高中数学《函数的概念》课件
合集下载
高中数学《函数的概念》课件
定义域和值域
了解函数定义的形式及其定义域 和值域非常重要。
函数的图像
函数图像的概念
掌握如何根据函数的定义、域、值域和公式绘制函数的图像。
如何绘制函数图像
学习如何使用函数的公式和几何方法来绘制函数的图像。
函数的对称性
探究函数的不同对称性,例如奇偶性和周期性。
函数的性质
1
奇偶性与周期性
了解函数的基本性质,例如奇偶性和周期性,可以帮助简化函数的分析。
高中数学《函数的概念》 ppt课件
数学是一门让人兴奋的学科。接下来,我们将探讨高中数学的一个关键主题: 函数的概念。通过本课程,你将深入了解函数的基本定义、图像、性质及其 实际应用。
函数的定义
定义及其常见表示形式
掌握函数的不同表示形式是理解 数学中其他相关概念的基础。
自变量和因变量
发现自变量和因变量之间的关系 对于定义函数是至关重要的。
函数在工程学中的应用
了解如何在工程学中使用函数来 解决复杂的问题,例如建筑和机 械设计。
总结与展望
1
函数的重要性及其实际应用
掌握函数的概念和应用,可以让你更好地理解标准数学中的其他相关主题。
2
未来函数研究的发展趋势
了解当前对函数研究的最新趋势是什么,可以让你更好地理解数学的未来。
3
课程回顾及展望
回顾本课程的内容,并思考如何将所学应用到实际的问题中。
2
单调性和极值
发现函数的单调性和极值有助于确定函数的最大值和最小值。
3
泰勒公式与函数的逼近
了解如何使用泰勒公式来将函数逼近到无穷小的阶数,以获得更多信息。
函数的应用
函数在经济学中的应用
学习如何使用函数来分析经济数 据,例如股票市场和消费趋势。
人教版高中数学必修一第一章函数的概念课件PPT
例3 (1)已知函数f(x)=2x+1,求f(0)和f [f (0)]; 解 f(0)=2×0+1=1. ∴f [f (0)]=f(1)=2×1+1=3. (2)求函数 g(x)=01,,xx为为无有理理数数, 的定义域,值域; 解 x为有理数或无理数,故定义域为R. 只有两个函数值0,1,故值域为{0,1}.
解 对于集合A中任意一个实数x,按照对应关系f:x→y=0在集合B中 都有唯一一个确定的数0和它对应,故是集合A到集合B的函数.
反思与感悟
解析答案
跟踪训练1 下列对应是从集合A到集合B的函数的是( C ) A.A=R,B={x∈R|x>0},f:x→|1x| B.A=N,B=N*,f:x→|x-1| C.A={x∈R|x>0},B=R,f:x→x2
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
返回
第一章 1.2 函数及其表示
1.2.1 函数的概念
解 对于集合A中任意一个实数x,按照对应关系f:x→y=0在集合B中 都有唯一一个确定的数0和它对应,故是集合A到集合B的函数.
反思与感悟
解析答案
跟踪训练1 下列对应是从集合A到集合B的函数的是( C ) A.A=R,B={x∈R|x>0},f:x→|1x| B.A=N,B=N*,f:x→|x-1| C.A={x∈R|x>0},B=R,f:x→x2
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
答案
(5) x 1 2 3 ; y12
答案 不是.x=3没有相应的y与之对应.
答案
知识点二 函数相等
思考 函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?
答案 两个函数都是描述的同一集合R中任一元素,按同一对应关系 “平方”对应B中唯一确定的元素,故是同一个函数.
一般地,函数有三个要素:定义域,对应关系与值域.如果两个函数
返回
第一章 1.2 函数及其表示
1.2.1 函数的概念
高中数学《函数的概念》课件
精炼作业
理解概念 巩固定义域求法
对应法则的应用 理解二对一的对应关系; 初步感知偶函数的特征
教学流程
学生知识的内化过程
形成概念
分析三个实例, 利用知识迁移得到概念
学生能否用自己的语言 表述概念.
深化概念
学生能否将新旧知识建 立关联,并正确辨析.
