等差数列前n项和练习题

合集下载

等差数列的前n项和公式同步练习(含解析)

等差数列的前n项和公式同步练习(含解析)

《第二节等差数列》同步练习(等差数列的前n项和公式)一、选择题1.已知等差数列{a n}的前n项和为S n,且S2=10,S5=55,则过点P(n,S nn ),Q(n+2,S n+2n+2)(n∈N*)的直线的斜率为( )A.4B.3C.2D.12.[2022辽宁名校高三上联考]已知数列{a n}是等差数列,前n项和为S n,若a1+a2+a3+a4=3,a17+a18+a19+a20=5,则S20=( )A.10B.15C.20D.403.[2022四川成都七中高一下期中]已知等差数列{a n}的公差d<0,a5a7=35,a4+a8=12,前n 项和为S n,则S n的最大值为( )A.66B.72C.132D.1984.(多选)[2022湖南高三上联考]两个等差数列{a n}与{b n}的前n项和分别为S n与T n,且S2n T n =8n3n+5,则( )A.a3+a8=2b3B.当S n=2n2时,b n=6n+2C.a4+a11b4<2D.∀n∈N*,使得T n>05.(多选)[2022安徽临泉一中高二期末]已知等差数列{a n}的前n项和为S n,若S2 021>0,S2 022<0,则( )A.数列{a n}是递增数列B.|a1 012|>|a1 011|C.当S n取得最大值时,n=1 011D.S1 012<S1 0096.[2022山东潍坊高二调研]在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安四百二十里,良马初日行九十七里,日增一十五里;驽马初日行九十二里,日减一里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( )A.4日B.3日C.5日D.6日7.如果有穷数列a1,a2,…,a n(n∈N*)满足a i=a n-i+1(i=1,2,3,…,n),那么称该数列为“对称数列”.设{a n}是项数为2k-1(k∈N,k≥2)的“对称数列”,其中a k,a k+1,…,a2k-1是首项为50,公差为-4的等差数列,记{a n }的各项之和为S 2k -1,则S 2k -1的最大值为( ) A.622B.624C.626D.6288.(多选)[2022江苏南京高三月考]如图的形状出现在中国南宋数学家杨辉所著的《详解九章算法》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,第四层有10个球,…….设第n 层有a n 个球,从上往下n 层球的总数为S n ,则( )A.S 5=35B.a n +1-a n =nC.S n -S n -1=n(n+1)2,n ≥2 D.1a 1+1a 2+1a 3+…+1a 100=200101二、非选择题9.如图所示,八个边长为1的小正方形拼成一个长为4,宽为2的矩形,A ,B ,D ,E 均为小正方形的顶点,在线段DE 上有 2 020个不同的点P 1,P 2,…,P 2 020,且它们等分DE.记M i =AB ⃗⃗⃗⃗⃗ ·AP i ⃗⃗⃗⃗⃗⃗ (i =1,2,…,2 020).则M 1+M 2+…+M 2 020的值为 .10.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,则{a n }的通项公式a n = ;若数列{b n }满足b n =12a n -30,其前n 项和为T n ,则T n 的最小值为 .11.[2022辽宁阜新高二上期末]在等差数列{a n }中,S n 是数列{a n }的前n 项和,已知a 2=4,S 4=20.(1)求数列{a n }的通项公式;(2)若b n =(-1)n·a n ,求数列{b n }的前n 项和T n .12.[2022河北唐山一中高二上月考]记S n是等差数列{a n}的前n项和,若S5=-35,S7=-21.(1)求数列{a n}的通项公式,并求S n的最小值;(2)设b n=|a n|,求数列{b n}的前n项和T n.参考答案一、选择题1.C设d为数列{a n}的公差,则{S nn }是公差为d2的等差数列.2.C由题易知S4,S8-S4,S12-S8,S16-S12,S20-S16成等差数列,又S4=3,S20-S16=5,则S20=(S20-S16)+(S16-S12)+(S12-S8)+(S8-S4)+S4=(5+3)×52=20.3.A因为d<0,a5a7=35,a4+a8=a5+a7=12,所以a5=7,a7=5,则d=-1,所以a n=a7+(n-7)d=-n+12,所以a12=0,所以当n=11或12时,S n取得最大值,最大值为S11=S12=12(a1+a12)2= 12×(11+0)2=66.4.AB由S2nT n =8n3n+5,知S10T5=10(a1+a10)25(b1+b5)2=a1+a10b3=a3+a8b3=4020=2,即a3+a8=2b3,故A正确;同理可得a4+a11b4=S14T7=2813>2,故C错误;当S n=2n2时,有S2n=8n2,则T n=n(3n+5),易得b n=6n+2,故B正确;当S n=-2n2时,有S2n=-8n2,则T n=-n(3n+5)<0,则不存在n∈N*,使得T n>0,故D错误.5.BC因为S2 021=2021(a1+a2021)2=2 021a1 011>0,S2 022=2022(a1+a2022)2=1 011(a1 011+a1 012)<0,所以a1 011>0,a1 011+a1 012<0,所以a1 012<0,且|a1 012|>|a1 011|,所以数列{a n}是递减数列,且当n=1 011时,S n取得最大值,故B,C正确,A错误.又S1 012-S1 009=a1 010+a1 011+a1 012=3a1 011>0,所以S1 012>S1 009,故D错误.故选BC.6.A记良马第n日行程为a n,驽马第n日行程为b n,则由题意知数列{a n}是首项为97,公差为15的等差数列,数列{b n}是首项为92,公差为-1的等差数列,则a n=97+15(n-1)=15n+82,b n=92-(n-1)=93-n.因为数列{a n}的前n项和为n(97+15n+82)2=n(179+15n)2,数列{b n}的前n项和为n(92+93−n)2=n(185−n)2,所以n(179+15n)2+n(185−n)2=420×2,整理得n2+26n-120=0,解得n=4或n=-30(舍去),即4日相逢.7.C易知a k+a k+1+…+a2k-1=50k+k(k−1)×(−4)2=-2k2+52k,S2k-1=a1+…+a k+a k+1+…+a2k-1=2(a k+a k+1+…+a2k-1)-a k=-4k2+104k-50=-4(k-13)2+626,当k=13时,S2k-1取到最大值,且最大值为626.故选C.8.ACD因为a1=1,a2-a1=2,a3-a2=3,……,a n-a n-1=n,以上n个式子相加可得a n=1+2+3+…+n=n(n+1)2,所以S5=a1+a2+a3+a4+a5=1+3+6+10+15=35,故A正确;由递推关系可知a n+1-a n=n+1,故B 不正确;当n ≥2时,S n -S n -1=a n =n(n+1)2,故C 正确;因为1a n =2n(n+1)=2(1n−1n+1),所以1a 1+1a 2+…+1a 100=2[(1-12)+(12−13)+…+(1100−1101)]=2(1-1101)=200101,故D 正确.故选ACD.二、非选择题9.14 140 解析如图,设C 为DE 的中点,则AC =72.因为P 1,P 2,…,P 2 020等分DE ,所以AP i ⃗⃗⃗⃗⃗⃗ +AP 2 021−i ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2AC ⃗⃗⃗⃗⃗ .又M 1+M 2+…+M 2 020=AB ⃗⃗⃗⃗⃗ ·(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2⃗⃗⃗⃗⃗⃗⃗ +…+AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ ),令S =M 1+M 2+…+M 2 020,则2S =AB ⃗⃗⃗⃗⃗ ·(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2⃗⃗⃗⃗⃗⃗⃗ +…+AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+AB ⃗⃗⃗⃗⃗ ·(AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AP 2 019⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +…+AP 1⃗⃗⃗⃗⃗⃗⃗ )=AB ⃗⃗⃗⃗⃗ ·[(AP 1⃗⃗⃗⃗⃗⃗⃗ +AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+(AP 2⃗⃗⃗⃗⃗⃗⃗ +AP 2 019⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ )+…+(AP 2 020⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ +AP 1⃗⃗⃗⃗⃗⃗⃗ )]=(2×2 020)AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =4 040×√5×72×√5=28 280,所以S =14 140.10.4n -2 -225 解析因为2a n +1=a n +a n +2,所以a n +1-a n =a n +2-a n +1,故数列{a n }为等差数列.设数列{a n }的公差为d.由a 3=10,S 6=72,得{a 1+2d =10,6a 1+15d =72,解得{a 1=2,d =4,所以a n =4n -2,所以b n =12a n -30=2n -31.令{b n ≤0,b n+1≥0,即{2n −31≤0,2(n +1)−31≥0,解得292≤n ≤312.因为n ∈N *,所以数列{b n }的前15项均为负值且第16项为正值,所以T 15最小.因为数列{b n }的首项为-29,公差为2,所以T 15=15(−29+2×15−31)2=-225,所以数列{b n }的前n 项和T n 的最小值为-225.11.(1)设首项为a 1,公差为d ,由题意知 {a 1+d =4,4a 1+4×32d =20,解得{a 1=2,d =2,故a n =2n. (2)由(1)得b n =(-1)n·a n =(-1)n·2n.当n 为偶数时,T n =(-2+4)+(-6+8)+…+[-2(n -1)+2n ]=n2·2=n ;当n 为奇数时,T n =(-2+4)+(-6+8)+…+[-2(n -2)+2(n -1)]-2n =(n -1)-2n =-n -1, 所以T n ={n,n 为偶数,−n −1,n 为奇数.12.(1)设{a n }的公差为d ,则{5a 1+5×42d =−35,7a 1+7×62d =−21,解得{a 1=−15,d =4, 所以a n =-15+4(n -1)=4n -19.由a n=4n-19≥0,得n≥194,所以当n=1,2,3,4时,a n<0,当n≥5时,a n>0,所以S n的最小值为S4=4a1+4×32d=-36.(2)由(1)知,当n≤4时,b n=|a n|=-a n;当n≥5时,b n=|a n|=a n.又S n=na1+n(n−1)2d=2n2-17n,所以当n≤4时,T n=-S n=17n-2n2,当n≥5时,T n=S n-2S4=2n2-17n-2×(-36)=2n2-17n+72,即T n={17n−2n2,n≤4, 2n2−17n+72,n≥5.。

等差数列的前n项和习题及答案

等差数列的前n项和习题及答案

等差数列的前n项和习题及答案一、基础过关1.若数列{an}的前n项和Sn=n2-1,则a4等于() A.7 B.8 C.9 D.172.已知数列{an}的前n项和Sn=n3,则a5+a6的值为() A.91 B.152 C.218 D.2793.设Sn是等差数列{an}的前n项和,若a5a3=59,则S9S5等于()A.1 B.-1 C.2 D.124.设Sn是等差数列{an}的前n项和,若S3S6=13,则S6S12等于()A.310B.13C.18D.195.数列{an}的前n项和为Sn,且Sn=n2-n(n∈N*),则通项an=________.6.设Sn为等差数列{an}的前n项和,若a4=1,S5=10,则当Sn取得最大值时,n的值为________.7.已知数列{an}的前n项和公式为Sn=2n2-30n.(1)求数列{an}的通项公式an;(2)求Sn的最小值及对应的n值.8.设等差数列{an}满足a3=5,a10=-9.(1)求{an}的通项公式;(2)求{an}的前n项和Sn及使得Sn最大的序号n的值.二、能力提升9.已知数列{an}的前n项和Sn=n2-9n,第k项满足5<ak<8,则k为() A.9 B.8 C.7 D.610.设{an}是等差数列,Sn是其前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是() A.d<0 B.a7=0C.S9>S5 D.S6与S7均为Sn的最大值11.数列{an}中,a1=8,a4=2,且满足an+2-2an+1+an=0 (n∈N*).(1)求数列{an}的通项公式;(2)设Sn=|a1|+|a2|+…+|an|,求Sn.三、探究与拓展12.设等差数列{an}的前n项和为Sn,已知a3=12,且S12>0,S13<0.(1)求公差d的取值范围;(2)问前几项的和最大,并说明理由.答案1.A 2.B 3.A 4.A 5.2n-2 6.4或57.解(1)∵Sn=2n2-30n,∴当n=1时,a1=S1=-28.当n≥2时,an=Sn-Sn-1=(2n2-30n)-[2(n-1)2-30(n-1)]=4n-32.∴an=4n-32,n∈N+.(2)∵an=4n-32,∴a1<a2<…<a7<0,a8=0,当n≥9时,an>0.∴当n=7或8时,Sn最小,且最小值为S7=S8=-112.8.解(1)由an=a1+(n-1)d及a3=5,a10=-9得a1+2d=5,a1+9d=-9,可解得a1=9,d=-2,所以数列{an}的通项公式为an=11-2n.(2)由(1)知,Sn=na1+n-12d=10n-n2.因为Sn=-(n-5)2+25,所以当n=5时,Sn取得最大值.9.B10.C11.解(1)∵an+2-2an+1+an=0.∴an+2-an+1=an+1-an=…=a2-a1.∴{an}是等差数列且a1=8,a4=2,∴d=-2,an=a1+(n-1)d=10-2n.(2)∵an=10-2n,令an=0,得n=5.当n>5时,an<0;当n=5时,an=0;当n<5时,an>0.∴当n>5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+a5-(a6+a7+…+an)=S5-(Sn-S5)=2S5-Sn=2•(9×5-25)-9n+n2=n2-9n+40,当n≤5时,Sn=|a1|+|a2|+…+|an|=a1+a2+…+an=9n-n2.∴Sn=9n-n2≤5-9n+4012.解(1)根据题意,得12a1+12×112d>0,13a1+13×122d<0,a1+2d=12,整理得:2a1+11d>0,a1+6d<0,a1+2d=12.解得:-247<d<-3.(2)∵d<0,∴a1>a2>a3>…>a12>a13>…,而S13=13+a13=13a7<0,∴a7<0.又S12=12+a12=6(a1+a12)=6(a6+a7)>0,∴a6>0.∴数列{an}的前6项和S6最大.。

巩固练习_提高_等差数列及其前n项和

巩固练习_提高_等差数列及其前n项和

【巩固练习】一、选择题1.已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( )A .5B .4C .3D .22.已知等差数列{a n }的前三项依次为a -1,172a -,3,则该数列中第一次出现负值的项为( ) A .第9项B .第10项C .第11项D .第12项 3.已知{a n }是等差数列,a 3+a 11=40,则a 6-a 7+a 8等于( ) A .20B .48C .60D .72 4. 等差数列{a n }中,a 1=8,a 5=2,若在每相邻两项间各插入一个数,使之成等差数列,那么新的等差数列的公差是( ) A.34B .34-C .67-D .-1 5.(2015 新课标Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) A . 172 B .192C .10D .12 6. 已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且7453n n A n B n +=+,则使得n n a b 为整数的正整数n 的个数是( )A .2B .3C .4D .5二、填空题7.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=________. 8.若x ≠y ,数列x ,a 1,a 2,y 和x ,b 1,b 2,b 3,y 各自成等差数列,则1212a ab b --=________. 9.把20分成四个数成等差数列,使第一项与第四项的积同第二项与第三项的积的比为2∶3,则这四个数从小到大依次为____________.10.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k =________.11.(2016 南通模拟)等差数列{}n a 中,1583,115a a a =-=,则其前n 项和n S 的最小值为 。

