高数下 第八章空间解析几何.PDF
高等数学下册第八章 向量代数与空间解析几何

离.因为
PA 32 ( y 1)2 (z 2)2 , PB 42 ( y 2)2 (z 2)2 ,
PC 02 ( y 5)2 (z 1)2 ,
所以 32 ( y 1)2 (z 2)2 42 ( y 2)2 (z 2)2 02 ( y 5)2 (z 1)2 ,
零向量: 模为 0 的向量,
向量相等、向量平行向量共线、负向量、向量共面.
DMU
第一节 向量的线性运算与空间直角坐标系
向量线性运算的几何表达 ➢加法
平行四边形法则:
b ab
(a b) c
c
bc
三角形法则: a ab
a (b c) ab b
b a
a
运算规律 : 交换律 a b b a
结合律 ( a b ) c a (b c ) a b c
解 4u 3v 4 2a b 2c 3 a 4b c 5a 16b 11c.
例 如果平面上一个四边形的对角线互相平分试用向量证明
这是平行四边形
证 ABOBOA , DC OCOD 而 OC OA OD OB
所以
DC OA OB OB OA AB
这说明四边形 ABCD 的对边 AB CD 且 AB // CD 从而四边形
第八章
向量代数与空间解析几何
第一部分 向量代数 第二部分 空间解析几何
在三维空间中: 空间形式 — 点, 线, 面
数量关系 — 坐标, 方程(组) 基本方法 — 坐标法; 向量法
DMU
第八章 向量代数与空间解析几何
第一节 向量的线性运算与空间直角坐标系 第二节 数量积 向量积 混合积 第三节 平面及其方程 第四节 空间直线及其方程 第五节 曲面方程 第六节 空间曲线方程
(完整版)第八章向量代数与空间解析几何教案(同济大学版高数)(最新整理)

形对角线的交点(。见图 7-5)
图 7-4
解: a
b
AC
2
AM
,于是
MA
1
(a
b)
2
由于 MC MA ,
于是
MC
1
(a
b)
2
又由于
a
b
BD
2 MD
,于是
MD
1
(b
a)
2
由于 MB MD ,
于是
MB
1
(b
a)
2
三、空间直角坐标系
1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维)
五、向量的模、方向角、投影
设 a {ax , a y , az } ,可以用它与三个坐
标轴的夹角、、 (均大于等于 0,小
5
于等于 )来表示它的方向,称、、 为非零向量 a 的方向角,见图 7-6,其余弦表示
形式cos、cos 、cos 称为方向余弦。
1. 模
a
a
2 x
a
2 y
a
2 z
2. 方向余弦
PP1 x2 2 2 32 x2 11 PP2 x2 12 12 x2 2
PP为: (1,0,0) , (1,0,0)
四、利用坐标系作向量的线性运算
1.向量在坐标系上的分向量与向 量的坐标
通过坐标法,使平面上或空间的 点与有序数组之间建立了一一对应关 系,同样地,为了沟通数与向量的研 究,需要建立向量与有序数之间的对 应关系。
◆ 任意向量的方向余弦有性质: cos2 cos2 cos2 1
◆ 与非零向量 a 同方向的单位向量为:
a 0 a 1 {a x , a y , a z } {cos, cos , cos } aa
第八章空间解析几何

高等数学(下册)
提示:
(1) 设动点为 M ( x , y , 0) , 利用 M A M B , 得 且 (2) 设动点为 M ( x , y , z ) , 利用 M A M B , 得
例6. 已知两点
解: A B
和
求
AB
及实数 1, 如图所示
解: 设 M 的坐标为
A M B
AM MB AM OM OA MB OB OM
故
o
A
B M
OM O A ( OB OM )
得
即
OM 1 ( OA OB 1 1 (x x , y y , z z ) 2 1 2 1 2 1 1
Ⅷ
Ⅴ
高等数学(下册)
在直角坐标系下
点 M 有序数组 ( x, y, z ) 向径 r 称有序数组为点M的坐标,记为 M ( x, y, z ) 特殊点的坐标 : 原点 O(0,0,0) ; 坐标轴上的点 P, Q , R ;
坐标面上的点 A , B , C
1 1
1 1
z
R(0,0, z )
B(0, y, z )
C ( x, o, z )
o O (0,0,0)
r
M
y
Q(0, y,0)
x P(x,0,0)
A( x, y,0)
高等数学(下册)
z
坐标轴 :
o
y
x
坐标面 :
高等数学(下册)
2. 向量的坐标表示
以 i , j , k 分别表示 x , y , z 轴上的单位向量 , 设点 M
大学知识第八节 空间解析几何

空间解析几何1. 在空间直角坐标系中,由参数方程sin 1cos 042sin 2x y z θπθθθ⎧⎪=⎪⎛⎫=-+≤<⎨ ⎪⎝⎭⎪⎪=⎩确定的曲线的一般方程是( )。
22220.20x y A y y z ⎧+=⎨++=⎩ 22220.20x y B y z z ⎧+=⎨++=⎩22220.20x y y C z y ⎧++=⎨+=⎩ 22220.20x y x C y z ⎧++=⎨+=⎩1.【答案】C【解析】联立x=sin θ,y=-1+cos θ消去θ得2220x y y ++=,可知选择C. 2. 设112233(,),(,),(,),A x y B x y C x y 为平面上不共线的三点,则三角形ABC 的面积为() AB AC ⋅ B.12AB AC ⋅ D. AB AC ⋅ 2.【答案】B【解析】由行列式的定义展开计算可得。
3.直线L:12x -:2x y z τ++=A.平行 B.相交但不垂直 C 垂直 D.直线L 在平面上 3.【答案】B 。
【解析】由题意得:直线l 的方向向量为m =(2,-1,一3), 平面τ法向量n =(1,1,1),易知m 与n 不共线,且mn ≠0,而直线l 上的点(1,-1,2)在平面τ上,故两者相交但不垂直。
故选择B 。
4.方程2221x y z -+=-所确定的二次曲面是( )A. 椭球面B.旋转双曲面C. 旋转抛物面D. 圆柱面4.【答案】B5.方程22211694x y z -+=所确定的二次曲面是( )A. 椭球面 B 。
旋转双曲面 C. 旋转抛物面 D. 圆柱面5.【答案】B6.已知抛物面方程222=x y z +(1)求抛物面上在点(1,1,3)M 处的切平面方程;(2)当k 为何值时,所求的切平面与平面340x ky z +-=相互垂直。
6.【解析】(1)令22(,,)2F x y z x y z =+- 则4,2,1F F F x y x y z∂∂∂===-∂∂∂。
高等数学第八章空间解析几何

任一点, 那么向量 M 0M 与L的方向向量 平s行.
所以,
两向量的 对应坐标成比例, 由于
M0M
(xx 0,yy 0,zz 0),
s(m,n,p),
从而有
此方程组就是直线 L 的方程,叫做直线的对称式方程或 点向式方程.