应用概念
变量表达形式不同, 但对应法则相同
学生能在不同环境中联想 并使用知识.
授课教师:
函数概念发展历程
函数概念的解析式说 函数概念的变量依赖说 函数概念的变量对应说
由任一变量和常数的任一形式所构成的量 ——1718年 约翰•贝努利
如果某个量依赖于另一个量,当后面这个量变化时, 前面这个量也随之变化,则前面这个量称为后面这个 量的函数。 ——1755年 欧拉 《微分学原理》
函数概念的集合对应说 函数概念的集合关系说
教学目标设置
教学重点 理解函数的概念. 教学难点
学情分析
教学流程
形成概念
实例引入后,归纳共同点得到函数定义 利用初中函数定义,通过知识迁移得到概念
1 明确初高中定义的区别和联系
深化概念 2 确定函数的要素有哪些?
应用概念 变量表达形式不同,但对应法则相同 小结与作业
小结与作业
学生能构建自己的知识网络
高中数学第一册3.1.1函数的概念课件
2
2x 1
(3) y
x 3
(4) y 2 x x 1
课堂作业
1、求函数 = 4 − 5 + 2 − 3的值域
2、已知函数 = 2 + 4 + 5( ∈ )
(1)若 = −1,求 = 的定义域;
(2)若函数 = 的定义域为R,求实数的取
x叫做自变量,x的取值范围A叫做函数的定义域;
与x的值相对应的y值叫做函数值,函数值的
集合{ f(x)| x∈A }叫做函数的值域.
思考:函数的值域与集合B什么关系?请你说出上述四个问题
的值域?
函数的值域是集合B的子集。
问题1和问题2中,值域就是集合B1和B2;
问题3和问题4中,值域是B3和B4的真子集。
【答案】 C
【解析】 函数 y=x 的定义域为 R;y=( x)2 的定义域为[0,+∞);y= x2
x,x>0
=|x|,对应关系不同;y=
-x,x<0,
为 R.故选 D.
【答案】 D
3
对应关系不同;y= x3=x,且定义域
例4.求下列函数的值域
(1) y x 1;
(2) y x 2 x 3, x 2, 1, 0,1, 2,3 ;
(3)当 a≠-1 时,求 f(a+1)的值.
【解】
(1)要使函数 f(x)有意义,必须使 x≠0,
∴f(x)的定义域是(-∞,0)∪(0,+∞).
1
1 5
(2)f(-1)=-1+
=-2,f(2)=2+2=2.
-1
1
(3)当 a≠-1 时,a+1≠0,∴f(a+1)=a+1+
.
a+1
高中数学新教材必修一第三章 《函数的概念与性质》全套课件
4、若函数的定义域只有一个元素,则值域也只有一
个元素 √
5、对于不同的x , y的值也不同
×
6、f (a)表示当x = a时,函数f (x)的值,是一个常量 √
巩固练习
判断下列对应能否表示y是x的函数
(1) y=|x|
(2)|y|=x
(3) y=x 2
(4)y2 =x
(5) y2+x2=1 (6)y2-x2=1
2x
0y 2
x
2
D
0
2x
学习新知
初中我们已知接触过函数的三种表示方法:解析法、列表法和图 象法
问题 2 某电气维修公司一个工人的工资关于天数 d 的函数 w=350d. ②定义域{1,2,3,4,5,6}
学习新知 这里的实数a与b都叫做相应区间的端点。
实数集R可以用区间表示为(-∞,+∞),“∞”读作“无穷 大”。满足x≥ a,x>a ,x ≤b, x<b的实数的集合分别表示 为[a, +∞)、(a, +∞)、(-∞,b]、(-∞,b).