(完整版)等差数列的前n项和练习含答案

(完整版)等差数列的前n项和练习含答案

课时作业8 等差数列的前n 项和时间:45分钟 满分:100分课堂训练1.已知{a n }为等差数列,a 1=35,d =-2,S n =0,则n 等于( ) A .33 B .34 C .35 D .36【答案】 D【解析】 本题考查等差数列的前n 项和公式.由S n =na 1+n (n -1)2d =35n +n (n -1)2×(-2)=0,可以求出n =36.2.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则数列前13项的和是( )A .13B .26C .52D .156 【答案】 B【解析】 3(a 3+a 5)+2(a 7+a 10+a 13)=24⇒6a 4+6a 10=24⇒a 4+a 10=4⇒S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26. 3.等差数列的前n 项和为S n ,S 10=20,S 20=50.则S 30=________. 【答案】 90【解析】 等差数列的片断数列和依次成等差数列. ∴S 10,S 20-S 10,S 30-S 20也成等差数列. ∴2(S 20-S 10)=(S 30-S 20)+S 10,解得S 30=90.4.等差数列{a n }的前n 项和为S n ,若S 12=84,S 20=460,求S 28. 【分析】 (1)应用基本量法列出关于a 1和d 的方程组,解出a 1和d ,进而求得S 28;(2)因为数列不是常数列,因此S n 是关于n 的一元二次函数且常数项为零.设S n =an 2+bn ,代入条件S 12=84,S 20=460,可得a 、b ,则可求S 28;(3)由S n =d 2n 2+n (a 1-d 2)得S n n =d 2n +(a 1-d2),故⎩⎨⎧⎭⎬⎫S n n 是一个等差数列,又2×20=12+28,∴2×S 2020=S 1212+S 2828,可求得S 28.【解析】 方法一:设{a n }的公差为d , 则S n =na 1+n (n -1)2d .由已知条件得:⎩⎨⎧12a 1+12×112d =84,20a 1+20×192d =460,整理得⎩⎨⎧2a 1+11d =14,2a 1+19d =46,解得⎩⎨⎧a 1=-15,d =4.所以S n =-15n +n (n -1)2×4=2n 2-17n , 所以S 28=2×282-17×28=1 092.方法二:设数列的前n 项和为S n ,则S n =an 2+bn . 因为S 12=84,S 20=460,所以⎩⎨⎧122a +12b =84,202a +20b =460,整理得⎩⎨⎧12a +b =7,20a +b =23.解之得a =2,b =-17, 所以S n =2n 2-17n ,S 28=1 092. 方法三:∵{a n }为等差数列, 所以S n =na 1+n (n -1)2d ,所以S n n =a 1-d 2+d2n ,所以⎩⎨⎧⎭⎬⎫S n n 是等差数列.因为12,20,28成等差数列, 所以S 1212,S 2020,S 2828成等差数列, 所以2×S 2020=S 1212+S 2828,解得S 28=1 092.【规律方法】 基本量法求出a 1和d 是解决此类问题的基本方法,应熟练掌握.根据等差数列的性质探寻其他解法,可以开阔思路,有时可以简化计算.课后作业一、选择题(每小题5分,共40分)1.已知等差数列{a n }中,a 2=7,a 4=15,则前10项的和S 10等于( )A .100B .210C .380D .400【答案】 B【解析】 d =a 4-a 24-2=15-72=4,则a 1=3,所以S 10=210.2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .27 B .24 C .29 D .48【答案】 C 【解析】由已知⎩⎨⎧2a 1+5d =19,5a 1+10d =40.解得⎩⎨⎧a 1=2,d =3.∴a 10=2+9×3=29.3.数列{a n }的前n 项和为S n =n 2+2n -1,则这个数列一定是( ) A .等差数列 B .非等差数列 C .常数列 D .等差数列或常数列 【答案】 B【解析】 当n ≥2时,a n =S n -S n -1=n 2+2n -1-[(n -1)2+2(n -1)-1]=2n +1,当n =1时a 1=S 1=2.∴a n =⎩⎨⎧2,n =1,2n +1,n ≥2,这不是等差数列.4.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )C .8D .9【答案】 A 【解析】⎩⎨⎧a 1=-11,a 4+a 6=-6,∴⎩⎨⎧a 1=-11,d =2,∴S n =na 1+n (n -1)2d =-11n +n 2-n =n 2-12n . =(n -6)2-36. 即n =6时,S n 最小.5.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146,所有项的和为234,则它的第7项等于( )A .22B .21C .19D .18【答案】 D【解析】 ∵a 1+a 2+a 3+a 4+a 5=34, a n +a n -1+a n -2+a n -3+a n -4=146, ∴5(a 1+a n )=180,a 1+a n =36, S n =n (a 1+a n )2=n ×362=234. ∴n =13,S 13=13a 7=234.∴a 7=18.6.一个有11项的等差数列,奇数项之和为30,则它的中间项为( )A .8B .7【答案】 D【解析】 S 奇=6a 1+6×52×2d =30,a 1+5d =5,S 偶=5a 2+5×42×2d =5(a 1+5d )=25,a 中=S 奇-S 偶=30-25=5.7.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n=7n n +3,则a 5b 5等于( ) A .7 B.23 C.278 D.214【答案】 D【解析】 a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=92(a 1+a 9)92(b 1+b 9)=S 9T 9=214.8.已知数列{a n }中,a 1=-60,a n +1=a n +3,则|a 1|+|a 2|+|a 3|+…+|a 30|等于( )A .445B .765C .1 080D .1 305 【答案】 B【解析】 a n +1-a n =3,∴{a n }为等差数列. ∴a n =-60+(n -1)×3,即a n =3n -63.∴a n =0时,n =21,a n >0时,n >21,a n <0时,n <21. S ′30=|a 1|+|a 2|+|a 3|+…+|a 30|=-a 1-a 2-a 3-…-a 21+a 22+a 23+…+a 30 =-2(a 1+a 2+…+a 21)+S 30 =-2S 21+S 30 =765.二、填空题(每小题10分,共20分)9.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则数列的通项公式a n =________.【答案】 2n【解析】 设等差数列{a n }的公差d ,则⎩⎨⎧a 1+5d =12a 1+d =4,∴⎩⎨⎧a 1=2d =2,∴a n =2n .10.等差数列共有2n +1项,所有奇数项之和为132,所有偶数项之和为120,则n 等于________.【答案】 10【解析】 ∵等差数列共有2n +1项,∴S 奇-S 偶=a n +1=S 2n +12n +1.即132-120=132+1202n +1,求得n =10.【规律方法】 利用了等差数列前n 项和的性质,比较简捷. 三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8和S 8; (2)若a 1=1,a n =-512,S n =-1 022,求d .【分析】 在等差数列中,五个重要的量,只要已知三个量,就可求出其他两个量,其中a 1和d 是两个最基本量,利用通项公式和前n 项和公式,先求出a 1和d ,然后再求前n 项和或特别的项.【解析】 (1)∵a 6=10,S 5=5,∴⎩⎨⎧a 1+5d =10,5a 1+10d =5.解方程组,得a 1=-5,d =3, ∴a 8=a 6+2d =10+2×3=16, S 8=8(a 1+a 8)2=44. (2)由S n =n (a 1+a n )2=n (-512+1)2=-1 022, 解得n =4.又由a n =a 1+(n -1)d , 即-512=1+(4-1)d , 解得d =-171.【规律方法】 一般地,等差数列的五个基本量a 1,a n ,d ,n ,S n ,知道其中任意三个量可建立方程组,求出另外两个量,即“知三求二”.我们求解这类问题的通性通法,是先列方程组求出基本量a 1和d ,然后再用公式求出其他的量.12.已知等差数列{a n },且满足a n =40-4n ,求前多少项的和最大,最大值为多少?【解析】 方法一:(二次函数法)∵a n =40-4n ,∴a 1=40-4=36, ∴S n =(a 1+a n )n 2=36+40-4n2·n =-2n 2+38n =-2[n 2-19n +(192)2]+1922=-2(n -192)2+1922.令n -192=0,则n =192=9.5,且n ∈N +, ∴当n =9或n =10时,S n 最大,∴S n 的最大值为S 9=S 10=-2(10-192)2+1922=180. 方法二:(图象法)∵a n =40-4n ,∴a 1=40-4=36, a 2=40-4×2=32,∴d =32-36=-4,S n =na 1+n (n -1)2d =36n +n (n -1)2·(-4)=-2n 2+38n , 点(n ,S n )在二次函数y =-2x 2+38x 的图象上,S n 有最大值,其对称轴为x =-382×(-2)=192=9.5,∴当n =10或9时,S n 最大.∴S n 的最大值为S 9=S 10=-2×102+38×10=180. 方法三:(通项法)∵a n =40-4n ,∴a 1=40-4=36,a 2=40-4×2=32,∴d =32-36=-4<0,数列{a n }为递减数列.令⎩⎨⎧a n ≥0,a n +1≤0,有⎩⎨⎧40-4n ≥0,40-4(n +1)≤0,∴⎩⎨⎧n ≤10,n ≥9,即9≤n ≤10.当n =9或n =10时,S n 最大.∴S n 的最大值为S 9=S 10=a 1+a 102×10=36+02×10=180. 【规律方法】 对于方法一,一定要强调n ∈N +,也就是说用函数式求最值,不能忽略定义域,另外,三种方法中都得出n =9或n =10,需注意a m =0时,S m -1=S m 同为S n 的最值.。

人教版高二数学《等差数列的前n项和公式》练习含答案解析

人教版高二数学《等差数列的前n项和公式》练习含答案解析

4.2.2 第一课时 等差数列的前n项和公式[A级 基础巩固]1.已知等差数列{a n}的前n项和为S n,若2a6=a8+6,则S7等于( )A.49 B.42C.35 D.28解析:选B 2a6-a8=a4=6,S7=72(a1+a7)=7a4=42.2.已知数列{a n}是等差数列,a4=15,S5=55,则过点P(3,a3),Q(4,a4)的直线斜率为( )A.4 D.1 4C.-4 D.-1 4解析:选A 由S5=5(a1+a5)2=5×2a32=55,解得a3=11.∴P(3,11),Q(4,15),∴k=15-114-3=4.故选A.3.在小于100的自然数中,所有被7除余2的数之和为( ) A.765 B.665 C.763 D.663解析:选B ∵a1=2,d=7,则2+(n-1)×7<100,∴n<15,∴n=14,S14=14×2+12×14×13×7=665.4.设S n是等差数列{a n}的前n项和,若a5a3=59,则S9S5等于( )A.1 B.-1C.2 D.1 2解析:选A S9S5=92(a1+a9)52(a1+a5)=92·2a552·2a3=9a55a3=95·a5a3=1.5.现有200根相同的钢管,把它们堆成一个正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为( )A.9 B.10C.19 D.29解析:选B 钢管排列方式是从上到下各层钢管数组成了一个等差数列,最上面一层钢管数为1,逐层增加1个.∴钢管总数为:1+2+3+…+n=n(n+1)2.当n=19时,S19=190.当n=20时,S20=210>200.∴n=19时,剩余钢管根数最少,为10根.6.已知{a n}是等差数列,a4+a6=6,其前5项和S5=10,则其公差为d=________.解析:a4+a6=a1+3d+a1+5d=6,①S5=5a1+12×5×(5-1)d=10,②由①②联立解得a1=1,d=1 2 .答案:1 27.已知数列{a n}中,a1=1,a n=a n-1+12(n≥2),则数列{a n}的前9项和等于________.解析:由a1=1,a n=a n-1+12(n≥2),可知数列{a n}是首项为1,公差为12的等差数列,故S9=9a1+9×(9-1)2×12=9+18=27.答案:27n=11.已知命题:“在等差数列{a n}中,若4a2+a10+a( )=24,则S11为定值”为真命题,由于印刷问题,括号处的数模糊不清,可推得括号内的数为( )A.15 B.24C.18 D.28解析:选C 设括号内的数为n,则4a2+a10+a(n)=24,即6a1+(n+12)d=24.又因为S11=11a1+55d=11(a1+5d)为定值,所以a1+5d为定值.所以n+126=5,解得n=18.12.(多选)已知等差数列{a n}的前n项和为S n,若S7=a4,则( ) A.a1+a3=0 B.a3+a5=0 C.S3=S4 D.S4=S5解析:选BC 由S7=7(a1+a7)2=7a4=a4,得a4=0,所以a3+a5=2a4=0,S3=S4,故选B、C.13.在等差数列{a n}中,前m(m为奇数)项和为135,其中偶数项之和为63,且a m-a1=14,则m=________,a100=________.解析:∵在前m项中偶数项之和为S偶=63,∴奇数项之和为S奇=135-63=72,设等差数列{a n}的公差为d,则S奇-S偶=2a1+(m-1)d2=72-63=9.又∵a m=a1+d(m-1),∴a1+a m2=9,∵a m-a1=14,∴a1=2,a m=16.∵m(a1+a m)2=135,∴m=15,∴d=14m-1=1,∴a100=a1+99d=101.答案:15 10114.设S n是数列{a n}的前n项和且n∈N*,所有项a n>0,且S n=14a2n+12a n-34.(1)证明:{a n}是等差数列;(2)求数列{a n}的通项公式.解:(1)证明:当n=1时,a1=S1=14a21+12a1-34,解得a1=3或a1=-1(舍去).当n≥2时,a n=S n-S n-1=14(a2n+2a n-3)-14(a2n-1+2a n-1-3).所以4a n=a2n-a2n-1+2a n-2a n-1,即(a n+a n-1)(a n-a n-1-2)=0,因为a n+a n-1>0,所以a n-a n-1=2(n≥2).所以数列{a n}是以3为首项,2为公差的等差数列.(2)由(1)知a n=3+2(n-1)=2n+1.[C级 拓展探究]15.求等差数列{4n+1}(1≤n≤200)与{6m-3}(1≤m≤200)的公共项之和.解:由4n+1=6m-3(m,n∈N*且1≤m≤200,1≤n≤200),可得Error!(t∈N*且23≤t≤67).则等差数列{4n+1}(1≤n≤200),{6m-3}(1≤m≤200)的公共项按从小到大的顺序组成的数列是等差数列{4(3t-1)+1}(t∈N*且23≤t≤67),即{12t-3}(t∈N*且23≤t≤67),各项之和为67×9+67×662×12=27 135.。