第六页,共30页。
z
s
M
M0
O
y
x
第七页,共30页。
直线的对称式方程:
设直线L上一点M0(x0 , y0 , x0)和它的一方向向量
第二页,共30页。
二、空间直线的对称式方程与参数方程 空间直线的方向向量:如果一个非零向量平行于
一条已知直线,这个向量就叫做这条直线的方向向量. z
s
O
y
x
第三页,共30页。
二、空间直线的对称式方程与参数方程
空间直线的方向向量:如果一个非零向量平行于
一条已知直线,这个向量就叫做这条直线的方向向量.
x2t,y3t,z42t,
代入平面方程中,得
2(2t)(3t)(42t)60.
2x y z 6 0
解上列方程,得t1.
将 t 1 代 入 直 线 的 参 数 方 程 , 得 所 求 交 点的坐标为
x1,y2,z2.
第二十一页,共30页。
例6 求过点P(2,1,3)且与直线
垂直相交的直线的方程.
二、如何将直线的一般方程化为对称式方程? 三、两直线的位置关系 四、直线与平面的位置关系
五、关于平面束方程的概念
第二十九页,共30页。
谢 谢!
第三十页,共30页。
即
(1l)x(1l)y(1l)z(1l)0,
其中l为待定的常数.这平面与平面xyz0垂直的条件是
大学高数空间解析几何

学习空间解析几何有助于培养人的逻辑思维和抽象 思维能力,提高解决问题的能力。
空间解析几何的历史与发展
早期发展
空间解析几何起源于17世纪,随着笛卡尔坐标系的建立和 解析几何方法的完善,开始形成独立的数学分支。
近代发展
随着计算机科学和数学的不断发展,空间解析几何在理论 和应用方面都取得了重要进展,如微分几何、线性代数和 微分方程等与空间解析几何的交叉融合。
详细描述
如果两个平面的法向量 $mathbf{a}$ 和 $mathbf{b}$ 是共线的,即存在一个非零实数 $lambda$ 使得 $mathbf{a} = lambda mathbf{b}$,那么这两个平面就是平行的。如果两个平面的法向量不共线,那么 这两个平面就是相交的。
04
空间几何的应用
空间几何在计算机图形学中的应用
01
02
03
三维建模
空间几何用于创建三维模 型,包括曲面建模、实体 建模和参数化建模等。
光照计算
空间几何用于计算物体表 面的光照效果,以实现逼 真的渲染效果。
动画制作
空间几何用于动画制作中 的骨骼绑定、运动轨迹规 划和角色动画等,以创建 动态的视觉效果。
05
空间几何的习题与解答
平面与平面的交线
总结词求平面与平面Fra bibliotek交线,需要消元法或参数方程法。
详细描述
平面与平面的交线可以通过消元法或参数方程法来求解。消元法是通过联立两个平面的方程组,然后消元得到一 个一元一次方程,这个一元一次方程就是两平面的交线。参数方程法则是设定一个参数,将两个平面的方程都表 示成参数的函数,然后令参数相等,解出交线的参数方程。
未来展望
随着科技的不断进步和应用领域的拓展,空间解析几何将 继续发挥重要作用,并有望在人工智能、机器学习等领域 取得新的突破和应用。
同济大学(高等数学)_第八章_向量代数与解析几何

第五篇 向量代数与空间解析几何第八章 向量代数与空间解析几何解析几何的基本思想是用代数的方法来研究几何的问题,为了把代数运算引入几何中来,最根本的做法就是设法把空间的几何结构有系统的代数化,数量化. 平面解析几何使一元函数微积分有了直观的几何意义,所以为了更好的学习多元函数微积分,空间解析几何的知识就有着非常重要的地位.本章首先给出空间直角坐标系,然后介绍向量的基础知识,以向量为工具讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分内容.第1节 空间直角坐标系1.1 空间直角坐标系用代数的方法来研究几何的问题,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现.1.1.1 空间直角坐标系过定点O ,作三条互相垂直的数轴,这三条数轴分别叫做x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),它们都以O 为原点且具有相同的长度单位. 通常把x 轴和y 轴配置在水平面上,而z 轴则是铅垂线;它们的正方向要符合右手规则:右手握住z 轴,当右手的四指从x 轴的正向转过2角度指向y 轴正向时,大拇指的指向就是z 轴的正向,这样就建立了一个空间直角坐标系(图8-1),称为Oxyz 直角坐标系,点O 叫做坐标原点.图8-1在Oxyz 直角坐标系下,数轴Ox ,Oy ,Oz 统称为坐标轴,三条坐标轴中每两条可以确定一个平面,称为坐标面,分别为xOy ,yOz ,zOx ,三个坐标平面将空间分为八个部分,每一部分叫做一个卦限(图8-2),分别用Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ表示.yxzO图8-21.1.2 空间点的直角坐标设M 为空间中的任一点,过点M 分别作垂直于三个坐标轴的三个平面,与x 轴、y 轴和z 轴依次交于A 、B 、C 三点,若这三点在x 轴、y 轴、z 轴上的坐标分别为x ,y ,z ,于是点M 就唯一确定了一个有序数组(, , )x y z ,则称该数组(, , )x y z 为点M 在空间直角坐标系Oxyz 中的坐标,如图8-3.x ,y ,z 分别称为点M 的横坐标、纵坐标和竖坐标.图8-3反之,若任意给定一个有序数组(, , )x y z ,在x 轴、y 轴、z 轴上分别取坐标为x ,y ,z 的三个点A 、B 、C ,过这三个点分别作垂直于三个坐标轴的平面,这三个平面只有一个交点M ,该点就是以有序数组(, , )x y z 为坐标的点,因此空间中的点M 就与有序数组(, , )x y z 之间建立了一一对应的关系.注:A 、B 、C 这三点正好是过M 点作三个坐标轴的垂线的垂足.yxzOyxzA B C (,,)M x y z1.2 空间中两点之间的距离设两点111(, , )M x y z ,222(, , )N x y z ,则M 与N 之间的距离为212212212)()()(z z y y x x d -+-+-= (8-1-1)事实上,过点M 和N 作垂直于xOy 平面的直线,分别交xOy 平面于点1M 和1N ,则1MM ∥1NN ,显然,点1M 的坐标为11(, , 0)x y ,点1N 的坐标为22(, , 0)x y (如图8-4).图8-4由平面解析几何的两点间距离公式知,1M 和1N 的距离为:21221211)()(||y y x x N M -+-=.过点M 作平行于xOy 平面的平面,交直线1NN 于2N ,则11M N ∥2MN ,因此2N 的坐标为221(, , )x y z ,且212212112)()(||||y y x x N M MN -+-==,在直角三角形N MN 2中,||||122z z N N -=,所以点M 与N 间的距离为2122122122222)()()(||||z z y y x x N N MN d -+-+-=+=.例1 设(1, 2, 0)A -与(1, 0, 2)B --为空间两点,求A 与B 两点间的距离. 解 由公式(8-1-1)可得,A 与B 两点间的距离为d ==例2 在z 轴上求与点(3, 5, 2)A -和(4, 1, 5)B -等距的点M .