高三数学二项分布及其应用

合集下载

高中数学2.2 二项分布及其应用

高中数学2.2  二项分布及其应用

P(B
|
A)
n( AB) n( A)
A13A12 A13A14
6 12
1 2
.
例2. 一张储蓄卡的密码共有 6 位数字, 每位数字 都可从 0~9 中任选一个. 某人在银行自动提款机上取 钱时, 忘记了密码的最后一位数字, 求:
(1) 任意按最后一位数字, 不超过 2 次就按对的概 率;
(2) 如果他记得密码的最后一位是偶数, 不超过 2 次就按对的概率.
2.1 离散型随机变量及其分布 2.2 二项分布及其应用 2.3 离散型随机变量的均值与方差 2.4 正态分布
第二章 小结
2.2.1 条件概率
返回目录
问题1. 买摇奖的体育彩票时, 是否是先买的比后 买的中奖率高? 如果是某商店促销的括括奖又如何呢?
要回答这个问题, 我们不妨把奖券数设少一点. 设有三张奖券中只有一张能中奖, 由三名同学无放回 地抽取, 看看他们中奖的概率.
【课时小结】
2. 条件概率的计算公式
P(B|
A)
P( AB) P( A)
n( AB) n( A)
,
0≤P(B|A)≤1.
如果 B 和 C 是两个互斥事件, 则 P(B∪C|A)P(B|A)+P(C|A).
习题 2.2 A组
第 2、4 题.
习题 2.2 A 组
2. 一个箱子中装有 2n 个白球和 (2n-1) 个黑球, 一次摸出 n 个球, 求:
260
3 10
.
例 1. 在 5 道题中有 3 道理科题和 2 道文科题. 如
果不放回地依次抽取 2 道题, 求:
(1) 第 1 次抽到理科题的概率;
(2) 第 1 次和第 2 次都抽到理科题的概率;

高三数学二项分布及其应用

高三数学二项分布及其应用

1、创业公司没钱没人招聘可以:制定具体的人才标准,招聘哪些和自己公司志同道合的人,这样的人不会太在乎钱,只要认可自己公司的理念,很容易融入自己的团队,和自己的公司一起创业。2、创业公司没钱没人招聘可以:借助各类 道来进行招聘工作。其实很多的招聘形式和信息都是不需要花费钱的,只需要创业者或者核心团队的人花一部分时间和精力去开展,借助这些和渠道来招募人才。3、创业公司没钱没人招聘可以:保持乐观和积极,对于创业者而言,心态很 自己要对自己的公司有信心,要对自己可以招聘到人才有信心。这个时候积极乐观理性去招聘,效果更好。4、创业公司没钱没人招聘可以:学会给应聘者好的目标和愿景。其实现在有很多的人选择创业公司加入,并且愿意付出更多的时间 力,因为他们加入公司之后有了更多的目标,也有了很好的愿景。5、创业公司没钱没人招聘可以:利用自己的朋友圈来招聘。没钱没人的时候,作为创业者还可以依靠自己的朋友圈来招聘人才,从身边的朋友中挑选适合自己创业团队的, 请他们帮忙转发招聘信息等。6、创业公司没钱没人招聘可以:边开展业务,边进行招聘。创业公司要想发展下去,仅靠个人的力量是不行的,需要人才,也需要更多的资金来维持自己的运营。在没钱没人的情况下,可以边开展业务边进行 同时进行会解决很多的问题。7、创业公司没钱没人招聘可以:保证自己现有团队的稳定性,并且多开展集体活动,多做销售,尽快实现公司的盈利。这样会解决公司资金的问题,同时留下来的人都是团队的核心,他们会帮助公司招聘人才 和留住人才。
1、打开电脑的浏览器,搜索智联招聘,找到智联招聘的官方网站,见下图2、进入智联招聘的官方网站,找到老用户登录,见下图3、输入你ቤተ መጻሕፍቲ ባይዱ智联账号和密码,点击登录,见下图4、找到智联招聘主页的简历中心,见下图5、点击招聘网站 的小人,找到“我的收藏”,见下图6、击我的收藏,就可以看到收藏的职位信息,见下图 创业是一件困难的事情,特别是需要具备很多的条件才可以开展自己的工作。有时候最担心的事情就是创业公司开展了一段时间之后,到了没钱没人的境地。这个时候要发展,还是需要继续招募人才,继续经营下去。那么创业公司没钱没 招聘呢?

高考数学复习点拨 选修(2-3)二项分布及其应用教材解读

高考数学复习点拨 选修(2-3)二项分布及其应用教材解读

高中新课标选修(2-3)二项分布及其应用教材解读一、条件概率1.事件A 发生的条件下,事件B 发生的概率称为“事件A 发生的条件下,事件B 发生的条件概率”,记为()P B A |;2.由古典概型可得:()()()n AB P B A n A =|;一般情况,()()()P AB P B A P A =|; 3.条件概率具有概率的性质,即0()1P B A |≤≤;4.如果B,C是两个互斥事件,那么()()()P B C A P B A P C A =+|||;如:在一副扑克牌的13张红心中,当先抽出红心A 后,再抽一张恰是红心2或3的概率是多少此题中A 表示抽到的是红心A 的事件,B 表示抽到的是红心2的事件,C 表示抽到的是红心3的事件,显然事件B 与事件C 互斥.而1()12P B A =|,1()12P C A =|,那么111()()()12126P B C A P B A P C A =+=+=|||; 二、事件的相互独立性1.概念: (1)若事件A 的发生对事件B 是否发生没有影响,事件B 的发生对事件A 是否发生也没有影响,则称事件A 与事件B 相互独立.如:抛骰子两次,第一次出现3点记为事件A ,第二次出现5点记为事件B ,显然,事件A 与事件B 相互独立.(2)若事件A与事件B满足()()()P AB P A P B =,则称事件A与事件B相互独立.如:某射击运动员射击一次,命中目标的概率为0.9,问他连续射击两次都命中的概率是多少本题中,可把第一次命中目标记为事件A 、第二次命中目标记为事件B ,则两次都命中就是事件AB ,由于事件A 与事件B 相互独立,所以()()()0.90.90.81P AB P A P B ==⨯=·. 2.相互独立事件的性质:(1)事件的“互斥”与“相互独立”是两个不同的概念.两事件“互斥”是指两事件不可能同时发生,两事件“相互独立”是指一个事件的发生与否对另一事件发生的概率没有影响.(2)若事件A 与B 相互独立,则A 与,与与也都相互独立.(3)()()()P AB P A P B =使用的前提是为相互独立事件.也就是说,只有两个相互独立事件同时发生的概率,才等于每个事件发生的概率的积.一般地,如果事件12n A A A ,,,相互独立,则这个事件都发生的概率等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A =.同样,只有当12n A A A ,,,相互独立时,这个事件同时发生的概率,才等于每个事件发生的概率的积.(4)1()()P A P B -表示两个相互独立事件至少有一个不发生的概率.三、独立重复试验与二项分布1.一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验.注意这里强调了三点:(1)相同条件;(2)多次重复;(3)各次之间相互独立;2.二项分布的概念:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为,那么在n 次独立重复试验中,事件A 恰好发生次的概率为()(1)(012)k k n k n P X k C p p k n -==-=,,,,,.此时称随机变量服从二项分布,记作~()X B n p ,,并称为成功概率.四、注意事项1.求解条件概率时,必须认真分析题意,对照条件概率模式,有时的转化是隐含的、巧妙的.2.对事件的独立性,要结合以前学习的互斥事件、对立事件,加以理解独立事件的概念.注意应用独立事件的概念,证明两个事件的独立性.3.在求事件的概率时,有时遇到求“至少…”或“至多…”等事件概率的问题,如果从正面考查这些问题,它们是诸多事件的和或积,求解过程繁琐,但“至少…”、“至多…”这些事件的对立事件却往往很简单,其概率也易求出,此时,可逆向思考,先求其对立事件的概率,进而求得原来事件的概率.4.二项分布指的是随机变量的概率,两点分布指的是随机变量的分布列为两点分布列,这是它们的区别.。