集合表示 区间表示 数轴表示
{x a<x<b} (a , b)
我国某省城镇居民恩格尔系数变化情况
时间(年)y 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
恩格尔系数r(%) 36.69 36.81 38.17 35.69 35.15 33.53 33.87 29.89 29.35 28.57
请仿照前面的方法描述恩格尔系数r和时间(年)y的关系。
对于集合A中的任意一个数x,按照某种确定的对
应关系f,在集合B中都有唯一确定的数y和它对应, 那么就称f: A→B为从集合A到集合B的一个函数, 记作 y=f(x) , x∈A
高中数学第2章函数1函数概念课件必修1高一必修1数学课件
一
探究(tànjiū)
二
探究(tànjiū)
三
探究四
易错辨析
求函数的定义域
【例1】 求下列函数的定义域:
(1)f(x)=x2-x;
(2)f(x)=(x+2)0;
(3)f(x)=
+1
;
-2
(4)f(x)= + 4 + 1-(x∈Z).
分析:若只给出函数的关系式,而没有指明它的定义域,则函数的定义域就是
对定义域内同一个自变量,根据表达式,都能得到同一函数值,因此二者为
同一函数.
故以上各对函数中,(1)(4)表示同一函数,(2)(3)表示的不是同一函数.
解:对于(1),在公共定义域R上,f(x)=x和φ(x)=
定义域和对应关系是确定一个函数的两个基本条件,当且仅当两个函数的定
义域和对应关系分别相同时,这两个函数才是同一函数.
探究(tànjiū)
一
探究(tànjiū)
二
探究(tànjiū)三
探究四
易错辨析
变式训练1(1)求下列函数的定义域:
1
①f(x)= ;
-2
②f(x)= 3 + 2;
③f(x)= - 2 + 2(x∈Z).
(2)求函数 y= 2 + 3 −
1
2-
1
+ 的定义域.
第十二页,共三十五页。
探究(tànjiū)一
第十八页,共三十五页。
探究(tànjiū)
一
探究(tànjiū)二
探究(tànjiū)
三
探究四
易错辨析
变式训练3下列各组函数:
2 -
①f(x)= ,g(x)=x-1;
探究(tànjiū)
二
探究(tànjiū)
三
探究四
易错辨析
求函数的定义域
【例1】 求下列函数的定义域:
(1)f(x)=x2-x;
(2)f(x)=(x+2)0;
(3)f(x)=
+1
;
-2
(4)f(x)= + 4 + 1-(x∈Z).
分析:若只给出函数的关系式,而没有指明它的定义域,则函数的定义域就是
对定义域内同一个自变量,根据表达式,都能得到同一函数值,因此二者为
同一函数.
故以上各对函数中,(1)(4)表示同一函数,(2)(3)表示的不是同一函数.
解:对于(1),在公共定义域R上,f(x)=x和φ(x)=
定义域和对应关系是确定一个函数的两个基本条件,当且仅当两个函数的定
义域和对应关系分别相同时,这两个函数才是同一函数.
探究(tànjiū)
一
探究(tànjiū)
二
探究(tànjiū)三
探究四
易错辨析
变式训练1(1)求下列函数的定义域:
1
①f(x)= ;
-2
②f(x)= 3 + 2;
③f(x)= - 2 + 2(x∈Z).
(2)求函数 y= 2 + 3 −
1
2-
1
+ 的定义域.
第十二页,共三十五页。
探究(tànjiū)一
第十八页,共三十五页。
探究(tànjiū)
一
探究(tànjiū)二
探究(tànjiū)
三
探究四
易错辨析
变式训练3下列各组函数:
2 -
①f(x)= ,g(x)=x-1;
人教版高中数学必修一1.2.1函数的的概念_ppt课件
题型三 求函数的定义域 【例3】 求下列函数的定义域:
(1)y=xx+ +112- 1-x; (2)y= 2x+5+x- 1 1; (3)y= x2-1+ 1-x2; (4)y=1+ 1 1x.
解:(1)要使函数有意义,自变量 x 的取值必须满
足x1+ -1x≠ ≥00 ,即xx≠ ≤- 1 1 , 所以函数定义域为{x|x≤1 且 x≠-1}. (2)要使函数有意义,需满足
解析:y=f(x)与y=f(t)定义域,对应关系都相同,故①正确;f(x)
=1,x∈R,而g(x)=x0,x≠0,故不是同一函数;y=x,x∈[0,1],与
=x2,x∈[0,1]的定义域、值域都相同,但不是同一个函数.