解 由于所求的点M 在z 轴上,因而M 点的坐标可设为(0, 0, )z ,又由于MA MB =,由公式(8-1-1),得222222)5(1)4()2(53z z -++-=--++.从而解得72=z ,即所求的点为2(0, 0, )7M .习题8-11.讨论空间直角坐标系的八个卦限中的点的坐标的符号. 2.在坐标轴上的点和在坐标平面上的点的坐标各有何特点? 3.在空间直角坐标系中,画出下列各点:(2, 0, 0)A ;(0, 3, 0)B -;(3, 0, 1)C ;(3, 2, 1)D -. 4.求点(1, 2, 3)-关于各坐标平面对称的点的坐标. 5.求点(1, 2, 3)关于各坐标轴对称的点的坐标. 6.求下列各对点间的距离: (1) (0, 1, 3)A -与(2, 1, 4)B ;(2) (1, 4, 2)C -与D(2, 7, 3).7.在坐标平面yOz 上求与三点(3, 1, 2)A 、(4, 2, 2)B --和(0, 5, 1)C 等距的点. 8.求点(12, 3, 4)A -与原点、各坐标平面和各坐标轴的距离.9. 证明以()()()A 4,3,1,B 7,1,2,C 5,2,3为顶点的三角形△ABC 是一等腰三角形.第2节 空间向量的代数运算2.1 空间向量的概念在日常生活中,我们经常会遇到一些量,如质量、时间、面积、温度等,它们在取定一个度量单位后,就可以用一个数来表示.这种只有大小没有方向的量,叫做数量(或标量).但有一些量,如力、位移、速度、电场强度等,仅仅用一个实数是无法将它们确切表示出来,因为它们不仅有大小,而且还有方向,这种既有大小又有方向的量,叫做向量(或矢量).在数学上,我们用有向线段AB 来表示向量,A 称为向量的起点,B 称为向量的终点,有向线段的长度就表示向量的大小,有向线段的方向就表示向量的方向.通常在印刷时用黑体小写字母a ,b ,c ,…来表示向量,手写时用带箭头的小写字母, ,,a b c来记向量.向量的长度称为向量的模,记作a 或AB ,模为1的向量叫做单位向量,模为0的向量叫做零向量,记作0,规定:零向量的方向可以是任意的.本章我们讨论的是自由向量,即只考虑向量的大小和方向,而不考虑向量的起点,因此,我们把大小相等,方向相同的向量叫做相等向量,记作a =b .规定:所有的零向量都相等.与向量a 大小相等,方向相反的向量叫做a 的负向量(或反向量),记作 a . 平行于同一直线的一组向量称为平行向量(或共线向量).平行于同一平面的一组向量,叫做共面向量,零向量与任何共面的向量组共面.2.2 向量的线性运算2.2.1 向量的加法我们在物理学中知道力与位移都是向量,求两个力的合力用的是平行四边形法则,我们可以类似地定义两个向量的加法.定义1 对向量a ,b ,从同一起点A 作有向线段AB 、AD 分别表示a 与b ,然后以AB 、AD 为邻边作平行四边形ABCD ,则我们把从起点A 到顶点C 的向量AC 称为向量a 与b 的和(图8-5),记作a +b .这种求和方法称为平行四边形法则.图8-5 图8-6若将向量b 平移,使其起点与向量a 的终点重合,则以a 的起点为起点,b 的终点为终abA Cabc =a +b点的向量c 就是a 与b 的和(图8-6),该法则称为三角形法则.多个向量,如a 、b 、c 、d 首尾相接,则从第一个向量的起点到最后一个向量的终点的向量就是它们的和a +b +c +d (图8-7).图8-7对于任意向量a ,b ,c ,满足以下运算法则: (1) a +b =b +a (交换律).(2) ()()a +b +c =a +b +c (结合律). (3) 0a +=a .2.2.2 向量的减法定义2 向量a 与b 的负向量-b 的和,称为向量a 与b 的差,即()--a b =a +b .特别地,当b =a 时,有()-0a +a =.由向量减法的定义,我们从同一起点O 作有向线段OA ,OB 分别表示a ,b ,则()OA OB OA OB --=+-a b =OA BO BA =+=.也就是说,若向量a 与b 的起点放在一起,则a ,b 的差向量就是以b 的终点为起点,以a 的终点为终点的向量(图8-8).图8-82.2.3数乘向量定义3 实数λ与向量a 的乘积是一个向量,记作λa ,λa 的模是λa ,方向:当0λ>时,λa 与a 同向;当0λ<时,λa 与a 反向;当0λ=时,λ0a =.abcda +b +c +daabb-a bBAC对于任意向量a ,b 以及任意实数λ,μ,有运算法则: (1) ()()λμλμa =a . (2) ()+λμλμ+a =a a .(3) ()+λλλ+a b =a b .向量的加法、减法及数乘向量运算统称为向量的线性运算,λμa +b 称为a ,b 的一个线性组合(, )R λμ∈.特别地,与 a 同方向的单位向量叫做a 的单位向量,记做a e ,即aa e a=.上式表明:一个非零向量除以它的模的结果是一个与原向量同方向的单位向量.例1 如图8-9,在平行六面体///ABCD B C D /—A 中,设/=AA ,a AD =b AB =c ,试用,,a b c 来表示对角线向量//,.AC A C图8-9解 ''AC AB BC CC =++'AB BC AA =++a b c =++; '''AC A A AB BC AA AB AD =++=-++a b c =++.由于向量λa 与a 平行,所以我们通常用数与向量的乘积来说明两个向量的平行关系.即有,定理1 向量a 与非零向量b 平行的充分必要条件是存在一个实数λ,使得λa =b .2.3 向量的坐标表示2.3.1向量在坐标轴上的投影设A 为空间中一点,过点A 作轴u 的垂线,垂足为'A ,则'A 称为点A 在轴u 上的投影(图8-10).图8-10若M 为空间直角坐标系中的一点,则M 在x 轴、y 轴、z 轴上的投影为A 、B 、C ,如图8-11所示.图8-11设向量AB 的始点与终点B 在轴u 的投影分别为A '、B ',那么轴u 上的有向线段A B ''的值A B ''叫做向量AB 在轴u 上的投影,记作u prj AB A B ''=,轴u 称为投影轴.图8-12当A B ''与轴u 同向时,投影取正号,当A B ''与轴u 反向时,投影取负号. 注 (1) 向量在轴上投影是标量.(2) 设MN 为空间直角坐标系中的一个向量,点M 的坐标为111(, , )x y z ,点N 的坐标为222(, , )x y z ,显然,向量MN 在三个坐标轴上的投影分别为12x x -,12y y -,12z z -.2.3.2向量的坐标表示yxzOA B CM取空间直角坐标系Oxyz ,在x 轴、y 轴、z 轴上各取一个与坐标轴同向的单位向量,依次记作, , i j k ,它们称为坐标向量.空间中任一向量a ,它都可以唯一地表示为, , i j k 数乘之和. 事实上,设MN a =,过M 、N 作坐标轴的投影,如图8-13所示.MN =MA+AP +PN =MA+MB +MC a =.由于MA 与i 平行,MB 与j 平行,MC 与k 平行,所以,存在唯一的实数, , x y z ,使得MA x =i ,MB y =j ,MC z =k ,即x y z a =i +j +k . (8-2-1)图 8-13我们把(8-2-1)式中, , i j k 系数组成的有序数组(, , )x y z 叫做向量a 的直角坐标,记为{, , }x y z a =,向量的坐标确定了,向量也就确定了.