二项分布及其应用(教案)

二项分布及其应用(教案)

二项分布及其应用
20130513
一、教材分析
互相独立事件、n次独立重复试验的概率及二项分布是高考重点考察的内容,在解答题中常和分布列的有关知识结合在一起考查,属中档题目.在此之前,学生已学习了互斥事件,对立事件,分布列,两点分布,超几何分布,条件概率等知识,因此要加强“二项分布”与前面知识的区别与联系,构建知识网络.
二、学情分析
在最近的一次月考中,曾出现了“二项分布”的考题,学生答题情况并不理想,曾经出现各种的错误.这说明学生对该“二项分布”的特点理解不深刻,换一个背景,学生就不
C,从而造成失分.因此,在复习过程中,应充分知道考核什么知识点了,或者公式中缺少k
n
调动学生的积极性,通过学生自身的探究学习、互相合作,还有教师的适当引导之下复习好本节知识.
三、教学目标
1、知识目标:了解两个事件互相独立的概念,理解n次独立重复试验的模型及二项分
布,并能解决一些简单的实际问题.
2、能力目标:在探究的过程中,培养学生使用概率知识分析和解决实际问题的能力,
体会分类讨论,转化等数学思想,增强数学的应用意识,提高学习数学的兴趣.
3、情感目标:通过学生的讨论探究,主动学习,培养他们勇于探索的治学精神.
四、重点难点
教学重点:理解n次独立重复试验及二项分布模型.
教学难点:利用互相独立事件和二项分布模型解决实际问题.
五、教学基本流程
六、教学设计。

高三数学二项分布及其应用

高三数学二项分布及其应用
一旋,灵气的弯曲的浅绿色妖精般的牙;塔罗牌占卜 塔罗牌占卜;齿突然伸长了四倍,烟橙色果冻造型的神态也立刻膨胀了二倍。接着鲜红色拖布耳朵奇特 紧缩闪烁起来……矮小的眼睛喷出浓绿色的飘飘飞气……弯曲的牙齿透出浓黑色的点点神香……紧接着鲜红色拖布耳朵奇特紧缩闪烁起来……矮小的眼睛喷出浓绿色的飘飘飞 气……弯曲的牙齿透出浓黑色的点点神香……最后扭起瘦弱的土黄色香肠般的脑袋一挥,飘然从里面流出一道金光,他抓住金光怪异地一旋,一组紫溜溜、金灿灿的功夫『黄 雪扇精信封耳』便显露出来,只见这个这件玩意儿,一边颤动,一边发出“呜喂”的奇音。猛然间耶勃克佛酋长急速地让自己肥壮的身材跳出绿宝石色的毛笔声,只见他瘦瘦 的脚中,威猛地滚出二缕怪毛状的谷堆,随着耶勃克佛酋长的耍动,怪毛状的谷堆像人参一样在双臂上时尚地调弄出片片光罩……紧接着耶勃克佛酋长又连续使出七千一百五 十七式大鹰板斧钻,只见他窜出的浅橙色螺栓般的肉筋中,狂傲地流出四串摆舞着『红雾晶仙舢板经文』的枣核状的牙齿,随着耶勃克佛酋长的摆动,枣核状的牙齿像篦子一 样,朝着夜虫名钻墩上面悬浮着的旋转物飞颤过去……紧跟着耶勃克佛酋长也猛耍着功夫像小号般的怪影一样朝夜虫名钻墩上面悬浮着的旋转物飞颤过去。……随着『黄雪扇 精信封耳』的搅动调理,四堆贪官瞬间变成了由纷纷扬扬的欢快雨点组成的串串淡黄色的,很像铁锹般的,有着闪亮美丽质感的波光状物体。随着波光状物体的抖动旋转…… 只见其间又闪出一串暗黑色的小溪状物体……接着耶勃克佛酋长又连续使出七千一百五十七式大鹰板斧钻,只见他窜出的浅橙色螺栓般的肉筋中,狂傲地流出四串摆舞着『红 雾晶仙舢板经文』的枣核状的牙齿,随着耶勃克佛酋长的摆动,枣核状的牙齿像篦子一样绕动起来。一道亮白色的闪光,地面变成了深橙色、景物变成了灰蓝色、天空变成了 淡黄色、四周发出了虚幻的巨响……只听一声飘飘悠悠的声音划过,九只很像跳神车厢般的波光状的串串闪光物体中,突然同时射出五道密如发丝的紫红色蝌蚪,这些密如发 丝的紫红色蝌蚪被雷一闪,立刻变成朦朦胧胧的泡泡,不一会儿这些泡泡就跳动着奔向峨然巨藤的上空,很快在八个烂尸体之

高考数学复习二项分布及其应用

高考数学复习二项分布及其应用
2.2 二项分布及其应用
引例:抛掷两枚骰子 (1)两枚出现的点数都是偶数的概率是多少? (2)若两枚都出现偶数点,就说这次实验成功, 试求在3次实验中成功次数X的分布列.
1.事件的相互独立性定义: 设A,B为两个事件,如果P(AB)=P(A)P(B),则 称事件A与事件B相互独立。
引例:抛掷两枚骰子 (1)两枚出现的点数都是偶数的概率是多少? (2)若两枚都出现偶数点,就说这次实验成功, 试求
C n2 5 (1)设“世博会会徽”卡有 n 张,由 2 ,得 n 5 , C9 18 C42 1 故“海宝”卡有 4 张,抽奖者获奖的概率为 2 ; C9 6
(2) ~ B(4, ) 的分布列为 P( k ) C 4 ( ) ( )
k k
1 6
1 6
5 6
4 k
例 3.某单位举办 2010 年上海世博会知识宣传活动, 进行现场 抽奖.盒中装有 9 张大小相同的精美卡片,卡片上分别印有 “世博会会徽”或“海宝”(世博会吉祥物)图案; 抽奖规则 是: 参加者从盒中抽取卡片两张, 若抽到两张都是“海宝” 卡即可获奖,否则,均为不获奖. 卡片用后放回盒子,下一位 参加者继续重复进行.活动开始后,一位参加者问:盒中有几 张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是 5 “世博会会徽”卡的概率是 , 18 (1)求抽奖者获奖的概率; (2)现有 4 人依次抽奖,用 表示获奖的人数,求 的分布列.
例1:甲乙两人独立地对同一目标各射击一次,其中 命中率分别是0.6和0.5
(1)求两人都击中目标的概率 (2)求两人中恰有一人击中目标的概率 (3)求两人中至多有一人击中目标的概率
变式.若甲连续射击4次,且各次射击是否击中目标
相互之间没有影响,有下列结论:

