函数的概念区间的概念课件

合集下载

3.1.1函数的概念 课件(共23张PPT)

3.1.1函数的概念 课件(共23张PPT)
3
十 八 世 纪
伯努利称其为变量与常量的组合 欧拉认为其是某些变量依赖另一些变量的变化
4
十 九 世 纪
柯西,傅里叶,狄利克雷提出“对应关系”,也就是我们 初中学习到的函数的定义
5
一.知识回顾
初中学习的函数概念是什么?
设在某一变化过程中有两个变量x与y,如果 对于x的每一个值,y都有唯一确定的值与它对应, 则称y是x的函数。x是自变量,y是因变量。
22
例题六:已知函数 f (x) x 3 1
x2
(1)求该函数的定义域 (2)求当x=-3时该函数的值
答案:1.{x|x≥-3且x≠-2}
2.f (-3)= -1
23
例题五:
(1){x|x≤-3}用区间表示为
答案: (1)(-∞,-3]
(2)数集{x|x>5}用区间表示为
(2)(5,+∞)
(3)数集{x|1<x≤7}用区间表示为
(3)(1,7]
(4)数集{x|x<-2或x≥6}用区间表示为 (4)(-∞,-2)∪[6,+∞)
21
注意:
1.区间是集合 2.区间的左端点必须小于右端点 3.区间中的元素都是实数,可以在数轴上表示出来 4.以-∞或+∞为区间的一端时,这一端必须是小括号
值域也就随之确定了.如果两个函数的 这两个
完全相同就称
15
例题三:判断下列各组中两个函数是否为同一个函数
(1) f ( x) x 与g(x)= x 2;
(2)f ( x) x与g( x) 3 x3 ; (3) f ( x) x 1 x 1与g( x) x2 1; (4) f ( x) x2 2 x 1与g(t) t 2 2t 1.

《区间的概念》PPT课件

《区间的概念》PPT课件
两个区间合并成一个更大的区间,去 除重复部分。
数轴区间在解决实际问题中的应用
时间规划
用区间表示时间段,如会议时间、 工作时间等。
数值范围
表示某个量的可能取值范围,如 考试分数、身高体重指数等。
温度范围
表示一天中温度的变化范围。
地理位置
表示某个地点在地图上的经纬度 范围。
区间在数学分析中的
04
应用
置信区间的构建
在统计推断中,置信区间用于估计未知参数的可能取值范围,它 表示了参数估计的可靠性和精度。
假设检验中的决策区间
在假设检验中,决策区间用于判断样本统计量是否显著,从而决定 是否拒绝原假设。
预测区间的构建
预测区间用于预测未来观测值的可能取值范围,它考虑了模型的不 确定性和数据的波动性。
区间在数据分析中的应用
表示为(a, b),不包含端 点a和b。
表示为[a, b)或(a, b], 包含一个端点。
如[a, +∞)、(-∞, b]、(∞, +∞)等。
数轴上区间的运算规则
区间的交
两个区间有公共部分时,其交集为它 们公共的部分;否则,交集为空集。
区间的补
在全集U中,不属于该区间的所有元 素组成的集合。
区间的并
在经济领域,区间概念可用于分析和 预测市场价格的波动范围,为投资者 提供更加准确的市场信息和决策依据。
THANKS.
区间性质
区间具有连续性、连通性 和有界性等性质。
区间与集合的运算
交集运算
两个区间的交集仍为区间, 可以通过比较端点来确定 交集的范围。
并集运算
两个区间的并集不一定为 区间,可能形成多个不相 连的区间。
差集运算
一个区间与另一个区间的 差集可能为多个不相连的 区间,也可能为空集。

3.1.1函数的概念(共53张PPT)

3.1.1函数的概念(共53张PPT)