显然,(8-2-1)中的, , x y z 是向量a 分别在x 轴、y 轴、z 轴上的投影.因此,在空间直角坐标系中的向量a 的坐标就是该向量在三个坐标轴上的投影组成的有序数组.例2 在空间直角坐标系中设点(3, 1, 5)M -,(2, 3, 1)N -,求向量MN 及NM 的直角坐标.解 由于向量的坐标即为向量在坐标轴上的投影组成的有序数组,而向量的各投影即为终点坐标与起点坐标对应分量的差.所以向量MN 的坐标为{5, 4, 4}--,向量NM 的坐标为{5, 4, 4}-. 例3(定比分点公式) 设111(,,)A x y z 和222(,,)B x y z 为两已知点,有向线段AB 上的点M 将它分为两条有向线段AM 和MB ,使它们的值的比等于数(1)λλ≠-,即AMMBλ=,求分点(,,)M x y z 的坐标.图8-14 解 如图8-14,因为AM 与MB 在同一直线上,且同方向,故AM MB λ=⋅,而122{,,}AMx x y y z z =---, 222{,,}MB x x y y z z =---222{(),(),()}MB x x y y z z λλλλ=---所以 12()x x x x λ-=-,12()y y y y λ-=-,12()z z z z λ-=- 解得121212,,.111x x y y z z x y z λλλλλλ+⋅+⋅+⋅===+++当λ=1, 点M 的有向线段→AB x 2.3.3设空间向量12a M M =分别为,,αβγ,规定: 0,0απ≤≤称,,αβγ为向量a 的方向角因为向量a 12cos cos x a M M a αα=⋅=⋅ 12cos cos y a M M a ββ=⋅=⋅(8-2-2)12cos cos z a M M a γγ=⋅=⋅公式(8.2.2)中出现的cos ,cos ,cos αβγ称为向量a 的方向余弦.而{,,}{cos ,cos ,cos }x y z a a a a a a a αβγ==⋅⋅⋅{cos ,cos ,cos }a a a e αβγ=⋅=⋅{cos ,cos ,cos }a e αβγ=是与向量a 同方向的单位向量.而 a =M M =12,,x y z M P a M Q a M R a ===111,故向量a 的模为 x a a a =+2(8-2-3)从而向量a 的方向余弦为cos a αβγ===(8-2-4)并且 222cos cos cos 1αβγ++=.例4 已知两点1M 和()21,3,0M ,求向量12M M 的模、方向余弦和方向角. 解12(12,32,0(1,1,M M =--=-2)2(1)1(222=-++-=;11cos ,cos ,cos 222αβγ=-==-;23,,334πππαβγ===. 例5 已知两点(4,0,5)A 和(7,1,3)B ,求与AB 同方向的单位向量e . 解 因为{74,10,35}{3,1,2},AB =---=-所以23AB == 于是 }.e =2.4 向量的数量积在物理中我们知道,一质点在恒力F 的作用下,由A 点沿直线移到B 点,若力F 与位移向量AB 的夹角为θ,则力F 所作的功为||||cos W F AB θ=⋅⋅.类似的情况在其他问题中也经常遇到.由此,我们引入两向量的数量积的概念. 定义1 设a ,b 为空间中的两个向量,则数cos ,a b a b叫做向量a 与b 的数量积(也称内积或点积),记作⋅a b ,读作“a 点乘b ”.即cos ,⋅a b =a b a b (8-2-5)其中,a b 表示向量a 与b 的夹角,并且规定0, π≤≤a b .两向量的数量积是一个数量而不是向量,特别地当两向量中一个为零向量时,就有0⋅a b =.由向量数量积的定义易知:(1) 2⋅a a =a ,因此=a(2) 对于两个非零向量a ,b ,a 与b 垂直的充要条件是它们的数量积为零,即⊥a b ⇔0⋅a b =.注 数量积在解决有关长度、角度、垂直等度量问题上起着重要作用. 数量积的运算满足如下运算性质: 对于任意向量a ,b 及任意实数λ,有 (1) 交换律:⋅⋅a b =b a .(2) 分配律:()⋅⋅⋅a b +c =a b +a c .(3) 与数乘结合律:()()()λλλ⋅⋅=⋅a b =a b a b . (4) 0⋅≥a a 当且仅当0a =时,等号成立.例6 对坐标向量i ,j ,k ,求⋅i i ,⋅j j ,⋅k k ,⋅i j ,⋅j k ,⋅k i . 解 由坐标向量的特点及向量内积的定义得1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =.例7 已知2=a ,3=b ,2, 3π=a b ,求a b ⋅,(2)()-+a b a b ⋅,+a b . 解 由两向量的数量积定义有2cos , 23cos 3π⋅=⨯⨯a b =a b a b 123()=32=⨯⨯--.(2)()=22-⋅+⋅⋅-⋅-⋅a b a b a a +a b b a b b22=2-⋅-a a b b 222(3)23=11=---⨯-.2()()+=⋅+a b a +b a b =⋅⋅+⋅+⋅a a +a b b a b b222=+⋅+a a b b2222(3)3=7=+⨯-+,因此+=a b在空间直角坐标系下,设向量111{,,}x y z a =,向量222{,,}x y z b =,即111x y z ++a =i j k , 222x y z ++b =i j k .则111222()()x y z x y z ⋅++⋅++a b =i j k i j k121212()()+()x x x y x z ⋅+⋅⋅=i i i j i k 121212()()+()y x y y y z ⋅+⋅⋅+j i j j j k 121212()()+()z x z y z z ⋅+⋅⋅+k i k j k k .由于1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =,所以121212x x y y z z ⋅++a b =. (8-2-6)也就是说,在直角坐标系下,两向量的数量积等于它们对应坐标分量的乘积之和.同样,利用向量的直角坐标也可以求出向量的模、两向量的夹角公式以及两向量垂直的充要条件,即设非零向量111{,,}x y z a =,向量222{,,}x y z b =,则==a (8-2-7)cos ||||⋅=a ba,b a b=. (8-2-8)⊥a b ⇔1212120x x y y z z ++=. (8-2-9)例8 在空间直角坐标系中,设三点(5, 4, 1)A -,(3, 2, 1)B ,(2, 5, 0)C -.证明:ABC ∆是直角三角形.证明 由题意可知{2, 6, 0}AB =-,={3, 1, 1}AC ---,则(2)(3)6(1)0(1)0AB AC ⋅=-⨯-+⨯-+⨯-=,所以AB AC ⊥.即ABC ∆是直角三角形.2.5向量的向量积在物理学中我们知道,要表示一外力对物体的转动所产生的影响,我们用力矩的概念来描述.设一杠杆的一端O 固定,力F 作用于杠杆上的点A 处,F 与OA 的夹角为θ,则杠杆在F 的作用下绕O 点转动,这时,可用力矩M 来描述.