答案:B
3.函数 y= x3+-12x0 的定义域是________.
解析:要使函数有意义, 需满足x3+ -12≠ x>00 ,即 x<32且 x≠-1. 答案:(-∞,-1)∪-1,32
(3)由x|x+ |-1x≠≠00 ,得|xx≠ |≠-x 1 , ∴x<0 且 x≠-1, ∴原函数的定义域为{x|x<0 且 x≠-1}.
误区解密 因求函数定义域忽视对二次项 系数的讨论而出错
【例 4】 已知函数 y=k2x22+ kx3-kx8+1的定义域为 R,求实数 k 的值.
x≠0 1+1x≠0
,即 xx≠ +
0 1≠
0
.
即 x≠0 且 x≠-1,
∴原函数定义域为{x|x≠0 且 x≠-1}.
点评:求函数定义域的原则:(1)分式的分母不等于零;(2)偶次根 式的被开方数(式)为非负数;(3)零指数幂的底数不等于零等.
3.求下列函数的定义域:
(1)f(x)=x2-36x+2;
高中数学《函数的概念和性质》课件1 湘教必修1
f(x)f(x0) (或f(x)f(x0)) 则 称 f(x0)是 函f(数 x)在X上 的 最(最 大小 值 ).值
例如, y1six n , 在 [0,2]上, ymax2, ymin0; ysgx,n 在 ( , )上 , ymax1, ymin1;
在 (0, )上, yma xymi n1.
x
跳跃间断点与可去间断点统称为第一类间断点. 特点 函数在x0处 点的左、右极限 . 都存
3.第二类间断点 如果 f(x)在点 x0处的左、
右极限至少有 在,一 则个 称x不 0点 为存 函数 f(x)的第二类.间断点
例6 讨论函 f(x)数 1 x, x0,在 x0处的连 . 续
x, x0,
x 0
sixn sixn
2)
lim f(x)lim lim 1
x 0 0
x 0 0|x| x 0 0 x
limf(x)lim six n1 x=0为第一类间断点。
x 00
x 00|x|
3)limsin 1 不存在,∴x=0为第二类间断点。 x0 x
4)lxim0 xsin1x 0 ∴当a=0时f4(x)在x=0处连续。
函数的概念与性质
1、函数的连续性 2、函数的间断点 3、 闭区间上连续函数的性质
一、函数的连续性
1.概念 设函 f(x数 )在 U(x0,)内有.定义
y
曲线不断
0
yf(x)
y
y
yf(x)
y
曲线断开
x
x
x 0 x0 x x 0 x 0 x0 x x
函数f(x)随x的改变而逐渐改变
有突变现象
x U (x0,) ,xxx0, 称 为 自x0的 变增 量 .
例如, y1six n , 在 [0,2]上, ymax2, ymin0; ysgx,n 在 ( , )上 , ymax1, ymin1;
在 (0, )上, yma xymi n1.
x
跳跃间断点与可去间断点统称为第一类间断点. 特点 函数在x0处 点的左、右极限 . 都存
3.第二类间断点 如果 f(x)在点 x0处的左、
右极限至少有 在,一 则个 称x不 0点 为存 函数 f(x)的第二类.间断点
例6 讨论函 f(x)数 1 x, x0,在 x0处的连 . 续
x, x0,
x 0
sixn sixn
2)
lim f(x)lim lim 1
x 0 0
x 0 0|x| x 0 0 x
limf(x)lim six n1 x=0为第一类间断点。
x 00
x 00|x|
3)limsin 1 不存在,∴x=0为第二类间断点。 x0 x
4)lxim0 xsin1x 0 ∴当a=0时f4(x)在x=0处连续。
函数的概念与性质
1、函数的连续性 2、函数的间断点 3、 闭区间上连续函数的性质
一、函数的连续性
1.概念 设函 f(x数 )在 U(x0,)内有.定义
y
曲线不断
0
yf(x)
y
y
yf(x)
y
曲线断开
x
x
x 0 x0 x x 0 x 0 x0 x x
函数f(x)随x的改变而逐渐改变
有突变现象
x U (x0,) ,xxx0, 称 为 自x0的 变增 量 .
