模糊数学-模糊集的基本运算共61页

合集下载

模糊集的基本概念

模糊集的基本概念
§1.2 模糊子集及其运算
模糊子集与隶属函数 设U是论域,称映射 μA :U→[0,1] x → μA(x)
确定了一个U上的模糊子集A, μA 称 为 模 糊 集 A 的 隶 属 函 数 ( membership function),μA(x)表示 x 对A的隶属程度 (grade of membership)。常记 μA = A 。
也可用Zadeh表示法
0 0.2 0.4 0.6 0.8 1 A
x1 x2 x3 x4 x5 x6
A 0.4 0.5 0.6 0.7 0.8 0.9 x1 x2 x3 x4 x5 x6
设 A FU ,记
sup pA u u U , A(u) 0 ker A u u U , A(u) 1


t
At
,
At
t


t
At
.
(5) A A .
证:
x At t
t0 , x At0
t0 , At0 ( x)
At(x)
x1
x2
xn
(级数表示法)。
若U是无限集

则 A A( x) (积分表示法)。
Ux
注1:级数表示法中,隶属度为0的项 0 可以
略去不写。
xi
4、向量表示法
若U是有限集 U x1, x2 , , xn ,
则 A A( x1), A( x2 ), , A( xn )
5、图示法
At (x)
t

x At t
定义1
设 0,1, A F(U), 定义 A F(U ), 其隶

模糊数学

模糊数学

1 0.8
50 60
90
类似,Y = 年轻,Y : X → [0,1]规定为:
1 x ≤ 25 2 −1 Y ( x) = x − 25 25 < x ≤ 100 1 + 5
随着x增加,Y (x)减小 Y (25) = 1, Y (30) = 0.5 Y (60) = 0.02
hgt ( A)
X
第二节 模糊集运算的推广
A, B ∈ P( X ) A, B ∈ F ( X )
χ A∩ B ( x) = min( χ A ( x), χ B ( x))
( A ∩ B )( x) = min( A( x), B ( x))
χ A∩ B ( x) = χ A ( x) χ B ( x) χ 事实上, A∩ B ( x) = 1 ⇔ x ∈ A ∩ B ⇔ x ∈ A且x ∈ B
∀x ∈ X , ( A ∩ ( A ∪ B ))( x) = min( A( x), ( A ∪ B )( x)) = min( A( x), max( A( x), B( x))) = A(x)
再证: A ∪ B )c = Ac ∩ B c ( ∀x ∈ X , ( A ∪ B)c ( x) = 1 − ( A ∪ B )( x) = 1 − A( x) ∨ B( x) = (1 − A( x)) ∧ (1 − B( x)) = Ac ( x) ∧ B c ( x) = ( Ac ∩ B c )( x) 故( A ∪ B)c = Ac ∩ B c
T 规定: 规定: ≤ T ' ⇔ ∀x, y ∈ [0,1], T ( x, y ) ≤ T ' ( x, y ).
则 T0 ≤ TL ≤ Tπ ≤ Tmin

模糊集合及其运算讲解

模糊集合及其运算讲解

1、模糊子集
定义:设U是论域,称映射
A : U [0,1],
U
~
x A( x) [0,1]
A
~
~
确定了一个U上的模糊子集 A 。映射 A 称为 A 隶属函
~
~
~
数,A( x)
~
称为 x

A 的隶属程度,简称隶属度。
~
模糊子集 A 由隶属函数 A 唯一确定,故认为二者
~
~
是等同的。为简单见,通常用A来表示
模糊集合及其运算
确定性
—— 经典数学

随机性 —— 随机数学
不确定性
模糊性 —— 模糊数学
随机性:事件本身的状态是清楚的,但是否发生
不确定 。 (事件是否发生不确定)
明天有雨,掷一枚骰子出现6点
模糊性:事件本身的状态不很分明,不在于事件
发生与否。(事件本身的状态不确定)
青年人,高个子
模糊数学也是由于实践的需要而产生的,模糊概念 (或现象)处处存在。 有时使用模糊性比使用精确性还要好 。 例如,“大胡子高个子长头发戴宽边黑色眼镜的中年 男人” 模糊数学决不是把数学变成模模糊糊的东西,它也 具有数学的共性:条理分明、一丝不苟。即使描述模 糊概念(或现象),也会描述得清清楚楚。 一般来说,随机性是一种外在因果的不确定性,
模糊矩阵的幂 A2 A A
例:
设A 0.4 0.1
0.5 0.2
0.6 , 0.3
B