其中表示同一个函数的是________.(填上所有同一个函数的序号)
【解析】 (1)①错误.函数 f(x)=x0 的定义域为{x|x≠0},函数 g(x)=1 的定 义域是 R,不是同一个函数; ②正确.y=f(x),x∈R 与 y=f(x+1),x∈R 两函数定义域相同,对应关系 可能相同,所以可能是同一个函数;③正确.两个函数定义域相同,对应关 系完全一致,是同一个函数.所以正确的个数有 2 个.
(3)要使此函数有意义,则 xx+ +32≥ ≠00,⇒xx≥ ≠- -32,⇒x≥-3 且 x≠-2. 所以 f(x)的定义域为{x|x≥-3 且 x≠-2}.
探究点 3 同一个函数
(1)给出下列三个说法:
①f(x)=x0 与 g(x)=1 是同一个函数;②y=f(x),x∈R 与 y=f(x+1),x∈R
1.下列图形中可以表示以 M={x|0≤x≤1}为定义域,以 N={y|0≤y≤1}为
值域的函数的图象是
()
解析:选 C.由函数的定义知选 C.
2.(多选)下列两个集合间的对应中,是 A 到 B 的函数的有 A.A={-1,0,1},B={-1,0,1},f:A 中的数的平方 B.A={0,1},B={-1,0,1},f:A 中的数的开方 C.A=Z,B=Q,f:A 中的数的倒数 D.A={1,2,3,4},B={2,4,6,8},f:A 中的数的 2 倍
③函数就是两个集合之间的对应关系.
其中正确说法的个数为
()
A.0
B.1
C.2
D.3
(3)已知集合 A=[0,8],集合 B=[0,4],则下列对应关系中,不能看作是
从 A 到 B 的函数关系的是
()
A.f:x→y=18x

函数的概念ppt课件

函数的概念ppt课件

→s=x 十y;
⑥A={x|—1≤x≤1,x∈R},B={0}, 对应关系f:x→
y=0.
A.①⑤⑥
B.②④⑤⑥
C.②③④
D.①②③⑤
【思维·引】
1.在x 轴上区间[0,2]内作与x 轴垂直的直线,此直线 与函数的图象恰有一个公共点.
2.先看集合A,B 是否为非空数集,再判断非空数集A 中任取一个数,在非空数集 B 中是否有唯一的数与之 对应.
②求f(g(a)): 已 知f(x) 与 g(x), 求 f(g(a)) 的值应遵 循由里往外的原则.
(2)关注点:用来替换解析式中x 的 数a 必须是函数定 义域内的值,否则函数无意义.
习练 ·破
1.若f(x)=ax²—√2,a 为正实数,且f(f(√2))=—√2, 则 a=
2.设f(x)=2x²+2,
函数的定义,所以A 不是函数.B.由 |x—1|+√y²-1=
0得, |x—1|=0,√y²-1=0, 所以x=1,y=±1, 所以

( 1 ) 求 f(2),f(a+3),g
—2),g(f(2)). (2)求g(f(x)).
(a)+g(0)(a≠
≠—2),
【加练·固】

(x≠—1), 求 f(0),f(1),
f(1—a)(a≠2),f(f(2)) 的值.
课堂达标检测
1.下列图形中,不能确定y 是x 的函数的是
y
3
(
)
3
x
⑥对于由实际问题的背景确定的函数,其定义域还要受 实际问题的制约.
★习练·破
求下列函数的定义域:
(1
;(2)y=√x- 1·√1—x;