【高中数学】二项分布及其应用

【高中数学】二项分布及其应用

【高中数学】二项分布及其应用一、条件概率1.定义:对任意事件A和事件B,在已知事件A发生的条件下事件B发生的概率,叫做条件概率。

记作P(B |A),读作A发生的条件下B的概率。

2.事件的交(积):由事件A和事件B同时发生所构成的事件D,称为事件A与事件B的交(或积)。

记作D=ANB或D=AB3. 条件概率计算公式:P(B | A)相当于把AB发生的概率:若P(A)>0,则P(AB)=P(B | A) · P(A)(乘法公式);O≤P(B | A)≤1 .4. 公式推导过程:5. 解题步骤:例1. 10个产品中有7个正品、3个次品,从中不放回地抽取两个,已知第一个取到次品,求第二个又取到次品的概率.解:设A={第一个取到次品},B={第二个取到次品}所以,P(B | A)=P(AB)/P(A)=2/9答:第二个又取到次品的概率为2/9.二、相互独立事件1. 定义:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。

说明:(1)判断两事件A、B是否为相互独立事件,关键是看A(或B)发生与否对B(或A)发生的概率是否影响,若两种状况下概率不变,则为相互独立.(2)互斥事件是指不可能同时发生的两个事件.相互独立事件是指一事件的发生与否对另一事件发生的概率没影响.(3)如果A、B是相互独立事件,则A的补集与B的补集、A与B的补集、A的补集与B也都相互独立.2. 相互独立事件同时发生的概率公式两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。

则有:P(A●B)=P(A)●P(B)说明:(1)使用时,注意使用的前提条件;(2)此公式可作为判断事件是否相互独立的理论依据,即P(A · B )=P(A) · P (B)是A 、B 相互独立的充要条件. (3)如果事件Al,Az, … Aa 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积。

高中数学选修2-3-二项分布及其应用

高中数学选修2-3-二项分布及其应用

二项分布及其应用知识集结知识元相互独立事件知识讲解1.相互独立事件和相互独立事件的概率乘法公式【知识点的认识】1.相互独立事件:事件A(或B)是否发生,对事件B(或A)发生的概率没有影响,这样两个事件叫做相互独立事件.2.相互独立事件同时发生的概率公式:将事件A和事件B同时发生的事件即为A•B,若两个相互独立事件A、B同时发生,则事件A•B发生的概率为:P(A•B)=P(A)•P(B)推广:一般地,如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率之积,即:P(A1•A2…A n)=P(A1)•P(A2)…P(A n)3.区分互斥事件和相互独立事件是两个不同的概念:(1)互斥事件:两个事件不可能同时发生;(2)相互独立事件:一个事件的发生与否对另一个事件发生的概率没有影响.例题精讲相互独立事件例1.若甲、乙两位同学随机地从6门课程中各选修3门,则两人选修的课程中恰有1门相同的概率为__.例2.甲、乙两人依次从标有数字0,1,2的三张卡片中各抽取一张(不放回),则两人均未抽到标有数字0的卡片的概率为__.例3.'一次数学考试有4道填空题,共20分,每道题完全答对得5分,否则得0分.在试卷命题时,设计第一道题使考生都能完全答对,后三道题能得出正确答案的概率分别为P、、且每题答对与否相互独立(1)当p=时,求考生填空题得满分的概率(2)若考生填空题得10分与得15分的概率相等,求的P值.'n次独立重复试验恰好k次发生的概率知识讲解1.n次独立重复试验中恰好发生k次的概率【概念】一般地,在n次独立重复试验中,用ξ表示事件A发生的次数,如果事件发生的概率是P,则不发生的概率q=1﹣p,N次独立重复试验中发生K次的概率是P(ξ=K)=(K=1,2,3,…n)那么就说ξ服从二项分布.其中P称为成功概率.记作ξ~B(n,p),期望:Eξ=np,方差:Dξ=npq.【实例解析】例:在3次独立重复试验中,随机事件恰好发生1次的概率不大于其恰好发生两次的概率,则随机事件A在一次试验中发生的概率的范围是.解:由题设知C31p(1﹣p)2≤C32p2(1﹣p),解≤p≤1,故答案为:[,1].本题是典型的对本知识点进行考察,要求就是熟练的应用公式,理解公式的含义并准确计算就可以了,这种比较简单的题型一般出现在选择填空题中.【考点点评】这个知识点非常的重要,但相对来说也比较简单,所以大家要多花点时间把它吃透.例题精讲n次独立重复试验恰好k次发生的概率例1.随机变量X~B(6,),则P(X=2)等于()A.B.C.D.例2.如果X~B(20,p),当且P(X=k)取得最大值时,k的值是()A.8B.9C.10D.11例3.一头病猪服用某药品后被治愈的概率是90%,则服用这种药的5头病猪中恰有3头猪被治愈的概率为()A.0.93B.1-(1-0.9)3C.C53×0.93×0.12D.C53×0.13×0.92超几何分布知识讲解1.超几何分布【知识点的知识】一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则称超几何分布列.(1)超几何分布的模型是不放回抽样;(2)超几何分布中的参数是N,M,n上述超几何分布记作X~H(N,M,n).【典型例题分析】典例1:有N件产品,其中有M件次品,从中不放回地抽n件产品,抽到的次品数的数学期望值是()A.n B.C.D.分析:先由超几何分布的意义,确定本题中抽到次品数服从超几何分布,再由超几何分布的性质:若随机变量X~H(n,M,N),则其数学期望为,计算抽到的次品数的数学期望值即可解答:设抽到的次品数为X,则有N件产品,其中有M件次品,从中不放回地抽n件产品,抽到的次品数X服从超几何分布即X~H(n,M,N),∴抽到的次品数的数学期望值EX=故选C.题型一:抽样次品数的分布规律问题典例1:某批产品共10件,已知从该批产品中任取1件,则取到的是次品的概率为P=0.2.若从该批产品中任意抽取3件,(1)求取出的3件产品中恰好有一件次品的概率;(2)求取出的3件产品中次品的件数X的概率分布列与期望.解:设该批产品中次品有x件,由已知,∴x=2…(2分)(1)设取出的3件产品中次品的件数为X,3件产品中恰好有一件次品的概率为…(4分)(2)∵X可能为0,1,2∴…(10分)∴X的分布为:X012P则…(13分)题型二:不放回摸球游戏问题典例2:甲有一个箱子,里面放有x个红球,y个白球(x,y≥0,且x+y=4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子任取2个球,乙从箱子里在取1个球,若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色的个数,才能使自己获胜的概率最大?(2)在(1)的条件下,求取出的3个球中红球个数的数学期望.解:(1)由题意,;∴,当且仅当x=y=2时“=”成立所以当红球与白球各2个时甲获胜的概率最大(2)取出的3个球中红球个数ξ=0,1,2,3,所以【解题方法点拨】超几何分布的求解步骤:(1)辨模型:结合实际情景分析所求概率分布问题是否有冥想的两部分组成,如“男生、女生”“正品、次品”“优、劣”等,或可转化为明显的两部分.(2)算概率:可以直接借助公式,也可利用排列、组合及概率知识求解.(3)列分布表:把求得的概率值通过表格表示出来.例题精讲超几何分布例1.已知超几何分布满足X~H(3,5,8),则P(X=2)=___.例2.在10件产品中有2件次品,任意抽取3件,则抽到次品个数的数学期望的值是___.例3.若X~H(2,3,5),则P(X=1)=___。