等差数列的前n项和练习题及答案解析

等差数列的前n项和练习题及答案解析

1.若一个等差数列首项为0,公差为2,则这个等差数列的前20项之和为( )A .360B .370C .380D .390答案:C2.已知a 1=1,a 8=6,则S 8等于( )A .25B .26C .27D .28答案:D3.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________.解析:由已知⎩⎨⎧ a 1+5d =123a 1+3d =12?⎩⎨⎧a 1=2,d =2.故a n =2n . 答案:2n4.在等差数列{a n }中,已知a 5=14,a 7=20,求S 5.解:d =a 7-a 57-5=20-142=3, a 1=a 5-4d =14-12=2,所以S 5=5?a 1+a 5?2=5?2+14?2=40. 一、选择题1.(2011年杭州质检)等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4=( )A .12B .10C .8D .6 解析:选=a 3-a 2=2,a 1=-1,S 4=4a 1+4×32×2=8. 2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( )A .24B .27C .29D .48解析:选C.由已知⎩⎨⎧ 2a 1+5d =19,5a 1+10d =40.解得⎩⎨⎧a 1=2,d =3.∴a 10=2+9×3=29. 3.在等差数列{a n }中,S 10=120,则a 2+a 9=( )A .12B .24C .36D .48解析:选=10?a 1+a 10?2=5(a 2+a 9)=120.∴a 2+a 9=24. 4.已知等差数列{a n }的公差为1,且a 1+a 2+…+a 98+a 99=99,则a 3+a 6+a 9+…+a 96+a 99=( )A .99B .66C .33D .0解析:选B.由a 1+a 2+…+a 98+a 99=99,得99a 1+99×982=99. ∴a 1=-48,∴a 3=a 1+2d =-46.又∵{a 3n }是以a 3为首项,以3为公差的等差数列.∴a 3+a 6+a 9+…+a 99=33a 3+33×322×3=33(48-46)=66.5.若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A .13项B .12项C .11项D .10项解析:选A.∵a 1+a 2+a 3=34,①a n +a n -1+a n -2=146,②又∵a 1+a n =a 2+a n -1=a 3+a n -2,∴①+②得3(a 1+a n )=180,∴a 1+a n =60.③S n =?a1+a n ?·n 2=390.④将③代入④中得n =13.6.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 等于() A .9 B .10C .11D .12解析:选B.由等差数列前n 项和的性质知S 偶S 奇=nn +1,即150165=nn +1,∴n =10.二、填空题7.设数列{a n }的首项a 1=-7,且满足a n +1=a n +2(n ∈N *),则a 1+a 2+…+a 17=________. 解析:由题意得a n +1-a n =2,∴{a n }是一个首项a 1=-7,公差d =2的等差数列.∴a 1+a 2+…+a 17=S 17=17×(-7)+17×162×2=153.答案:1538.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差为d =__________.解析:a 4+a 6=a 1+3d +a 1+5d =6.①S 5=5a 1+12×5×(5-1)d =10.②由①②得a 1=1,d =12.答案:129.设S n 是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________.解析:由等差数列的性质知S 9=9a 5=-9,∴a 5=-1.又∵a 5+a 12=a 1+a 16=-9,∴S 16=16?a 1+a 16?2=8(a 1+a 16)=-72.答案:-72三、解答题10.已知数列{a n }的前n 项和公式为S n =n 2-23n -2(n ∈N *).(1)写出该数列的第3项;(2)判断74是否在该数列中.解:(1)a 3=S 3-S 2=-18.(2)n =1时,a 1=S 1=-24,n ≥2时,a n =S n -S n -1=2n -24,即a n =⎩⎨⎧ -24,n =1,2n -24,n ≥2,由题设得2n -24=74(n ≥2),解得n =49.∴74在该数列中.11.(2010年高考课标全国卷)设等差数列{a n }满足a 3=5,a 10=-9.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值. 解:(1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得⎩⎨⎧ a 1+2d =5,a 1+9d =-9,可解得⎩⎨⎧a 1=9,d =-2,所以数列{a n }的通项公式为a n =11-2n .(2)由(1)知,S n =na 1+n ?n -1?2d =10n -n 2. 因为S n =-(n -5)2+25,所以当n =5时,S n 取得最大值.12.已知数列{a n }是等差数列.(1)前四项和为21,末四项和为67,且各项和为286,求项数;(2)S n =20,S 2n =38,求S 3n .解:(1)由题意知a 1+a 2+a 3+a 4=21,a n -3+a n -2+a n -1+a n =67, 所以a 1+a 2+a 3+a 4+a n -3+a n -2+a n -1+a n =88.所以a 1+a n =884=22. 因为S n =n ?a 1+a n ?2=286,所以n =26. (2)因为S n ,S 2n -S n ,S 3n -S 2n 成等差数列,所以S 3n =3(S 2n -S n )=54.。

等差数列的前n项和练习题

等差数列的前n项和练习题

等差数列前n 项和一.选择题:1.已知等差数列{n a }中,1a =1,d=1,则该数列前9项和S 9等于( ) A.55 B.45 C.35 D.252.已知等差数列{n a }的公差为正数,且73a a ⋅=-12,64a a +=-4,则S 20为( ) A .180 B .-180 C .90 D .-903.将棱长相等的正方体按下图所示的形状摆放,从上往下依次为第1层,第2. 则第2008层正方体的个数是( ).A .4011B .4009C .2017036D .2009010 4.若数列{n a }的前n 项和S n =n 2-1,则4a 等于 ( ) A .7 B .8 C .9 D .17 5.已知数列{n a }的前n 项和S n =n 3,则65a a +的值为 ( ) A .91B .152C .218D .279 6.设S n 是等差数列{n a }的前n 项和,若9535=a a ,则59S S 等于( )A .1B .-1C .2D.217.设等差数列{n a }的前n 项和为Sn,若S 3=9,S 6=36,则 987a a a ++ ( ) A.63 B.45 C.36 D.279.在等差数列{n a }中,已知公差d=21,且99531......a a a a ++++=60,则100642......a a a a ++++= ( ) A.85 B.145 C.110 D.9010.某乡建设线路,有48根电线杆,最近一根竖直离电线杆堆放处1000m ,以后每隔50m 竖一根,如果一辆车一次能运6根,全部运完返回,这辆车共走了( ). A .18400m B .18450m C .36800m D .36900m 二.填空题:11.等差数列{}n a 的前n 项和n n S n 32+=.则此数列的公差=d . 12.设S n 为等差数列{}n a 前n 项和,若4a =1,S 5=10,则当S n 取得最大值时,n 的值为________.…… ……13.等差数列{}n a 中,已知1a =25,S 9=S 17,则当S n 取得最大值时,n 的值为_____. 14.若数列{}n a 是等差数列,首项1a >0,2003a +2004a >0,2003a ⋅2004a <0,则使前n 项和S n >0成立的最大自然数n 是________.15,。

等差数列前N项和测试训练题(含答案)

等差数列前N项和测试训练题(含答案)

等差数列前N项和测试题一、单选题(共11题;共22分)1.(2020高一下·太和期末)一个等差数列共有2n+1项,其奇数项的和为512,偶数项的和为480,则中间项的值为()A. 30B. 31C. 32D. 332.(2020高一下·太和期末)等差数列的前n项和为,且,则()A. 8B. 9C. 10D. 113.(2020高一下·温州期末)等差数列中,,,是数列的前n项和,则()A. B. C. D.4.数列中,已知且则()A. 19B. 21C. 99D. 1015.(2020高一下·七台河期末)等差数列的首项为1,公差不为0,若成等比数列,则的前6项的和为()A. -24B. 3C. 8D. 116.(2020高一下·七台河期末)已知是公差为1的等差数列,为的前n项和.若,则()A. 10B. 12C.D.7.(2020高一下·鹤岗期末)设为等差数列的前n项和,若,,则()A. -12B. -10C. 10D. 128.(2020高一下·鹤岗期末)已知是等差数列的前n项和,,设为数列的前n项和,则()A. 2014B. -2014C. 2015D. -20159.(2020高一下·哈尔滨期末)若一个等差数列的前3项和为24,最后3项的和为126,所有项的和为275,则这个数列共有()A. 13项B. 12项C. 11项D. 10项10.(2020高一下·台州期末)已知等差数列的前n项和为,若,,,则()A. B. C. D.11.(2020高一下·广东月考)等差数列中,若,且,为前n项和,则中最大的是()A. B. C. D.二、填空题(共8题;共10分)12.(2020高一下·湖州期末)设公差为d的等差数列的前n项和为,若,,则________,取最小值时,n=________.13.(2020高一下·上海期末)已知等差数列满足:,,数列的前n项和为,则的取值范围是________.14.(2020高一下·上海期末)等差数列的前项和为,,则________.15.(2020高一下·上海期末)已知为等差数列, , 前n项和取得最大值时n的值为________.16.(2020高一下·南宁期末)已知为等差数列的前n项和,且,,则________.17.(2020高一下·黑龙江期末)已知为等差数列,其公差为2,且是与的等比中项,为前n项和,则的值为________.18.(2020高一下·金华月考)已知数列满足:,其前n项和为,则________,当取得最小值时,n的值为________.19.(2020高一下·尚义期中)设等差数列的前n项和为.若,,则正整数________.三、解答题(共6题;共55分)20.(2020高一下·六安期末)记为等差数列的前n项和,已知.(1)若,求的通项公式;(2)若,求使得的n的取值范围.21.(2020高一下·徐汇期末)设等差数列的前n项和为,若,,. (1)求常数k的值;(2)求的前n项和.22.在公差为d的等差数列中,已知,且成等比数列,为数列的前n 项和.(1)求;(2)若,求的最大值.23.(2020高一下·台州期末)已知等差数列中,为其前n项和,,.(Ⅰ)求数列的通项公式;(Ⅱ)记,,求数列的前n项和.24.(2020高一下·尚义期中)已知等差数列的前n项和为,且,.(1)求数列的通项公式;(2)设,求数列的前n项和.25.(2020高一下·崇礼期中)已知等差数列的前项和为,,,.(1)求数列的通项公式;(2)设,求数列的前n项和.答案解析部分一、单选题1.【答案】C【解析】【解答】中间项为.因为,,所以.故答案为:C.【分析】利用等差数列前n项和公式,对奇数项的和、偶数项的和列式.通过等差数列的性质,都转化为的形式,然后两式相减,可得到的值.2.【答案】B【解析】【解答】∵等差数列的前n项和为,且,解得故答案为:B.【分析】利用已知条件结合等差数列通项公式和前n项和公式,建立关于等差数列首项和公差的方程组,从而求出首项和公差,进而用等差数列通项公式求出等差数列第八项的值。

等差数列的前n项和公式专项练习

等差数列的前n项和公式专项练习

等差数列求和练习[A 组 基础巩固]1.等差数列{a n }中,d =2,a n =11,S n =35,则a 1等于( )A .5或7B .3或5C .7或-1D .3或-1解析:由题意,得⎩⎪⎨⎪⎧ a n =11,S n =35,即⎩⎨⎧ a 1+2(n -1)=11,na 1+n (n -1)2×2=35.解得⎩⎪⎨⎪⎧ n =5,a 1=3,或⎩⎪⎨⎪⎧n =7,a 1=-1.答案:D2.已知等差数列{a n }的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 为( )A .7B .6C .3D .2 解析:由S 2=4,S 4=20,得2a 1+d =4,4a 1+6d =20,解得d =3.答案:C3.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10等于( )A .138B .135C .95D .23解析:由a 2+a 4=4,a 3+a 5=10,可知d =3,a 1=-4.∴S 10=-40+10×92×3=95. 答案:C4.若等差数列{a n }的前5项和S 5=25,且a 2=3,则a 7等于( )A .12B .13C .14D .15解析:由S 5=5a 3=25,∴a 3=5.∴d =a 3-a 2=5-3=2.∴a 7=a 2+5d =3+10=13.答案:B5.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 等于( )A .9B .8C .7D .6解析:当n =1时,a 1=S 1=-8;当n ≥2时,a n =S n -S n -1=(n 2-9n )-[(n -1) 2-9(n -1)]=2n -10.综上可得数列{a n }的通项公式a n =2n -10.所以a k =2k -10.令5<2k -10<8,解得k =8.答案:B6.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________. 解析:∵n ≥2时,a n =a n -1+12,且a 1=1,所以数列{a n }是以1为首项,以12为公差的等差数列,所以S 9=9×1+9×82×12=9+18=27. 答案:277.等差数列{a n }中,若a 10=10,a 19=100,前n 项和S n =0,则n =________.解析:⎩⎪⎨⎪⎧a 1+9d =10a 1+18d =100,∴d =10,a 1=-80. ∴S n =-80n +n (n -1)2×10=0, ∴-80n +5n (n -1)=0,n =17.答案:178.等差数列{a n }中,a 2+a 7+a 12=24,则S 13=________.解析:因为a 1+a 13=a 2+a 12=2a 7,又a 2+a 7+a 12=24,所以a 7=8.所以S 13=13(a 1+a 13)2=13×8=104. 答案:1049.在等差数列{a n }中:(1)已知a 5+a 10=58,a 4+a 9=50,求S 10;(2)已知S 7=42,S n =510,a n -3=45,求n .解析:(1)由已知条件得⎩⎪⎨⎪⎧ a 5+a 10=2a 1+13d =58,a 4+a 9=2a 1+11d =50,解得⎩⎪⎨⎪⎧a 1=3,d =4. ∴S 10=10a 1+10×(10-1)2d =10×3+10×92×4=210. (2)S 7=7(a 1+a 7)2=7a 4=42, ∴a 4=6.∴S n =n (a 1+a n )2=n (a 4+a n -3)2=n (6+45)2=510. ∴n =20.10.在等差数列{a n }中,a 10=18,前5项的和S 5=-15,(1)求数列{a n }的通项公式;(2)求数列{a n }的前n 项和的最小值,并指出何时取得最小值.解析:(1)设{a n }的首项,公差分别为a 1,d . 则⎩⎪⎨⎪⎧a 1+9d =18,5a 1+52×4×d =-15, 解得a 1=-9,d =3,∴a n =3n -12.(2)S n =n (a 1+a n )2=12(3n 2-21n ) =32⎝⎛⎭⎫n -722-1478, ∴当n =3或4时,前n 项的和取得最小值为-18.[B 组 能力提升]1.S n 是等差数列{a n }的前n 项和,a 3+a 6+a 12为一个常数,则下列也是常数的是( )A .S 17B .S 15C .S 13D .S 7 解析:∵a 3+a 6+a 12为常数,∴a 2+a 7+a 12=3a 7为常数,∴a 7为常数.又S 13=13a 7,∴S 13为常数.答案:C2.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6解析:a m =S m -S m -1=2,a m +1=S m +1-S m =3,∴d =a m +1-a m =1,由S m =(a 1+a m )m 2=0, 知a 1=-a m =-2,a m =-2+(m -1)=2,解得m =5.答案:C3.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于________. 解析:由等差数列的性质,a 5a 3=2a 52a 3=a 1+a 9a 1+a 5=59, ∴S 9S 5=92(a 1+a 9)52(a 1+a 5)=95×59=1. 答案:14.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项和为180,S n =324(n >6),则数列的项数n =________,a 9+a 10=________.解析:由题意,可知a 1+a 2+…+a 6=36 ①,a n +a n -1+a n -2+…+a n -5=180 ②,由①+②,得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36.又S n =n (a 1+a n )2=324,∴18n =324,∴n =18,∴a 1+a 18=36,∴a 9+a 10=a 1+a 18=36. 答案:18 365.等差数列{a n }的前n 项和S n =-32n 2+2052n ,求数列{|a n |}的前n 项和T n . 解析:a 1=S 1=101,当n ≥2时,a n =S n -S n -1=-32n 2+2052n -⎣⎡ -32(n -1)2+ ⎦⎤2052(n -1)=-3n +104,a 1=S 1=101也适合上式,所以a n =-3n +104,令a n =0,n =3423,故n ≥35时,a n <0,n ≤34时,a n >0,所以对数列{|a n |},n ≤34时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =-32n 2+2052n ,当n ≥35时,T n =|a 1|+|a 2|+…+|a 34|+|a 35|+…+|a n |=a 1+a 2+…+a 34-a 35-…-a n=2(a 1+a 2+…+a 34)-(a 1+a 2+…+a n )=2S 34-S n =32n 2-2052n +3 502, 所以T n=⎩⎨⎧ -32n 2+2052n (n ≤34),32n 2-2052n +3 502(n ≥35).6.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .解析:设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d , ∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧ 7a 1+21d =7,15a 1+105d =75,即⎩⎪⎨⎪⎧ a 1+3d =1,a 1+7d =5,解得⎩⎪⎨⎪⎧ a 1=-2,d =1,∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12, ∴数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,其首项为-2,公差为12, ∴T n =n ×(-2)+n ·(n -1)2×12=14n 2-94n .。