《函数的概念》第二课时参考课件全文

《函数的概念》第二课时参考课件全文
解: f(2)=3×23+2×2=2 8f(-2)=3×(-2)3+2×(-2)=-28
f(2)+f(-2)=2828=0
2.已知函数f(x)=3x3+2x, (1) 求f(2)、f(-2)、f(2)+f(-2)的值; (2) 求f(a)、f(-a)、f(a)+f(-a)的值; (3) 你从(2)中发现了什么结论?
(1) y=( x)2 (3) y= x2
(2) y=3 x
(4)
y=
x32 x
解: 函数y=x(x∈R)。 Nhomakorabea(4) 函数
y=
x2 x
=x(x≠0)
这两个函数的对应关系相同,但定义域不相同, 所以这两个函数不相等。
1.判断下列各组中的函数是否相等,并说明理由: (1) 表示导弹飞行高度h与时间t关系的函数
(2) 使根式 1有-x意义的实数集合为{x|x≤1};
使根式 有x+意3义的实数集合为{x|x≥-3};
所以定义域为:[-3,1]。
2.已知函数f(x)=3x3+2x, (1) 求f(2)、f(-2)、f(2)+f(-2)的值; (2) 求f(a)、f(-a)、f(a)+f(-a)的值; (3) 你从(2)中发现了什么结论?
这两个函数的对应关系相同,但定义域不相同, 所以这两个函数不相等。
例2:下列函数中哪个与函数y=x是同一个函数?
(1) y=( x)2 (3) y= x2
(2) y=3 x
(4)
y=
x32 x
解: 函数y=x(x∈R)。
(2) 函数 y=3 x =x(x∈R) 3
这两个函数的对应关系相同,定义域也相同, 所以这个函数与函数y=x(x∈R)相等。

《区间的概念》课件

《区间的概念》课件

02
区间的性质
闭区间和开区间的性质
总结词
闭区间和开区间的性质是区间理论中的 重要概念,它们具有不同的性质和特征 。
VS
详细描述
闭区间是包含其端点的区间,其性质包括 区间内任意两点可以确定一个闭区间,且 闭区间上任意两点之间的距离等于区间长 度。开区间是不包含其端点的区间,其性 质包括开区间内任意两点可以确定一个开 区间,但开区间上任意两点之间的距离不 一定等于区间长度。
闭(包含)的区间,例如$(a, b]$或$[a, b)$。
半开半闭区间具有一些特殊的性 质,例如在实数轴上表现为一段
直线,但不包括端点。
半开半闭区间在数学分析中常用 于研究函数的连续性和可导性等 概念,特别是在处理分段函数时

05
区间的实际应用举例
在物理学中的应用:波的传播范围
总结词
波的传播范围是区间概念在物理学中的一个典型应用,它描述了波在某一特定介质中能 够传播的最大和最小范围。
区间与数轴的关系
总结词
区间与数轴之间存在密切的联系,数轴是表示区间的工具, 而区间则是数轴上的一个子集。
详细描述
数轴是实数有序化的直观表现,它为研究区间提供了可视化 的平台。通过数轴,我们可以直观地表示区间的起点和终点 ,以及区间内的任意一点。同时,数轴上任意两个不同的区 间都可以用不同的颜色或标记加以区分。
详细描述
在物理学中,波的传播范围通常由波长和频率决定。例如,无线电波、红外线、可见光 、紫外线、X射线和伽马射线等都有各自的传播范围,这些范围可以用来描述不同类型
波的特性。
在经济学中的应用:价格变动区间
总结词
价格变动区间是区间概念在经济学中 的一个应用,它反映了商品或资产在 一定时间内的最高和最低价格变动范 围。

函数概念ppt课件

函数概念ppt课件
复合函数的运算规则
复合函数的性质
复合函数具有一些重要的性质,如单 调性、奇偶性等,这些性质可以通过 对组成复合函数的各个函数的性质进 行分析得出。
复合函数的运算规则是先计算内层函 数,再计算外层函数,依次类推,直 到所有的函数都计算完毕。
反函数的概念与运算
01
02
03
反函数的概念
反函数是指将一个函数的 输入和输出互换,得到一 个新的函数。
一次函数
形如f(x)=kx+b的函数, 其中k和b为常数且k≠0。
分式函数
形如f(x)=k/x的函数,其 中k为常数且k≠0。
对数函数
形如f(x)=log_a x的函数, 其中a为常数且a>0且a≠1