力F 对O 的力矩M 是个向量,M 的大小为||||||sin OA OA =M F ,F .M 的方向与OA 及F 都垂直,且OA ,F ,M 成右手系,如图8-16所示.图8-162.5.1向量积的定义在实际生活中,我们会经常遇到象这样由两个向量所决定的另一个向量,由此,我们引入两向量的向量积的概念.定义2 设a ,b 为空间中的两个向量,若由a ,b 所决定的向量c ,其模为sin , c =a b a b . (8-2-10)其方向与a ,b 均垂直且a ,b ,c 成右手系(如图8-17),则向量c 叫做向量a 与b 的向量积(也称外积或叉积).记作⨯a b ,读作“a 叉乘b ”.注 (1) 两向量a 与b 的向量积⨯a b 是一个向量,其模⨯a b 的几何意义是以a ,b 为邻边的平行四边形的面积. (2)⨯0a a =这是因为夹角θ=0,所以⨯0a a = 图8-17(3)对两个非零向量a 与b ,a 与b 平行(即平行)的充要条件是它们的向量积为零向量.a ∥b ⇔⨯0a b =.向量积的运算满足如下性质:对任意向量a ,b 及任意实数λ,有 (1) 反交换律:⨯-⨯a b =b a .(2) 分配律: ()⨯⨯⨯a b +c =a b +a c ,()⨯⨯⨯a +b c =a c +b c .(3) 与数乘的结合律:()()()λλλ⨯⨯⨯a b =a b =a b .例9 对坐标向量i ,j ,k ,求⨯i i ,⨯j j ,⨯k k ,⨯i j ,⨯j k ,⨯k i . 解 ⨯⨯⨯0i i =j j =k k =.⨯i j =k ,⨯j k =i ,⨯k i =j .2.5.2向量积的直角坐标运算在空间直角坐标系下,设向量111{, , }x y z a =,向量222{, , }x y z b =,即111x y z ++a =i j k ,222x y z ++b =i j k ,因为⨯⨯⨯0i i =j j =k k =. ⨯i j =k ,⨯j k =i ,⨯k i =j , ⨯-j i =k ,⨯-k j =i ,⨯-i k =j .则111222()()x y z x y z ⨯++⨯++a b =i j k i j k121212()()+()x x x y x z ⨯+⨯⨯=i i i j i k 121212()()+()y x y y y z ⨯+⨯⨯+j i j j j k 121212()()+()z x z y z z ⨯+⨯⨯+k i k j k k121212121212()()+()()()()x y y x y z z y x z z x -⨯-⨯--⨯=i j j k k i 121212121212()()+()y z z y x z z x x y y x ----=i j k .为了便于记忆,借助于线性代数中的二阶行列式及三阶行列式有111111222222yz x z xy y z x z x y ⨯-a b =i j +k 111222x y z x y z =ij k . 注 设两个非零向量111{, , }x y z a =,222{, , }x y z b =,则a ∥b ⇔⨯0a b =,⇔212121z z y y x x ==. 若某个分母为零,则规定相应的分子为零.例10 设向量{1,2,1}--a =,{2,0,1}b =,求⨯a b 的坐标.解 2111121210121221----⨯--=-ij k a b =i j +k 234=--i j +k .因此⨯a b 的直角坐标为{2, 3, 4}--.例11 在空间直角坐标系中,设向量{3, 0, 2}a =,{1, 1, 1}--b =,求同时垂直于向量a 与b 的单位向量.解 设向量⨯c =a b ,则c 同时与a ,b 垂直.而32111⨯--ij kc =a b =23=-+i j +k ,所以向量c 的坐标为{2, 1, 3}-.再将c 单位化,得02,1,3}={=-c ,即{与-- 为所求的向量. 例12 在空间直角坐标系中,设点(4, 1, 2)A -,(1, 2, 2)B -,(2, 0, 1)C ,求ABC ∆的面积.解 由两向量积的模的几何意义知:以AB 、AC 为邻边的平行四边形的面积为AB AC ⨯,由于{3, 3, 4}AB =--,{2, 1, 1}AC =--,因此33453211AB AC ⨯=--=++--i j ki j k ,所以21AB AC ⨯==故ABC ∆的面积为235=∆ABC S .2.6向量的混合积定义3 给定空间三个向量,,a b c ,如果先作前两个向量a 与b 的向量积,再作所得的向量与第三个向量c 的数量积,最后得到的这个数叫做三向量,,a b c 的混合积,记做()a b c ⨯⋅或abc ⎡⎤⎣⎦.说明:三个不共面向量,,a b c 的混合积的绝对值等于以,,a b c 为棱的平行六面体的体积V .定理 如果111a X i Y j Z k =++,222b X i Y j Z k =++,333c X i Y j Z k =++,那么 111222333.X Y Z abc X Y Z X Y Z ⎡⎤=⎣⎦习题8-21.,,,,,().ABCD AB AD AC DB MA M ==设为一平行四边形试用表示为平行四边形对角线的交点a b.a b12.,().2M AB O OM OA OB =+设为线段的中点,为空间中的任意一点证明2223.?(1)()();(2)();(3)()().==⨯=⨯对于任意三个向量与判断下列各式是否成立a,b c,a b c b c a a b a b a b c c a b4.:(1);(2)(3).利用向量证明三角形的余弦定理正弦定理;勾股定理5.设,,a b c 为单位向量,且满足0a b c ++=,求.a b b c c a ++6.1(3,2,2),(1,3,2),(8,6,2),322a b c a b + c.求=-==--7.已知三点(3,0,2),A B AB ==求的坐标、模、方向余弦和方向角.8.一向量的终点在点B(2,-1,7),它在x 轴、y 轴和z 轴上的投影依次为4,-4和7.求这向量的起点A 的坐标.9.设2=a ,4=b ,3πa,b =,求⋅a b ,(2)-⋅a b b ,-a b . 10.设向量a ,b ,c 两两垂直,且1=a ,2=b ,3=c ,求向量d =a +b +c 的模及d,a .11.在空间直角坐标系中,已知{1,2,3}-a = ,{2,2,1}-b = ,求: (1) ⋅a b ;(2) 25⋅a b ;(3) a ;(4) cos a,b .12.已知向量2332和,,a i j k b i j k c i j =-+=-+=-,计算 (1)()();a b c a c b -(2)()();a b b c +⨯+(3)()a b c ⨯.13.设向量a ,b 的直角坐标分别为{1, 3, 2}--和{2, 4, }k -,若a b ⊥,求k 的值.14.设向量{2, 1, 1}-a =,{1, 3, 0}-b =,求以、a b 为邻边构造的平行四边形面积. 15.求同时垂直于向量{3, 2, 4}-a =和纵轴的单位向量.16.已知三角形三个顶点(4, 1, 2)A -,(3, 0, 1)B -,(5, 1, 2)C ,求ABC ∆的面积.