等差数列的前n项和习题(含答案)

等差数列的前n项和习题(含答案)

[A 基础达标]1.记等差数列{a n }的前n 项和为S n ,若S 4=20,S 2=4,则公差d 为( )A .2B .3C .6D .7解析:选B.由⎩⎪⎨⎪⎧S 2=4,S 4=20得⎩⎪⎨⎪⎧2a 1+d =4,4a 1+6d =20,解得⎩⎪⎨⎪⎧a 1=12,d =3.2.已知数列{a n }为等差数列,a 10=10,数列前10项和S 10=70,则公差d =( )A .-23B .-13 C.13 D .23解析:选D.由S 10=10(a 1+a 10)2,得70=5(a 1+10),解得a 1=4,所以d =a 10-a 110-1=10-49=23,故选D. 3.在等差数列{a n }中,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列前20项和等于( )A .160B .180C .200D .220解析:选B.(a 1+a 2+a 3)+(a 18+a 19+a 20)=(-24)+78=54,又a 1+a 20=a 2+a 19=a 3+a 18,则3(a 1+a 20)=54,所以a 1+a 20=18.则S 20=20(a 1+a 20)2=10×18=180. 4.已知数列{a n }的前n 项和公式是S n =2n 2+3n ,则⎩⎨⎧⎭⎬⎫S n n ( ) A .是公差为2的等差数列B .是公差为3的等差数列C .是公差为4的等差数列D .不是等差数列解析:选A.因为S n =2n 2+3n ,所以S n n=2n +3, 当n ≥2时,S n n -S n -1n -1=2n +3-2(n -1)-3=2, 故⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列. 5.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若a n b n =2n 3n +1,则S 21T 21的值为( ) A.1315B .2335 C.1117 D .49解析:选C.S 21T 21=21(a 1+a 21)221(b 1+b 21)2=a 1+a 21b 1+b 21=a 11b 11=2×113×11+1=1117. 6.若等差数列{a n }的前n 项和为S n =An 2+Bn ,则该数列的公差为________.解析:数列{a n }的前n 项和为S n =An 2+Bn ,所以当n ≥2时,a n =S n -S n -1=An 2+Bn -A (n -1)2-B (n -1)=2An +B -A ,当n =1时满足,所以d =2A .答案:2A7.等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________.解析:设等差数列的首项为a 1,公差为d ,则由6S 5-5S 3=5知,6×(5a 1+10d )-5(3a 1+3d )=5,得3(a 1+3d )=1,所以a 4=13. 答案:138.若等差数列{a n }满足3a 8=5a 13,且a 1>0,S n 为其前n 项和,则S n 最大时n =________.解析:因为3a 8=5a 13,所以3(a 1+7d )=5(a 1+12d ),所以d =-2a 139,故a n =a 1+(n -1)d =a 1-2a 139(n -1)=a 139(41-2n ).由a 1>0可得当n ≤20时,a n >0,当n >20时,a n <0,所以S n 最大时n =20.答案:209.已知在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解:(1)设等差数列{a n }的公差为d .由a 1=1,a 3=-3,可得1+2d =-3,解得d =-2.所以a n =1+(n -1)×(-2)=3-2n .(2)由a 1=1,d =-2,得S n =2n -n 2.又S k =-35,则2k -k 2=-35,即k 2-2k -35=0,解得k =7或k =-5.又k ∈N +,故k =7.10.某仓库有同一型号的圆钢600根,堆放成如图所示的形状,从第二层开始,每一层比下面一层少放一根,而第一层至少要比第二层少一根,要使堆垛的占地面积最小(即最下面一层根数最少),则最下面一层放几根?共堆了多少层?解:设最下面一层放n 根,则最多可堆n 层,则1+2+3+…+n =n (n +1)2≥600, 所以n 2+n -1 200≥0,记f (n )=n 2+n -1 200,因为当n ∈N +时,f (n )单调递增,而f (35)=60>0,f (34)=-10<0,所以n ≥35,因此最下面一层最少放35根.因为1+2+3+…+35=630,所以最多可堆放630根,必须去掉上面30根,去掉顶上7层,共1+2+3+…+7=28根,再去掉顶上第8层的2根,剩下的600根共堆了28层.[B 能力提升]11.等差数列{a n }的前四项之和为124,后四项之和为156,各项和为210,则此数列的项数为( )A .5B .6C .7D .8解析:选B.由题意知a 1+a 2+a 3+a 4=124,a n +a n -1+a n -2+a n -3=156,所以4(a 1+a n )=280,所以a 1+a n =70.又S n =n (a 1+a n )2=n 2×70=210,所以n =6. 12.若两个等差数列的前n 项和之比是(7n +1)∶(4n +27),则它们的第11项之比为____________.解析:设等差数列{a n }的前n 项和为S n ,等差数列{b n }的前n 项和为T n ,则a 11=a 1+a 212,b 11=b 1+b 212, 所以a 11b 11=12(a 1+a 21)12(b 1+b 21)=12(a 1+a 21)·2112(b 1+b 21)·21=S 21T 21=7×21+14×21+27=43. 答案:4∶313.已知数列{a n }中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎫S n -12. (1)证明:数列⎩⎨⎧⎭⎬⎫1S n 为等差数列,并求S n 的表达式; (2)设b n =S n 2n +1,求{b n }的前n 项和T n . 解:(1)由题意S 2n =a n ⎝⎛⎭⎫S n -12,结合a n =S n -S n -1(n ≥2)得S 2n =(S n -S n -1)⎝⎛⎭⎫S n -12(n ≥2),化简整理得1S n -1S n -1=2(n ≥2),知数列⎩⎨⎧⎭⎬⎫1S n 为公差为2的等差数列,所以1S n =1S 1+(n -1)×2=1+(n -1)×2=2n -1,所以S n =12n -1. (2)b n =S n 2n +1=12×⎝⎛⎭⎫12n -1-12n +1, 所以T n =b 1+b 2+…+b n=12⎝⎛1-13+13-15+…+12n -1- ⎭⎫12n +1=12⎝⎛⎭⎫1-12n +1=n 2n +1.14.(选做题)已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式;(2)求S n 的最小值;(3)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c 的值. 解:(1)因为数列{a n }为等差数列,所以a 3+a 4=a 2+a 5=22.又a 3·a 4=117,所以a 3,a 4是方程x 2-22x +117=0的两实根,又公差d >0,所以a 3<a 4,所以a 3=9,a 4=13,从而可得a 1=1,d =4,所以a n =4n -3.(2)由(1)知a 1=1,d =4,所以S n =na 1+n (n -1)2·d =2n 2-n =2⎝⎛⎭⎫n -142-18,所以当n =1时,S n 最小,最小值为S 1=a 1=1.(3)由(2)知S n =2n 2-n ,所以b n =S n n +c =2n 2-n n +c , 所以b 1=11+c ,b 2=62+c ,b 3=153+c .因为数列{b n }是等差数列,所以2b 2=b 1+b 3,即62+c ×2=11+c +153+c ,得2c 2+c =0,所以c =-12或c =0(舍去),所以c =-12.。

等差数列前n项和公式基础训练题(含详解)

等差数列前n项和公式基础训练题(含详解)
;③ ;
④ ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
11.
【解析】
【分析】
根据 得到 , ,计算得到答案.
【详解】
; ,解得
故答案为:
【点睛】
本题考查了等差数列的通项公式和前 项和,意在考查学生对于等差数列公式的灵活运用.
12.
【解析】
【分析】
利用 来求 的通项.
A.18B.36C.45D.60
7.设 为等差数列, , 为其前n项和,若 ,则公差 ()
A. B. C.1D.2
8.等差数列 的前 项和为 ,已知 , ,则当 取最大值时 的值是()
A.5B.6C.7D.8
9.已知 是数列 的前 项和,且 ,则 ().
A.72B.88C.92D.98
10.设 为等差数列 的前 项的和 , ,则数列 的前2017项和为( )
所以 ,所以 .
故答案为: .
【点睛】
本题考查等差数列公差的计算,难度较易.已知等差数列中的两个等量关系,可通过构造方程组求解等差数列的公差,还可以通过等差数列的下标和性质求解公差.
20.已知数列{an}的前n项和为Sn=n2+3n+5,则an=______.
参考答案
1.A
【解析】
设 ,根据 是一个首项为a,公差为a的等差数列,各项分别为a,2a,3a,4a. .
2.B
【解析】
【分析】
根据等差数列的性质,求出 ,再由前n项和公式,即可求解.
【详解】
∵ ,
∴ ,∴
∴由 得 ,∴ .
故选:B.
【点睛】
本题考查等差数列性质的灵活应用,以及等差数列的前n项和公式,属于中档题.

等差数列与前n项和练习试题(可编辑修改word版)

等差数列与前n项和练习试题(可编辑修改word版)