02 函数的性质
有界性
总结词
函数的值域在一定范围内变动,不会 无限增大或减小。
详细描述
函数的输出结果总是在一定的范围内 ,不会超出这个范围。例如,正弦函 数和余弦函数的值域都在-1到1之间。
函数的定义域和值域是函数的重要属性,它们决定了函数的作用范围和 结果范围。
函数的表示方法
解析法
用数学表达式来表示函数,是最 常用的一种表示方法。例如, f(x)=x^2表示一个函数,当x取 任意实数时,都有唯一的y值与 之对应。
表格法
通过表格的形式来表示函数,对 于一些离散的函数可以用此方法 。例如,一个离散函数的值可以
函数概念ppt课件
• 函数的基本概念 • 函数的性质 • 函数的运算 • 函数的应用 • 函数的图像
01 函数的基本概念
函数的定义
函数是数学上的一个概念,它是一种特殊的对应关系,这种对应关系使 得对于数集A中的每一个元素,通过某种法则,都可以唯一地对应到数集 B中的一个元素。

函数的概念 课件

函数的概念   课件
名师微博
即先求g2.
(3)f(x)=x+1 1的定义域为{x|x≠-1}, ∴值域是(-∞,0)∪(0,+∞).9 分 g(x)=x2+2 的定义域为 R,最小值为 2.
∴值域是[2,+∞).12 分
(5)A={a,b,c},B={d,e,f},对应关系如图所
示.
【解】 (1)A中的实数0在B中没有对应实数, 故不是函数; (2)对于集合A中的任意一个整数x,按照对应关 系f:x→x2,在集合B中都有唯一确定的整数x2 和它对应,故(2)是集合A到集合B的函数; (3)A中负数没有平方根,故在B中没有整数和它 们对应,故此对应不是集合A到集合B的函数;
(1)y=xx++11
2

1-x;
(2)y=
5-x |x|-3 .
【解】 (1)要使函数有意义,自变量 x 的取值必须
满足
x+1≠0 1-x≥0

解得 x≤1 且 x≠-1,
即函数定义域为{x|x≤1 且 x≠-1}.
(2)要使函数有意义,自变量 x 的取值必须满足
5-x≥0 |x|-3≠0

解得 x≤5,且 x≠±3,
(4)对于集合A中任意一个实数x,按照对应关 系f:x→y=0,在集合B中都有唯一确定的数 0和它对应,故(4)是集合A到集合B的函数; (5)对于集合A中的元素b对应着集合B中的两 个元素,c在集合B中无对应元素,所以(5)中 的对应不是集合A到集合B的函数.
题型二 求函数的定义域
例2 求下列函数的定义域:
{x|a<x≤b} 半开半闭区间 (a,b]
(2)无穷概念及无穷区间表示
定 义
R
{x|x≥a} {x|x>a} {x|x≤a} {x|x<a}

区间的概念ppt课件(2024)

区间的概念ppt课件(2024)
区间的概念ppt课件
2024/1/30
1
contents
目录
2024/1/30
• 区间的基本概念与性质 • 区间在数学中的应用 • 区间与集合的关系 • 区间在实际问题中的应用 • 区间的拓展与应用前景
2
01
区间的基本概念与性质
2024/1/30
3
区间的定义及表示方法
区间的定义
在数轴上,任意两个实数a和b(a<b)所确定的闭区间[a,b]、开区间(a,b)、半 开半闭区间[a,b)或(a,b]都称为一个区间。
12
区间在集合运算中的应用
并集运算
对于两个区间,如果它们有重叠部分,则它们的 并集是一个新的区间,包含两个原区间的所有元 素。
差集运算
对于两个区间,如果其中一个区间完全包含在另 一个区间中,则它们的差集是一个新的区间,包 含被减数区间中不属于减数区间的所有元素。
2024/1/30
交集运算
对于两个区间,如果它们有重叠部分,则它们的 交集是一个新的区间,包含两个原区间的公共元 素。
算法改进
针对区间算法的改进和优化, 将提高计算效率和精度,促进 其在实际问题中的应用。
跨学科研究
区间分析与其他学科的交叉研 究,将推动相关领域的创新和
发展。
21
THANKS
感谢观看
2024/1/30
22
经济增长率
在宏观经济分析中,经济增长率往往用一个区间 来表示,以反映经济增长的速度和趋势。
消费者信心指数
3
在市场调研中,消费者信心指数往往用一个区间 来表示,以反映消费者对市场和经济形势的信心 程度。
2024/1/30
17
05
区间的拓展与应用前景