第3节 空间中的平面与直线方程在本节我们以向量为工具,在空间直角坐标系中讨论最简单的曲面和曲线——平面和直线.3.1平面及其方程首先利用向量的概念,在空间直角坐标系中建立平面的方程,下面我们将给出几种由不同条件所确定的平面的方程.3.1.1平面的点法式方程若一个非零向量n 垂直于平面π,则称向量n 为平面π的一个法向量.显然,若n 是平面π的一个法向量,则λn (λ为任意非零实数)都是π的法向量,即平面上的任一向量均与该平面的法向量垂直.由立体几何知识知道,过一个定点0000(, , )M x y z 且垂直于一个非零向量{, , }A B C n =有且只有一个平面π.设(, , )M x y z 为平面π上的任一点,由于π⊥n ,因此0M M ⊥n .由两向量垂直的充要条件,得00M M =⋅n ,而0000{, , }M M x x y y z z =---,{, , }A B C n =,所以可得0)()()(000=-+-+-z z C y y B x x A . (8-3-1)由于平面π上任意一点(, , )M x y z 都满足方程(8-3-1),而不在平面π上的点都不满足方程(8-3-1),因此方程(8-3-1)就是平面π的方程.由于方程(8-3-1)是给定点0000(, , )M x y z 和法向量{, , }A B C n =所确定的,因而称式(8-3-1)叫做平面π的点法式方程.图8-18例1 求通过点0(1, 2, 4)M -且垂直于向量{3, 2, 1}-n =的平面方程.解 由于{3, 2, 1}-n =为所求平面的一个法向量,平面又过点0(1, 2, 4)M -,所以,由平面的点法式方程(6-14)可得所求平面的方程为3(1)2(2)1(4)=0x y z --⋅++⋅-,整理,得32110x y z -+-=.例2 求过三点()12,1,4M -,()2M 1,3,2--,()3M 0,2,3 的平面π的方程. 解 所求平面π的法向量必定同时垂直于12M M 与13M M .因此可取12M M 与13M M 的向量积1213M M M M ⨯为该平面的一个法向量n .即1213n =M M M M ⨯.由于12{3, 4, 6}M M =--,13{2, 3, 1}M M =--,因此1213-631i j kn =M M M M =342⨯---149i j k,=+-,因此所求平面π的方程为0419214=--++-)()()(z y x ,化简得.015914=--+z y x一般地,过三点(,,)(1,2,3)k k k k M x y z k =的平面方程为1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 称为平面的三点式方程。
《高等数学课件——空间解析几何》

向量的线性运算与性质
向量加法与减法
深入研究向量的加法和减法 的运算规则,以及它们的几 何意义和应用。
数量积及其性质
了解向量的数量积的定义和 性质,并掌握数量积在解析 几何中的应用方法。
向量积及其性质
探索向量的向量积的定义和 性质,解析向量积的几何意 义与特点。
平面的法向量及其方程
平面的法向量
平面的方程
了解平面的法向量的概念与性质, 进一步理解法向量在平面方程中 的运用与解读。
通过法向量和已知点的坐标,求 解平面的方程,应用平面方程解 决实际问题。
平面的位置关系
分析不同平面之间的位置关系, 如相交、平行、重合等,加深对 平面的理解。
直线的方向向量及其方程
1 直线的方向向量
学习直线的方向向量的定义 和性质,以及与直线垂直的 向量的特征。
3
线平行或垂直于面
深入研究直线与平面之间的位置关系,如直线平行于面、直线垂直于面等情况。
点到直线的距离及其计算
点到直线的垂直距离
学习如何计算点到直线的垂直距 离,以及求解点到直线的最短距 离的方法。
点到直线的最近点
探究如何确定点到直线的最近点 的坐标,加深对点到直线距离的 理解。
点到直线的垂线段
了解点到直线的垂线段和与之相 关的几何特征,应用垂线段解决 问题。
探讨点在直线上的性质与条件, 进一步发掘点的坐标与直线的关 联。
向量的概念和表示方法
1 向量的定义
2 向量的表示
准确把握向量的概念和基本 性质,以及它在空间解析几 何中的重要作用。
3 向量的数量特征
学习向量的表示方法,包括 点表示、坐标表示和运算表 示等,加深对向量概念的理 解。
探索向量的模、方向和共线性的性质,并应用于解决空间几何问题。
(整理)《高等数学》下册(八--十二).

2015届高联高级钻石卡基础阶段学习计划《高等数学》下册(八-十二)第八章、向量代数和空间解析几何计划对应教材:高等数学上册同济大学数学系编高等教育出版社第六版本单元中我们应当学习——1.空间直角坐标系,向量的概念及其表示;2.向量的运算(线性运算、数量积、向量积、混合积),两个向量垂直、平行的条件;3.单位向量、方向角与方向余弦、向量的坐标表达式,用坐标表达式进行向量运算;4.平面方程和直线方程及其求法;5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会判断平面、直线的相互关系(平行、垂直、相交等);6.会求点到直线以及点到平面的距离;7.根据二次曲面的方程能判断出它的图形,会求简单的柱面和旋转曲面的方程.8.会求空间曲线在坐标平面上的投影.天数学习时间学习章节学习知识点习题章节必做题目巩固习题(选做)备注第一天3h第8章第1节向量及其线性运算向量概念和线性运算,空间直角坐标系利用坐标作向量的线性运算向量的模、方向角、投影习题8—113,15★18,19重点内容:1. 向量的模;2. 方向角与方向余弦.第8章第2节数量积、向量积、混合积向量积、数量积、混合积的概念、性质、运算律、物理意义两向量平行、垂直的充要条件习题8—23,7★,9(1)★(2) ★(3)★,10★1,2总结比较数量积、向量积、混合积:1.定义和性质;2.运算律;3.计算公式.第二天3h第8章第3节曲面及其方程曲面方程的概念旋转曲面的概念,旋转轴为坐标轴的旋转曲面的方程柱面的概念及二次曲面的概念与常用二次曲面(锥面、椭球面、双曲面、抛物面)的方程及其图形习题8—32,7★,10(1)(4),11(3)6,10(2)(3)要求:1.能根据所给方程判断出曲面的类型;2.能由母线和轴得到旋转曲面方程;能根据旋转曲面方程判断出它的母线和轴;3.能根据柱面方程判断出该柱面的准线和母线;第8章第4节空间曲线及其方程空间曲线的一般方程、参数方程空间曲线在坐标面上的投影曲线方程习题8—43★,5(1),8 4,5(2)1.螺旋线方程;2.会计算空间曲线在坐标面上的投影曲线方程.第三天3h第8章第5节平面及其方程平面的点法式方程、一般方程两平面的夹角,两平面垂直、平行或重合的充要条件习题8—51★,3★,5,9★2,6,8(1)例7的结论要求作为公式记住,以后直接利用。
同济高等数学下册第八章知识点精讲

总之:
运算律 : 结合律 分配律
可见
因此
机动 目录 上页 下页 返回 结束
设 a 为非零向量 , 则
a∥b
( 为唯一实数)
证: “ ”. 设 a∥b , 取 =±
, a , b 同向时
取正号, 反向时取负号, 则 b 与 a 同向, 且
再证数 的唯一性 . 设又有 b= a , 则
机动 目录 上页 下页 返回 结束
求三
机动 目录 上页 下页 返回 结束
导出刚体上
一点 M 的线速度 的表示式 .