0.1 0.3 0.5
0.2 0.4
, 则
0.6
A B 0.5 0.6 0.3 0.3
0.1 0.2 0.2 B A 0.3 0.3 0.3

二、模糊计算

二、模糊计算

§2.3 模糊集合的运算 2.3.1 模糊集合的基本运算 一、模糊集合并、交、补运算定义2.3.1 模糊集合的包含、相等设A ~、B ~为论域X 上的两个模糊集合,对于X 中每一个元素x ,都有)()(~~x x BAμμ≥,则称A ~包含B ~,记作B A ~~⊇。

如果B A ~~⊇,且A B ~~⊇,则说A ~与B ~相等,记作B A ~~=。

由于模糊集合是通过隶属函数来表征的,模糊集合相等也可用隶属函数来定义。

若对于X 上的所有元素x ,都有)()(~~x x BAμμ=,模糊集合A ~与B ~相等。

定义2.3.2 模糊空集设A ~为论域X 上的模糊集合,对于X 中每一个元素x ,都有0)(~=x Aμ,则称A ~为模糊空集,记作φ=A ~。

定义2.3.3 模糊集合并、交、补基本运算设A ~、B ~为论域X 上的两个模糊集合,令B A ~~ 、B A ~~ 、C A ~分别表示模糊集合A ~与B ~的并集、交集、补集,对应的隶属函数分别为B A~~ μ、B A ~~ μ、C A~μ,对于X 的任一元素x ,定义: )(V )()(B ~A ~B ~A~x x x μμμ∆ (2.3.1) )()()(B ~A~B ~A~x x x μμμΛ∆ (2.3.2)补算子 (2.3.3) 式中“V ”表示取大运算,“Λ”表示取小运算,称其为Zadeh 算子。

在此定义下,两个模糊集合的并、交实质是在做下面的运算①)](,)(max[B ~A ~B ~A~x x μμμ= 并算子 (2.3.4) )](,)(min[B ~A~B ~A~x x μμμ= 交算子 (2.3.5) 为了加深对模糊集合并、交、补基本运算的理解,现在给出模糊集合A ~和B ~,见图2.3.1(a)。

其中A ~为高斯分布,B ~为三角分布,二者的并、交运算结果如图2.3.1(b)的图2.3.1(c)所示,当然模糊集合的并、交运算可以推广到任意个模糊集合。

模糊数学(清晰易懂)

模糊数学(清晰易懂)

定义:设 A (aij )mn , 对任意的 [0,1],称
A (aij( ) )mn 为模糊矩阵A的 截矩阵,其中
aij( )
1, 0,
aij aij
显然,截矩阵为Boole矩阵。
34
第34页,共105页。
1 0.5 0.2 0
例6:设A
0.5 0.2
1 0.1
0.1 1
并: (A B)(x) A(x) B(x),x U 表示取大;
交: ( A B)( x) A( x) B( x),x U 表示取小。 补: Ac ( x) 1 A( x),x U
14
第14页,共105页。
并交余计算的性质
1. 幂等律 A A A, A A A, 2. 交换律 A B B A, A B B A,
6. 0-1律 A A, A , A U U , A U A
7. 还原律 ( Ac )c A,
8. 对偶律 ( A B)c Ac Bc ,( A B)c Bc Ac ,
17
第17页,共105页。
三、隶属函数的确定 1、模糊统计法
模糊统计试验的四个要素:
(1)论域U;
(2)U中的一个固定元素 u0 ;
2
第2页,共105页。
模糊数学绪论
• 涉及学科
模糊代数,模糊拓扑,模糊逻辑,模糊分析, 模糊概率,模糊图论,模糊优化等模糊数学分支 分类、识别、评判、预测、控制、排序、选择; 人工智能、控制、决策、专家系统、医学、土木、 农业、气象、信息、经济、文学、音乐
• 模糊产品 洗衣机、摄象机、照相机、电饭锅、空调、电梯
3
第3页,共105页。
模糊彩色电视机——可根据室内的光线、距离 屏幕 的远近来自动调节屏幕的亮度和音量的大小。

模糊数学第二讲 模糊集合及其运算

模糊数学第二讲  模糊集合及其运算

实际生活中有些概念并非清晰概念, 例如鲜美的食品、美丽 的景色、魁梧的身材、漂亮的服装、高个子…等等.对于这些 概念,普通集合就无能为力.
7
2014-8-15
定义1 :设U为论域,U在闭区间[0,1]上的任一映射A[0,1]称 为U上的隶属函数。 对于任意的xU,隶属函数值A(x)称为x对A的隶属度。A为论 域U上的模糊集合。
( A B) C ( A C ) ( B C )
论域:被讨论对象的全体组成的集合称为论域。
包含: AB :对于任意xA ,必有yB. 空集:若对于任意集合A,都有A,则称是任意集合A的空集.
幂集:设U是论域,U的所有子集所组成的集合称为U的幂集, 记为P(U). 例如,U={a,b,c},则
P(U)={,{a}, {b}, {c}, {a,b}, {b,c}, {a,c}, {a,b,c}}
2014-8-15