《函数的概念》函数的概念与性质PPT

《函数的概念》函数的概念与性质PPT
可以用任意的字母表示,如f(x)=2x,f(t)=2t,g(a)=2a等,那么,不同的字
母表示对两个函数是否为同一个函数有影响吗?
提示:自变量、因变量和对应关系用什么字母表示与函数无关,
不影响两个函数的关系.
如f(x)=2x,f(t)=2t,g(a)=2a,只要自变量取值范围相同,它们就是同
一个函数.

||- ≠ 0,
≠ -2,
解得 x<0,且 x≠-2.
|| ≠ ,
故原函数的定义域为(-∞,-2)∪(-2,0).
4- ≥ 0,
≤ 4,
(2)要使函数有意义,自变量 x 的取值必须满足

≠ 1.
-1 ≠ 0,
故原函数的定义域为(-∞,1)∪(1,4].
课堂篇
探究学习
探究一

4
3
2
3
x→y= ,x∈[0,4]⇒y∈ 0, ,包含于{y|0≤y≤2},故成立;
8
x→y= ,x∈[0,4]⇒y∈ 0, ,包含{y|0≤y≤2},故不成立;
3
3
x→y= ,x∈[0,4]⇒y∈[0,2],故成立.故选 C.
答案:C
课堂篇
探究学习
探究一
探究二
探究三
探究四
思想方法
随堂演练
区间
分析:判断两个函数f(x)和g(x)是否是同一个函数的方法是:先求
函数f(x)和g(x)的定义域,如果定义域不同,那么它们不是同一个函
数;如果定义域相同,再化简函数的表达式,如果化简后的函数表达
式相同,那么它们是同一个函数,否则它们不是.
课堂篇
探究学习
探究一
探究二
探究三

《函数概念》PPT课件

《函数概念》PPT课件

⑥当函数y=f(x)是用表格给出时,函数的定义域
是指表格中实数的集合.
⑦当函数y=f(x)是用图象给出时,函数的定义域
是指图象在x轴上投影所覆盖的实数的集合.
2021/4/24
3
§1.2.1函数的概念
【1】设 A {x | 0≤ x ≤ 2}, B {x | 1≤ y ≤ 2}. 下图表示从A到B的函数是…………( ).D
x≤b { x | x ≤b }
x>a x<b
2021/4/24
{ x | x >a } { x | x <b }
区间
( a, b) ( a, b]
[a,b) [a,b] (-∞ , +∞ ) [a , + ∞ ) (-∞ , b ] (a,+∞) (-∞ , b )
名称
开区间 半开半闭区间 闭区间
4
3
2
配方法
1
-1 o

x 1 2 3 4
2021/4/24
19
§1.2.1函数的概念
【3】已知y=2x2-x+5(0≤x≤15),
求值域.
解:y
2x2
x
5
2(
x
1 4
)2
39 8
.
y
[
39 8
,440].
2021/4/24
20
§1.2.1函数的概念
(8) y=|x+1|-|1-x| 解:由 y = | x + 1 | -| x -1 |
11
§1.2.1函数的概念
【1】把下列不等式写成区间表示
1. -2<x<4,记作:(_-2_,_4_); 2.x >4,记作:___(4_,_+_∞__)__; 3. 5≤x≤7,记作: [5;,7] 4. 2≤x<5,记作: [2,5;)