解: 在轴 l 上引进一个角速度向量 使
其
方向与旋转方向符合右手法则 , 在 l 上任取一点 O, 作
向径
它与 的夹角为 , 则
点 M离开转轴的距离
且
符合右手法则
机动 目录 上页 下页 返回 结束
1. 定义 已知三向量
机动 目录 上页 下页 返回 结束
两平面法向量的夹角(常指锐角)称为两平面的夹角. 设平面∏1的法向量为
平面∏2的法向量为
则两平面夹角 的余弦为
即
机动 目录 上页 下页 返回 结束
机动 目录 上页 下页 返回 结束
和 垂直于平面∏: x + y + z = 0, 求其方程 .
解: 设所求平面的法向量为 方程为
• 坐标轴
Ⅳ
• 坐标面
Ⅰ
• 卦限(八个) Ⅶ
y轴(纵轴)
x轴(横轴) Ⅷ
Ⅵ Ⅴ
机动 目录 上页 下页 返回 结束
点M
有序数组
向径
(称为点 M 的坐标) 特殊点的坐标 :
原点 O(0,0,0) ; 坐标轴上的点 P, Q , R ;
高等数学第一节、向量及其线性运算

o
a
A
记作(a, b) 或 (b, a),即(a, b) .
如果向量 a 与 b 中有一个是零向量 ,规定它们的
夹角可以在 0 与 π 之间任意取值 .
8、向量平行
如果(a, b) 0或,就称向量a 与b 平行,记作a// b .
a
c
b
零向量与任何向量都平行.
9、向量垂直
如果
( a,
b)
,就称向量a
因为向量 a 与 a 平行,所以常用向量与数的乘
积来说明两个向量的平 行关系.
定理 1 设向量 a 0,那么向量b 平行于 a 的充分
必要条件是: 存在唯一的实数,使得 b a .
6、数轴与向量
数轴可由一个点、一个方向及单位长度确定,故
给定一个点及一个单位向量即可确定一条数轴.
6、零向量: 模等于零的向量叫做零 向量,记作 0 或 0 .
零向量的起点与终点重合,它的方向可以看做是任意的.
7、向量的夹角 设有两个非零向量 a, b, 任取空间一点 O,
作 OA a, OB b,
规定不超过 π 的 AOB
B
b
(设 AOB, 0 π)
称为向量a 与 b的夹角,
A
D
二、向量的线性运算
1. 向量的加法
三角形法则
ab
C
A
a
b
B
或平行四边形法则
b
A
D
ab
a
B
C
b (ab)c
a (b c)
c bc
运算规律 :
ab b
交换律 结合律
a b b a (a b) c
a
(b
c)
高等数学空间解析几何

(( (123)))当当a=0时0时a,,aa与0a( 同零向向;量当)
0时,a
与
a
反向。
向量与数的的性质
(1)交换律: a a
(2)结合律: (a ) () a (a ) ;(其中为常数);
(3)分配律:( )a a b ,(a b )a b
M 1 M 2 { x 2 x 1 ,y 2 y 1 ,z2 z 1 }
三、向量的坐标表示
3.向量的模与方向余弦的坐标表示式
方向角:非零向量a与三个坐标轴正向的夹角
记为 ,, 0,, 方向余弦:co,sco,scos
aM
对a {ax,ay,az}
a OM ax 2ay 2az 2
cos
ax
ax2 ay2 az2
cos
ay
ax2 ay2 az2
cos
co 2 s co 2 s co 2 s 1eaa a {co,cso,sco}s
az ax2 ay2 az2
知道其中两个 就可求出第三个 单位向量的方向余弦就是它的坐标
力 位移 速度 加速度
表示方法:1
黑体字母
a,b,c或
a,b,c
2 有向线段表示 MN 表示起点在 M,终点在 N 的向量
向量的模 向量的大小(有向线段的长)
a
b
c
a
b
c
单位向量 模1为的向量,记为 e a 零向量
M N
模为的0向量 ,记为 0
自由向量 与起点无关的向量 (向量可自由平移具有自由性)
四、两向量的数量积
2. 数量积的坐标表示式
设 a ax i a y j a z k {ax,ay,az}
高等代数与解析几何 第八章课件

x 2 y 3 z 4
2 2
2
2
1 , 2
2
2 4 116 2 . 所求方程为 x y 1 z 3 3 9
上一页 下一页
返回
以下给出几例常见的曲面.
例 3 建立球心在点 M 0 ( x 0 , y0 , z 0 ) 、半径为 R 的球面方程.
解
设 M ( x , y , z ) 是球面上任一点,
根据题意有
| MM0 | R
2 2 2
x x0 2 y y0 2 z z0 2 R
所求方程为 x x0 y y0 z z0 R 2 特殊地:球心在原点时方程为 x y z R
( x1 , y1 , z1 ) ,随着参数的变化可得到曲线上的全
部点.
下一页
返回
例 4 如果空间一点 M 在圆柱面 x 2 y 2 a 2 上以角 速度 绕 z 轴旋转,同时又以线速度 v 沿平行于 z 轴 的正方向上升(其中 、 v 都是常数),那么点 M 构成的图形叫做螺旋线.试建立其参数方程.
(2.2-6)
例3(P41) 注意
求以z 轴为对称轴,半径为R 的圆柱面的参数方程.
空间曲面的参数方程的表达式不是惟一的.
空间曲线的方程
空间曲线C可看作空间两曲面的交线.