两个模糊子集的交并运算还可以推广到任意多个 模糊集合的情形。
定义3 设At F (U ), t T , T 是指标集.u U , 规定 ( ( 称
tT tT tT
At )(u ) At (u ) sup At (u );
tT tT tT
At )(u ) At (u ) inf At (u ).
A U U , A U A,
A AC A B) c Ac B c ,
2014-8-15
( A B) c Ac B c
5
特征函数
特征函数CA(u) 表示论域U中的元素u是否属于U的子集A. 若uA, 则CA(u) =1;若 uA ,则CA(u) =0. 显然,特征函数是论域U到{0,1}的一 个映射. 例如,设U自然数组成的集合,A={1,2,3},则A的特征函数为

模糊集合的基本运算-Read

模糊集合的基本运算-Read
第六章 模糊数学基础
第六章 模糊数学基础
§6.1 概述 §6.2 模糊集合与隶属度函数 §6.3 模糊逻辑与模糊推理
§6.1 概述
§6.1.1 传统数学与模糊数学 §6.1.2 不相容原理
§6.1.2 不相容原理
1965年,美国自动化控制专家扎德(L. A. Zadeh) 教授首先提出用隶属度函数(membership function)来描 述模糊概念,创立了模糊集合论,为模糊数学奠定了 基础。 不相容原理:“随着系统复杂性的增加,我们对其特 性作出精确而有意义的描述的能力会随之降低,直到 达到一个阈值,一旦超过它,精确和有意义二者将会 相互排斥”。这就是说,事物越复杂,人们对它的认 识也就越模糊,也就越需要模糊数学。不相容原理深 刻的阐明了模糊数学产生和发展的必然性,也为三十 多年来模糊数学的发展历史所证实。
F ( x) min(F (a), F (b)) , a, b U , x [a, b]
语言变量用一个有五个元素的集合(N,T(N),U,G,M) 来表征,其中 (1)N是语言变量的名称,如年龄、数的大小等; (2)U为语言变量N的论域; (3)T(N)为语言变量的值X的集合,其中每个X都是 论域U上的模糊集合,如 T( N ) = T( 年 龄 )=“ 很 年 轻 ” +“ 年 轻 ” +“ 中 年”+“较老”+“很老” =X1+X2+X3+X4+X5
x 50 0, 1 , x 50 老 ( x) 2 x 50 1 5 其中修饰词的隶属度函数为:极A= A4 , 非常A = A2 , 相当A= A1.25 , 比较A= A0.75 , 略A= A0.5 , 稍微A=

模糊数学1第二讲-模糊集合与模糊关系

模糊数学1第二讲-模糊集合与模糊关系
模糊数学1第二讲-模糊集合与模 糊关系
目录
• 引言 • 模糊集合的基本概念 • 模糊关系的定义和性质 • 模糊关系的应用 • 结论
01 引言
主题简介
模糊集合
模糊集合是传统集合的扩展,允许元 素具有不明确的隶属度。它能够更好 地描述现实世界中许多事物的模糊性 和不确定性。
模糊关系
模糊关系是描述模糊元素之间关联的 方式,可以用于描述事物之间的不确 定性和相似性。
3
模糊关系具有自反性,即任意一个模糊集合都与 自身有完全的关联。
模糊关系的运算
01
并运算
表示两个模糊集合之间的合并关系, 结果是一个新的模糊集合。
补运算
表示一个模糊集合的补集关系,结 果是一个新的模糊集合。
03
02
交运算
表示两个模糊集合之间的交集关系, 结果是一个新的模糊集合。
非运算
表示一个模糊集合的否定关系,结 果是一个新的模糊集合。
人工智能与机器学习
模糊数学在人工智能和机器学习领域有巨大的潜力,特别 是在处理不确定性和含糊性方面。未来可以进一步探索模 糊数学在人工智能和机器学习领域的应用。
THANKS FOR WATCHING
感谢您的观看
04
04 模糊关系的应用
在决策分析中的应用
模糊决策
利用模糊集合理论,可以将决策 问题中的不确定性和模糊性纳入 数学模型中,从而更准确地描述 和解决决策问题。
模糊多属性决策
在多属性决策中,模糊集理论可 以用于处理属性值的不确定性, 通过权重调整和属性值模糊化, 实现更准确的决策分析。
模糊综合评价
基于模糊集合理论的综合评价方 法,能够综合考虑多个因素和条 件,对复杂系统进行全面、客观 的评价。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档