人教版高一数学课件区间的概念

人教版高一数学课件区间的概念
2023 WORK SUMMARY
人教版高一数学课件 区间的概念
REPORTING
目录
• 区间的基本概念 • 区间的性质与运算 • 区间在数学中的应用 • 区间的实际应用 • 总结与展望
PART 01
区间的基本概念
区间的定义
区间是一种数学上的概念,表示一个连续的范围。在实数轴上,一个区间通常由 两个数(称为区间的端点)来确定,包括这两个数本身。
解决问题的方法
区间概念的应用广泛,是解决实际 问题中数值计算、数据分析等问题 的基本工具。
培养逻辑思维
学习区间概念有助于培养学生的逻 辑思维和抽象思维能力,提高数学 素养。
未来发展方向与展望
深化理论体系
随着数学理论的不断发展,区间 概念的理论体系也将不断深化和
完善。
应用领域的拓展
随着科技的发展,区间概念在各 个领域的应用将更加广泛,如物
区间可以是有界的,即端点是确定的数,如[a, b]表示闭区间,包含a和b;也可 以是无界的,如(a, b)表示开区间,不包含a和b。
区间的表示方法
区间可以用多种方式来表示,如文字描述、符号表示或图形 表示。在数学中,通常使用大括号{}、方括号[]或尖括号<> 来表示区间。
例如,[a, b]表示闭区间,包括a和b;(a, b)表示开区间,不 包括a和b;而(a, b]表示左闭右开区间,包括a但不包括b; [a, b)表示左开右闭区间,包括b但不包括a。
详细描述
区间交集的定义是两个或多个区间中共有的部分。如果两个区间没有交集,则它们的交集为空集。例如,对于区 间$[1,3]$和$[2,4]$,其交集为$[2,3]$。
区间的补集
总结词
区间补集是指在一个区间中不属于其他子区间的部分。

2024版高一数学第二章区间教学1ppt课件

2024版高一数学第二章区间教学1ppt课件

一元二次不等式的一般形式
$ax^2+bx+c>0$ 或 $ax^2+bx+c<0$
解法步骤 首先将不等式化为标准形式,然后求解对应的一元二次方 程 $ax^2+bx+c=0$,根据根的情况和二次函数的性质确 定不等式的解集。
注意事项 在求解过程中,要注意讨论二次项系数 $a$ 的正负以及判 别式 $Delta=b^2-4ac$ 的情况。
加法运算规则
对于任意两个区间[a, b]和[c, d],其 和区间为[a+c, b+d]。
乘法运算规则
对于任意两个区间[a, b]和[c, d],若a, b, c, d均大于0,则其积区间为
[min{ac, ad, bc, bd}, max{ac, ad, bc, bd}]。
减法运算规则
对于任意两个区间[a, b]和[c, d],其 差区间为[a-d, b-c]。
03
函数与区间关系
函数定义域与值域确定
01 确定函数定义域的方法
根据函数表达式中变量的取值范围,确定函数的 定义域。
02 确定函数值域的方法
通过观察函数表达式或利用已知函数的性质,推 断出函数的值域。
03 常见函数定义域与值域
掌握一次函数、二次函数、指数函数、对数函数 等常见函数的定义域和值域。
题目选择
选择与例题相似的题目, 供学生自主练习。
自主完成
学生独立思考并完成题目, 培养解题能力。
问题反馈
鼓励学生提出问题和疑惑, 及时解答和指导。
教师点评和总结
点评学生表现
针对学生的练习情况,进行点评 和指导。
总结解题技巧
归纳解题方法和技巧,帮助学生 掌握解题规律。