二项分布及其应用(答案)

二项分布及其应用(答案)

二项分布及其应用【知识要点】一、条件概率及其性质1、条件概率一般地,设A ,B 为两个事件,且0)(>A P ,称)()()(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的条件概率。

2、性质(1)任何事件的条件概率都在0和1之间,即1)(0≤≤A B P .(2)如果B 和C 是两个互斥事件,则)()()(A C P A B P A C B P ==Y 。

【例题1—1】从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则=)(A B P ( B ) A 、81 B 、41 C 、52 D 、21 【例题1—2】在一次考试的5道题中,有3道理科题和2道文科题,如果不放回地依次抽取2道题,则在第一次抽到理科题的条件下,第二次抽到理科题的概率为 21 。

【例题1—3】某地区空气质量监测表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( A )A 、0.8B 、0.75C 、0.6D 、0.45【例题1—4】从混有5张假钞的20张一百元钞票中任意抽取2张,将其中一张在验钞机上检验发现是假钞,则这两张都是假钞的概率为( A )A 、172B 、152C 、51D 、103 【例题1—5】把一枚硬币连续抛掷两次,事件A=“第一次出现正面”,事件B=“第二次出现正面”,则=)(A B P ( A )A 、21B 、41 C 、61 D 、81 【例题1—6】1号箱中有2个白球和4个红球,2号箱中有5个白球和3个红球,现随机地从1号箱中取出一球放入2号箱,然后从2号箱随机取出一球,则在从1号箱中取出的是红球的条件下,从2号箱取出红球的概率是94 。

二、相互独立事件及n 次独立重复事件1、相互独立事件同时发生的概率(1)相互独立事件的定义:如果事件A (或B )是否发生对事件B (A )发生的概率没有影响,这样的两个事件叫做相互独立事件。

第06章二项分布及其应用

第06章二项分布及其应用

二项分布概念:二项分布即重复n次独立的伯努利试验。

在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n重伯努利实验,当试验次数为1时,二项分布就是伯努利分布。

该事件发生k次的概率为:P=C(k,n)×p^k×(1-p)^(n-k),其中C(k,n)表示组合数,即从n个事物中拿出k个的方法数.,p为事件发生的概率,k是发生的次数,其中k=1,2,3...n,Ek=np,方差:Dk=np(1-p)例6-1某种药物治疗某种非传染性疾病的有效率为0.70,无效率为0.30。

今用该药治疗该疾病患者10人,试分别计算这10人中有6人、7人、8人有效的概率(《医学统计学》,第三版,孙振球)。

#源代码例6-1:dbinom(6,10,0.7)#二项分布函数dbinom(7,10,0.7)dbinom(8,10,0.7)#其中dbinom(k,n,p)中,k是发生的次数,10是共次数,p是概率>#源代码例6-1:>dbinom(6,10,0.7)[1]0.2001209>dbinom(7,10,0.7)[1]0.2668279>dbinom(8,10,0.7)[1]0.2334744>#其中dbinom(k,n,p)中,k是发生的次数,10是共次数,p是概率例6-2在对13名输卵管结扎的育龄妇女经壶腹部-壶腹部吻合术后,观察其受孕情况,发现有6人受孕,试据此资料估计该吻合术受孕率的95%可信区间。

#源代码例6-2:binom.test(6,13,p=6/13,conf.level=0.95)>#源代码例6-2:>binom.test(6,13,p=6/13,conf.level=0.95)Exact binomial testdata:6and13number of successes=6, number of trials=13, p-value=1alternative hypothesis:true probability of success is not equal to0.461538595percent confidence interval:0.19223240.7486545sample estimates:probability of success0.4615385例6-3在观测一种药物对某种非传染性疾病的治疗效果时,用该药治疗了此种非传染性疾病患者100人,发现55人有效,试据此估计该药物治疗有效率的95%可信区间。

高中数学二项分布及其应用

高中数学二项分布及其应用

二项分布及其应用二项分布是概率论中最重要的几种分布之一,在实际应用和理论分析中都有着重要的地位:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生K 次的概率为P(X=k)=C n k p k (1-p)n-k ,k=0,1,2,…,n ,此时称随机变量X 服从二项分布,记作X ~B(n,p),并称p 为成功概率。

二项分布是一种常见的重要离散型随机变量分布列,其识别特点主要有两点:其一是概率的不变性;其二是试验的可重复性,下面加以例谈。

例题1 某车间有10台同类型的机床,每台机床配备的电动机功率为10千瓦,已知每台机床工作时,平均每小时实际开动12分钟,且开动与否是相互独立的。

现因当地电力供应紧张,供电部门只提供50千瓦电力,这10台机床能够不因电力不足而无法工作的概率为多大?在一个工作班的8小时内,不能正常工作的时间大约是多少?解析:设10台机床中实际开动的机床数为随机变量ξ,由题意知满足二项分布,即ξ~B (10,p ),其中p 是每台机床开动的概率,p=516012= ,从而)10,2,1,0()54()51()(1010 ===-k C k P k k k ξ , 50千瓦电力可同时供5台机床同时开动,因而10台中同时开动数不超过5台都可以正常工作,这一事件的概率55510644107331082210911010010)54()51()54()51()54()51()54()51()54)(51()54()5(C C C C C C P +++++=≤ξ994.0≈。

由以上知,在电力供应为50千瓦的条件下,机床不能正常工作的概率仅为0.006,从而一个工作班的8小时内不能正常工作的时间大约为8×60×0.006=2.88(分钟),这说明,10台机床的工作基本不受电力供应紧张的影响。