人教版高中数学必修一(1.2.1-1函数的概念)ppt课件
定义域
f:x 2x1
值域
函数解析式:f(x)=2x+1或y=2x+1
-3
-5
-2
-3
-1
-1 f(x)2x1
0
1
1
3
2
5
3
7 对应法则
对应法则施
加的运算对
f ( 3 ) 2 ( 3 ) 象 1 5
对应法 则
运算对象
运算内容:乘以2加一
象,即y的值
-3 -2 -1 0 1 2 3
f(a )f,(a 1 )
练习:
g(x) 2x3 5x2 3x2,求g(3),
h(x) | 4x|,求h(8),h(a) x2
1 r(x) 3
x5,求r(3),r(6)
x
已知函数
x 2
f
(x)
x
2
2
x
(1)求 f ( 2 ) , f的( 1值);
2
集合B中有唯一元素和A中某个元素对应
开平方
B
A
3
300
-3
2
450
-2 1
600
-1
900
求正弦
A
一对多不是映射
求平方
B
1
1
-1
一对一是映射
A
乘以2
1
2
4
-2
2
3 -3
9
3
多对一是映射
一对一是映射
集合A中任何一个元素都在B中有对应
乘以2加1
A
1
3
5
1B
2 3 4 5 6 7
集合A中的元素5在集合B中没有元素与之对 应,不能称为映射。
高中数学 第一章 集合与函数概念 函数的概念课件 新人教A必修1
❖ 本节重点:函数的概念、定义域、值域的求 法.
❖ 本节难点:(1)函数概念的理解.
❖ (2)实际应用问题中函数的定义域和复合函数 定义域.
❖ (一)对函数y=f(x)涵义的理解,应明确以 下几点:
❖ ①“A,B是非空数集”,若求得自变量取 值范围为∅,则此函数不存在.
❖ ②定义域、对应法则和值域是函数的三要 素,实际上,值域是由定义域和对应法则 决定的,所以看两个函数是否相等,只要 看这两个函数的定义域与对应法则是否相 同.
❖ (1)当每辆车的月租金定为3600元时,能租 出多少辆车?
❖ (2)当每辆车的月租金定为多少元时,租赁
[解析] (1)当每辆车的月租金为 3600 元时,未租出的 车辆数为:(3600-3000)÷50=12,所以这时租出了 88 辆车.
(2)设每辆车的月租金为 x 元,则租赁公司的月收益为: f(x)=(100-x-530000)(x-150)-x-530000×50,整理得:f(x) =-5x02 +162x-2100=-510(x-4050)2+307050.所以当 x= 4050 元时,f(x)最大,其最大值为 307050.即当每辆车的月租 金为 4050 元时,租赁公司的月收益最大,最大值为 307050 元.
❖ [分析] (1)据函数的定义:“对于集合A中的 任意一个元素,在集合B中有唯一确定的元素 与之对应”进行判断.
❖ (2)给定函数的解析式,也就给定了由定义域 到值域的对应法则,只要将自变量允许值代 入,就可以求得对应的函数值.
[解析] (1)①由 x2+y2=2 得 y=± 2-x2,因此由它不能 确定 y 是 x 的函数,如当 x=1 时,由它所确定的 y 的值有两 个±1.
②由 x-1+ y-1=1,得 y=(1- x-1)2+1,所以当 x 在{x|x≥1}中任取一个值时,由它可以确定唯一的 y 值与之 对应,故由它可以确定 y 是 x 的函数.
人教版数学必修一1.2.1函数的概念精品课件(共21张PPT)
A={t|0≤t≤26} B={h|0≤h≤845}
§1.2.1函数的概念
(2) 近几十年来,大气层中的臭氧迅速减少, 因而出现了臭氧层空洞问题.下图中的曲线显 示了南极上空臭氧空洞的面积从1979~2001年 的变化情况:
§1.2.1函数的概念
根据上图中的曲线可知,时间t的变化范围是 数集A={t|1979≤t≤2001},臭氧层空洞面积S的变化 范围是数集B ={S|0≤S≤26}.