高一数学:1《区间的概念》课件 公开课一等奖课件

高一数学:1《区间的概念》课件  公开课一等奖课件

青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校: 北京大学光华管理学 院 北京市文科状元 阳光女孩--何旋
来自北京二中,高考成绩672分,还有20 分加分。“何旋给人最深的印象就是她 的笑声,远远的就能听见她的笑声。” 班主任吴京梅说,何旋是个阳光女孩。 “她是学校的摄影记者,非常外向,如 果加上20分的加分,她的成绩应该是 692。”吴老师说,何旋考出好成绩的秘 诀是心态好。“她很自信,也很有爱心。 考试结束后,她还问我怎么给边远地区 的学校捐书”。
定义 名称 符号 [ a, b ]
( a, b ) a a a
数轴表示
a b
b
{x|a≤x≤b} 闭区间
{x|a<x<b} 开区间
b
{x|a≤x<b} 半开半闭 [ a, b ) 区间
{x|a<x≤b} 半开半闭 ( a, b ] 区间
b
这里的实数a与b都叫做相应区间的端点.
知识探究(二)
思考1:变量x相对于常数a有哪几种大小关系?用 不等式怎样表示?
例3
求下列函数的值域:
(1) y x 2 4 x 6, (2) y 5 4x x2 , (3) y 2 (4) f ( x)
x [1, 5)
x2 4 x , x 1 . x 1
语文
小魔方站作品 盗版必究
谢谢您下载使用!
更多精彩内容,微信扫描二维码获取
高考总分:711分 毕业学校:北京八中 语文139分 数学140分 英语141分 理综291分 报考高校:
北京大学光华管理学院
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5 4 x x ,2(1)y x2 4x 6, x[1,5) (2) y 5 4x x2 , (3) y 2 x2 4x, (4) f (x) x 1 x 1
作业: 课本P44. 6、7
SUCCESS
THANK YOU
2019/9/17
思考1:变量x相对于常数a有哪几种大小关 系?用不等式怎样表示?
思考2:满足不等式 x a, x a, x a, x a 的实数x的集合也可以看成区间,那么这些集 合如何用区间符号表示? [a,+∞),(a,+∞), (-∞,a],(-∞,a).
思考3:将实数集R看成一个大区间,怎样用 区间表示实数集R?
复习:
1.在初中我们学习了哪几种基本函数? 其函数解析式分别是什么?
2.初中对函数是怎样定义的? 在一个变化过程中,如果有两个变量 x与y,并且对于x的每一个确定的值,y 都有唯一确定的值与其对应,那么我们 就说x是自变量,y是x的函数.
函数定义:设A,B是非空的数集,如 果按照某种确定的对应关系f,使对于集 合A中的任意一个数x,在集合B中都有唯 一确定的数f(x)和它对应,那么就称
值域分别是什么?
R

y

y
4ac b2
4a

怎样用区间表示?

y

y
4ac b2
4a


4ac 4a
b2
,


例题:
练习 将下列集合用区间表示出来:
(1){x | 2x 1 0}; (2){x | x 4,或 1 x 2}
..
例1 求下列函数的定义域:
(1) y 2 x2 4x , (2) f (x) x 1.
x 1
例2 已知 f ( x 1) x 2 x ,求函数 f (x) 的解 析式.
例3 求下列函数的值域:
(1) y x2 4x 6, x [1, 5)
(2) y
(-∞,+∞)
SUCCESS
THANK YOU
2019/9/17
思考4:一次函数y=kx+b(k≠0), R R
反比例函数
y

k x
(k

0)
,
x x 0, x R
,0 0,
y y 0, y R
二次函数y=ax2+bx+c(a≠0)的定义域、
f:A→B为从集合A到集合B的一个函数, 记作 y=f(x),x∈A.
函数y=f(x),自变量x的取值范围A 叫函数的定义域,与x值相对应的y值叫
做函数值.函数值的集合 f (x) x A 叫函
数的值域。
思考:值域与集合B是何关系?
3.函数 f (x) 1 | x | 的定义域、值域 是什么?分别怎样表示?
上述知识内容总结成下表:
定义
名称
符号
数轴表示
{x|a≤x≤b} 闭区间 [ a, b ]
ab
{x|a<x<b} 开区间 ( a, b )
ab
{x|a≤x<b} 半开半闭 [ a, b ) 区间
{x|a<x≤b} 半开半闭 ( a, b ] 区间
ab ab
这里的实数a与b都叫做相应区间的端点.
知识探究(法吗?
知识探究(一)
思考1:设a,b是两个实数,且a<b,介 于这两个数之间的实数x用不等式表示有哪 几种可能情况?
a x b, a x b, a x b, a x b
满足上述每个不等式的实数x的集合可 看成一个区间.
思考2:如果满足不等式 a x b 的实 数x的集合用符号 [a,b]表示,那么满足其 它三个不等式的实数x的集合可分别用什么符 号表示?
相关文档
最新文档