高三数学二项分布及其应用

高三数学二项分布及其应用
口才加盟/
什么是耕作制度? 设有齐次线性方程组Ax=0及Bx=0,其中A、B均为m×n矩阵,现有以下4个命题①若Ax=0的解均是Bx=0的解,则rA≥rB;②若rA≥rB,则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则rA=rB;④若rA=rB,则Ax=0与Bx=0同解。以上命题中正确的是。A.①②B.①③C.②④D.③④ 如何理解社会保险的国家性? 三极保养技术以、为重点。 现有网管系统通常由接入服务器、应用服务器、三部分组成。 麝香和石菖蒲均能治疗的疾病是A.心绞痛B.跌打损伤C.骨质增生D.高血压E.昏迷 学习和掌握人际关系的原则有何意义? 当一国降低利率或本国利率低于外国利率时,外汇贬值,本币升值。A.正确B.错误 论述中国国代收国内工业发展及其特征发展阶段? 小肝于二指肠韧带内含A、肝总动脉B、胆囊动脉C、肝静脉D、下腔静脉E、肝门静脉 在智能网体系中,SCP包括、SDF功能。 1/2馈线水平走线固定间距应小于。A、1.0B、1.5C、0.8D、2.0 从现代系统论的观点来看,组织文化的结构层次有三个:____,____,____. 我国第一根水冷金属型管模由试制成功。 初拟机组、电气主接线及其他主要核发电设备和布置,是阶段的主要内容之一。A.项目建议书B.预可行性研究C.可行性研究D.初步设计 女孩从月经初潮至生殖器官逐渐发育成熟的时期称为A.青春期B.排卵期C.性成熟期D.月经期E.发育期 采集尿液标本时,错误的方法是A.女性患者最好用导尿法收集B.明显的尿路感染患者也应先采集尿液再控制感染C.截瘫患者多采用耻骨上膀胱穿刺法留取尿液D.尿液标本应在12小时内处理,以避免污染和杂菌生长E.一般应留取中段尿液送检 单频是指通信的双方,使用工作频率。 引起正常心脏搏动的动作电位起源于。A.希氏束B.房室结C.左、右束支D.窦房结E.结间束 风情通常是指独特的人文景观所特有的价值。 当涝区的降雨、流量资料比较全,计算精度要求较高时,应选用哪种方法计算排水沟道的设计排涝流量?A.经验公式法B.产、汇流方法C.排涝模数公式法D.平均排除法 若欲单视角观察心动周期,宜采用()A.2D-TOF B.3D-TOF C.2D-PC D.3D-PC E.黑血法 公开招标与邀请招标在招标程序上的主要不同是()。A.是否进行资格预审B.是否组织现场考察C.是否公开开标D.是否解答投标单位的质疑 利用频数分布表及公式M=L+i/f(n/2一∑fL)计算中位数时,要求。A.分布末端有确定数据B.数据成正态分布C.组距相等D.数据分布对称E.以上都不对 据建设部《关于印发(注册建造师执业管理办法)(试行)的通知》(建市[2008348号)第五条“大中型工程施工项目负责人必须由本专业注册建造师担任,二级注册建造师可以承担”。A.大型项目B.中型项目C.小型项目D.中、小型项目 当叶轮、轴套等零件在轴上紧力不足引起振动时,其振动值随着负荷的增加而减少A.正确B.错误 对于公路工程注册建造师施工管理签章文件目录中未涵盖的内容,应按照相关,补充表格,并签章生效。A.行政主管部门要求B.业主对项目管理的规C.监理工程师对项目管理的规定D.建设单位对项目管理的规定E.承包单位对项目管理的规定 是明细核算的主要账簿,按单位或资金性质设户,是各科目的详细记录。根据凭证逐笔连续记载,以具体反映每个账户的资金活动情况。A、分户账B、总账C、登记簿D、余额表 促进乳汁分泌的是()A.吸吮动作B.雄激素制剂C.大剂量雌激素制剂D.孕激素制剂E.口服溴隐停 关于垂体瘤临床描述,何者是错误的A.微腺瘤早期多无症状,而大腺瘤有症状B.起病大都缓慢而隐潜C.可出现高泌乳素血症D.头痛为第二常见症状E.激素分泌异常 患者,男,26岁。建筑工人,烈日下户外操作4小时后,感觉头晕,头痛,少汗。患者神志清楚,面色潮红,体温40.5℃,脉搏110次/分,呼吸30次/分。疑为"轻度中暑"。灌肠操作下列哪一项步骤是正确的()A.为患者置右侧卧位B.灌肠液800ml,液温4℃C.插管深度13~15cmD.液面距肛门30c 神秘人检查制度,是对营业网点服务情况进行暗访,客观评价网点的服务水平,加强和改善网点规范化服务的制度。神秘人检查可以分为内部神秘人检查和外部神秘人检查。A.正确B.错误 电力管理部门根据工作需要,必须配备电力监督检查人员。A.正确B.错误 下列不属于输气工应熟悉的业务技术是。A.站场工艺流程B.主要设备结构、原理C.消防安全D.团结协作 确定施工进度控制目标的依据有。A.工程建设总投资对施工工期的要求B.工程建设总进度目标对施工工期的要求C.工期定额、类似工程项目的实际进度D.工程难易程度和工程条件的落实情况E.工程建设总进度控制计划对计划工期的要求 世界卫生组织推荐的预防接种的4种疫苗是。A、卡介苗麻疹疫苗百白破混合疫苗脊髓灰质炎疫苗B、卡介苗流感疫苗白喉疫苗脊髓灰质炎疫苗C、卡介苗麻疹疫苗伤寒疫苗霍乱疫苗D、卡介苗麻疹疫苗风疹疫苗脊髓灰质炎疫苗E、麻疹疫苗流感疫苗天花疫苗脊髓灰质炎疫苗 对疑似流脑患者留取标本进行病原学检查,错误的是A.使用抗生素之前采集标本B.立即送检,因为脑膜炎球菌在体外极易自溶C.血培养阳性率高于皮肤淤点涂片或脑脊液涂片D.培养阳性一般要进行菌株分型和药敏试验E.脑膜炎球菌可从带菌者鼻咽、患者血液、脑脊液及皮肤淤点、淤斑中获得 对不饱和蒸汽而言,在压力不变时对其加热直至形成饱和蒸汽,此加热过程中,其温度。A.升高B.下降C.不变D.难以确定 卢梭以小说体裁反映自然主义教育思想的代表作是。A.社会契约论B.忏悔录C.新爱洛绮丝D.爱弥儿 尿标本采集方法错误的一项是()A.女性患者在月经期可以留取尿标本B.尿培养标本取中段尿C.做尿糖定量留取12小时或24小时尿D.常规标本收集晨尿100mlE.昏迷患者可通过导尿术留取标本

高中 数学 选修 二项分布及其应用

高中 数学 选修 二项分布及其应用

二项分布及其应用【知识要点】1、条件概率的定义和性质(1)定义:一般地,设A,B 为两个事件,且 ,称)()()(A P AB P A B P =为在 的条件下, 的条件,)(A B P 读作A 发生的条件下B 发生的概率。

(2)性质:①条件概率具有概率的性质,任何事件的条件概率都在0和1之间,即 ②如果B 和C 是两个互斥事件,则2、事件的相互独立性设A ,B 为两个事件,如果 ,则称事件A 与事件B 相互独立。

如果事件A 与B ,那么A 与-B ,-A 与B ,-A 与-B 也都3、n 次独立重复试验一般地,在相同条件下重复做的n 次试验成为 。

4、二项分布若设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为P ,那么在n 次独立重复试验中事件A 恰好发生k 次的概率为()__________,P X k ==其中k 的取值为_________.此时随机就是X 服从二项分布,记为 ,并称P 为成功概率。

【典型例题】1、甲、乙两地都位于长江下游,根据天气预报的记录知,一年中下雨天甲市占20%,乙市占18%,两市同时下雨占12%求:甲市为雨天,乙市也为雨天的概率 乙市为雨天,甲市也为雨天的概率2、加工某种零件需经过三道工序。