等差数列与前n项和练习试题(可编辑修改word版)第1 讲等差数列及其前n 项和⼀、填空题1.在等差数列{a n}中,a3+a7=37,则a2+a4+a6+a8=.2.设等差数列{a }的前n 项和为S ,若S4 -S3=1,则公差为.n n12 93.在等差数列{a n}中,a1>0,S4=S9,则S n取最⼤值时,n=.4.在等差数列{a n}中,若a1+a4+a7=39,a3+a6+a9=27,则S9=. 5.设等差数列{a n}的公差为正数,若a1+a2+a3=15,a1a2a3=80,则a11+a12+a13=.6.已知数列{a n}的前n 项和为S n=2n2+pn,a7=11.若a k+a k+1>12,则正整数k 的最⼩值为.7.已知数列{a n}满⾜递推关系式a n=2a n+2n-1(n∈N*),且a n+λ为等差数{ 2n }+1列,则λ的值是.8.已知数列{a n}为等差数列,S n为其前n 项和,a7-a5=4,a11=21,S k=9,则k=.10.已知f(x)是定义在R 上不恒为零的函数,对于任意的x,y∈R,都有f(x·y)=xf(y)+yf(x)成⽴.数列{a n}满⾜a n=f(2n)(n∈N*),且a1=2.则数列的通项公式a n=.⼆、解答题1.已知等差数列{a n}的前三项为a-1,4,2a,记前n 项和为S n.(1)设S k=2 550,求a 和k 的值;(2)设b n=S n,求b +b +b +…+b 的值.3 7 114n-1n12.已知数列{a n}的通项公式为a n=2n,若a3,a5分别为等差数列{b n}的第3 项和第5 项,试求数列{b n}的通项公式及前n 项和S n.13.在等差数列{a n}中,公差d>0,前n 项和为S n,a2·a3=45,a1+a5=18.(1)求数列{a n}的通项公式;(2)令b n=S n(n∈N*),是否存在⼀个⾮零常数c,使数列{b n}也为等差数列?n+c若存在,求出c 的值;若不存在,请说明理由.第2 讲等⽐数列及其前n 项和⼀、填空题1.设数列{a n2}前n项和为S n,a1=t,a2=t2,S n+2-(t+1)S n+1+tS n=0,则{a n}是数列,通项a n=.解析由S n+2-(t+1)S n+1+tS n=0,得S n+2-S n+1=t(S n+1-S n),所以a n+2=ta,所以a n+2=t,⼜a2=t,n+1a n+1 a1所以{a n}成等⽐数列,且a n=t·t n-1=t n.答案等⽐t n2.等⽐数列{a }的前n 项和为S 8a +a =0,则S6=.n n, 2 5S34 2 2 2 8 8 解∵8a 2+a 5=8a 1q +a 1q 4=a 1q (8+q 3)=0 ∴q =-2∴S 6=1-q 6=1+q 3=-7.S 3 1-q 3 答案-73. 数列{a n }为正项等⽐数列,若 a 2=2,且 a n +a n +1=6a n -1(n ∈N ,n ≥2),则此数列的前 4 项和 S 4= .解析由 a 1q =2,a 1q n -1+a 1q n =6a 1q n -2,得 q n -1+q n =6q n -2,所以 q 2+q =6.⼜ q >0,所以 q =2,a 1=1.所以 S =a 11-q 4=1-24=15.1-q 1-2答案 154. 已知等⽐数列{a n }的前 n 项和 S n =t ·5n -2-1,则实数 t 的值为.5解析∵a 1=S 1=1t -1,a 2=S 2-S 1=4t ,a 3=S 3-S 2=4t ,∴由{a n }是等⽐数 5 5 5 列知 4t 2= 1t 1 ×4t ,显然 t≠0,所以 t =5.(5 ) (5- )5答案 55. 已知各项都为正数的等⽐数列{a n }中,a 2·a 4=4,a 1+a 2+a 3=14,则满⾜ a n ·a n +1·a n +2≥1的最⼤正整数 n 的值为.8解析由等⽐数列的性质,得 4=a 2·a 4=a 32(a 3>0),所以 a 3=2,所以 a 1+a 2=14-a 3=12,于是由Error!解得Error!所以 a n =8·(1)n -1=(1)n -4. 于是由 a n ·a n +1·a n +2=a n +3 1=(1)3(n -3)=(1)n -3≥1,得 n -3≤1,即 n ≤4.33答案 46.在等⽐数列{a n }中,a n >0,若 a 1·a 2·…·a 7·a 8=16,则 a 4+a 5 的最⼩值为.解析由已知 a 1a 2·…·a 7a 8=(a 4a 5)4=16,所以 a 4a 5=2,⼜ a 4+a 5≥2 a 4a 5=2 2(当且仅当 a 4=a 5=答案 2 2时取等号).所以 a 4+a 5 的最⼩值为 2 2.7. 已知递增的等⽐数列{a }中,a +a =3,a ·a =2,则a 13=.n 2 8 3 7a 10解析∵{a n }是递增的等⽐数列,∴a 3a 7=a 2a 8=2,⼜∵a 2+a 8=3,∴a 2,a 8 是⽅程 x 2-3x +2=0 的两根,则 a 2=1,a 8=2,∴q 6= a 8=2,∴q 3=a 22,∴a 13=q 3= 2.a 10答案8. 设 1=a 1≤a 2≤…≤a 7,其中 a 1,a 3,a 5,a 7 成公⽐为 q 的等⽐数列,a 2,a 4,a 6成公差为 1 的等差数列,则 q 的最⼩值为.解析由题意知 a 3=q ,a 5=q 2,a 7=q 3 且 q ≥1,a 4=a 2+1,a 6=a 2+2 且a 2≥1,那么有 q 2≥2 且 q 3≥3.故 q ≥3 3,即 q 的最⼩值为3 3. 答案⼆、解答题11.在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29.(1) 求数列{a n }的通项公式;(2) 设数列{a n +b n }是⾸项为 1,公⽐为 c 的等⽐数列,求{b n }的前 n 项和 S n .解 (1)设等差数列{a n }的公差是 d .依题意 a 3+a 8-(a 2+a 7)=2d =-6,从⽽ d =-3.22nn由 a 2+a 7=2a 1+7d =-23,解得 a 1=-1. 所以数列{a n }的通项公式为 a n =-3n +2.(2)由数列{a n +b n }是⾸项为 1,公⽐为 c 的等⽐数列,得 a n +b n =c n -1,即-3n +2+b n =c n -1,所以 b n =3n -2+c n -1.所以 S n =[1+4+7+…+(3n -2)]+(1+c +c 2+…+c n -1) =n3n -1+(1+c +c 2+…+c n -1). 2从⽽当 c =1 时,S =n 3n -1+n =3n 2+n . 2 2当 c ≠1 时,S n =n3n -1+1-c n . 2 1-c12. 设各项均为正数的等⽐数列{a n }的前 n 项和为 S n ,S 4=1,S 8=17.(1)求数列{a n }的通项公式;( 2)是否存在最⼩的正整数 m ,使得 n ≥m 时,a n >2 011恒成⽴?若存在,求15出 m ;若不存在,请说明理由.解 (1)设{a }的公⽐为 q ,由 S =1,S =17 知 q ≠1,所以得a1q 4-1=1, n48a 1q 8-1=17. q-1q -1相除得q 8-1=17,解得 q 4=16.所以 q =2 或 q =-2(舍去). q 4-1由 q =2 可得 a = 1 ,所以 a =2n -1.1n15 15 (2)由 a =2n -1>2 011,得 2n -1>2 011,⽽ 210<2 011<211,所以 n -1≥11, 1515即 n ≥12.2 011恒成⽴.因此,存在最⼩的正整数m=12,使得n≥m 时,a n>1513.已知公差⼤于零的等差数列{a n}的前n项和为S n,且满⾜a2·a4=65,a1+a5=18.(1)求数列{a n}的通项公式a n.(2)若1<i<21,a1,a i,a21是某等⽐数列的连续三项,求i 的值;(3)是否存在常数k,使得数列{S n+kn}为等差数列?若存在,求出常数k;若不存在,请说明理由.解(1)因为a1+a5=a2+a4=18,⼜a2·a4=65,所以a2,a4是⽅程x2-18x+65=0 的两个根.⼜公差d>0,所以a2<a4.所以a2=5,a4=13. 所以Error!解得a1=1,d=4.所以a n=4n-3.(2)由1<i<21,a1,a i,a21是某等⽐数列的连续三项,所以a1·a21=a2i,即1·81=(4i-3)2,解得i=3.(3)由(1)知,S n=n·1+n n-1·4=2n2-n.2假设存在常数k,使数列{ S n+kn}为等差数列,由等差数列通项公式,可设S n+kn=an+b,得2n2+(k-1)n=an2+2abn+b 恒成⽴,可得a=2,b=0,k=1.所以存在k=1 使得{ S n+kn}为等差数列.第3 讲等差数列、等⽐数列与数列求和⼀、填空题1.设{a n}是公差不为0 的等差数列,a1=2 且a1,a3,a6成等⽐数列,则{a n}的前 n 项和 S n = .解析由题意设等差数列公差为 d ,则 a 1=2,a 3=2+2d ,a 6=2+5d .⼜∵a 1,a 3,a 6 成等⽐数列,∴a 32=a 1a 6,即(2+2d )2=2(2+5d ),整理得 2d 2-d =0.∵ d ≠0,∴d =1,∴S =na +n n -1d =n 2+7n .n 12 2 4 4答案 n 24 42. 数列{a n }的通项公式a n=1,若前 n 项的和为 10,则项数为.n + n +1解析∵a n =答案 1201= n + n +1n +1- n ,∴S n = n +1-1=10,∴n =120.3. 已知等差数列{a n }的前 n 项和为 S n ,a 5=5,S 5=15,则数列{ 1}的前 100a n a n +1项和为.解析∵a =5,S =15,∴5a 1+a 5=15,即 a =1.5512 ∴d =a 5-a 1=1,∴a =n .∴ 1 =1 =1- 1 .设数列 1 的前5-1n 项和为 T n .na n a n +1 n n +1 nn +1{a n a n +1}∴T 100=(1-1)+(1+…+(1 )=1- 1 =100.2 3 答案 100101100 101 101 1014.已知数列{a n },{b n }都是等差数列,a 1=5,b 1=7,且 a 20+b 20=60.则{a n +b n } 的前 20 项的和为.解析由题意知{a n +b n }也为等差数列,所以{a n +b n }的前 20 项和为:S 20= 20a 1+b 1+a 20+b 20=20 × 5+7+60=720.2 22 -- 1c d n22 1 an a n+1答案7205.已知等⽐数列{a n}的前n项和S n=2n-1,则a12+a2+…+a n2=.解析当n=1 时,a1=S1=1,当n≥2 时,a n=S n-S n-1=2n-1-(2n-1-1)=2n-1,⼜∵a1=1 适合上式.∴a n=2n-1,∴a n2=4n-1.∴数列{a n2}是以a21=1 为⾸项,以4 为公⽐的等⽐数列.∴a12+a2+…+a n2=1·1-4n=1(4n-1).答案1(4n-1)31-4 36.定义运算:|a b|=ad-bc,若数列{a}满⾜|a1 1|=1 且| 3 3 |=12(n∈N*),则a3=,数列{a n}的通项公式为a n=.解析由题意得a1-1=1,3a n+1-3a n=12 即a1=2,a n+1-a n=4.∴{a n}是以2 为⾸项,4 为公差的等差数列,∴a n=2+4(n-1)=4n-2,a3=4×3-2=10.答案10 4n-27.在等⽐数列{a n}中,a1=1,a4=-4,则公⽐q=;|a1|+|a2|+…+|a n|=2.解析∵a 4=q3=-8,∴q=-2.∴a =1·(-2)n-1,na1 21n1-2∴|a n|=2n-2,∴|a1|+|a2|+…+|a n|=2 =2n-1-1.1-2 2 答案-2 2n-1-128.已知S n是等差数列{a n}的前n 项和,且S11=35+S6,则S17的值为.解析因S11=35+S6,得11a1+11 × 10d=35+6a1+6 × 5d,即a1+8d=2 27,所以S17=17a1+17 × 16d=17(a1+8d)=17×7=119.2答案1199.等差数列{a n}的公差不为零,a4=7,a1,a2,a5成等⽐数列,数列{T n}满⾜条件T n=a2+a4+a8+…+a2n,则T n=.解析设{a n}的公差为d≠0,由a1,a2,a5成等⽐数列,得a2=a1a5,即(7-2d)2=(7-3d)(7+d)所以d=2 或d=0(舍去).所以a n=7+(n-4)×2=2n-1.⼜a2n=2·2n-1=2n+1-1,故T n=(22-1)+(23-1)+(24-1)+…+(2n+1-1)=(22+23+…+2n+1)-n=2n+2-n-4.答案2n+2-n-410.数列{a n}的通项公式a n=2n-1,如果b n=2n,那么{b n}的前n 项和a n+a n+1为.解析b n=2n n=2n+1-1-2n-1,a n+a n+1所以b1+b2+…+b n=22-1-2-1+23-1-22-1+…+-2n-1=2n+1-1-1.答案⼆、解答题2n+1-1-111.已知{a n}为等差数列,且a3=-6,a6=0.2n+1-1n (1) 求{a n }的通项公式;(2) 若等⽐数列{b n }满⾜ b 1=-8,b 2=a 1+a 2+a 3,求{b n }的前 n 项和公式.解 (1)设等差数列{a n }的公差为 d . 因为 a 3=-6,a 6=0,所以Error!解得 a 1=-10,d =2. 所以 a n =-10+(n -1)·2=2n -12. (2)设等⽐数列{b n }的公⽐为 q .因为 b 2=a 1+a 2+a 3=-24,b 1=-8,所以-8q =-24,即 q =3. 所以{b }的前 n 项和公式为 S =b 1 1-q n =4(1-3n ).n n 1-q13.记公差 d ≠0 的等差数列{a n }的前 n 项和为 S n ,已知 a 1=2+ 2,S 3=12+3(1) 求数列{a n }的通项公式 a n 及前 n 项和 S n .(2) 已知等⽐数列{b nk },b n + 2=a n ,n 1=1,n 2=3,求 n k .(3) 问数列{a n }中是否存在互不相同的三项构成等⽐数列,说明理由.解 (1)因为 a 1=2+所以 d =2.2,S 3=3a 1+3d =12+3 2,所以 a n =a 1+(n -1)d =2n + 2,S =n a 1+a n =n 2+( 22+1)n . (2) 因为 b n =a n -所以 bn k =2n k .2=2n ,2.⼜因为数列{bn }的⾸项bn =b =2,公⽐q=b 3=3,k 1 1b1 所以bn k=2·3k-1.所以2n k=2·3k-1,则n k=3k-1.(3)假设存在三项a r,a s,a t成等⽐数列,则a2s=a r·a t,即有(2s+2)2=(2r+2)(2t+2),整理得(rt-s2) 2=2s-r-t.若rt-s2≠0,则2=2s-r-t,rt-s2因为r,s,t∈N*,所以2s-r-t是有理数,这与rt-s22为⽆理数⽭盾;若rt-s2=0,则2s-r-t=0,从⽽可得r=s=t,这与r综上可知,不存在满⾜题意的三项a r,a s,a t.。