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
恩格尔系数( % ) 53.8 52.9 50.1 49.9 49.9 48.6 46.4 44.5 41.9 39.2 37.9
A={1991,1992,1993,1994, 1995, 1996, 1997,1998,1999,2000,2001} B={53.8,52.9, 50.1,49.9, 48.6, 46.4, 44.5, 41.9, 39.2, 37.9}
实例2(2)近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞 问题.图中的曲线显示了南极上空臭氧层空洞的面积从年的变化情况.
A={t|1979≤t≤2001}
B ={S|0≤S≤26}
实例3 (3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔 系数越低,生活质量越高.表中恩格尔系数随时间(年)变化的情况表 明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.
记作: y=f(x),xA
其中, x叫做自变量, x的取值范围A叫做函数的定义域 (domain);与x的值相对应的y值叫做函数值,函数值的集合 {f(x)|x∈A}叫做函数的值域(range).
§1.2.1函数的概念
(2) 近几十年来,大气层中的臭氧迅速减少, 因而出现了臭氧层空洞问题.下图中的曲线显 示了南极上空臭氧空洞的面积从1979~2001年 的变化情况:
§1.2.1函数的概念
根据上图中的曲线可知,时间t的变化范围是 数集A={t|1979≤t≤2001},臭氧层空洞面积S的变化 范围是数集B ={S|0≤S≤26}.
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
恩格尔系数( % ) 53.8 52.9 50.1 49.9 49.9 48.6 46.4 44.5 41.9 39.2 37.9
A={1991,1992,1993,1994, 1995, 1996, 1997,1998,1999,2000,2001} B={53.8,52.9, 50.1,49.9, 48.6, 46.4, 44.5, 41.9, 39.2, 37.9}
实例2(2)近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞 问题.图中的曲线显示了南极上空臭氧层空洞的面积从年的变化情况.
A={t|1979≤t≤2001}
B ={S|0≤S≤26}
实例3 (3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔 系数越低,生活质量越高.表中恩格尔系数随时间(年)变化的情况表 明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化.
记作: y=f(x),xA
其中, x叫做自变量, x的取值范围A叫做函数的定义域 (domain);与x的值相对应的y值叫做函数值,函数值的集合 {f(x)|x∈A}叫做函数的值域(range).
《高中数学PPT课件——函数》
3
反函数
反函数是函数的逆运算,将函数的输 出值映射回输入值。
对数与指数的关系
对数函数与指数函数是互为反函数的 关系,它们可以互相抵消。
指数函数与对数函数的图像与性质
指数函数
指数函数的图像呈现出指数增 长或指数衰减的特点。
对数函数
对数函数的图像呈现出反比例 关系,随着自变量的增大,函 数值逐渐变化缓慢。
指数增长和指数衰减
指数函数可以呈现出快速增长 或快速衰减的趋势。
复合函数及其求法
1
复合函数
复合函数由两个函数组成,其中一个函数的输出值作为另一个函数的输入值。
2
求法
可以通过代入法、求导法或递推法等方法来求解复合函数。
3
函数运算法则
复合函数满足函数运算的一些基本法则,如分配律和结合律。
函数的奇偶性与周期性
奇函数与偶函数
奇函数关于坐标原点对称, 即f(x)=-f(-x),偶函数关于 y轴对称,即f(x)=f(-x)。
周期函数
周期函数的图像在一定区 间内不断重复,满足 f(x+T)=f(x),其中T是函数 的周期。
常用周期函数
正弦函数、余弦函数和正 切函数都是常见的周期函 数。
常用函数的图像与性质
正弦函数
函数是数学中的一种基本关系。它将一个集合的每个元素映射到另一个集合 的元素上。函数能够描述事物之间的联系和变化规律。
函数的符号表示及基本性质
符号表示
函数用f(x)或y来表示,其中x是自变量,y是 因变量。
奇偶性和周期性
函数的奇偶性决定了它的对称性,周期性描 述了函数的重复性规律。
定义域和值域
函数的定义域是自变量的取值范围,值域是 函数所有可能的输出值。
人教版高中数学第一章函数的概念(第2课时)(共42张PPT)教育课件
类型 三 求形如f(g(x))的函数的定义域
• 例6.已知函数 f(x) 5x 1
x2 (1)求f(x)的定义域; (2)求f(x+3)的表达式,以及f(x+3)的定义域。 (3)求f(2x+1)的表达式,以及f(2x+1)的定义域。
注意: 1. 函数f(x+3)的定义域指的是x的取值范围,而不是x+3 的取值范围。 2.本题中函数f(x+3)的定义域为-1<x≤2,则2<x+3 ≤5
[1,2]还是2x+1∈[1,2]? f(x),f(2x+1)和f(2x-1)中的
x,2x+1和2x-1的取值范围有何关系?