F ( x, y, z ) 0 G ( x , y , z ) 0
空间曲线的一般方程
z
S1
特点:曲线上的点都满足 方程,不在曲线上的点不 能同时满足两个方程.
z
2. 双曲柱面
x y 2 2 1 a b
z
2
(完整版)(完整版)高等数学下知识点全,推荐文档

lim
y0
f
( x0 ,
y0
y) y
f
( x0 ,
y0 )
3、 方向导数:
f l
f cos f cos
x
y
其中 ,
为 l 的方向角。
4、 梯度: z f (x, y) ,则 gradf (x0 , y0 ) f x (x0 , y0 )i f y (x0 , y0 ) j 。
z2 c2
1
x2 a 双叶双曲面: 2
y2 b2
z2 c2
1
x2 a 双曲抛物面(马鞍面): 2
y2 b2
z
5)
x2 a 椭圆柱面: 2
y2 b2
1
x2 a 双曲柱面: 2
y2 b2
1
6) 抛物柱面: x 2 ay
(二) 平面及其方程
1、 点法式方程: A(x x0 ) B( y y0 ) C(z z0 ) 0
y
sin
,
f (x, y, z) d v
f ( cos , sin , z)dd dz
z z
3) 球面坐标 (三) 应用
曲面 S : z f (x, y) , (x, y) D 的面积:
2、 计算: 1) 直角坐标
D
(
x,
y)
1(
x) a
y x
2 b
(
x)
,
f (x, y)dxdy
b
dx
2 (x) f (x,y) d y
a
1 ( x)
D
D
(
x,
y)
1(
y) c
x y
2 d
(
y)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行向量对应坐标成比例
当 a 0 时,
bx = by = bz ax ay az
bx = ax by = ay bz = az
例1 已知两点 在AB直线上求一点M ,使
及实数 −1,
A
解 设 M 的坐标为
如图所示
M
B
AM = MB OM − OA = ( OB − OM )
第八章 空间解析几何与向量代数
第一讲 向量及其线性运算
回顾
基本概念 向量的定义、向量的模、单位向量、零向量、负向量、 向量之间的关系:向量平行、 向量相等、 向量共面、 向量的线性运算与坐标表示:平面向量的线性运算、 平面向量的坐标表示、 平面向量平行的坐标表示等
一 、空间直角坐标系
过空间一个定点 O,作三条互相垂直的数轴, 这样的三条坐标轴就组成了空间直角坐标系.
C(x, Байду номын сангаас, z)
oo
x P(x, 0, 0)
M y
Q(0, y, 0) A(x, y, 0)
z
o
x
坐标面
坐标轴
y
视频2
二、向量的坐标表示
在空间直角坐标系下,任意向量 r 可用向径 OM 表示.
以 i , j , k 分别表示 x , y , z 轴上的单位向量,设点 M 的坐标为
M (x , y , z) , 则 OM = ON + NM = OA + OB + OC
及
解 设该点为 M (0, 0, z),
因为 M A = M B ,
(−4)2 +12 +(7 − z)2 = 32 +52 +(−2 − z)2 解得 故所求点为 M (0, 0,14 ) . 9
等距离的点.
2 方向角与方向余弦
设有两非零向量 任取空间一点O ,
称 =∠AOB (0 ≤ ≤ ) 为向量a 与b的夹角.
z C
r = xi + y j + z k = (x, y,z)
M
k
r
oj
B
i
y
此式称为向量 r 的坐标分解式,
A
x
N
沿三个坐标轴方向的分向量.
三、向量的线性运算
设 a = ( ax , ay , az ), b = (bx , by , bz ) , 为实数,则
a b = (ax bx , ay by , az bz )
这三条数轴都以 O 为原点且具有相同的长 度单位,分别称为 x 轴(横轴)、y 轴(纵轴)、 原点 O z 轴(竖轴),统称坐标轴.
x横轴
其正向符合右手规则.
z 竖轴 y纵轴
三条坐标轴中的任意两条可以确定一个平面,这样定出
的三个平面统称为坐标面,分别为xoy面、yoz面、xoz面
它们把空间分成八个卦限.
向量投影的性质
性质1 Prju AB =| AB | cos, = ( AB,u) 投影定理
证
Prju AB = Prju AB
B
= AB = AB
A
B
u
A
B
u
=| AB | cos
投影定理说明
(1) 0 π ,
2
(2) π π,
2
(3) = π ,
2
投影为正; 投影为负; 投影为零;
解 设 MOA = , 有
M
cos = OA = 1 ,
OM 3
于是
Prj OA = OA cos = a .
OM
3
O
A
M
•
过点M 作与轴u 垂直的平面,交点M 即为
点M 在轴u 上的投影。
M
u
(2) 空间向量(向径)在轴上的投影
给定 OM = r, 过M点作与轴u垂直的平面,
M
交u轴于M ,则向量 OM 称为向量 r 在u轴上
的分向量.
u
Oe
M
设 OM = e, 则数 称为向量 r 在u轴上的投影,
记为 Prju r. 由此定义,向量 a 在 Oxyz 坐标系中
M
的坐标 ax , ay , az 就是 a 在三个坐标轴上的投影,
即 ax = Prjxa, ay = Prjya, az = Prjza.
Oe
M
u
注 空间向量在轴上的投影
B A
u
A
B
已知向量的起点A和终点B在轴u上的投影分别为A, B, 那么轴u上的有向线段 AB 的值,称为向量 AB在轴u上的投影。 向量 AB在轴u上的投影记为Prju AB = AB
o
y
x
例3 已知两点
和
的方向角.
解 M1M2 = ( 1− 2, 3 − 2 ,0 − 2 ) = (−1, 1, − 2 )
计算向量
(−1)2 +12 + (− 2)2 = 2
cos = 1 , cos = − 2
2
2
2π ,
π,
3π .
3
3
4
视频3
3 向量在轴上的投影与投影定理
(1)空间一点在轴上的投影
AM = OM − OA MB = OB − OM
o
A
OM = 1 ( OA + OB )
1+
B
即
1
1+
( x1
+
x2
,
y1
+
y2
,
z1
+
z2
)
M
四、向量的模、方向角、投影
1 向量的模与两点间的距离公式 设 r = (x , y , z ), 作 OM = r , 则有
r = OM = OP + OQ + OR
z
R
o
P x
M
Q y
N
由勾股定理得
OP = xi ,OQ = yj,OR = zk ,
r = OM = x2 + y2 + z2
OP = x , OQ = y , OR = z
对两点
与
z
因
得两点间的距离公式:
O
y
x
= (x2 − x1)2 + ( y2 − y1)2 + (z2 − z1)2
例2 在 z 轴上求与两点
记作
类似可定义向量与坐标轴, 坐标轴与坐标轴的 z
夹角.
与三坐标轴的
夹角 , , 为其方向角.
r
o
y
x
方向角的余弦称为其方向余弦.
cos = x =
x
r
x2 + y2 + z2
cos = y =
y
r
x2 + y2 + z2
cos = z =
z
r
x2 + y2 + z2
方向余弦的性质
z
r
c
a
b
u
(4) 相等向量在同一轴上投影相等;
性质2 Prju (a1 + a2 ) = Prju a1 + Prju a2 (可推广到有限多个)
A
C
a1
B
a 2
u
A
B
C
性质3 Prj(a) = Prja.
例4 设正方体的一条对角线为 OM , 一条棱为 OA,
且 OA = a,
求 OA 在OM
方向上的投影 Prj OA. OM
Ⅲ
z z轴
Ⅱ
• 坐标原点 • 坐标轴 • 坐标面 • 卦限
Ⅳ
Ⅶ x
x轴 Ⅷ
o
Ⅴ
Ⅰ y y轴
Ⅵ
在直角坐标系下
点 M ⎯→ 有序数组 (x, y, z) (称为点 M 的坐标)
特殊点的坐标 原点 O(0,0,0)
z R(0, 0, z)
B(0, y, z)
坐标轴上的点 P, Q , R 坐标面上的点 A , B , C