等差等比数列及其前n项和作业及答案

等差等比数列及其前n项和作业及答案

等差等比数列及其前n 项和作业及答案一、选择题:1.设命题甲为“a ,b ,c 成等差数列”,命题乙为“a b +c b=2”,那么 ( ) A .甲是乙的充分不必要条件 B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分也不必要条件解析:由a b +c b=2,可得a +c =2b ,但a 、b 、c 均为零时,a 、b 、c 成等差数列, 但a b +c b≠2. 答案:B 2.(2009·福建高考)等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于 ( )A .1 B.53C .2D .3 解析:∵S 3=(a 1+a 3)×32=6,而a 3=4,∴a 1=0, ∴d =a 3-a 12=2. 答案:C 3.(2010·广州模拟)已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k等于 ( )A .9B .8C .7D .6解析:a n =⎩⎪⎨⎪⎧ S 1 (n =1)S n -S n -1 (n ≥2)=⎩⎪⎨⎪⎧-8 (n =1)-10+2n (n ≥2)=2n -10, ∵5<a k <8,∴5<2k -10<8, ∴152<k <9,又∵k ∈N *,∴k =8. 答案:B 4.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于 ( )A .63B .45C .36D .27解析:由{a n }是等差数列,则S 3,S 6-S 3,S 9-S 6成等差数列.由2(S 6-S 3)=S 3+(S 9-S 6)得到S 9-S 6=2S 6-3S 3=45,即a 7+a 8+a 9=45. 答案:B5.设数列{a n }是等差数列,且a 4=-4,a 9=4,S n 是数列{a n }的前n 项和,则 ( )A .S 5<S 6B .S 5=S 6C .S 7=S 5D .S 7=S 6解析:因为a 4=-4,a 9=4,所以a 4+a 9=0,即a 6+a 7=0,所以S 7=S 5+a 6+a 7=S 5. 答案:C6.各项都是正数的等比数列{}a n 中,a 2,123,a 1成等差数列,则a 3+a 4a 4+a 5的值为 ( ) A.5-12 B.5+12 C.1-52 D.5+12或5-12解析:设{a n }的公比为q ,∵a 1+a 2=a 3, ∴a 1+a 1q =a 1q 2,即q 2-q -1=0, ∴q =1±52,又∵a n >0,∴q >0,∴q =1+52,a 3+a 4a 4+a 5=1q =5-12. 答案:A 7.(2009·广东高考)已知等比数列{a n }的公比为正数,且a 3·a 9=2a 25,a 2=1,则a 1=( )A.12B.22C.2 D .2 解析:∵a 3·a 9=2a 25=a 26,∴a 6a 5= 2. 又a 2=1=a 1·2,∴a 1=22. 答案:B 8.设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3等于 ( )A .1∶2B .2∶3C .3∶4D .1∶3解析:∵{a n }为等比数列, ∴S 3,S 6-S 3,S 9-S 6成等比数列,即(S 6-S 3)2=S 3·(S 9-S 6), 又∵S 6∶S 3=1∶2,∴14S 23=S 3(S 9-12S 3),即34S 3=S 9, ∴S 9∶S 3=3∶4. 答案:C 9.若数列{a n }满足a 2n +1a 2np (p 为正常数,n ∈N *),则称{a n }为“等方比数列”. 甲:数列{a n }是等方比数列;乙:数列{a n }是等比数列,则 ( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件解析:数列{a n }是等比数列则a n +1a n =q ,可得a 2n +1a 2n=q 2,则{a n }为“等方比数列”.当{a n }为“等方比数列”时,则a 2n +1a 2n=p (p 为正常数,n ∈N *),当n ≥1时a n +1a n =±p ,所以此数列{a n }并不一定是等比数列. 答案:B10.已知{a n }是等比数列,a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1= ( ) A .16(1-4-n ) B .16(1-2-n ) C.323(1-4-n ) D.323(1-2-n ) 解析:∵q 3=a 5a 2=18∴q =12,a 1=4,数列{a n ·a n +1}是以8为首项,14为公比的等比数列,不难得出答案为C. 答案:C11. 在等差数列{a n }中,若a 1<0,S 9=S 12,则当S n 取得最小值时,n 等于A .10B .11C .9或10D .10或11解析:设数列{a n }的公差为d ,则由题意得9a 1+12×9×(9-1)d =12a 1+12×12×(12-1)d , 即3a 1=-30d ,∴a 1=-10d . ∵a 1<0,∴d >0. ∴S n =na 1+12n (n -1)d =12dn 2-212dn =d 2⎝⎛⎭⎫n -2122-441d 8∴S n 有最小值,又n ∈N *, ∴n =10,或n =11时,S n 取最小值. 答案:D12.在等比数列{a n }中,a n >0(n ∈N +),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,又a 3与a 5的等比中项为2,b n =log 2a n ,数列{b n }的前n 项和为S n ,则当S 11+S 22+…+S n n 最大时,n 的值等于 ( )A .8B .9C .8或9D .17解析:∵a 1a 5+2a 3a 5+a 2a 8=25, ∴a 23+2a 3a 5+a 25=25,又a n >0,∴a 3+a 5=5, 又q ∈(0,1),∴a 3>a 5,而a 3a 5=4,∴a 3=4,a 5=1, ∴q =12,a 1=16,a n =16×(12)n -1=25-n , b n =log 2a n =5-n ,b n +1-b n =-1,∴{b n }是以b 1=4为首项,-1为公差的等差数列, ∴S n =n (9-n )2∴S n n =9-n 2, ∴当n ≤8时,S n n >0;当n =9时,S n n =0;当n >9时,S n n<0, ∴当n =8或9时,S 11+S 22+…+S n n 最大. 答案:C 二、填空题:13.在等差数列{a n }中,已知log 2(a 5+a 9)=3,则等差数列{a n }的前13项的和S 13=________.解析:∵log 2(a 5+a 9)=3,∴a 5+a 9=23=8.∴S 13=13×(a 1+a 13)2=13×(a 5+a 9)2=13×82=52. 答案:52 14.(2009·辽宁高考)等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4=________. 解析:设等差数列{a n }的首项为a 1,公差为d ,则由6S 5-5S 3=5,得6(a 1+3d )=2,所以a 4=13. 答案:1315.(2009·浙江高考)设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________. 解析:a 4=a 1(12)3=181,S 4=a 1(1-124)1-12=158a 1, ∴S 4a 4=15. 答案:15 16.(2009·宁夏、海南高考)等比数列{a n }的公比q >0.已知a 2=1,a n +2+a n +1=6a n ,则{a n }的前4项和S 4=________.解析:∵a n +2+a n +1=6a n ,∴a n ·q 2+a n ·q =6a n (a n ≠0), ∴q 2+q -6=0,∴q =-3或q =2. ∵q >0,∴q =2,∴a 1=12,a 3=2,a 4=4, ∴S 4=12+1+2+4=152. 答案:152三、解答题:17.在数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n 2-,证明:数列{b n }是等差数列; (2)求数列{a n }的前n 项和S n . 解:(1)证明:由已知a n +1=2a n +2n 得 b n +1=a n +12n =2a n +2n 2n =a n 2n -1+1=b n +1. 又b 1=a 1=1, 因此{b n }是首项为1,公差为1的等差数列.(2)由(1)知a n 2-=n ,即a n =n ·2n -1. S n =1+2×21+3×22+…+n ×2n -1, 两边乘以2得,2S n =2+2×22+…+n ×2n . 两式相减得S n =-1-21-22-…-2n -1+n ·2n =-(2n -1)+n ·2n =(n -1)2n+1. 18.设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *).(1)求a 2,a 3的值; (2)求证:数列{S n +2}是等比数列.解:(1)∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),∴当n =1时,a 1=2×1=2; 当n =2时,a 1+2a 2=(a 1+a 2)+4,∴a 2=4;当n =3时,a 1+2a 2+3a 3=2(a 1+a 2+a 3)+6,∴a 3=8.(2)∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N *),①∴当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1=(n -2)S n -1+2(n -1).②①-②得na n =(n -1)S n -(n -2)S n -1+2=n (S n -S n -1)-S n +2S n -1+2=na n -S n +2S n -1+2. ∴-S n +2S n -1+2=0,即S n =2S n -1+2,∴S n +2=2(S n -1+2). ∵S 1+2=4≠0, ∴S n -1+2≠0, ∴S n +2S n -1+22, 故{S n +2}是以4为首项,2为公比的等比数列. 19.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=5,S 6=36.(1)求数列{a n }的通项公式;(2)设b n =6n +(-1)n -1λ·2a n (λ为正整数,n ∈N *),试确定λ的值,使得对任意n ∈N *,都有b n +1>b n 成立.解:(1)∵2a n +1=a n +a n +2,∴{a n }是等差数列,设{a n }的首项为a 1,公差为d , 由a 3=5,S 6=36得⎩⎪⎨⎪⎧ a 1+2d =56a 1+15d =36,解得a 1=1,d =2. ∴a n =2n -1.(2)由(1)知b n =6n +(-1)n -1·λ·22n -1,要使得对任意n ∈N *都有b n +1>b n 恒成立, ∴b n +1-b n =6n +1+(-1)n ·λ·22n +1-6n -(-1)n -1·λ·22n -1=5·6n -5λ·(-1)n -1·22n -1>0恒成立, 即12λ·(-1)n -1<(32)n . 当n 为奇数时, 即λ<2·(32)n ,而(32)n 的最小值为32, ∴λ<3. 当n 为偶数时,λ>-2(32)n , 而-2(32)n 的最大值为-92,∴λ>-92.由上式可得-92<λ<3,而λ为正整数, ∴λ=1或λ=2. 20.(2010·株州模拟)已知二次函数f (x )=ax 2+bx +c (x ∈R),满足f (0)=f (12)=0,且f (x )的最小值是-18.设数列{a n }的前n 项和为S n ,对一切n ∈N *,点(n ,S n )在函数f (x )的图象上.(1)求数列{a n }的通项公式;(2)通过b n =S n n +c 构造一个新的数列{b n },是否存在非零常数c ,使得{b n }为等差数列; (3)令c n =S n +n n,设数列{c n ·2c n }的前n 项和为T n ,求T n . 解:(1)因为f (0)=f (12)=0,所以f (x )的对称轴为x =0+122=14,又因为f (x )的最小值是-18,由二次函数图象的对称性可设f (x )=a (x -14)2-18. 又f (0)=0,所以a =2,所以f (x )=2(x -14)2-18=2x 2-x . 因为点(n ,S n )在函数f (x )的图象上,所以S n =2n 2-n .当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=4n -3(n =1时也成立),所以a n =4n -3(n ∈N *).(2)因为b n =S n n +c =2n 2-n n +c =2n (n -12)n +c c =-12(c ≠0),即得b n =2n ,此时数列{b n }为等差数列,所以存在非零常数c =-12{b n }为等差数列. (3)c n =S n +n n =2n 2-n +n n=2n ,则c n ·2c n =2n ×22n =n ×22n +1. 所以T n =1×23+2×25+…+(n -1)22n -1+n ×22n +1,4T n =1×25+2×27+…+(n -1)22n +1+n ×22n +3,两式相减得:-3T n =23+25+…+22n +1-n ×22n +3=23(1-4n )1-4n ·22n +3, T n =23(1-4n )9+n ·22n +33=(3n -1)22n +3+89. 21.已知数列{a n }的前三项与数列{b n }的前三项对应相同,且a 1+2a 2+22a 3+…+2n -1a n=8n 对任意的n ∈N *都成立,数列{b n +1-b n }是等差数列.(1)求数列{a n }与{b n }的通项公式;(2)问是否存在k ∈N *,使得(b k -a k )∈(0,1)?请说明理由.解:(1)已知a 1+2a 2+22a 3+…+2n -1a n =8n (n ∈N *)①当n ≥2时,a 1+2a 2+22a 3+…+2n -2a n -1=8(n -1)(n ∈N *)②①-②得2n -1a n =8,求得a n =24-n , 在①中令n =1,可得a 1=8=24-1, ∴a n =24-n (n ∈N *). 由题意知b 1=8,b 2=4,b 3=2, ∴b 2-b 1=-4,b 3-b 2=-2, ∴数列{b n +1-b n }的公差为-2-(-4)=2, ∴b n +1-b n =-4+(n -1)×2=2n -6, 法一:迭代法得:b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =8+(-4)+(-2)+…+(2n -8)=n 2-7n +14(n ∈N *).法二:可用累加法,即b n -b n -1=2n -8, b n -1-b n -2=2n -10, … b 3-b 2=-2, b 2-b 1=-4, b 1=8,相加得b n =8+(-4)+(-2)+…+(2n -8)=8+(n -1)(-4+2n -8)2=n 2-7n +14(n ∈N *). (2)∵b k -a k =k 2-7k +14-24-k , 设f (k )=k 2-7k +14-24-k .当k ≥4时,f (k )=(k -72)2+74-24-k 单调递增. 且f (4)=1, ∴当k ≥4时,f (k )=k 2-7k +14-24-k ≥1. 又f (1)=f (2)=f (3)=0, ∴不存在k ∈N *,使得(b k -a k )∈(0,1).22.等差数列{a n }的前n 项和为S n ,S 4=24,a 2=5,对每一个k ∈N *,在a k 与a k +1之间插入2k -1个1,得到新数列{b n },其前n 项和为T n .(1)求数列{a n }的通项公式; (2)试问a 11是数列{b n }的第几项;(3)是否存在正整数m ,使T m =2010?若存在,求出m 的值;若不存在,请说明理由. 解:(1)设{a n }的公差为d ,∵S 4=4a 1+4×32d =24,a 2=a 1+d =5, ∴a 1=3,d =2,a n =3+(n -1)×2=2n +1.(2)依题意,在a 11之前插入的1的总个数为1+2+22+…+29=1-2101-2=1023, 1023+11=1034,故a 11是数列{b n }的第1034项.(3)依题意,S n =na 1+n (n -1)2d =n 2+2n , a n 之前插入的1的总个数为1+2+22+…+2n -2=1-2n -11-2=2n -1-1, 故数列{b n }中,a n 及前面的所有项的和为n 2+2n +2n -1-1,∴数列{b n }中,a 11及前面的所有项的和为112+22+210-1=1166<2010, 而2010-1166=844,a 11与a 12之间的1的个数为210=1024个, 即在a 11后加844个1,其和为2010,故存在m =1034+844=1878,使T 1878=2010.。

等差数列的前n项和-练习

等差数列的前n项和-练习
1 2 3 4 5 6 7 8 9 10
A.第6项
B.第7项
C.第12项
D.第13项
解析 由题意S12>0,S13<0及S12=6(a1+a12)=6(a6+a7),S13=13a7,得a6+ a7>0,a7<0,所以a6>0,a6>|a7|,且公差d<0,所以|a7|最小.
1 2 3 4 5 6 7 8 9 10
5.(多选)设等差数列{an}的公差为d,前n项和为Sn,若a3=12,S12>0,S13<0,
1 2 3 4 5 6 7 8 9 10
(2)若a1>0,求使得Sn≥an的n的取值范围. 解 由(1)得 a1=-4d,故 an=(n-5)d,Sn=n(n-2 9)d. 由 a1>0 知 d<0,故 Sn≥an 等价于 n2-11n+10≤0, 解得 1≤n≤10. 所以 n 的取值范围是{n|1≤n≤10,n∈N*}.
2.设an=2n-9,则当数列{an}的前n项和取得最小值时,n的值为( A )
A.4
B.5
C.4或5
D.5或6
解析 由aann+≤1≥0,0 解得27≤n≤92,故 n=4,所以数列{an}的前 4 项为负,以后各 项均为正,故前 4 项和最小.
1 2 3 4 5 6 7 8 9 10
3.设等差数列{an}的前n项和为Sn,且S7=S12,则( D )
等差数列的前n项和
索引
1.已知数列{an}的前n项和Sn=n2-2n,则a2+a18等于( C )
A.36பைடு நூலகம்
B.35
C.34
D.33
解析 a2=S2-S1=(22-2×2)-(12-2×1)=1,a18=S18-S17=(182-2×18)- (172-2×17)=33,a2+a18=34.

等差数列前n项和练习题

等差数列前n项和练习题

等差数列前n 项和(一)1、等差数列 ,4,1,2-的前n 项和为 ( ) A. ()4321-n n B. ()7321-n n C. ()4321+n n D. ()7321+n n2、已知等差数列{}n a 满足099321=++++a a a a ,则 ( )A. 0991>+a aB. 0991<+a aC. 0991=+a aD. 5050=a【3、在等差数列{}n a 中,已知1254=+a a ,那么它的前8项之和8S 等于 ( )A. 12B. 24C. 36D. 484、设{}n a 是公差为2的等差数列,若5097741=++++a a a a ,则99963a a a a ++++ 的值为( )A. 78B. 82C. 148D. 1825、在等差数列{}n a 中,35,2,11===n n S d a ,则1a 等于 ( )A. 5或7B. 3或5C. 7或1-D. 3或1-6、设数列{}n a 是递增的等差数列,前三项之和为12,前三项的积为48,则它的首项是( )A. 1B. 2C. 4D. 87、一个三角形的三个内角C B A ,,的度数成等差数列,则B 的度数为 ( )A. 30B. 45C. 60D. 908、等差数列{}n a 中,162,16,1041===n S a a ,则n 等于 ( )A. 11B. 9C. 9或18D. 189、数列{}n a 是等差数列,它的前n 项和可以表示为 ( )A. C Bn An S n ++=2B. Bn An S n +=2C. C Bn An S n ++=2()0≠aD. Bn An S n +=2()0≠a\10、=+++++1008642 。