探究提示:
1.x+ 1 ∈[0,2],x- 1∈[0,2].
2
2
2.定义域就是自变量的取值范围.y=f(2x+1)的定义域为
[1,2],它的含义是x∈[1,2].f(x),f(2x+1)和f(2x-1)
【变式训练】(2013·武汉高一检测)已知集合 A={1,2,3},B={4,5,6},f:A→B是从集合A到集合B的一个函数, 那么该函数的值域C的不同情况有( ) A.6种 B.7种 C.8种 D.9种 【解题指南】依据函数的定义来判断函数个数,进而求值域. 【解析】选B.结合函数定义,可知能构成7个函数,其值域有7 种不同情况. 即值域为{4},{5},{6},{4,5},{4,6},{5,6},{4,5,6}.
【变式训练】若函数y=f(x)的定义域是[0,2],则函数g(x)
= f 2 x 的定义域是(
x-1
A.[0,1]
) B.[0,1)
C.[0,1)∪(1,4]
人教版高中数学必修一1.2.1函数的概念ppt课件
编后语
• 常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
例2、求下列函数的定义域。
(1)
f (x)
1
(12x)(x1)
(2) f(x) x4 x2 1
(3) ;f(x) x1 2- x
例3、 已知: f =(xx2)x+3 求:f(-1), f(a),
f(x+1), f(
1 ),f(x2),f(f(x)), x
注意: 1在 y f中(xf)表示对应法则,不同 的函数其含义不一样。
初中已经学过:正比例函数、反比例函数、 一次函数、二次函数等。
1.[引例1](P15)一枚炮弹发射后,经过26s落到地面击
中目标。炮弹的射高为845m,且炮弹距地面的高度h
(单位:m)随时间t(单位:s)变化的规律是
h13t 05t2 (﹡)
提出以下问题: (1) 炮弹飞行1秒、8秒、15秒、25秒时距地面多高? (2) 炮弹何时距离地面最高? (3) 你能指出变量t和h的取值范围吗?分别用集合A和 集合B表示出来。 (4) 对于集合A中的任意一个时间t,按照对应关系
• 1930 年库拉托夫斯基(Kuratowski)用集合概念给出现代函数定义为“若对 集合M的任意元素x,总有集合N确定的元素y与之对应,则称在集合M上 定义一个函数,记为y=f(x)。元素x称为自变元,元素y称为因变元。”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
2.做一做
(1)区间(0,1)等于( )
A.{0,1}
B.{(0,1)}
C.{x|0<x<1} D.{x|0≤x≤1}
(2)对于函数 f:A→B,若 a∈A,则下列说法错误的是
() A.f(a)∈B B.f(a)有且只有一个 C.若 f(a)=f(b),则 a=b D.若 a=b,则 f(a)=f(b)
14
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
(2)设 M={x|-2≤x≤2},N={y|0≤y≤2},函数 y=f(x) 的定义域为 M,值域为 N,对于下列四个图象,不可作为函 数 y=f(x)的图象的是( )
15
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
解析 (1)A 错误,x2+y2=1 可化为 y=± 1-x2,显然 对任意 x∈A,y 值不一定唯一.B 正确,符合函数的定义.C 错误,2∈A,在 B 中找不到与之相对应的数.D 错误,-1 ∈A,在 B 中找不到与之相对应的数.
(2)由函数定义可知,任意作一条直线 x=a,则与函数 的图象至多有一个交点,结合选项可知 C 中图象不表示 y 是 x 的函数.