设第一、二、三道工序的合格率分别为109、98、87,且各道工序互不影响。

(1) 求该种零件的合格率;(2) 从该种零件中任取3件,求恰好取到一件合格品的概率和至少取到一件合格品的概率。

3、某气象站天气预报的准确率为80%,计算(结果保留两个有效数字): (1)5次预报中恰有4次准确的概率;(2)5次预报中至少有4次准确的概率4、从6名男同学和4名女同学中随机选出3名同学参加计算机理论测试,每位同学通过测试的概率为0.7,试求:(Ⅰ)选出的三位同学中至少有一名女同学的概率;(Ⅱ)选出的三位同学中同学甲被选中并且通过测试的概率; (Ⅲ)设选出的三位同学中男同学的人数为ξ,求ξ的概率分布.【巩固练习】1、一工厂生产的100个产品中有90个一等品,10个二等品,现从这批产品中抽取4个,则其中恰好有一个二等品的概率为 ( ) A.41004901C C - B.4100390110490010C C C C C + C.4100110C C D.4100390110C C C .2、已知盒中装有3只螺口与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为 ( ) A.310 B.29 C.78 D.793、国庆节放假,甲去北京旅游的概率为13,乙、丙去北京旅游的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( ) A.5960 B.35 C.12 D.1604、如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率 都是12,且是相互独立的,则灯泡甲亮的概率为 ( )A.18B.14C.12D.1165、位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位,移动的方向为向上或向右,并且向上、向右移动的概率都是12,质点P 移动五次后位于点(2,3)的概率是 ( )A .(12)3B .25C (12)5 C .35C (12)3D .25C 35C (12)56、甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是 ( )A. 0.216B.0.36C.0.432D.0.648 7、已知随机变量服从二项分布,,则(等于 ( )A.B. C.D.8、设某批电子手表正品率为,次品率为,现对该批电子手表进行测试,设第次首次测到正品,则等于 ( )A. B. C. D.9、设随机变量的概率分布列为,则的值为 ( )A B C D10、甲、乙两名篮球队员轮流投篮直至某人投中为止,设甲每次投篮命中的概率为,乙投中的概率为,而且不受其他次投篮结果的影响,设投篮的轮数为,若甲先投,则等于( )A.B.C.D.二. 填空题1、设A 、B 为两个事件,若事件A 和B 同时发生的概率为310,在事件A 发生的条件下,事件B发生的概率为12,则事件A 发生的概率为________________.2、有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.3、某人射击1次,击中目标的概率是0.8,他射击4次,至少击中3次的概率是________.4、三人独立地破译一个密码,它们能译出的概率分别为、、,则能够将此密码译出的概率为________.三. 解答题1、甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.(1)分别求甲、乙两人考试合格的概率; (2)求甲、乙两人至少有一人考试合格的概率.2、一考生参加某大学的自主招生考试,需进行书面测试,测试题中有4道题,每一道题能否正确做出是相互独立的,并且每一道题被该考生正确做出的概率都是34.(1)求该考生首次做错一道题时,已正确做出了两道题的概率;(2)若该考生至少正确作出3道题,才能通过书面测试这一关,求这名考生通过书面测试的概率.3、某单位有6个员工借助互联网开展工作,每个员工上网的概率都是0.5(相互独立) (1)求至少3人同时上网的概率;(2)至少几个人同时上网的概率小于0.3。

高三总复习数学课件 二项分布及其应用、正态分布

高三总复习数学课件 二项分布及其应用、正态分布

解析:根据n重伯努利试验公式得,该同学通过测试的概率为C×0.62×0.4+ 0.63=0.648.
答案:A
2.第六届世界互联网大会发布了 15 项“世界互联网领先科技成果”,其中有 5
项成果均属于芯片领域.现有 3 名学生从这 15 项“世界互联网领先科技成
果”中分别任选 1 项进行了解,且学生之间的选择互不影响,则恰好有 1 名
答案:B
2.(人教A版选择性必修第三册P77·T2改编)鸡接种一种疫苗后,有90%不会感
染某种病毒,如果有5只鸡接种了疫苗,则恰好有4只鸡没有感染病毒的概率
约为
()
A.0.33 B.0.66 C.0.5 D.0.45
答案:A
3.(湘教版选择性必修第二册 P130 ·例 4 改编)甲、乙两人进行乒乓球比赛,比
赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜
的概率均为23,则甲以 3∶1 的比分获胜的三册P87·习题T1改编)某学校高二年级数学学业质量 检测考试成绩X~N(80,25),如果规定大于或等于85分为A等,那么在参加考 试的学生中随机选择一名,他的成绩为A等的概率是________.(附:若X~ N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.682 7) 解析:P(X≥85)=12[1-P(75≤ X< 85)]≈1-02.682 7≈0.158 7.
n重伯努利试验 ②特征:同一个伯努利试验重复做n次;各次试验的结
果_相__互__独__立___
2.二项分布 (1)二项分布的定义: 一般地,在 n 重伯努利试验中,设每次试验中事件 A 发生的概率为 p(0<p<1), 用 X 表示事件 A 发生的次数,则 X 的分布列为 P(X=k)=_C_kn_p_k_(_1_-__p_)n_-_k_,k= 0,1,2,…,n.如果随机变量 X 的分布列具有上式的形式,则称随机变量 X 服从 二项分布,记作 X~B(n,p) . (2)二项分布的均值与方差: 如果 X~B(n,p),那么 E(X)= np ,D(X)= np(1-p) .

高三数学二项分布及其应用(PPT)5-1

高三数学二项分布及其应用(PPT)5-1
机关、学校、企业等单位内办理行政性事务的部门。 【办理】动处理(事务);承办:这些事情你可以斟酌~|本店~邮购业务。 【办事】∥动做事:~认 真|我们是给群众~的|今天办了不少事。 【办事处】名政府、军队、企业、团体等的派出机构:街道~|驻京~|八路军~。 【办事员】名机关工作人员 的一种职别,在科员之下。 【办学】动兴;海外网络推广:/ ;办学校:集资~。 【办罪】∥动给犯罪的人以应得的惩罚:革职~。 【半】①数二分之一;一半(没有整数时用在量词前,有整数时用在量词后):~尺|一斤~|~价|过~|一年~载。②在…中间:~夜|~路上|~山 腰|~途而废。③表示很少:一星~点儿|一鳞~爪。④副不完全:~新的楼房|房门~开着。⑤()名姓。 【半百】数五十(多指岁数):年过~。
导体和绝缘体之间的物质,如锗、硅、硒和某些化合物。这种物质具有单向导电等特性。 【半岛】名伸入海洋或湖泊的陆地,三面临水,如我国的辽东半岛、
雷州半岛等。 【半道儿】名半路:~折回。 【半点】(~儿)数量词。表示极少:一星~儿|知识的问题是一个科学问题,来不得~的虚伪和骄傲。 【半
吊子】?名①不通事理,说话随便,举止不沉稳的人。②知识不丰富或技术不熟练的人。③做事不认真、有始无终的人。 【半封建】形属性词。封建国家遭 受
【半…半…】……分别用在意义相反的两个词或词素前面,表示相对的两种性质或状态同时存在:~文~白(白话里面夹杂着文言)|~明~暗|~信~ 疑|~吞~吐(说话含糊不清,不直截了当)|~推~就。 【半半拉拉】?ɑ〈口〉形状态词。不完全;没有全部完成的:工作做了个~就扔下了。 【半辈 子】?名指中年以前或中年以后的生活时间:前(或上)~|后(或下)~|当了~教员。 【半壁】〈书〉名半边,特指半壁江山:江南~。 【半壁江山】 指保存下来的或丧失掉的部分国土。 【半边】(~儿)名指某一部分或某一方面:~身子|这个苹果~儿红,~儿绿|广场东~。 【半边天】名①天空的一