11、等差数列{}n a 中,1011=a ,则=21S 。

12、等差数列{}n a 中,4,184==S S ,则=+++20191817a a a a 。

2.3.1等差数列前n项和公式试题含答案

2.3.1等差数列前n项和公式试题含答案

2.3 等差数列的前n 项和第1课时 等差数列的前n 项和公式题型一 等差数列前n 项和公式的基本运算例1 在等差数列{a n }中:(1)已知a 5+a 10=58,a 4+a 9=50,求S 10;(2)已知S 7=42,S n =510,a n -3=45,求n .跟踪训练1 在等差数列{a n }中,已知d =2,a n =11,S n =35,求a 1和n .题型二 由数列{a n }的前n 项和S n 求a n例2 已知数列{a n }的前n 项和为S n =n 2+12n ,求这个数列的通项公式.这个数列是等差数列吗?如果是,它的首项与公差分别是什么?引申探究若将本例中前n 项和改为S n =n 2+12n +1,求通项公式.跟踪训练2 已知数列{a n }的前n 项和S n =3n ,求a n .题型三 等差数列在实际生活中的应用例3 某人用分期付款的方式购买一件家电,价格为1150元,购买当天先付150元,以后每月的这一天都交付50元,并加付欠款利息,月利率为1%.若交付150元后的一个月开始算分期付款的第一个月,则分期付款的第10个月该交付多少钱?全部贷款付清后,买这件家电实际花费多少钱?跟踪训练3 甲、乙两物体分别从相距70m 的两处同时相向运动,甲第1分钟走2m ,以后每分钟比前1分钟多走1m ,乙每分钟走5m.(1)甲、乙开始运动后几分钟相遇?(2)如果甲、乙到达对方起点后立即返回,甲继续每分钟比前1分钟多走1m ,乙继续每分钟走5m ,那么开始运动几分钟后第二次相遇?【课堂练习】1.已知等差数列{a n }满足a 1=1,a m =99,d =2,则其前m 项和S m 等于( )A .2300B .2400C .2600D .25002.记等差数列的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d 等于( )A .2B .3C .6D .73.在一个等差数列中,已知a 10=10,则S 19=________.4.已知数列{a n }是等差数列,S n 是它的前n 项和.若S 4=20,a 4=8,则S 8=________.5.已知数列{a n }满足a 1+2a 2+…+na n =n (n +1)(n +2),则a n =________.1.求等差数列前n 项和公式的方法称为倒序相加法,在某些数列求和中也可能用到.2.等差数列的两个求和公式中,一共涉及a 1,a n ,S n ,n ,d 五个量.若已知其中三个量,通过方程思想可求另外两个量.在利用求和公式时,要注意整体思想的应用,注意下面结论的运用:若m +n =p +q ,则a m +a n =a p +a q (n ,m ,p ,q ∈N +);若m +n =2p ,则a m +a n =2a p (m ,n ,p ∈N +).3.由S n 与a n 的关系求a n 主要使用a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2. 【巩固提升】一、选择题1.在等差数列{a n }中,若a 2+a 8=8,则该数列的前9项和S 9等于( )A .18B .27C .36D .452.在-20与40之间插入8个数,使这10个数成等差数列,则这10个数的和为( )A .200B .100C .90D .703.已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2,n ∈N +),则数列{a n }的前9项和等于( ) A .27 B.632C .45D .-9 4.在等差数列{a n }和{b n }中,a 1=25,b 1=75,a 100+b 100=100,则数列{a n +b n }的前100项的和为( )A .10000B .8000C .9000D .110005.在等差数列{a n }中,若S 10=4S 5,则a 1d等于( ) A.12 B .2 C.14D .4 6.在小于100的自然数中,所有被7除余2的数之和为( )A .765B .665C .763D .6637.在等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10等于( ) A .-9 B .-11 C .-13 D .-158.已知数列{a n }的前n 项和S n =n 2-2n (n ∈N +),则a 2+a 18等于( )A .36B .35C .34D .33二、填空题9.在等差数列{a n }中,a n =2n +3,n ∈N +,前n 项和S n =an 2+bn +c (a ,b ,c 为常数),则a -b +c =________. 10.已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 200·OC →,且A ,B ,C 三点共线(该直线不过原点O ),则S 200=________.11.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________.12.现有200根相同的钢管,把它们堆成正三角形垛,要使剩余的钢管尽可能少,那么剩余钢管的根数为________.三、解答题13.在等差数列{a n }中,(1)已知a 6=10,S 5=5,求a 8;(2)已知a 2+a 4=485,求S 5.14.已知数列{a n }的所有项均为正数,其前n 项和为S n ,且S n =14a 2n +12a n -34(n ∈N +). (1)证明:{a n }是等差数列;(2)求数列{a n }的通项公式.15.已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足:a 3a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式a n ;(2)若数列{b n }是等差数列,且b n =S n n +c,求非零常数c .2.3.1答案例1解 (1)方法一 由已知条件得⎩⎪⎨⎪⎧ a 5+a 10=2a 1+13d =58,a 4+a 9=2a 1+11d =50,解得⎩⎪⎨⎪⎧ a 1=3,d =4.∴S 10=10a 1+10×(10-1)2d =10×3+10×92×4=210. 方法二 由已知条件得⎩⎪⎨⎪⎧ a 5+a 10=(a 1+a 10)+4d =58,a 4+a 9=(a 1+a 10)+2d =50,∴a 1+a 10=42,∴S 10=10(a 1+a 10)2=5×42=210. (2)S 7=7(a 1+a 7)2=7a 4=42, ∴a 4=6.∴S n =n (a 1+a n )2=n (a 4+a n -3)2=n (6+45)2=510.∴n =20.跟踪训练1 解 由⎩⎪⎨⎪⎧ a n =a 1+(n -1)d ,S n =na 1+n (n -1)2d ,得⎩⎪⎨⎪⎧ a 1+2(n -1)=11,na 1+n (n -1)2×2=35, 解方程组得⎩⎪⎨⎪⎧ n =5,a 1=3或⎩⎪⎨⎪⎧ n =7,a 1=-1.例2 解 根据S n =a 1+a 2+…+a n -1+a n 可知S n -1=a 1+a 2+…+a n -1(n ≥2,n ∈N +),当n ≥2时,a n =S n -S n -1=n 2+12n -⎣⎢⎡⎦⎥⎤(n -1)2+12(n -1) =2n -12, ①当n =1时,a 1=S 1=12+12×1=32,也满足①式. ∴数列{a n }的通项公式为a n =2n -12,n ∈N +. ∵a n +1-a n =2(n +1)-12-⎝⎛⎭⎪⎫2n -12=2, 故数列{a n }是以32为首项,2为公差的等差数列. 引申探究若将本例中前n 项和改为S n =n 2+12n +1,求通项公式. 解 当n ≥2时,a n =S n -S n -1=⎝ ⎛⎭⎪⎫n 2+12n +1-⎣⎢⎡⎦⎥⎤(n -1)2+12(n -1)+1 =2n -12. ①当n =1时,a 1=S 1=12+12+1=52不符合①式. ∴a n =⎩⎪⎨⎪⎧52,n =1,2n -12,n ≥2,n ∈N +. 跟踪训练2 解 当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=3n -3n -1=2·3n -1.当n =1时,代入a n =2·3n -1得a 1=2≠3.∴a n =⎩⎪⎨⎪⎧ 3,n =1,2·3n -1,n ≥2,n ∈N +.例3 解 设每次交款数额依次为a 1,a 2,…,a 20,则a 1=50+1000×1%=60,a 2=50+(1000-50)×1%=59.5,…a 10=50+(1000-9×50)×1%=55.5,即第10个月应付款55.5元.由于{a n }是以60为首项,以-0.5为公差的等差数列,所以有S 20=60+(60-19×0.5)2×20=1105, 即全部付清后实际付款1105+150=1255(元).反思感悟 建立等差数列的模型时,要根据题意找准首项、公差和项数或者首项、末项和项数. 跟踪训练3解 (1)设n 分钟后两人第1次相遇,由题意,得2n +n (n -1)2+5n =70,整理得n 2+13n -140=0. 解得n =7,n =-20(舍去).所以第1次相遇是在开始运动后7分钟.(2)设n 分钟后第2次相遇,由题意,得2n +n (n -1)2+5n =3×70, 整理得n 2+13n -420=0.解得n =15,n =-28(舍去).所以第2次相遇是在开始运动后15分钟.课堂练习 DB 190 72 3n+3 巩固提升1—8CBAAABDC9.-310.10011.1512.1013. 解 (1)方法一 ∵a 6=10,S 5=5, ∴⎩⎪⎨⎪⎧ a 1+5d =10,5a 1+10d =5,解得⎩⎪⎨⎪⎧ a 1=-5,d =3.∴a 8=a 6+2d =16.方法二 ∵S 6=S 5+a 6=15,∴15=6(a 1+a 6)2,即3(a 1+10)=15. ∴a 1=-5,d =a 6-a 15=3.∴a 8=a 6+2d =16.(2)方法一 ∵a 2+a 4=a 1+d +a 1+3d =485, ∴a 1+2d =245. ∴S 5=5a 1+10d =5(a 1+2d )=5×245=24. 方法二 ∵a 2+a 4=a 1+a 5,∴a 1+a 5=485, ∴S 5=5(a 1+a 5)2=52×485=24. 14.(1)证明 当n =1时,a 1=S 1=14a 21+12a 1-34, 解得a 1=3或a 1=-1(舍去). 当n ≥2时,a n =S n -S n -1=14(a 2n +2a n -3)-14(a 2n -1+2a n -1-3). 所以4a n =a 2n -a 2n -1+2a n -2a n -1, 即(a n +a n -1)(a n -a n -1-2)=0. 因为a n +a n -1>0,所以a n -a n -1=2(n ≥2). 所以数列{a n }是以3为首项,2为公差的等差数列.(2)解 由(1)知a n =3+2(n -1)=2n +1,n ∈N +. 15.解 (1)设等差数列{a n }的公差为d ,且d >0. ∵a 3+a 4=a 2+a 5=22,又a 3a 4=117, ∴a 3,a 4是方程x 2-22x +117=0的两个根. 又公差d >0,∴a 3<a 4,∴a 3=9,a 4=13.∴⎩⎪⎨⎪⎧ a 1+2d =9,a 1+3d =13,∴⎩⎪⎨⎪⎧ a 1=1,d =4,∴a n =4n -3,n ∈N +.(2)由(1)知,S n =n ×1+n (n -1)2×4=2n 2-n , ∴b n =S n n +c =2n 2-n n +c. ∴b 1=11+c ,b 2=62+c ,b 3=153+c . ∵{b n }是等差数列,∴2b 2=b 1+b 3,∴2c 2+c =0,∴c =-12(c =0舍去). 经检验,c =-12符合题意,∴c =-12.。

等差数列的前n项和公式习题

等差数列的前n项和公式习题

【例1】 等差数列前10项的和为140,其中,项数为 奇数的各项的和为125,求其第6项.解 依题意,得10a d =140a a a a a =5a 20d =1251135791++++++101012()-⎧⎨⎪⎩⎪ 解得a 1=113,d=-22.∴ 其通项公式为a n =113+(n -1)·(-22)=-22n +135∴a 6=-22×6+135=3【例2】 在两个等差数列2,5,8,…,197与2,7,12,…,197中,求它们相同项的和.解 由已知,第一个数列的通项为a n =3n -1;第二个数列的通项为b N =5N -3 若a m =b N ,则有3n -1=5N -3即=+ n N 213()N - 若满足n 为正整数,必须有N =3k +1(k 为非负整数).又2≤5N -3≤197,即1≤N ≤40,所以N =1,4,7,…,40 n=1,6,11,…,66∴ 两数列相同项的和为2+17+32+…+197=1393【例3】 选择题:实数a ,b ,5a ,7,3b ,…,c 组成等差数列,且a +b +5a +7+3b +…+c =2500,则a ,b ,c 的值分别为[ ]A .1,3,5B .1,3,7C .1,3,99D .1,3,9解 C 2b =a 5a b =3a 由题设+⇒又∵ 14=5a +3b ,∴ a =1,b =3∴首项为1,公差为2又+∴+·∴=S =na d 2500=n 2 n 50n 1n n n n ()()--1212 ∴a 50=c=1+(50-1)·2=99∴ a =1,b =3,c =99【例4】 在1和2之间插入2n 个数,组成首项为1、末项为2的等差数列,若这个数列的前半部分的和同后半部分的和之比为9∶13,求插入的数的个数.解 依题意2=1+(2n +2-1)d① 前半部分的和=++②后半部分的和′=+·+·-③S (n 1) d S (n 1)2(d)n+1n+1()()n n n n ++1212由已知,有′化简,得解之,得④S S n nd n nd nd nd n n ++=+++-=+-=111121229131222913()()()() nd =511 由①,有(2n +1)d=1 ⑤由④,⑤,解得,d =111n =5 ∴ 共插入10个数. 【例5】 已知等差数列{a n }中,S 3=21,S 6=24,求数列{|a n |}的前n 项和T n . 解 d S na d 3a 3d =21ba 15d =24n 111设公差为,由公式=+得++n n ()-⎧⎨⎩12解方程组得:d =-2,a 1=9∴a n =9+(n -1)(n -2)=-2n +11 由=-+>得<,故数列的前项为正,a 2n 110 n =5.5{a }5n n 112其余各项为负.数列{a n }的前n 项和为:S 9n (2)=n 10n n 2=+--+n n ()-12∴当n ≤5时,T n =-n 2+10n当n >6时,T n =S 5+|S n -S 5|=S 5-(S n -S 5)=2S 5-S n∴T n =2(-25+50)-(-n 2+10n)=n 2-10n +50即-+≤-+>∈T =n 10n n 5n 10n 50 n 6n *n 22⎧⎨⎪⎩⎪N说明 根据数列{a n }中项的符号,运用分类讨论思想可求{|a n |}的前n 项和.【例6】 在等差数列{a n }中,已知a 6+a 9+a 12+a 15=34,求前20项之和. 解法一 由a 6+a 9+a 12+a 15=34得4a 1+38d =34又=+×S 20a d 20120192=20a 1+190d =5(4a 1+38d)=5×34=170解法二 S =(a +a )202=10(a a )20120120×+ 由等差数列的性质可得:a 6+a 15=a 9+a 12=a 1+a 20 ∴a 1+a 20=17S 20=170【例7】 已知等差数列{a n }的公差是正数,且a 3·a 7=-12,a 4+a 6=-4,求它的前20项的和S 20的值.解法一 设等差数列{a n }的公差为d ,则d >0,由已知可得(a 2d)(a bd)12 a 3d a 5d = 4 1111++=-①+++-②⎧⎨⎩由②,有a 1=-2-4d ,代入①,有d 2=4再由d >0,得d =2 ∴a 1=-10最后由等差数列的前n 项和公式,可求得S 20=180解法二 由等差数列的性质可得:a 4+a 6=a 3+a 7 即a 3+a 7=-4又a 3·a 7=-12,由韦达定理可知:a 3,a 7是方程x 2+4x -12=0的二根解方程可得x 1=-6,x 2=2∵ d >0 ∴{a n }是递增数列∴a 3=-6,a 7=2d =a =2a 10S 1807120--a 373,=-,=【例8】 等差数列{a n }、{b n }的前n 项和分别为S n 和T n ,若S T n n a b n n =+231100100,则等于[ ] A 1B C D ....23199299200301解法一 ∵,∴∴S n a a T n b b S T a a b b a a b b nn n n n n n n n n n n =+=+=++++=+()()11111122231∵2a 100=a 1+a 199,2b 100=b 1+b 199∴××选.a b a b 100100199199=a b =21993199+1=199299C 11++【例9】 解答下列各题:(1)已知:等差数列{a n }中a 2=3,a 6=-17,求a 9;(2)在19与89中间插入几个数,使它们与这两个数组成等差数列,并且此数列各项之和为1350,求这几个数;(3)已知:等差数列{a n }中,a 4+a 6+a 15+a 17=50,求S 20;(4)已知:等差数列{a n }中,a n =33-3n ,求S n 的最大值.分析与解答(1)a =a (62)d d =562+-=---1734a 9=a 6+(9-6)d=-17+3×(-5)=-32(2)a 1=19,a n+2=89,S n+2=1350∵∴+×+S =(a +a )(n +2)2n 2=2135019+89=25 n =23a =a =a 24d d =3512n+21n+2n+2251 故这几个数为首项是,末项是,公差为的个数.211112*********23 (3)∵a 4+a 6+a 15+a 17=50又因它们的下标有4+17=6+15=21∴a 4+a 17=a 6+a 15=25S =(a +a )2020120××210250417=+=()a a (4)∵a n =33-3n ∴a 1=30S =(a +a )n 2n 1n ·×=-=-+=--+()()633232632322123218222n n n n n∵n ∈N ,∴当n=10或n=11时,S n 取最大值165.【例10】 求证:前n 项和为4n 2+3n 的数列是等差数列.证 设这个数列的第n 项为a n ,前n 项和为S n .当n ≥2时,a n =S n -S n-1∴a n =(4n 2+3n)-[4(n -1)2+3(n -1)]=8n -1当n=1时,a 1=S 1=4+3=7由以上两种情况可知,对所有的自然数n ,都有a n =8n -1又a n+1-a n =[8(n +1)-1]-(8n -1)=8∴这个数列是首项为7,公差为8的等差数列.【例11】 在项数为2n 的等差数列中,各奇数项之和为75,各偶数项之和为90,末项与首项之差为27,则n 之值是多少?解 ∵S 偶项-S 奇项=nd∴nd=90-75=15又由a 2n -a 1=27,即(2n -1)d=27nd 15 (2n 1)d 27n =5=-=∴⎧⎨⎩【例12】 在等差数列{a n }中,已知a 1=25,S 9=S 17,问数列前多少项和最大,并求出最大值.解法一 建立S n 关于n 的函数,运用函数思想,求最大值.根据题意:+×,=+×S =17a d S 9a d 1719117162982∵a 1=25,S 17=S 9 解得d =-2∴=+--+--+S 25n (2)=n 26n =(n 13)169n 22n n ()-12∴当n=13时,S n 最大,最大值S 13=169解法二 因为a 1=25>0,d =-2<0,所以数列{a n }是递减等差数列,若使前项和最大,只需解≥≤,可解出.n a 0a 0n n n+1⎧⎨⎩ ∵a 1=25,S 9=S 17∴×+××+×,解得-9252d =1725d d =29817162∴a n =25+(n -1)(-2)=-2n +27∴-+≥-++≥≤≥∴2n 2702(n 1)270n 13.5n 12.5n =13⎧⎨⎩⇒⎧⎨⎩即前13项和最大,由等差数列的前n 项和公式可求得S 13=169. 解法三 利用S 9=S 17寻找相邻项的关系.由题意S 9=S 17得a 10+a 11+a 12+…+a 17=0而a 10+a 17=a 11+a 16=a 12+a 15=a 13+a 14∴a 13+a 14=0,a 13=-a 14 ∴a 13≥0,a 14≤0∴S 13=169最大.解法四 根据等差数列前n 项和的函数图像,确定取最大值时的n . ∵{a n }是等差数列∴可设S n =An 2+Bn二次函数y=Ax 2+Bx 的图像过原点,如图3.2-1所示∵S9=S17,∴对称轴x=9+172=13∴取n=13时,S13=169最大。