16
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
探究2 相同函数的判断 例 2 下列各组函数表示同一函数的是( ) A.f(x)=x,g(x)=( x)2 B.f(x)=x2+1,g(t)=t2+1 C.f(x)=1,g(x)=xx D.f(x)=x,g(x)=|x|
17
课前自主预习
数学 ·必修1
第一章 集合与函数概念
1.2 函数及其表示 1.2.1 函数的概念
1
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
课前自主预习
2
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
1.函数的概念
3
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
2.区间 (1)一般区间
4
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
(பைடு நூலகம்)无穷区间
3.两个函数相等的条件 (1)定义域相同; (2)对应关系完全一致.
5
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
1.判一判(正确的打“√”,错误的打“×”) (1) 函 数 值 域 中 的 每 一 个 数 都 有 定 义 域 中 的 数 与 之 对 应.( √ ) (2)函数的定义域和值域一定是无限集合.( × ) (3) 定 义 域 和 对 应 关 系 确 定 后 , 函 数 值 域 也 就 确 定 了.( √ ) (4)若函数的定义域只有一个元素,则值域也只有一个 元素.( √ )
=x2,x∈A,y∈B;
(4)A={三角形},B={x|x>0},对应法则 f:对 A 中元素
求面积与 B 中元素对应.
10
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
解 (1)对于 A 中的元素 0,在 f 的作用下得 0,但 0 不 属于 B,即 A 中的元素 0 在 B 中没有元素与之对应,所以 不是函数.
(2)对于 A 中的元素±1,在 f 的作用下与 B 中的 1 对应, A 中的元素±2,在 f 的作用下与 B 中的 4 对应,所以满足 A 中的任一元素与 B 中唯一元素对应,是“多对一”的对应, 故是函数.
11
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
(3)对于 A 中的任一元素,在对应关系 f 的作用下,B 中 都有唯一的元素与之对应,如±1 对应 1,±2 对应 4,所以 是函数.
课后课时精练
数学 ·必修1
探究1 函数的概念
例 1 判断下列对应是不是从集合 A 到集合 B 的函数.
(1)A=N,B=N*,对应法则 f:对集合 A 中的元素取绝
对值与 B 中元素对应;
(2)A={-1,1,2,-2},B={1,4},对应法则 f:x→y
=x2,x∈A,y∈B;
(3)A={-1,1,2,-2},B={1,2,4},对应法则 f:x→y
13
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
【跟踪训练 1】 (1)下列对应关系或关系式中,是 A 到 B 的函数的是( )
A.x2+y2=1,x∈A,y∈B B.A={1,2,3,4},B={0,1},对应关系如图 C.A=R,B=R,f:x→y=x-1 2 D.A=Z,B=Z,f:x→y= 2x-1
7
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
(3)(教材改编 P19T2)已知函数 f(x)=1+|xx2-1|,则 f(-2) =( )
A.-1 B.0 C.1 D.2
8
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
课堂互动探究
9
课前自主预习
课堂互动探究
随堂达标自测
D 项中,两个函数的定义域相同,但对应关系不同,所 以它们不是同一函数.
18
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
拓展提升 判断两个函数为同一函数的条件
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
解析 A 项中,由于 f(x)=x 的定义域为 R,g(x)=( x)2 的定义域为{x|x≥0},它们的定义域不相同,所以它们不是 同一函数.
B 项中,函数的定义域、值域和对应关系都相同,所以 它们是同一函数.
C 项中,由于 f(x)=1 的定义域为 R,g(x)=xx的定义域 为{x|x≠0},它们的定义域不相同,所以它们不是同一函数.
(4)集合 A 不是数集,故不是函数.
12
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修1
拓展提升 判断对应关系是否为函数的步骤
(1)判断 A、B 是否为非空数集. (2)判断 A 中任一元素在 B 中是否有唯一的元素与之对 应.满足上述两条,则该对应关系是函数关系. (3)判断一个图象是否为函数图象的方法:过 x 轴上任一 点作垂线与图象相交,若只有唯一的交点,则图象是函数图 象,否则就不是函数图象.