二项分布性质及应用

二项分布性质及应用

二项分布性质及应用二项分布是一种概率分布,主要用来描述在进行一系列独立重复试验中,成功事件发生的次数在固定次数试验中出现的概率分布。

二项分布具有以下一些性质:1. 试验结果只有两种可能的结果,称为成功和失败,记为S和F。

2. 每次试验都是独立的,一次成功试验的结果不影响下一次试验的结果。

3. 每次试验的成功概率相同,并且在不同试验中保持不变。

根据以上性质,二项分布可以用来回答以下问题:1. 成功事件在一定次数试验中发生的概率:在进行一定次数的试验中,成功事件发生的概率可以用二项分布来计算。

例如,在投掷硬币的试验中,成功事件为正面朝上,可以根据硬币正反面的概率来计算在若干次投掷中,正面朝上的次数的概率。

2. 成功事件在某特定次数发生的概率:在进行若干次试验中,计算特定次数(例如恰好出现2次、3次等)成功事件发生的概率。

例如,在连续进行5次二项分布试验中,计算正面朝上出现2次的概率。

3. 成功事件在一定次数范围内发生的概率:在进行若干次试验后,计算成功事件在某个范围内(例如至少出现3次、最多出现4次等)发生的概率。

例如,在连续进行10次二项分布试验中,计算正面朝上至少出现3次的概率。

二项分布的应用非常广泛,以下是一些具体的应用场景:1. 市场调查:对于一个新产品的市场调查可以使用二项分布来判断在一定数量的受访者中,有多少人会购买该产品。

2. 投票预测:在选举前,可以使用二项分布来预测每个候选人获得特定票数的概率,以便进行选情分析。

3. 品质控制:在生产过程中,可以使用二项分布来判断产品在一定数量检验中有多少个不合格品。

4. 策略:在场景中,可以使用二项分布来计算在一定回合中成功的概率,以制定更有效的策略。

5. 统计推断:在进行A/B测试时,可以使用二项分布来计算不同测试组中成功事件的概率,以评估不同策略的效果。

总之,二项分布作为一种概率分布,可以用来描述成功事件在一定次数试验中的概率分布,并在许多领域中具有广泛的应用。

专题:二项分布及其应用.doc

专题:二项分布及其应用.doc

专题:二项分布及其应用1. 条件概率及其性质(1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )=P (AB )P (A )(P (A )>0). 在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB )n (A ). (2)条件概率具有的性质:①0≤P (B |A )≤1;②如果B 和C 是两个互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ).2. 相互独立事件(1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件.(2)若A 与B 相互独立,则P (B |A )=P (B ),P (AB )=P (B |A )P (A )=P (A )P (B ).(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立.(4)若P (AB )=P (A )P (B ),则A 与B 相互独立.3. 二项分布(1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有__两__种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.(2)在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P (X =k )=C k n p k (1-p )n -k (k =0,1,2,…,n ),此时称随机变量X 服从二项分布,记为X ~B (n ,p ),并称p 为成功概率.1. 如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率都是12, 且是相互独立的,则灯泡甲亮的概率为_______________.2. 某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________.3. 某一部件由三个电子元件按如图所示方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.—⎪⎪⎪⎪⎪⎪⎪⎪—元件1——元件2——元件3— 4. 把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ) A.12 B.14 C.16 D.185. 如果X ~B ⎝⎛⎭⎫15,14,则使P (X =k )取最大值的k 值为 ( ) A .3 B .4 C .5 D .3或4题型一 条件概率例1 在100件产品中有95件合格品,5件不合格品.现从中不放回地取两次,每次任取一件,则在第一次取到不合格品后,第二次再次取到不合格品的概率为________.如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则(1)P (A )=________;(2)P (B |A )=________.题型二 相互独立事件的概率例2 甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为12与p ,且乙投球2次均未命中的概率为116. (1)求乙投球的命中率p ;(2)求甲投球2次,至少命中1次的概率;(3)若甲、乙两人各投球2次,求共命中2次的概率.红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E (ξ).题型三 独立重复试验与二项分布例3 某气象站天气预报的准确率为80%,计算:(结果保留到小数点后第2位)(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(1)任选1名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记X 为3人中参加过培训的人数,求X 的分布列.典例:一名学生每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是13. (1)设X 为这名学生在途中遇到红灯的次数,求X 的分布列; (2)设Y 为这名学生在首次停车前经过的路口数,求Y 的分布列.A 组 专项基础训练一、选择题1. 从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )等于( ) A.18 B.14 C.25D.12 2. 如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为 ( )A .0.960B .0.864C .0.720D .0.5763. 甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( )A.12B.35C.23D.344. 已知随机变量X 服从二项分布X ~B (6,13),则P (X =2)等于 ( ) A.1316B.4243C.13243D.80243二、填空题 5. 明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己.假设甲闹钟准时响的概率为0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________.6. 某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为________.7. 市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个是甲厂生产的合格灯泡的概率是________.三、解答题8. 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.设各车主购买保险相互独立.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率.9. 某篮球队与其他6支篮球队依次进行6场比赛,每场均决出胜负,设这支篮球队与其他篮球队比赛胜场的事件是独立的,并且胜场的概率是13. (1)求这支篮球队首次胜场前已经负了两场的概率; (2)求这支篮球队在6场比赛中恰好胜了3场的概率.B 组 专项能力提升一、选择题1. 某种元件的使用寿命超过1年的概率为0.6,使用寿命超过2年的概率为0.3,则使用寿命超过1年的元件还能继续使用的概率为( ) A .0.3 B .0.5 C .0.6 D .12. 