等差数列前n项和基础练习题(附答案)

等差数列前n项和基础练习题(附答案)

等差数列的前n 项和基础练习题一、选择题1.设S n 是等差数列{a n }的前n 项和,已知a 2=3,a 6=11,则S 7等于( )A .13B .35C .49D .632.等差数列{a n }中,S 10=4S 5,则a 1d等于( ) A.12B .2 C.14 D .43.已知等差数列{a n }中,a 23+a 28+2a 3a 8=9,且a n <0,则S 10为( ) A .-9B .-11C .-13D .-154.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36.则a 7+a 8+a 9等于( )A .63B .45C .36D .275.在小于100的自然数中,所有被7除余2的数之和为( )A .765B .665C .763D .6636.一个等差数列的项数为2n ,若a 1+a 3+…+a 2n -1=90,a 2+a 4+…+a 2n =72,且a 1-a 2n =33,则该数列的公差是( )A .3B .-3C .-2D .-17.已知数列{a n }的前n 项和S n =n 2,则a n 等于( )A .nB .n 2C .2n +1D .2n -18.数列{a n }为等差数列,它的前n 项和为S n ,若S n =(n +1)2+λ,则λ的值是( )A .-2B .-1C .0D .19.已知数列{a n }的前n 项和S n =n 2-9n ,第k 项满足5<a k <8,则k 为( )A .9B .8C .7D .610.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于( ) 311111.设S n 是等差数列{a n }的前n 项和,若a 5a 3=59,则S 9S 5等于( ) A .1B .-1C .2 D.1212.设{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .S 6与S 7均为S n 的最大值二、填空题13.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=________.14.两个等差数列{a n },{b n }的前n 项和分别为S n 和T n ,已知S n T n =7n +2n +3,则a 5b 5的值是________.15.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 的值为________.16.等差数列{a n }的前m 项和为30,前2m 项和为100,则数列{a n }的前3m 项的和S 3m 的值是________.三、解答题17.在等差数列{a n }中,已知d =2,a n =11,S n =35,求a 1和n .18.设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=7,S 15=75,T n 为数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和,求T n .19.已知两个等差数列{a n }与{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n为整数的正整数n 的个数为?20.设等差数列{a n }满足a 3=5,a 10=-9.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值.21.已知等差数列{a n}中,记S n是它的前n项和,若S2=16,S4=24,求数列{|a n|}的前n项和T n. 22.设等差数列{a n}的前n项和为S n,已知a3=12,且S12>0,S13<0.(1)求公差d的范围;(2)问前几项的和最大,并说明理由.参考答案与解析一、选择题1.C解析 S 7=7(a 1+a 7)2=7(a 2+a 6)2=49. 2.A解析 由题意得:10a 1+12×10×9d =4(5a 1+12×5×4d ), ∴10a 1+45d =20a 1+40d ,∴10a 1=5d ,∴a 1d =12. 3.D解析 由a 23+a 28+2a 3a 8=9得(a 3+a 8)2=9,∵a n <0,∴a 3+a 8=-3,∴S 10=10(a 1+a 10)2=10(a 3+a 8)2=10×(-3)2=-15. 4.B解析 数列{a n }为等差数列,则S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6), ∵S 3=9,S 6-S 3=27,则S 9-S 6=45.∴a 7+a 8+a 9=S 9-S 6=45.5.B解析 ∵a 1=2,d =7,2+(n -1)×7<100,∴n <15,∴n =14,S 14=14×2+12×14×13×7=665. 6.B解析 由⎩⎨⎧a 1+a 3+…+a 2n -1=na 1+n (n -1)2×(2d )=90,a 2+a 4+…+a 2n =na 2+n (n -1)2×(2d )=72,得nd =-18.又a 1-a 2n =-(2n -1)d =33,所以d =-3.7. D8. B解析 等差数列前n 项和S n 的形式为:S n =an 2+bn ,∴λ=-1.解析 由a n =⎩⎪⎨⎪⎧S 1, n =1S n -S n -1, n ≥2,∴a n =2n -10;由5<2k -10<8,得7.5<k <9,∴k =8.10.A解析 方法一S 3S 6=3a 1+3d 6a 1+15d =13⇒a 1=2d , S 6S 12=6a 1+15d 12a 1+66d =12d +15d 24d +66d =310. 方法二 由S 3S 6=13,得S 6=3S 3.S 3,S 6-S 3,S 9-S 6,S 12-S 9仍然是等差数列,公差为(S 6-S 3)-S 3=S 3,从而S 9-S 6=S 3+2S 3=3S 3⇒S 9=6S 3,S 12-S 9=S 3+3S 3=4S 3⇒S 12=10S 3,所以S 6S 12=310.11.A解析 由等差数列的性质,a 5a 3=2a 52a 3=a 1+a 9a 1+a 5=59,∴S 9S 5=92(a 1+a 9)52(a 1+a 5)=95×59=1. 12.C解析 由S 5<S 6,得a 6=S 6-S 5>0.又S 6=S 7⇒a 7=0,所以d <0.由S 7>S 8⇒a 8<0,因此,S 9-S 5=a 6+a 7+a 8+a 9=2(a 7+a 8)<0即S 9<S 5. 二、填空题13.15解析 设等差数列的公差为d ,则S 3=3a 1+3×22d =3a 1+3d =3,即a 1+d =1, S 6=6a 1+6×52d =6a 1+15d =24,即2a 1+5d =8. 由⎩⎪⎨⎪⎧ a 1+d =1,2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-1,d =2.故a 9=a 1+8d =-1+8×2=15.14.6512解析a 5b 5=9(a 1+a 9)9(b 1+b 9)=S 9T 9=6512.15.10解析 S 奇=(n +1)(a 1+a 2n +1)2=165, S 偶=n (a 2+a 2n )2=150. ∵a 1+a 2n +1=a 2+a 2n ,∴n +1n =165150=1110,∴n =10.解析 方法一 在等差数列中,S m ,S 2m -S m ,S 3m -S 2m 成等差数列.∴30,70,S 3m -100成等差数列.∴2×70=30+(S 3m -100),∴S 3m =210.方法二 在等差数列中,S m m ,S 2m 2m ,S 3m 3m 成等差数列,∴2S 2m 2m =S m m +S 3m 3m. 即S 3m =3(S 2m -S m )=3×(100-30)=210.三、解答题17.解 由⎩⎪⎨⎪⎧ a n =a 1+(n -1)d ,S n =na 1+n (n -1)2d ,得⎩⎪⎨⎪⎧ a 1+2(n -1)=11,na 1+n (n -1)2×2=35, 解方程组得⎩⎪⎨⎪⎧ n =5a 1=3或⎩⎪⎨⎪⎧n =7,a 1=-1.18.解 设等差数列{a n }的公差为d ,则S n =na 1+12n (n -1)d , ∵S 7=7,S 15=75,∴⎩⎪⎨⎪⎧ 7a 1+21d =715a 1+105d =75, 即⎩⎪⎨⎪⎧ a 1+3d =1a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=-2d =1, ∴S n n =a 1+12(n -1)d =-2+12(n -1), ∵S n +1n +1-S n n =12, ∴数列⎩⎨⎧⎭⎬⎫S n n 是等差数列,其首项为-2,公差为12, ∴T n =n ×(-2)+n (n -1)2×12=14n 2-94n .19.解析a nb n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1 =7(n +1)+12n +1=7+12n +1, ∴n =1,2,3,5,11.20.解 (1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得⎩⎪⎨⎪⎧ a 1+2d =5,a 1+9d =-9,可解得⎩⎪⎨⎪⎧a 1=9,d =-2, 所以数列{a n }的通项公式为a n =11-2n .(2)由(1)知,S n =na 1+n (n -1)2d =10n -n 2. 因为S n =-(n -5)2+25,所以当n =5时,S n 取得最大值.21.解 由S 2=16,S 4=24,得⎩⎨⎧ 2a 1+2×12d =16,4a 1+4×32d =24.即⎩⎪⎨⎪⎧ 2a 1+d =16,2a 1+3d =12. 解得⎩⎪⎨⎪⎧a 1=9,d =-2. 所以等差数列{a n }的通项公式为a n =11-2n (n ∈N *).(1)当n ≤5时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a n =S n =-n 2+10n .(2)当n ≥6时,T n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-a 6-a 7-…-a n =2S 5-S n =2×(-52+10×5)-(-n 2+10n )=n 2-10n +50,故T n =⎩⎪⎨⎪⎧-n 2+10n (n ≤5),n 2-10n +50 (n ≥6).22.解 (1)根据题意,有:⎩⎨⎧12a 1+12×112d >0,13a 1+13×122d <0,a 1+2d =12,整理得:⎩⎪⎨⎪⎧ 2a 1+11d >0,a 1+6d <0,a 1+2d =12.解之得:-247<d <-3. (2)∵d <0,而S 13=13(a 1+a 13)2=13a 7<0,∴a 7<0. 又S 12=12(a 1+a 12)2=6(a 1+a 12)=6(a 6+a 7)>0, ∴a 6>0.∴数列{a n }的前6项和S 6最大.。

等差数列的前n项和性质+练习

等差数列的前n项和性质+练习

1、等差数列{a n }前n 项和公式: n S = n a n 2a 1+=d n n n a 2)1(1-+=d n n na n 2)1(--。

等差数列的前n 项之和公式可变形为,若令A =,B =a 1-,则=An 2+Bn.在解决等差数列问题时,如已知,a 1,a n ,d ,,n 中任意三个,可求其余两个。

2、等差数列{a n }前n 项和的性质性质1:S n ,S 2n -S n ,S 3n -S 2n , …也在等差数列,公差为n 2d性质2:(1)若项数为偶数2n,则 S 2n =n(a 1+a 2n )=n(a n +a n+1) (a n ,a n+1为中间两项),此时有:S 偶-S 奇= nd , 性质3:(2)若项数为奇数2n -1,则 S 2n-1=(2n - 1)a n (a n 为中间项), 此时有:S 奇-S 偶= a n ,1-n n s =偶奇s 性质4:数列{nn s }为等差数列 性质5:若数列{a n }与{b n }都是等差数列,且前n 项的和分别为S n 和T n ,则2121n n n n a S b T --= 典型例题:热点考向1:等差数列的基本量(a 1,a n ,d ,,n 中任意三个,可求其余两个)例1、在等差数列{n a }中,已知81248,168S S ==,求1,a 和d 已知6510,5a S ==,求8a 和8S训练: 1、在等差数列{}n a 中,已知102030,50a a ==.(1)求通项公式{}n a ;(2)若242n S =,求n .2.在等差数列{}n a 中,n S 为数列{}n a 的前n 项和,已知7157,75S S ==,n T 为数列{n S n }的前n 项和,求n T 3、已知等差数列的前n 项之和记为S n ,S 10=10 ,S 30=70,则S 40等于 。

4. 已知是等差数列,且满足,则等于________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等差数列前n 项和练习题
一、
填空题
1. 等差数列{a n }中,若a 6=a 3
+a 8
,则S 9= 。

2. 等差数列{}n a 的前n 项和n n S n 32+=.则此数列的公差=d 。

3. 等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a = 。

4. 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= 。

5. 已知{}n a 为等差数列,2812a a +=,则5a = 。

6. 已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = ____________。

7. 等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d = 。

8. 等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d = 。

9. 等比数列{}n a 的前n 项和为n S ,若246,30,S S ==则6S = 。

10. 等差数列{}n a 的前n 项和为n S ,已知57684,2a a a a +=+=-,则当n S 取最大值时n 的值是 。

11. 设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则
111213a a a ++= 。

12. 在等差数列{}n a 中,已知1234520a a a a a ++++=,那么3a 的值为 。

13. 已知数列{a n }的前n 项和S n =3n 2-2n ,求=n a 。

14. 设等差数列的前项和为,若则。

15. 设等差数列的前项和为,若,则= 。

二、
计算题
1. 已知等差数列{a n }中,
a 1
=1,d=1,求该数列前10项和S
10。

2. 已知等差数列{a n }的公差为正数,且a 3·a 7= -12,a 4+a 6=-4,求S 20 。

3. 等差数列{a n }中,S 10 = 100,求a 1+
a
10
的值。

4. 已知等差数列{a n }中,a 3··+a 6+a 8··+a 11= 60 ,求S 13 。

{}n a n n S 535a a =9
5
S S ={}n a n n S 972S =249a a a ++
5. 等差数列{a n }的前m 项的和为 30 ,2m 项的和为 100 ,求它的前3m 项的和 。

6. 在等差数列{a n }中,a 2= 6 ,a 8= 6 ,若数列{a n }的前n 项和为S n ,写出a 3 、
a
4
、a 5和a 6的大小关系。

7. 一个等差数列前3项和为 34 ,后3项和为 146 ,所有项和为390,求这个数列的项数。

8. 在小于 100 的正整数中,求被3除余2的数的和。

9. 已知等差数列{a n }的公差是正整数,且a 2·a 8=12,a 2+a 8=4,求其 前10项和S 10。

10. 已知数列{a n },若a n = 2n + 13 ,求S n 达到最大值时n 的值,并求S n 的最大值。

11. 全国统一鞋号中成年男鞋共有14种尺码,其中最小的尺码是2
1
23cm ,相
邻的两个尺码都相差2
1
cm ,把全部尺码从小到大列出,并求出它们的和 。

12. 由下列等差数列的通项公式,求出首项、公差和前n 项和。

(1). a n = 3n + 6; (2).
a
n
=-2n + 7.
13. 如果等差数列{a n }的前4项的和是2,前9项的和是-6,求其前n 项和的公式。

14.由数列1,1+2+1,1+2+3+2+1,1+2+3+4+3+2+1,…前4项的值,推测第n 项a n =1+2+3+…+(n-1)+n+(n-1)+…+3+2+1的结果,并给出证明。

15. (1) 设等差数列{a n }的通项公式是3n -2,求它的前n 项和公式; (2) 设等差数列{a n }的前n 项和公式是S n =5n 2+3n ,求它的前3项,并
求它的通项公式。

相关文档
最新文档