,),1()iX Y B p p F μ=-由i X 互相独立,知i Y 也互相独立,所以1(,),1().ni X i Y B n p p F μ==-∑9.解: 1))1(,)1(,2p Np DX ES np Np n DX X D Np EX X E -==-==== 2)λλλ======DX ES nn DX X D EX X E 2,, 3)()()12,12,2222a b DX ES n a b n DX X D b a EX X E -==-==+==4)1,1,2======DX ES nn DX X D EX X E μ10.解: 1)()22212)1()1()1()1(σ-=-=-=-=-∑=n DX n ES n S n E X X E ni i2)()222242221(1)(1)(1), ~(1)nii n S n S DXX D n S D n σχσσ=⎛⎫---=-=- ⎪⎝⎭∑ ()2412(1)ni i D X X n σ=∴-=-∑11.解:ππππππn X E dt e dy ey dy ey X nE Y E nn DY X E EY N X n Y n N X t y y 2)(,2)1(222222||21)(),11,0(),1,0(~),/1,0(~)102222==Γ==========-∞+-∞+-∞+∞-⎰⎰⎰ 令ππππππ211,2)1(222222||21),1,0(~)21102222===Γ====∑∑⎰⎰⎰==-∞+-∞+-∞+∞-n i i n i i t x x X E n X n E dt e dx ex dx ex X E N X12.解:1)()2224X E X E X E n μμ-=-=()244100.1X X D E n n⎡⎤=+=+≤⎢⎥⎣⎦ 40n ∴≥2)2222,2u u X u E u e du udu +∞+∞---∞===⎰⎰222220022002(1)0.1,80010,254.6,255u uutue du ue duue d e dtE X En nμπ+∞+∞--+∞+∞--===Γ=-==≤≥≥=∴≥⎰⎰⎰⎰3) ()()111P X P X Pμμ⎛-≤=-≤-≤=≤≤⎝⎭0.975210.95,2221.96,15.36,16u n n⎛⎛⎫⎛⎫=Φ-Φ-=Φ-≥⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭≥=≥≥13.解:()()()112221111111,n ni ii iY XY X a X na X an b b n bEY EX a S Sb b==⎛⎫=-=-=-⎪⎝⎭=-=∑∑14.解:1)12345~(0,2),~(0,3)X X N X X X N+++~~(0,1)N N1111,, 2.23c d n∴===2)()2345222212~(2),~(1)3X X XX Xχχ+++()()22122234523~(2,1),,2,123XX F c m n X X X +===++15.解: 设1(1,)p F n α-=,即()1(1P F p P p α≤=-⇔≤≤=-()()12()2()12P T P T pP T p pP T ⇔≤-≤=-⇔≤=-⇔≤=-122112()()(1,)p p p t n tn F n α---=∴==16.解:()()()()()()()()()121222222221212222212121212212221212~(0,2),~(0,~~(0,1)~~(2)2210.1,2X X N X X N N N X X X X t P t P X X X X X X X X X X t P X X X X c χχ+-+⎛⎫⎛⎫++>=> ⎪ ⎪ ⎪ ⎪++-++-⎝⎭⎝⎭⎧⎫+⎪⎪=-≤=⎨⎬++-⎪⎪⎩⎭=0.9(1,2)8.532tF ==17.证明: 1)2211122211()0,(),(0,)1(1)(1)n n n n n E X X D X X X X N nnn S n t n σσχσ+++++-=-=∴---=- 又2)2211111()0,(),(0,)n n n n n E XX D X X X X N nnσσ+++++-=-=∴- 3)2211111()0,(),(0,)n n E X X D X X X X N n nσσ---=-=∴- 18. 解:()()()62,47.61,96.125.0,975.025.0,95.0125.0225.0/25.025.0975.0≥≥=≥≥Φ≥-Φ=⎪⎪⎭⎫ ⎝⎛≤-≤-=≤-n n u n n n n n X n P X P σμσμ 19.解[,]0,1,[,](),(),0,[,]1,X U a b x a x a b x af x F x a x b b a b a x a b x b ≤⎧⎧⎪∈-⎪⎪∴==<≤-⎨⎨-⎪⎪∉⎩>⎪⎩1(1)()(1())()n f x n F x f x -∴=-111()1(),[,]0,[,]1(),[,]()(())()0,[,]n n n n b a n x a b b a b a x a b x a n x a b f x n F x f x b a b ax a b ----⎧∈⎪=--⎨⎪∉⎩-⎧∈⎪==--⎨⎪∉⎩20.解:()()()()()()()55(1)(1)11515555555(5)111011011011101211121(1(1))1(11(1))1(1)0.5785121515 1.5(1.5)0.93320.70772i i i i i i i i i i P X P X P X P X X P X P X P X P =====<=-≥=-≥=--≤⎛-⎫⎛⎫=--≤- ⎪⎪⎝⎭⎝⎭=--Φ-=--+Φ=-Φ=-⎛⎫<==<=<=Φ== ⎪⎝⎭∏∏∏∏∏21. 