位于坐标原点的一个质点P 按下述规则移动:质点每次移动一个单位;移动的方向为向上或向右,并且向上、向右移动的概率都是12.质点P 移动五次后位于点(2,3)的概率是 ( )A.⎝⎛⎭⎫125 B .C 25⎝⎛⎭⎫12 5 C .C 35⎝⎛⎭⎫123 D .C 25C 35⎝⎛⎭⎫125 3. 两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为( ) A.12B.512C.14D.16二、填空题4. 在一段线路中并联两个自动控制的常用开关,只要其中有一个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,则这段时间内线路正常工作的概率为_______.5. 将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落的过程中,将3次遇到黑色障碍物,最后落入A 袋或B 袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是12,则小球落入A 袋中的概率为________.6. 甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号).①P (B )=25;②P (B |A 1)=511;③事件B 与事件A 1相互独立;④A 1,A 2,A 3是两两互斥的事件;⑤P (B )的值不能确定,因为它与A 1,A 2,A 3中究竟哪一个发生有关.三、解答题7. 某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定,他们三人都有“同意”、“中立”、“反对”三类票各一张,投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,他们的投票相互没有影响,规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目的投资.(1)求该公司决定对该项目投资的概率;(2)求该公司放弃对该项目投资且投票结果中最多有一张“中立”票的概率.P (C )+P (D )=1327.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
]以下属于健康保险的特征的是()A.精算技术比较简单B.一般具有储蓄性C.保险金一般为给付性D.保险期限通常为一年期 [单选,A2型题,A1/A2型题]以下不是癌痛药物治疗的基本原则的是()A.按阶梯给药B.按时给药C.按需给药D.无创给药E.个体化给药 [单选]关于组织细胞增生性疾病,以下描述错误的是()A.临床症状、病变范围差异大,好发于儿童B.X线上可表现为网状结节,主要侵犯中上肺野C.可合并支气管扩张,肺大疱,自发性气胸等D.晚期不会出现蜂窝肺改变E.结节性病变可以和纤维化病变共存 [单选]用于公路路基的填料要求强度高,其强度要求是按()指标确定。A.密度B.回弹模量C.弯沉D.CBR值 [单选]2007年12月1日,A公司委托B公司销售商品600件,商品已发出,每件成本为600元,合同约定B公司应按每件1000元对外销售,A公司按照售价的10%向B公司支付手续费。2007年12月31日,B公司对外实际销售500件,开出增值税专用发票注明的价款500000元,增值税额为85000元,款项已收到 [单选]甲、乙两个独立的网站都主要靠广告收入来支撑发展,目前都采用较高的价格销售广告。这两个网站都想通过降价争夺更多的客户和更丰厚的利润。假设这两个网站在现有策略下各可以获得1000万元的利润。如果一方单独降价,就能扩大市场份额,可以获得1500万元利润,此时,另一方的 [多选]()驾驶机动车的,由公安机关交通管理部门处二百元以上二千元以下罚款,可以并处十五日以下拘留。A.驾驶证遗失期间B.未取得机动车驾驶证C.机动车驾驶证被吊销D.机动车驾驶证被暂扣期间 [单选]()是信托的对象物或信托的客体,也是信托关系得以创立的载体。A.信托主体B.信托行为C.信托财产D.信托目的 [单选]在放射免疫分析法(RIA)检测中其结合率用B/(B+F)表示,其意义是()A.结合态的标记抗原与总的标记抗原之比B.结合态的标记抗原与游离的标记抗原之比C.总标记抗原与抗原抗体复合物之比D.结合态的抗原与总的抗原之比E.结合态的抗原与总的抗原之比 [单选]HIV入侵T细胞的主要门户是()。A.CD3分子B.CD43分子CD45分子D.CD4分子E.CD8分子 [单选]肝细胞内玻璃样变性可见:A.嗜酸性小体B.Aschog小体C.以上均不可见D.Russell小体E.Mallory小体 [单选]VHF接收机选取有用信号的工作是由()以前的各级谐振回路来完成。A.前置中放B.检波C.低放 [单选]行政主体的活动,从性质上划分主要包括()。A.民事活动和司法活动B.司法活动和行政诉讼活动C.民事活动和行政管理活动D.行政复议活动和行政诉讼活动 [问答题,简答题]销售活动分析的程序? [单选]作为并购公司的企业集团暂不向目标公司支付全额价款,而是作为对目标公司所有者的负债,承诺在未来一定时期内分期、分批支付并购价款的方式属于()。A.现金支付方式B.股票对价方式C.杠杆收购方式D.卖方融资方式 [单选,A2型题,A1/A2型题]利用实验动物目前还不可能做到的实验是()A.进行病原菌的分离鉴定B.检测细菌的毒力C.制备免疫血清D.建立所有细菌人工感染的动物模型E.进行一些皮肤试验 [单选,A2型题,A1/A2型题]下列描述的微生物特征中不正确的是()A.分布广泛B.体积微小C.种类繁多D.需借助光学显微镜或电子显微镜观察E.只能在活细胞内生长繁殖 [单选]M40代表焦炭的()A.热态强度B.抗碎强度C.耐磨强度 [多选]关于劳务实名制管理检查内容,正确的有()。A.上岗证B.居住证C.身份证D.健康证E.考勤表 [单选]开常压塔侧线时,若塔底液面低,正确的操作是()。A、适当降处理量B、适当提处理量C、提高炉温D、降低炉温 [问答题,简答题]简述可行性研究的任务、意义和主要内容。 [多选]一般网络地址由哪几部分组成()A.逻辑地址B.链路地址C.网络地址D.主机地址 [单选,A2型题,A1/A2型题]导致肾排钠增加的因素是()。A.肾素生成增多B.血管舒缓素-激肽生成减少C.利钠激素生成增多D.肾神经兴奋增加E.血浆渗透压降低 [单选]造成胎儿宫内生长迟缓最常见的原因是().A.脐带绕颈B.本身发育异常C.双胎D.臀位E.妊高征 [单选,A型题]不属于火邪致病的特点是:A.易于动血B.易于耗气C.易于生风D.易伤阴津E.易于伤肺 [单选]信用衍生工具是指信用活动与信用交易的衍生载体,它是一种价值变动的交易合约()属于信用衍生工具A.信贷协议B.期货合约C.股票D.存折 [多选]施工项目管理规划的主要内容有()。A.施工方案和施工方法B.施工现场管理C.施工平面图D.其他相关资料 [填空题]供学生使用的文具、娱乐器具、(),必须符合国家有关卫生标准。 [单选,A2型题]一个4岁儿童早餐通常吃一个鸡蛋,喝一杯牛奶,家长认为孩子的早餐非常有营养,但通过咨询营养专家,发现早餐应该增加的食物是()A.面包+蔬菜B.蔬菜+水果C.鱼类+馒头D.瘦肉+米饭E.豆腐+米饭 [单选]在行政诉讼法律关系中,原告特有的诉讼权利之一是()。A.委托诉讼代理人B.撤诉C.申请回避D.提起上诉 [填空题]质量文化的功能包括()、()和辐射功能。 [单选,A1型题]医学模式转变对医师提出的根本性医德要求是()A.学习伦理学B.学习生命价值论C.学习公益理论D.更加关注处于社会关系中的、作为一个整体的病人的人文方面E.注重改变传统的医学道德观念 [名词解释]拉面罩(FACEMASK) [判断题]一般技术性错款按审批权限报损或收益。A.正确B.错误 [填空题]天平室的温度应保持在()内,湿度应保持在()。 [单选,A1型题]产褥期妇女的临床表现恰当的是()A.产后宫缩痛多见于初产妇B.产后初期产妇脉搏增快C.产后第1日宫底稍下降D.子宫复旧因哺乳而加速E.恶露通常持续1~2周 [问答题][综合分析题]张某是某知名软件公司开发部的高级工程师,自1995年进入公司以来,表现十分出色,每每接到任务时总能在规定时间内按要求完成,并时常受到客户的表扬。在项目进行时还常常主动提出建议,调整计划,缩短开发周期,节约开发成本。但在最近的几个月里情况发生了变 [单选,A1型题]儿童脑发育速度开始减慢、脑的大小达到成人的80%的年龄期是()A.新生儿期B.婴儿期C.幼儿期D.学龄前期E.学龄期 [问答题,简答题]现役士兵按兵役性质分为哪两类? [单选]设L是圆周x2+y2=a2(a&gt;0)负向一周,则曲线积分(x3-x2y)dx+(xy3-y3)dy的值为:()A.&pi;a4B.-&pi;a4C.-(&pi;/2)a4D.(&pi;/2)a4
相关文档
最新文档