解:1)因为21~(0,)mii XN m σ=∑,从而~(0,1)miXN ∑2221~()m ni i m Xn χσ+=+∑,所以~()miX t n ξ=2)因为22211~()mii Xm χσ=∑,22211~()m nii m Xn χσ+=+∑所以2121~(,)mi i m ni i m n X F m n m X =+=+∑∑3)因为21~(0,)m i i X N m σ=∑,21~(0,)m ni i m X N n σ+=+∑所以2212()~(1)mi i X m χσ=∑,2212()~(1)m ni i m X n χσ+=+∑故222221111~(2)m m n i i i i m X X m n χσσ+==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∑∑ 22.解:由Th1.4.1 (2)()(),95.047.321),1(~122222=⎪⎪⎭⎫⎝⎛≤---σχσS n P n S n查表:n 121,n 22-==23.解: 由推论1.4.3(2)05.095.0139.2139.2),14,19(~222122212221=-=⎪⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>S S P S S P F S S 24.解: 1)()()94.005.099.057.3785.10)20(~),1,0(~),,0(~2201222220122=-=≤≤=⎪⎭⎫ ⎝⎛-=---∑∑==χχχσμσμσμσμP X XN X N X i i i ii i2)()895.01.0995.058.381965.11),19(~192222222012=-=⎪⎪⎭⎫ ⎝⎛≤≤=-∑=σχσσS P S X Xi i25. 解: 1)()4532.07734.0221)75.0(21431435/2080380=⨯-=+Φ-=⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>-=>-U P X P X P2)()()05.01975.021064.21064.25/2674.780380=+⨯-=≤-=⎪⎪⎭⎫ ⎝⎛>-=>-T P X P X P 26.解: 1)8413.0120472.4472.4=⎪⎪⎭⎫ ⎝⎛<-=⎪⎪⎭⎫ ⎝⎛<-=⎪⎭⎫ ⎝⎛+<σσσa X P a X P a XP 2)2222222222223132222222S P S P S P S P σσσσσσσσ⎛⎫⎛⎫⎛⎫⎛⎫-<=-<-<=<<=<< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22199.528.50.950.050.9S P σ⎛⎫=<<=-= ⎪⎝⎭3)3676.3,328.120,1.020,9.02012020/1===⎪⎪⎭⎫ ⎝⎛≤=⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>-=⎪⎪⎭⎫⎝⎛>-=⎪⎪⎭⎫ ⎝⎛>-c c c T P cT P cS X P c S X P c X S P μμμ27.解:22cov(,)(,)1()()1cov(,)()1(,)1i j i j i j i j i j i j X X X X r X X X X n D X X D X X nX X X X E X X X X X X X X nr X X X X n σσ----=--=-=--=---=-∴--=--28.解:()2221212)1(2)1(,)1(,21),2,2(~σσμ-=-=-=-===+=∑∑==+n ES n ET S n Y Y T X Y n Y N X X Y Y Y ni i ni i in i i 令习题二、参数估计1.解:矩估计()1 3.40.10.20.90.80.70.766X =+++++=()()11111ln ln(1)ln nnni i i i nii L x x L n x αααααα===⎡⎤=+=+⎣⎦=++∏∏∑121ln ln 01ˆ10.2112ln n i i n ii d n L x d n x αααα====+=+=--=∑∑3077.0121ˆ,212)1()1(110121=--==++=++=+=⎰++X XX x dx x EX αααααααα所以12112ˆˆ,11ln n ii X nX X αα=⎛⎫⎪- ⎪==-+-⎪ ⎪⎝⎭∑,12ˆˆ0.3079,0.2112αα≈≈ 2.解: 1)3077.02ˆ,21====X X EX θθ111ln 0nni L nL θθθ====-=∏无解,依定义:21ˆmax ii nX θ≤≤= 2)矩法:211ˆˆ1.2,0.472212EX DX θθ====极大似然估计:22ˆˆ1.1,0.1833212EX DX θθ====3. 1)解:矩法估计:111ˆ,EX X Xλλ===最大似然估计:111,ln ln niii nnx x nii i L eeL n L x λλλλλ=--==∑===-∑∏2111ˆln 0,ni ni ii d n nL x d Xxλλλ===-===∑∑2)解:~()X P λ矩估计:X X EX ===1ˆ,λλ最大似然估计:1,ln ln ixnxnn i i iiL eeL n nx x x xλλλλλλ--====-+-∑∏∏2ˆln 0,d nx L n X d λλλ=-+==3)解:矩估计:()2,212b a a bEX DX -+==联立方程:()2*221ˆ2ˆa X b X a bX b a M ⎧=-⎪→+⎧=⎪⎪⎨-⎪=⎪⎩⎨=+⎪⎩极大似然估计:依照定义,11ˆˆmin ,max i ii ni na Xb X ≤≤≤≤== 4) 解: 矩估计:ln EX dx xxθθ+∞+∞==⎰,不存在22111,ln ln 2ln nnni i i i iL L n x x x θθθ=====-∑∏∏ln 0n L αθ∂==∂,无解;故,依照定义,(1)ˆX θ= 5)解: 矩法:()/0()(1)(2)x t xEX edx t e dt αβααβαββ+∞+∞---==+=Γ+Γ⎰⎰Xαβ=+=2222()(1)2(2)(3)t EX t e dt αβααββ+∞-=+=Γ+Γ+Γ⎰ 222222122()iM X nααββαββ=++=++==∑22222*2111ˆˆi M X X X M nX βαβ=-=-==-=∑即11ˆˆX X αβ=-===极大似然估计:()()/1111exp ,ln ln i nx n i n L e nx n L n nx αβαβαβββββ---=⎡⎤==--=--+⎢⎥⎣⎦∏2ln 0,ln ()0n n nL L x ααββββ∂∂===-+-=∂∂ α无解,依定义有:(1)(1)ˆˆ,L L X X X X αβα==-=- 7)解: 矩法:22223222(2)x x tx EX dx dte dt Xθθθ+∞+∞+∞---=====⎰⎰⎰ˆMθ=极大似然估计:22222211iixnxn ni ii iL x eθθ--==∑⎛⎫== ⎪⎝⎭∏222ln ln43ln ln ln iixL n n n xθθ=---∑∑233ˆln20,iLxnLθθθθ∂=-+==∂∑8)解:矩法:2222222222022222223(1)(1)[(1)](1)(1)(1)1221x x x x x xxxd dEX x xd dd dq Xdq dq qθθθθθθθθθθθθθ∞∞∞-===∞==--=-=---=====-∑∑∑∑2ˆM Xθ=极大似然估计:22221(1)(1)(1)(1)ln2ln(2)ln(1)ln(1)inx n nx ni iiiL x xL n nx n xθθθθθθ--==--=--=+--+-∏∏∑222ˆln0,1Ln nx nLXθθθθ∂-=-==∂-4解:11112112(,,)(1)(1)ln(,,)ln(1)ln(1)n ni ii i i iy yny y nninL p y y y p p p pL p y y y ny p n y p==--=∑∑=-=-=+--∏12(,,)0(1)ny pd L p y y y ndp p p-==-ˆp Y=记001,;0,i i i iy x a y x a=≥=<则(1,)iY B p;5.解:1,ln lninx n nxiL e e L n nxλλλλλλ--====-∏711120000ˆln 0,,2010001000i i i d n L nx X x v d X λλλ==-=====∑ 1ˆ0.05Xλ== 6解:因为其寿命服从正态分布,所以极大似然估计为:2211ˆˆ,()ni i x x n μσμ===-∑ 根据样本数据得到:2ˆˆ997.1,17235.811μσ==。
概率论与数理统计及其应用第二版课后答案
the area under development envir onme nt. All admini strative law enforcement de partments to a ppoint a full -time pers onnel stati one d in areas dedi cated to coordinati ng and solving pr oblems a ss ociated with busi nesse s in thi s se ctor. When ther e are substantial i ssue s, se ctor lea ders arrange d to personal ly intervene, in -per son, in-pers on push tangi ble area buil ding a gree n light, easy li ne. To further reduce a nd standardi ze administrative examination a nd a ppr oval items, simplify examinati on and approval li nks, impr ove efficiency; accor ding to t he ...
3,在 100,101,…,999 这 900 个 3 位数中,任取一个 3 位数,求 不包含数字 1 个概率。
streamlining. Four are sta ndar d visits, except as re quire d to participate in traini ng, no ot her a ctivity. Five i s to impr ove new s reporting, for propaganda work stri ctly accor ding to t he regul ations. Six is stri ctly your prese ntation publis hed strictly accor ding to t he reg ulations.